NUR AMIRAH ABDUL LATIFpsasir.upm.edu.my/id/eprint/65892/1/FPV 2015 20 IR.pdfzoonotik Bisul Nodus...

71
Reproductive physiology of caseous lymphadenitis in Katjang does following intradermal infection with Corynebacterium pseudotuberculosis NUR AMIRAH ABDUL LATIF FPV 2015 20

Transcript of NUR AMIRAH ABDUL LATIFpsasir.upm.edu.my/id/eprint/65892/1/FPV 2015 20 IR.pdfzoonotik Bisul Nodus...

  • Reproductive physiology of caseous lymphadenitis in Katjang does following intradermal infection with Corynebacterium

    pseudotuberculosis

    NUR AMIRAH ABDUL LATIF

    FPV 2015 20

  • © CO

    PYRI

    GHT U

    PM

    REPRODUCTIVE PHYSIOLOGY OF CASEOUS LYMPHADENITIS

    IN KATJANG DOES FOLLOWING INTRADERMAL

    INFECTION WITH

    Corynebacterium pseudotuberculosis

    By

    NUR AMIRAH ABDUL LATIF

    Thesis Submitted to the School of Graduate Studies,

    Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of

    Master of Science

    December 2015

  • © CO

    PYRI

    GHT U

    PM

    ii

  • © CO

    PYRI

    GHT U

    PM

    iii

    All material contained within the thesis, including without limitation text, logos, icons,

    photographs and all other artwork, is copyright material of Universiti Putra Malaysia

    unless otherwise stated. Use may be made of any material contained within the thesis for

    non-commercial purposes from the copyright holder. Commercial use of material may

    only be made with the express, prior, written permission of Universiti Putra Malaysia.

    Copyright © Universiti Putra Malaysia

  • © CO

    PYRI

    GHT U

    PM

    iv

    DEDICATION

    This thesis is dedicated to Allah s.w.t, family, thesis committee members and friends.

  • © CO

    PYRI

    GHT U

    PM

    i

    Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of

    the requirement for the degree of Master of Science.

    REPRODUCTIVE PHYSIOLOGY OF CASEOUS LYMPHADENITIS IN

    KATJANG DOES FOLLOWING INTRADERMAL INFECTION WITH

    Corynebacterium pseudotuberculosis

    By

    NUR AMIRAH ABDUL LATIF

    December 2015

    Chairman : Faez Firdaus Jesse Abdullah, PhD

    Faculty : Veterinary Medicine

    Corynebacterium pseudotuberculosis is the etiological agent for zoonotic caseous

    lymphadenitis (CLA). CLA is a zoonotic disease with high prevalence in sheep and

    goats worldwide in chronic and subclinical forms. CLA cause high financial loss to

    CLA endemic countries due to the condemnation of affected carcasses, reproductive

    problems, decreased in milk and meat production, poor wool growth and mortality in

    goats, sheep and other small ruminants. Therefore, the present study aims to examine

    the presence of C. pseudotuberculosis in reproductive organs and iliac lymph node of

    non-pregnant does in respect to cellular, hormone and cytokine changes inoculated

    intradermally in chronic form. This is the first study to review the chronicity of the

    infection in the reproductive organs and associated lymph node of non-pregnant does.

    In this study, eighteen non-pregnant healthy Katjang does aged 2 years old were

    divided randomly into two groups. The first and second group consisted of nine does

    each and the two groups were subdivided into three subgroups. The first group was

    experimentally inoculated with 1 ml of 107 cfu of live C. pseudotuberculosis by

    intradermal route while the second group was given 1 ml of PBS (pH 7) intradermally.

    The first group was further subdivided into three subgroups where the first subgroup

    (B1) was kept for 30 days post infection, the second subgroup (B2) was kept for 60

    days post infection and the third subgroup (B3) was kept for 90 days. The second group

    was further subdivided into three subgroups (C1, C2, C3) where they were kept for 30,

    60 and 90 days post infection respectively. During the post challenged periods, the

    goats were observed for clinical signs and blood samples were collected at

    predetermined intervals for three consecutive months for further analyses. Three goats

    from the treatment group were sacrificed monthly and post mortem examination was

    performed and reproductive organs and associated lymph nodes were collected for

    histopathology. Isolation and identification of C. pseudotuberculosis and PCR were

    conducted. Results showed there was successful isolation of C. pseudotuberculosis

    from reproductive organs and iliac lymph nodes of the experimental does after the

    second month from one of the infected does whereas the other two does only showed

    positive isolation from the ovary. For the second and third month of post-infection, all

    infected does showed positive C. pseudotuberculosis in the iliac lymph nodes and all

