Polyprotic Acids and Bases - Politechnika Gdańska · Polyprotic Acids and Bases . Tadeusz Górecki...

30
Tadeusz Górecki Ionic Equilibria Page 63 Polyprotic Acids and Bases

Transcript of Polyprotic Acids and Bases - Politechnika Gdańska · Polyprotic Acids and Bases . Tadeusz Górecki...

Tadeusz Górecki Ionic Equilibria

Page 63

Polyprotic Acids and Bases

Tadeusz Górecki Ionic Equilibria

Page 64

Phosphoric acid

HPOHPOH 4243 ][

]][[

43

421

POH

POHHKa

23.21 apK

HHPOPOH 2442

][

]][[

42

2

42

POH

HPOHKa 21.72 apK

HPOHPO 34

24

][

]][[2

4

3

43

HPO

POHKa 32.123 apK

Structure of phosphoric acid molecule:

P

OH

OH

OH

O

Pyrophosphoric acid:

P

OH

O

OH

O P

OH

OH

O

Dependence of equilibrium constant on ionic strength:

For H3PO4:

0

1

043

4201

][

][][

aa KPOH

POHHK

)log()log( 0

0

11 aa pKpK

Tadeusz Górecki Ionic Equilibria

Page 65

From Davies equation:

III

IpKpK aa 1.02.0

151.020

11

22

42

2240

2][

][][aa K

POH

HPOHK

)log( 20

22

aa pKpK

I

I

IpKpK aa 2.0

151.040

22

The constant factor b can be adjusted to get better agreement.

Tadeusz Górecki Ionic Equilibria

Page 66

2

33

224

3340

3][

][][

aa K

HPO

POHK

)log()log( 23

0

33 aa pKpK

I

I

IpKpK aa 2.0

151.060

33

Tadeusz Górecki Ionic Equilibria

Page 67

Temperature dependence of K

Tadeusz Górecki Ionic Equilibria

Page 68

Fraction (degree) of dissociation (ionization)

Weak monoprotic acid:

][

][

HK

K

C

A

a

a

HA

][

][][1

HK

H

C

HA

aHA

Polyprotic acids: n , where n is the number of protons that the acid has lost.

Monoprotic acid:

][

][0

HK

H

a

][1

HK

K

a

a

Diprotic acid H2S:

HSHSH2 ][

]][[

2

1SH

HSHKa

2SHHS ][

]][[ 2

2

HS

SHKa

CCCSHSSHC 2102

2 ][][][

C

SH ][ 20

C

HS ][1

C

S ][ 2

2

0

1

0

1

2

1

][][

][

]][[

H

C

CH

SH

HSHKa thus

][

101

H

Ka

Tadeusz Górecki Ionic Equilibria

Page 69

1

22

2

][

][

]][[

H

HS

SHKa thus

2

210

212

][][

H

KK

H

K aaa

Obviously, n

n 1 , hence

1][][ 2

210

100

H

KK

H

K aaa

From this

2112

2

0][][

][

aaa KKHKH

H

2112

11

][][

][

aaa

a

KKHKH

HK

2112

212

][][ aaa

aa

KKHKH

KK

Rules for writing expressions:

1. The denominator for each in a component system HnB is identical.

2. The denominator is a decreasing power series of [H+], starting with [H

+]

n,

and ending with [H+]

0(=1). In each successive term, and additional stepwise

dissociation constant becomes a factor. There is a total of n+1 terms, in

which the last term is anaa KKK ...21 .

3. Since each term in the denominator is proportional to the concentration of a

particular species, the first term [H+]

n forms the numerator for 0 ,

11 ][ n

a HK for 1 , and so on. Thus, n has anaa KKK ...1 21 as the

numerator.

Tadeusz Górecki Ionic Equilibria

Page 70

Equilibrium diagram plotted using expressions:

-14

-12

-10

-8

-6

-4

-2

0

0 2 4 6 8 10 12 14

pH

log

C

[OH-][H+]

[H3PO4] [H2PO4-] [HPO4

2-] [PO4

3-]

Species distribution diagram:

0

0.25

0.5

0.75

1

0 2 4 6 8 10 12 14

pH

Fra

cti

on

al co

mp

osit

ion

H3PO4 H2PO4-

HPO42-

PO43-

0 1 2 3

Tadeusz Górecki Ionic Equilibria

Page 71

Compact distribution diagram:

0

0.25

0.5

0.75

1

0 2 4 6 8 10 12 14

pH

Alp

ha

H3PO4 H2PO4-

HPO42-

PO43-

First line represents 0 , second 10 , third 210 .

