Phy 1 (2)

download Phy 1 (2)

of 8

Transcript of Phy 1 (2)

  • 8/18/2019 Phy 1 (2)

    1/8

    http://www.rpmauryascienceblog.com/ 

    Solution

    Q.1. Given current in a mixture of a d.c. component of 10 A and an alternating current of maximum value5A.

    R.M.S. value = 22 )current.c.aof valuerms()currentc.d(    

    = 22 )2/5()10(    =2

    15.

    Q.2.  XL = 2fL = 2  50  0.7 = 220 .

    z = 2L2 XR    = 220 2   

    Power factor, cos  =z

    R =

    2220

    220 =

    2

    1.

    Q.3. (a) vavg =

    m00

    mm

    v]cos[

    2

    vdsinv

    2

    veff  =4

    v0d)sinv(

    2

    1 2m

    0

    2m  

     

     

      veff  =2

    vm  

    (b) When switch is closed2 & 3 – series   2 + 3 = 5 and 6 & 9 - series   6 + 9 = 15

    5 & 12 – parallel  17

    60

    125

    125

     

    15 &17

    60 series   15  

    17

    315

    17

    60  

    5 & 10 parallel  3

    10 

    3

    10 &

    17

    315   are parallel  

    17

    315

    3

    10

    )17/315()3/10(

     = 2.825H

    Q.4.  I (t) = 21

    EER

    1  

    =50

    1 (25 3  + 25 6  sin t)

    I (t) =2

    3 (1 + 2 sin t)

    Heat produced in one cycle of AC.

    =

    /2

    0

    2/2

    0

    2 dttsin22tsin21504

    3Rdt)t(I  

    http://www.rpmauryascienceblog.com/http://www.rpmauryascienceblog.com/

  • 8/18/2019 Phy 1 (2)

    2/8

    http://www.rpmauryascienceblog.com/ 

    = J2

    322

    2

    75

     

    No. of cycle in 14 minute is N = 14  60  50

    Total heat produced = 2

    3

      14  60  50Total heat produced = 3/2  14  60  50 = 63000 J

    Q.5.  (a) 0 =62

    21020010

    50

    1

    LC

    1

     

    0 = 100   (= frequency of impressed voltage)hence net current through resistance is zero.

    (b) v = 5 sin 100 t.

    iC

    vi

    iL

    Q.6.  Comparing, E = 100 2  sin (100 t) with E = Emax sin t,

    we get, Emax = 100 2 V and  = 100 Emax (rad/sec.)

    XC =4

    610

    10100

    1

    C

    1

         

    as ac instrument reads rms value, the reading of ammeter will be,

    Irms = mA10X2

    E

    2

    E

    c

    maxrms  

    Q.7.  Charged stored in the capacitor oscillates simple harmonically asQ = Q0 sin (t  )

    Q0 = 2  10-4 C

     =63 105102

    1

    LC

    1

     = 104 s-1 

    Let at t = 0, Q = Q0 then,Q(t) = Q0 cos t . . . . . (i)

    i(t) = dt

    dQQ0sin t . . . . . (ii)

    anddt

    )t(di = - Q0 

    2 cos t . . . . . (iii)

    (a) Q = 100 C or2

    Q0  

    from (i) equation cos t =2

    from equation (iii)

     

      

     dt

    di = Q0

    2 cos t

    = 2  10-4 (104)2  2

    dt

    di = 104 A/s

    http://www.rpmauryascienceblog.com/http://www.rpmauryascienceblog.com/

  • 8/18/2019 Phy 1 (2)

    3/8

    http://www.rpmauryascienceblog.com/ 

    (b) Q = 200 C or Q0 then cos t = 1 i.e., t = 0, 2 ……………from equation (ii)I(t) = - Q0  sin t

    I(t) = 0[sin 0 = sin 2 = 0]

    Q.8.  In one complete cycleIav = 0

    Irms =

     

      

     2/

    0

    2/

    0

    2

    0

    dt

    tI2

     

    Irms =3

    I0 .