  • © CO

    PYRI

    GHT U

    PM

    ii

    reproductive organs. The concentration of IL-1β and IL-6 increased after three month

    post-inoculation. Whereas, the hormonal response in the challenged does showed a

    decrement pattern in progesterone concentration and increment pattern for estradiol

    hormone throughout three month post-infection. The changes in the hormonal

    concentration were further supported with the changes in the tissues of reproductive

    organs in the challenged does. The histopathology of exposed group showed mild to

    severe inflammatory cells, congestion, degeneration and necrosis in all the reproductive

    organs and iliac lymph nodes in all treated groups. Iliac lymph node showed moderate

    inflammatory cells (1.6±0.00), mild congestion (1.0±0.45), moderate degeneration and

    necrosis (1.5±0.00) for one month post-infection group. In the second month post-

    infection group, iliac lymph node revealed the presence of moderate inflammatory cells

    (1.6±0.21), mild congestion (1.2±0.18) and moderate degeneration and necrosis

    (1.5±0.22). For the treatment group of three month post-infection, the iliac lymph node

    exhibited the presence of moderate inflammatory cells (1.6±0.22), moderate congestion

    (1.5±0.11), severe lesion degeneration and necrosis (2.6±0.22). In the treated group of

    one month post-infection showed mild infiltration of inflammatory cells (1.4±0.00),

    mild congestion (1.4±0.55), mild degeneration and necrosis (1.4±0.55) of the ovary. In

    the treated group of second month post-infection, the ovary exhibited mild

    inflammatory cells (1.4±0.18), mild congestion (1.4±0.26) and mild degeneration and

    necrosis (1.4±0.18). The third month post-infection group, ovary showed with moderate

    degeneration and necrosis (2.4±0.15), moderate inflammatory cells (2.3±0.17) and mild

    congestion (1.4±0.19). In the first groups of one month post-infection, the vagina

    showed mild inflammatory cells (0.6±0.45), moderate congestion (1.5±0.55) and severe

    degeneration and necrosis (2.6±0.45). The second month post-infection group revealed

    vagina with moderate congestion (1.5±0.21), severe degeneration and necrosis

    (2.5±0.22) and mild inflammatory cells (0.9±0.08). The third month group, the vagina

    exhibited moderate inflammatory cells (1.5±0.22), severe congestion (2.6±0.22), and

    severe degeneration and necrosis (2.6±0.22). The uterine horn in the first groups of one

    month post-infection animals showed mild inflammatory cells (1.4±0.00), moderate

    congestion (1.9±0.00) and mild degeneration and necrosis (1.3±0.00). In the second

    month post-infection group, the uterine horn exhibited mild degeneration and necrosis

    (1.4±0.19), moderate congestion (2.3±0.13) and mild inflammatory cells (1.4±0.21).

    For the third month post-infection, the uterine horn showed mild degeneration and

    necrosis (1.3±0.21), moderate inflammatory cells (1.9±0.04) and moderate congestion

    (2.2±0.06). The uterus of the first month post-infection group showed mild

    inflammatory cells (1.2±0.00), mild congestion (0.8±0.45) and mild degeneration and

    necrosis (1.4±0.45). For the second month post-infection group, the uterus showed mild

    inflammatory cells (1.0±0.04), mild congestion (1.1±0.13) and mild degeneration and

    necrosis (0.5±0.22). For the third month post-infection group, the uterus exhibited

    moderate congestion (1.5±0.22), moderate inflammatory cells (1.6±0.22) and moderate

    degeneration and necrosis (1.5±0.22). For cervix, the first month post infection group

    showed presence of mild inflammatory cells with mean score of 1.2±0.45, mild

    congestion with mean score of 1.4±0.33 and mild degeneration and necrosis with mean

    score of 0.5±0.45. For the second month post-infection group, cervix showed cellular

    changes of mild inflammatory cells with mean score of 1.0±0.00, mild congestion with

    mean score of 1.1±0.13, and mild presence of degeneration and necrosis with mean

    score of 0.8±0.19. For the third month post-infection group, cervix exhibited cellular

    changes of mild congestion with mean score of 1.1±0.07, moderate inflammatory cells

    with mean score of 1.5±0.22 and moderate degeneration and necrosis with mean score

    of 1.5±0.22. In conclusion, PCR and histopathology of the reproductive tract of Katjang

    does proved that C. pseudotuberculosis can successfully ascended the reproductive