Finding pH from equilibrium diagrams:

Proton condition must be fulfilled.

1. H3PO4

][][3][2][][ 34

2442

OHPOHPOPOHH

From the diagram:

][][ 42 POHH

Tadeusz Górecki Ionic Equilibria

Page 72

H3PO4

2.3

-14

-12

-10

-8

-6

-4

-2

0

0 2 4 6 8 10 12 14

pH

log

C

[OH-]

[H+]

[H3PO4] [H2PO4-] [HPO4

2-] [PO43-]

Numerical solution:

321212

13

21

142][][][

][][

aaaaaa

a

KKKHKKHKH

HCKCPOH

Proton condition

][][ 42 POHH

Thus

321212

13

21

][][][

][][

aaaaaa

a

KKKHKKHKH

HCKH

Neglecting the last two terms in the denominator:

112 ][][ aa CKHKH

Solution: pH = 2.278

Tadeusz Górecki Ionic Equilibria

Page 73

Solution can also be found through iteration of:

])[(][ 12 HCKH a

2. NaH2PO4

Proton condition:

][][2][][][ 34

2443

OHPOHPOPOHH

From the diagram

][][][ 2443 HPOPOHH

Tadeusz Górecki Ionic Equilibria

Page 74

NaH2PO4

4.8

-14

-12

-10

-8

-6

-4

-2

0

0 2 4 6 8 10 12 14

pH

log

C

[OH-][H+]

[H3PO4] [H2PO4-] [HPO4

2-] [PO43-]

Numerical solution:

][][][ 2443 HPOPOHH

Thus

][

][]][[][ 422

1

42

H

POHK

K

POHHH a

a

][][

1][ 422

1

422

POHK

K

POHH a

a

][

][][

421

42212

POHK

POHKKH

a

aa

From the diagram, in the region where the proton condition is fulfilled,

CPOH ][ 42 , thus:

CK

CKKH

a

aa

1

212][

which yields pH = 4.82

Tadeusz Górecki Ionic Equilibria

Page 75

3. Na2HPO4

Proton condition:

][][][][2][ 344243

OHPOPOHPOHH

In the region where ][ 24HPO is dominant (around pH = 10):

][][][ 3442

OHPOPOH

Tadeusz Górecki Ionic Equilibria

Page 76

Na2HPO4

9.5

-14

-12

-10

-8

-6

-4

-2

0

0 2 4 6 8 10 12 14

pH

log

C

[OH-][H+]

[H3PO4] [H2PO4-] [HPO4

2-] [PO43-]

Numerical solution:

][][][ 3442

OHPOPOH

Thus

][][

][]][[243

2

24

H

K

H

HPOK

K

HPOH wa

a

][][

24

232

2

HPO

KKKKH wa

aa

From the diagram, in the region where the proton condition is fulfilled,

CHPO ][ 24 , thus:

C

KKKKH wa

aa2

322][

which yields pH = 9.52.

Tadeusz Górecki Ionic Equilibria

Page 77

4. Na3PO4

Proton condition:

][][][2][3][ 244243

OHHPOPOHPOHH

In the region where ][ 34PO is dominant (around pH = 13):

][][ 24

OHHPO

Na3PO4

11.9

-14

-12

-10

-8

-6

-4

-2

0

0 2 4 6 8 10 12 14

pH

log

C

[OH-][H+]

[H3PO4] [H2PO4-] [HPO4

2-] [PO43-]

Numerical solution:

][][ 24

OHHPO

From the diagram:

CPOHPO ][][ 34

24

][

][][

2433

4

H

HPOKPO

Tadeusz Górecki Ionic Equilibria

Page 78

Thus

CH

KHPO a

][1][ 32

4

3

24

][

][][

aKH

HCHPO

From the proton condition:

][][

][

3

H

K

KH

HC w

a

][][ 32 HK

C

KH a

w

which yields pH = 11.88.

