Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan...

42
Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11 współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki

Transcript of Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan...

Page 1: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

Quantum Dots in Photonic Structures(Nanophotonics with Quantum Dots)

Wednesdays, 17.00, SDT

Jan Suffczyński

Projekt Fizyka Plus nr POKL.04.01.02-00-034/11 współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki

Page 2: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

Plan for today

1. Overview of the course

2. EM radiation

3. Optical cavities

Page 3: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

Overview of the course

IPhysics of the light- matter interaction

Page 4: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

Overview of the course: I. Physics of the light- matter interaction

E

t

1

1/e

0

Page 5: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

Overview of the course

IPhysics of the light-

matter coupling

IISemiconductor

Quantum Dot as a source of the light

Page 6: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

Overview of the course: II. Semiconductor Quantum Dot as a source of the light

Transmission Electron Microscope cross-sectional image,Offermans et al., Phys. Rev. B 2005

2210 2215 2220 2225

XX

CX

-P

L I

nte

ns

ity

[a

rb.

un

its

]

Photon Energy [meV]

X

CdTe/ZnTe Quantum Dot emission InAs/AlAs Quantum Dot

Corr

elat

ed c

ount

s

T = 2 K

Page 7: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

Overview of the course

IPhysics of the light- matter interaction

IIIQuantum Dot in

Optical microcavity

IISemiconductor

Quantum Dot as a source of the light

Page 8: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

Overview of the course: III. Quantum Dot in Optical microcavity

Page 9: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

Overview of the course

IPhysics of the light- matter interaction

IVImplementations,

challenges, …

IIIQuantum Dot in

Optical microcavity

IISemiconductor

Quantum Dot as a source of the light

Page 10: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

+ QDs and plasmonics

Overview of the course: IV. Practical implementations and outlook

© Evident Technologies

X. Gao et al.,Nature Biotechnology’ 2004

Page 11: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

1988: Wolfram Mathematica

- symbolic language for algorithmic computation

2009:

- web computational engine accepting free form input

Exercises©

Wol

fram

Alp

ha

Page 12: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

1988: Wolfram Mathematica

- symbolic language for algorithmic computation

2009:

- web computational engine accepting free form input

Exercises©

Wol

fram

Alp

ha

• Downloadable .nb files atwww.fuw.edu.pl/~jass/wyklad.html on the evening before the lecture

• Calculations and interactive data plotting during the lecture

Page 13: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

A trendy subject of the course

1970 1980 1990 2000 20100

500

1000

1500

Pub

lishe

d Item

s in

Eac

h Y

ear

Publication Year

"Quantum Dot" or QD

1970 1980 1990 2000 20100

500

1000

1500

2000

2500

3000

Pub

lishe

d Item

s in

Eac

h Y

ear

Publication Year

photonic

source: ISI Web of Knowledge

Page 14: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

A trendy subject of the course

1970 1980 1990 2000 20100

500

1000

1500

2000

2500

3000

Pub

lishe

d Item

s in

Eac

h Y

ear

Publication Year

photonic

source: ISI Web of Knowledge

1970 1980 1990 2000 20100

250

500

750

1000

1250

Pub

lishe

d Item

s in

Eac

h Y

ear

Publication Year

"Quantum Dot" or QD "Quantum Well" or QW

• Development of the technology of the sample production• Nanoscale control of the structure parameters

Page 15: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

Photonics

• The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. (after: photonics.com)

• The science of light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation

Page 16: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

Photonics

• The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. (after: photonics.com)

• The science of light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation

Page 17: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

Photonics

• The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. (after: photonics.com)

• The science of light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation

• Photonics = electronics using a photons instead of electrons

Page 18: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

A brief history of the photon• Ancient Greek φῶς (phōs) = “light”• Particle vs wave models of the light• 1850 – Young experiment

Page 19: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

A brief history of the photon• Ancient Greek φῶς (phōs) = “light”• Particle vs wave models of the light• 1850 – Young’s experiment

Page 20: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

Interference Pattern Develops

• Stages of two-slit interference pattern. • The pattern of individually exposed grains progresses

from (a) 28 photons to (b) 1000 photons to (c) 10,000 photons.

• As more photons hit the screen, a pattern of interference fringes appears.

Page 21: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

Interference Pattern for three slits?

Page 22: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

A brief history of the photon• Ancient Greek φῶς (phōs) = “light”• Particle vs wave models of the light• 1805 – Young’s experiment – wave!• 1865 – James Clerk Maxwell's prediction that light was an

electromagnetic wave• 1888 – Heinrich Hertz's experimental confirmation by detection of radio

waves• 1905 – Albert Einstein, “light quantum” (das Lichtquant) and

photoelectric effect• 1923 – Compton, particle-like character of the light• 1926 - “un-creatable and indestructible” photons by Gilbert N. Lewis• 1977 - unambiguous confirmation – single photon correlation

experiment, Kimble et al.