  • © CO

    PYRI

    GHT U

    PM

    iii

    tract and penetrated the physical barrier of the genital tract causing severe lesions as

    observed in this study. The presence of C. pseudotuberculosis causes the IL-1β, IL-6

    and estradiol to be increased while progesterone hormone to be decreased gradually.

  • © CO

    PYRI

    GHT U

    PM

    iv

    Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia

    sebagai memenuhi keperluan untuk ijazah Sarjana Sains

    FISIOLOGI PEMBIAKAN PENYAKIT BISUL NODUS LIMFA PADA

    KAMBING BETINA KATJANG MELALUI

    SUNTIKAN INTRADERMAL

    Corynebacterium pseudotuberculosis

    Oleh

    NUR AMIRAH ABDUL LATIF

    Disember 2015

    Pengerusi : Faez Firdaus Jesse Abdullah, PhD

    Fakulti : Perubatan Veterinar

    Corynebacterium pseudotuberculosis merupakan agen penyebab kepada penyakit

    zoonotik Bisul Nodus Limfa (CLA). CLA merupakan penyakit kronik dan separa

    klinikal yang kebanyakkannya menjangkiti bebiri dan kambing di seluruh dunia. CLA

    mengakibatkan kerugian ekonomi yang tinggi terhadap negara-negara yang endemik

    dengan CLA dimana penyakit ini akan menyebabkan masalah kepada pembiakan,

    pengurangan dalam penghasilan susu dan daging, kurang pertumbuhan bulu dan kes-

    kes kematian yang jarang berlaku pada kambing, bebiri dan ruminan-ruminan kecil

    yang lain. Oleh yang demikian, kajian ini bertujuan untuk mengenalpasti kehadiran C.

    pseudotuberculosis di dalam organ pembiakkan dan nodus limfa iliac kambing betina

    yang tidak bunting berkaitan perubahan selular, hormon dan sitokine yang disebabkan

    oleh bakteria tersebut dalam bentuk kronik melalui suntikan intradermal. Ini merupakan

    kajian pertama dalam mengkaji jangkitan kronik pada organ-organ pembiakkan dan

    nodus limfa yang berkaitan dalam kambing betina yang tidak bunting. Dalam kajian

    ini, lapan belas ekor kambing betina sihat yang tidak bunting berumur 2 tahun telah

    dibahagikan kepada dua kumpulan. Kumpulan pertama dan kumpulan kedua terdiri

    daripada sembilan ekor kambing betina dan kumpulan kedua telah dibahagikan kepada

    tiga kumpulan kecil. Kumpulan pertama telah disuntik dengan 1 ml 107 cfu C.

    pseudotuberculosis hidup melalui suntikan intradermal manakala kumpulan kedua telah

    diberi 1 ml PBS (pH 7) melalui suntikan intradermal. Kumpulan pertama telah

    dibahagikan kepada tiga kumpulan kecil dimana kumpulan kecil yang pertama (B1)

    telah dijangkiti selama 30 hari, kumpulan kecil yang kedua (B2) telah dijangkiti selama

    60 hari dan kumpulan kecil yang ketiga (B3) telah dijangkiti selama 90 hari. Kumpulan

    yang kedua telah dibahagikan kepada tiga kumpulan kecil (C1, C2, C3) dimana setiap

    kumpulan dijaga selama 30, 60 dan 90 hari selepas dijangkiti. Selepas diberi jangkitan,

    kambing-kambing tersebut dilihat untuk tanda-tanda klinikal dan pengambilan darah

    dilakukan pada masa yang ditentukan selama tiga bulan berturut-turut untuk analisa

    yang seterusnya. Tiga ekor kambing daripada kumpulan terjangkit telah disembelih

    setiap bulan dan pembedahan susulan telah dijalankan dan organ-organ pembiakkan

    dan nodus limfa yang berkaitan telah dikumpulkan untuk histopatologi. Uji kaji

    kehadiran dan identifikasi C. pseudotuberculosis dan analisa PCR telah dijalankan.