Sketching equilibrium diagrams for polyprotic acids by hand

4-hydroxybenzoic acid

MC BH310

2

3.41 apK

4.92 apK

2112

2

02][][

][][

aaa KKHKH

HCCBH

2112

11

][][

][][

aaa

a

KKHKH

HKCCHB

2112

212

2

][][][

aaa

aa

KKHKH

KKCCB

Tadeusz Górecki Ionic Equilibria

Page 79

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

pH

log

C

Line for [H2B]:

1. pH < pKa1 < pKa2

CBH ][ 2

CBH log]log[ 2

0]log[ 2

pHd

BHd

Tadeusz Górecki Ionic Equilibria

Page 80

2. pKa1 < pH < pKa2

2112

2

2][][

][][

aaa KKHKH

HCBH

][1 HKa , hence 2

1 ][][ HHKa

2][ aKH , hence 211 ][ aaa KKHK . Thus:

11

2

2

][

][

][][

aa K

HC

HK

HCBH

1

12

log

log]log[log]log[

a

a

pKpHC

KHCBH

1]log[ 2

pHd

BHd

3. pKa1 < pKa2 < pH

2112

2

2][][

][][

aaa KKHKH

HCBH

][21 HKK aa , hence 2

121 ][][ HHKKK aaa

Thus:

21

2

2

][][

aa KK

HCBH

21

212

2log

loglog]log[2log]log[

aa

aa

pKpKpHC

KKHCBH

2]log[ 2

pHd

BHd

Tadeusz Górecki Ionic Equilibria

Page 81

Line for [HB-]:

2112

1

][][

][][

aaa

a

KKHKH

HKCHB

1. pH < pKa1 < pKa2

][][

][][ 1

2

1

H

CK

H

HCKHB aa

pHpKC

HKCHB

a

a

1

1

log

]log[loglog]log[

1]log[

pHd

HBd

2. pKa1 < pH < pKa2

0]log[

pHd

HBd

3. pKa1 < pKa2 < pH

1]log[

pHd

HBd

Line for [B2-

]:

1. pH < pKa1 < pKa2

2]log[ 2

pHd

Bd

2. pKa1 < pH < pKa2

1]log[ 2

pHd

Bd

Tadeusz Górecki Ionic Equilibria

Page 82

3. pKa1 < pKa2 < pH

0]log[ 2

pHd

Bd

Slopes of the lines for a diprotic acid

Species pH < pKa1 < pKa2 pKa1 < pH < pKa2 pKa1 < pKa2 < pH

[H2B] 0 -1 -2

[HB-] 1 0 -1

[B2-

] 2 1 0

Note: sections having slopes of 2 and -2 are usually unimportant, because they

occur at extremely low concentrations!

When Ka values are spread widely:

1

2][

][][

aKH

HCAH

21

1

][

][

][][

aa

a

KH

HC

KH

KCHA

2

22

][][

a

a

KH

KCA

Does not apply when the pKa values are close.

Example: Pyrophosphoric acid H4P2O7

pKa1 = 0.91 pKa2 = 2.10 pKa3 = 6.70 pKa4 = 9.32

Tadeusz Górecki Ionic Equilibria

Page 83

-14

-12

-10

-8

-6

-4

-2

0

0 2 4 6 8 10 12 14

pH

log

C

[OH-] [H+]

[H4P2O7]

[H3P2O7-]

[H2P2O72-]

[HP2O73-]

[P2O74-]

Proton condition:

][][4][3][2][][ 4

72

3

72

2

722723

OHOPOHPOPHOPHH

1.1

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0 1 2 3 4 5

pH

log

C

[H+]

[H4P2O7]

[H3P2O7-]

[H2P2O72-]

[HP2O73-]

Tadeusz Górecki Ionic Equilibria

Page 84

What is the pH of 0.1 M NaH3P2O7 (NaH3A)?

Proton condition:

][][3][2][][][ 4

72

3

72

2

722724

OHOPOHPOPHOPHH

From the equilibrium diagram:

][][][ 2

24

AHAHH

4321321

2

21

3

1

4

4

4][][][][

][][

aaaaaaaaaa KKKKHKKKHKKHKH

HCAH

Neglecting the last two terms in the denominator (corresponding to [HA3-

] and

[A4-

]:

211

2

2

4][][

][][

aaa KKHKH

HCAH

Similarly,

211

2

1

3][][

][][

aaa

a

KKHKH

HCKAH

211

2

212

2][][

][aaa

aa

KKHKH

KCKAH

Combined with the approximate proton condition:

0][)(][][ 21211

23

aaaaa KCKHKKCKHH

2

21

211

23

][

][][][

HKK

HKKKHHC

aa

aaa

Tadeusz Górecki Ionic Equilibria

Page 85

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.50 1.60 1.70 1.80 1.90 2.00 2.10pH

C

pH = 1.74

Asymptote

pH = 1.51

Mixtures of polyprotic acids and bases

Same principle, same technique. Use overlaid equilibrium diagrams and proton

conditions for the mixtures.