Nature (1926)

Page 23: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

The light

Classical picture

Page 24: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

The light

Classical picture Quantum picture

Page 25: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

Maxwell’s Equations

• Electromagnetism - one of the four fundamental

forces (others: gravity and strong & weak nuclear

forces)

• Fundamental quantities: Electric field E, magnetic

field H, and D(E), B(H).

• In free space: D=0E, B=0H.

• Electric and Magnetic fields produce forces on

charges

Page 26: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

Maxwell’s Equation’s(in Differential Form)

D B 0

Gauss’s Law

Gauss’s Law for Magnetism

EB

t

H JD

t

Faraday’s Law

Ampere’s Law (in full extent)

James Clerk Maxwell

Changing E-field results in changing H-field resulting in changing E-field….

Page 27: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

Electromagnetic wave

2

2

002

2

t

B

x

B

tkxBB

tkxEE

cos

cos

max

max

Speed:

1.

o o

v

Page 28: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

Properties of EM Waves• The solutions to Maxwell’s equations in free space

are wavelike• Electromagnetic waves travel through free space at

the speed of light.• The electric and magnetic fields of a plane wave are

perpendicular to each other and the direction of propagation (they are transverse).

• The ratio of the magnitudes of the electric and magnetic fields is c.

• EM waves obey the superposition principle.

Page 29: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

Some Important Quantities

2

k Wavenumber

00

1

c Speed of Light

f 2 Angular Frequency

f

c Wavelength

ck =

w(k)

tkxBB

tkxEE

cos

cos

max

max

Dispersion relation

Page 30: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

Electromagnetic spectrum

λ ≈ 700 - 420 nm

λ ≈ 10-9 - 10-11 m

λ ≈ 10-12 - 10-14 m

λ ≈ 10-4 - 10-6 m

λ ≈ 10-2 - 10-3 m

λ ≈ 10-1 - 103 m

Page 31: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

Cavity quantum electrodynamics (CQED)

• Developed from the 50s of XX cent.• CQED deals with modications of the

electromagnetic field properties that are induced by the presence of boundaries for the field (mirrors, interfaces...)

Page 32: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

Energy density emitted by the Sun

Cavity quantum electrodynamics (CQED)

What happens to a photon confined in a box?

(10*10-9 m)3

10

10

10

5

Page 33: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

Optical cavity mode (lat. modus)

Condition for resonance in a cavity:

d

2d = Nl N = 1, 2, 3, ...

(round trip distance 2d equal to an integral number of wavelengths)

mirror mirror

Page 34: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

Surprising cavity effects at the nanoscale: the Casimir effect

Hendrik Casimir(1909-2000)

H. B. G. Casimir, On the attraction between two perfectly conducting plates, Proceedings of the Royal Netherlands Academy

of Arts and Sciences, Vol. 51, pp. 793–795 (1948).

• A net pressure from the excluded wavelengths

Page 35: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

The Casimir effect – how to measure it and how strong is it?

Example: two mirrors with an area of 1 cm2 separated by a distance of 1 μm have an attractive Casimir force of about 10–

7 N

When the sphere is brought near to the plate, an attractive Casimir force causes the cantilever to bend. Bouncing a laser off the top of thecantilever and photodiodes to monitors the effect.

Page 36: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.
Page 37: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

The Casimir effect: a „particle” viewElectron-positron production

Quantum fluctuations of the vacuum create virtual particles (real for an instant) that produce mechanical force

Page 38: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

Optical resonator

Two basic types:

Linear resonators: the light bounces back and forth between two end mirrors. There are counter propagating waves, which interfere with each other to form a standing-wave pattern.

Ring resonators: the light circulates in two different directions. A ring resonator has no end mirrors

Page 39: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

Some others:• Ease of fabrication• Connectivity to waveguides• Integration in larger circuits

Intrinsic ones:• Cavity mode (= elecromagnetic field distribution)• Quality factor (= temporal time)• Mode volume (= spatial confinement)• Free spectral range (= spectral mode separation)

Cavities: important parameters

Page 40: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

Quality factor of the optical cavity

• Ideal cavity: the photon preserved infinitely long

• In real: the photon escapes from the cavity within the finite time

Quality factor Q:

• Describes ability of the cavity to preserve a photon

• Compares the frequency at which a system oscillates to the

rate at which it dissipates its energy

A resonant cavity analogue: resonant LC curquit

Page 41: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

Quality factor Q

E

t

1

1/e

2/ = photon decay time

tettE

2

1

0cos

Consider leak-out of the photon from a cavity:

Optical period T = 1/f0 = 2/0

tteetu

2

2

1

tedt

tdu

0

E =Electric field at acertain position

u =Energy density

0222

TT

dt

tdutu

ePerOptCyclEnergyLost

gyStoredEnerQ

1. Definition of Q via energy storage:

Energy density decay:

Page 42: Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11.

Summary

• General properties of EM radiation• Basics of optical microcavities

Next lecture:• Spontaneous emission and its control(Prucell effect, strong light matter-coupling)