    Q.9.  When ‘S’ is closed Applying Kirchoff’s law0 = iR + (1/C)  idti = - (q0 / RC) e

    -t/RC  = - (40/R)e-t/RC but RC = 0.2  106  10  10-6 = 2 sec.

     i =6102.0

    40

    2/te  = - 2  10-4 e-t/2 amp.

    where –ve sign indicates current is flowing in opposite direction. to our convention.

      Wdissipated =

    0

    t58

    0

    2 e)102)(104(Rdti dt

    = 8  10-3  0te  = 8  10-3 J.

    Q.10. v = 100)60()80( 22 volt,

    p.f. =100

    80 = 0.8 lagging

    Q.11.  The rms value of the current is 1.5 mA

    The impedance of the capacitor is given by |ZC| = 61 1

    6.67kC 300 0.5 10

     

     

    The rms voltage across the capacitor is 1.5  103   320

    10 10 V3

     

    The impedance of the circuit is

    |Z| = 2

    23 32010 10 10

    3

    = 3

    40010 100

    9  = 1.2 104 

    Q.12.  2f  =3 6

    1 1

    LC (0.5 10 5 10

     

    http://www.rpmauryascienceblog.com/http://www.rpmauryascienceblog.com/

  • 8/18/2019 Phy 1 (2)

    4/8

    http://www.rpmauryascienceblog.com/ 

      f =410

    Hz

     

    2 21 1cV Li2 2

     

    5  10-6  4  104 = 0.5  10-7 i2 i = 20 Amp.

    Q.13.  XL = L =   

    Impedance =Z = 3.3  

    Power factor = R/ Z = 1/3.3

    Q.14.  C= 0.014200  F

    For minimum impedance, L = 1/ C

    L= 0.36 mH.

    Q.15.  The loop equation

     L 0iRdt

    di  

     At t = 0, i = 0,

    60 - 0.008 0dt

    di  

    008.0

    60

    dt

    di  = 7500 A/s

    Wheredtdi = 500A/s, an equation yields,

    60 - (0.008)(500) - 30i = 030 i = 60 - 4   i = 1.867 A

    For the final currentdt

    di = 0, and

     L(0) - 30 IF = 0IF = 2A

    Q.16.  Applying KVL to the circuit at time 't'

    2i +

    dt

    di

    10

    2.0 = 20

    solving this differential equation :i = 10 (1+9e-100t )

    Q.17.  Current in inductance will lag the applied voltage while across the capacitor will lead.IL = Imax sin (t - /2) = - 0.4 cos t for inductorIC = Imax sin (t + /2) = +0.3 cos t for capacitorso current drawn from the source.I = IL + IC = - 0.1 cos tImax = |I0| = 0.1 A.

    Q.18.  Constant value in the cycle therefore

    http://www.rpmauryascienceblog.com/http://www.rpmauryascienceblog.com/

  • 8/18/2019 Phy 1 (2)

    5/8

    http://www.rpmauryascienceblog.com/ vavg = v0 vrms = v0 

    Q.19.  v = 100)60()80( 22 volt,

    p.f. =100

    80  = 0.8 lagging

    Q.20.  When connected to d.c. source

    R =V

    I

    12

    4 = 3   …(1)

    When connected to a.c. source

    Z =V

    Irms

    rms

    12

    2 4. = 5   …(2)

    Z = R L22

    …(3)

    From (1), (2) and (3)L = 0.08 Hwith condenser

    Z =2

    2

    C

    1LR  

     

      

     

     

    =

    2

    6

    2

    10250050

    108.0503  

     

      

     

     

    = 5  

    cos  =R

    Z'. 0 6  

     P = Vrms.Irms cos  = 12  2.4  0.6 = 17.8 volt

    Q.21.  (a) L =50

    10100

    R

    L 3  = 2  10-3 sec.

       = I0 (1 – et/) = )e1(

    R

    v /t    

    /t

    eR.

    v

    dt

    dI

      =

    3102

    001.0

    3 e.50102

    100  

     = 103 (0.606) = 606 amp/sec.

    (b) Heat produced, H =

    RI3

    1Rdt)/t(I 20

    0

    220  

      Irms =3

    I

    R

    RI)3/1( 020

    .