Example: 0.1 M solution of (NH4)2HPO4

Two systems: H3PO4 (0.1 M) and NH3 (0.2 M!)

Tadeusz Górecki Ionic Equilibria

Page 86

Proton condition:

][][][][][2][ 3

434243

OHPONHPOHPOHH

-14

-12

-10

-8

-6

-4

-2

0

0 2 4 6 8 10 12 14

pH

log

C

[OH-][H+]

[H3PO4]

[H2PO4-]

[HPO42-]

[PO43-]

[NH4+] [NH3]

8.1

-5.5

-4.5

-3.5

-2.5

-1.5

-0.5

6 7 8 9 10 11

pH

log

C

[OH-]

[H3PO4]

[H2PO4-] [HPO4

2-]

[PO43-]

[NH4+] [NH3]

Tadeusz Górecki Ionic Equilibria

Page 87

Degree of formation n

Average number of protons bound to the acid anion. For H3PO4:

C

POHPOHHPOn

][3][2][ 4342

2

4

Using fractions of ionization:

012 32 n

Degree of dissociation: nN , where N is the maximum number of protons

that can be bound to the acid. For H3PO4, N = 3, hence the degree of

dissociation is n3 :

)32()(3133 0123210 nn

123 233 n

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14

pH

n 3-n

H3PO4

H2PO4-

HPO42-

PO43-

When the pKa values are less separated (e.g. for pyrophosphoric acid):

Tadeusz Górecki Ionic Equilibria

Page 88

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6

pH

n

H4A

H3A-

H2A2-

Titration of a polyprotic acid with a strong base

Charge balance: ][][3][2][][][ 32

2

OHAHAAHNaH

Mass balance:

ba

bb

VV

VCNa

][

Mass balance:

k

k

ba

aa AHVV

VCAHAAHAH ][][][][][ 32

23

k

k AH

AH

][

][ 21 , hence

ba

aa

k

kVV

VCAHAH 112 ][][ , etc.

Thus:

Tadeusz Górecki Ionic Equilibria

Page 89

][

32][ 321

H

K

VV

VC

VV

VCH w

ba

aa

ba

bb

Monoprotic acid:

][][ 1

H

K

VV

VC

VV

VCH w

ba

aa

ba

bb

For H3PO4, we can also write:

][

3][

H

K

VV

VCn

VV

VCH w

ba

aa

ba

bb

Fraction titrated

aa

bb

VC

VC

Iterative form: ][][3

HOHVC

VVn

aa

ba

Non-iterative form: ][][

][][3

HOHC

HOHn

a

In both cases, when C is large compared to [H+] and [OH

-], n 3

Tadeusz Górecki Ionic Equilibria

Page 90

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14

pH

3-n

0

2

4

6

8

10

12

14

0 1 2 3 4

pH

Tadeusz Górecki Ionic Equilibria

Page 91

Titration error

1.. epeT (first equivalence point)

Near the equivalence point,

ba

ba

aa

ba

CC

CC

VC

VV

Also, 0232)()3(13 nnn

Thus

ep

ep

w

ba

ba

epep HH

K

CC

CC][

][21 023

At the second equivalence point, 2 , and the titration error is given by

2ep:

ep

ep

w

ba

ba

epep HH

K

CC

CC][

][

222 013

Systems involving gas phase

CO2:

.)()(22

aqCOgasCO 2

.)]([2 COH

PKaqCO 464.1H

pK

32

.)( HCOHaqCO .)]([

]][[

2

3

1

aqCO

HCOHK

a

363.61

apK

2

33COHHCO

][

]][[

3

2

3

2

HCO

COHK

a 329.10

2

apK

The second reaction is often broken into two steps:

3222.)( COHOHaqCO .)]([][

2

32aqCOKCOH 97.2† Kp

332

HCOHCOH ][

]][[

32

3

1

COH

HCOHK

38.31

† Kp

Tadeusz Górecki Ionic Equilibria

Page 92

At equilibrium, [H2CO3] is only 0.1% of [CO2(aq.)], and can be neglected in

equilibrium calculations.

5.7

-14

-12

-10

-8

-6

-4

-2

0

0 2 4 6 8 10 12 14

pH

log

C

[OH-] [H+]

[CO2(aq)]

[HCO3-]

[CO32-

]

-8.5

-7.5

-6.5

-5.5

-4.5

-3.5

-2.5

-1.5

-0.5

3 5 7 9 11

pH

log

C

[OH-] [H+]

[CO2(aq)]

[HCO3-]

[CO32-

]

CT

"true"[H2CO3]