    Q.22.  Let effective resistance is r.

    http://www.rpmauryascienceblog.com/http://www.rpmauryascienceblog.com/

  • 8/18/2019 Phy 1 (2)

    6/8

    http://www.rpmauryascienceblog.com/ 

    3  =rI

    Vc   … (i)

    vc = 3 rI

    3

    1

     = )I10rI(

    vc  

    3r = r + 10r = 5    capacitive nature of box.

    Q.23.  The angular resonance frequency of the circuit is given by: 

     = 43 6

    1 110 rad /s

    LC 10 10 10

     

     At a frequency that is 10% lower than the resonance frequency, the reactance XC, of the capacitoris:

    XC = 4 61 1

    111C 10 10 0.9     And that of the inductance isXL = L = 10

    4  0.9  102 = 90 The impedance of the circuit is

    |Z| = 2 22 2

    L CR X X 3 21 21.2  

    The current amplitude, i =15

     A21.2

      0.7A

    The average power dissipated is:

    221 1i R 0.7 3 0.735 W

    2 2  

    The average energy dissipated in 1 cycle is

    4

    20.735 J

    0.9 10

     

    or 5.13  104 J

    Q.24.  2020 Cv

    2

    1Li

    2

    1  

    i0 = v0 L

    v0 = 24

    6

    0 1025.1100.4

    100.5

    C

     volt

    i0 = 1.25  10-2

    44

    1033.809.0

    100.4  

     A

    umax = J10125.3Cv2

    1Li

    2

    1 820

    20

     

    3.125  10-8  =2

    4 2

    4

    1 8.33 10 1 q(0.09)

    2 2 2 (4.0 10 )

     

    q = 4.33  10-6 C.

    http://www.rpmauryascienceblog.com/http://www.rpmauryascienceblog.com/

  • 8/18/2019 Phy 1 (2)

    7/8

    http://www.rpmauryascienceblog.com/ 

    Q.25.  At resonance frequency f 0 =LC2

    1

     

    i0 = v0/RFrom given condition

    21

    22

    00

    )C

    1L(R

    vRv

     

    L -1

    RC

    .

    2f 1L - RCf 2

    1

    1

      … (i)

    2f 2L - RCf 2

    1

    2

      … (ii)

    solving equations (i) and (ii) we get,

    f 1 – f 2 =L2

    R

    .

    Q.26.  vrms =

        

     

     

    T

    0

    T

    0

    2

    2

    T

    0

    T

    0

    2

    dt

    dttT

    V

    dt

    dtV

    =3

    vmean = T

    tdtT

    VT

    0

     

    vmean =2

    Q.27.  Impedance Z= )LR( 222  

    = 22 )7.0502()50(    

    = 225.4 ohms

      Current4.225

    200

    Z

    VI   = 0.887 amp

    and tan  = 507.0502

    R

    L  

    = 4.4or  = 77 12’.

    I cos  

    I sin  

    I

    V

     

     Power component of current IR = I cos  = 0.887cos 77 12’ = 0.197 amp.and wattless components of the current IL= I sin= 0.887sin7712’ = 0.865 amp.

    http://www.rpmauryascienceblog.com/http://www.rpmauryascienceblog.com/

  • 8/18/2019 Phy 1 (2)

    8/8

    http://www.rpmauryascienceblog.com/ Q.28.  (i) Applying Kirchhoff's law to meshes (1) and (2)

    2I2 + 2I1 = 12 - 3 = 9and 2I1 + 2(I1 -I2) = 12solving I1 = 3.5 A, I2 = 1AP.D.between AB = 2I

    2 + 3 = 5 volt

    Rate of production of heat 5.24Ridt

    dQ1

    21  

     

      

      (J) R2 B

    2

    R3

    R1

    2 12V

    E1

    E2

     AS

    3V

    I1R1

    (I1-I2)(1)

    (2)

    I1

    I2 I2

    (ii) i = L/Rte1R

    E    = i0  L/Rte1    

    i = i0/2  L

    Rt = ln 2

    t = 0.0014 sec.

    Energy stored =2

    1 Li2 

    = 0.00045 (J).

    http://www.rpmauryascienceblog.com/http://www.rpmauryascienceblog.com/