  • © CO

    PYRI

    GHT U

    PM

    v

    Kajian berjaya menunjukkan kehadiran C. pseudotuberculosis di dalam organ

    pembiakkan dan nodus limfa iliac kambing betina yang di uji kaji selepas dua bulan

    daripada satu ekor kambing betina yang dijangkiti manakala dua ekor kambing betina

    yang lain hanya menunjukkan data positif di dalam ovari. Pada bulan kedua selepas

    jangkitan, seperti yang di jangka, kesemua kambing betina yang dijangkiti

    menunjukkan positif C. pseudotuberculosis di dalam nodus limfa iliac dan kesemua

    organ-organ pembiakkan dalam kambing betina yang dijangkiti dengan C.

    pseudotuberculosis. Kepekatan IL-1β dan IL-6 pula menunjukkan peningkatan selepas

    tiga bulan jangkitan. Manakala, tindak balas hormon dalam kambing betina yang di

    jangkiti menunjukkan penurunan dalam kepekatan progesteron dan kenaikkan hormon

    estradiol sepanjang tiga bulan jangkitan. Perubahan kepekatan hormon seterusnya

    disokong dengan perubahan pada tisu organ pembiakkan kambing betina yang

    berpenyakit. Histopatologi untuk kumpulan yang dijangkiti menunjukkan kehadiran

    sel-sel radang, kesesakkan sel darah, degenerasi dan nekrosis pada skala minima

    sehingga teruk dalam kesemua organ-organ pembiakkan dan nodus limfa iliac untuk

    kesemua kumpulan yang dijangkiti. Nodus limfa iliac menunjukkan sel-sel radang yang

    minima (1.6±0.00), kesesakan sel darah yang minima (1.0±0.45), degenerasi dan

    nekrosis yang sederhana (1.5±0.00) untuk satu bulan jangkitan. Bagi kumpulan yang

    menerima jangkitan selama dua bulan, nodus limfa iliac menunjukkan kehadiran sel-sel

    radang skala sederhana (1.6±0.21), kesesakan sel darah yang minima (1.2±0.18) dan

    degenerasi dan nekrosis yang sederhana (1.5±0.22). Bagi kumpulan yang menerima

    jangkitan selama tiga bulan, nodus limfa iliac menunjukkan kehadiran sel-sel radang

    skala sederhana (1.6±0.22), kesesakan sel darah yang sederhana (1.5±0.11), degenerasi

    dan nekrosis skala teruk (2.6±0.22). Kumpulan yang menerima jangkitan selama

    sebulan menunjukkan peresapan minima sel-sel radang (1.4±0.00), kesesakan sel darah

    yang minima (1.4±0.55), degenerasi dan nekrosis yang minima (1.4±0.55) pada ovari.

    Dalam kumpulan yang menerima jangkitan selama dua bulan, ovari menunjukkan sel-

    sel radang yang minima (1.4±0.18), kesesakan sel darah yang minima (1.4±0.26) dan

    degenerasi dan nekrosis yang minima (1.4±0.18). Kumpulan yang dijangkiti selama

    tiga bulan menunjukkan kehadiran degenerasi dan nekrosis skala sederhana (2.4±0.15),

    bilangan sel-sel radang skala sederhana (2.3±0.17) dan kesesakan sel darah yang

    minima (1.4±0.19). Dalam kumpulan pertama yang dijangkiti selama sebulan, faraj

    menunjukkan sel-sel radang yang minima (0.6±0.45), kesesakan sel darah skala

    sederhana (1.5±0.55) dan degenerasi dan nekrosis yang teruk (2.6±0.45). Bagi

    kumpulan yang dijangkiti selama dua bulan menunjukkan faraj dengan kesesakan sel

    darah yang sederhana (1.5±0.21), degenerasi dan nekrosis yang teruk (0.9±0.08) dan

    sel-sel radang yang minima (1.5±0.22). Kumpulan yang dijangkiti selama tiga bulan,

    faraj menunjukkan keradangan sel yang sederhana (2.5±0.22), kesesakan sel darah

    yang teruk (2.6±0.22), dan degenerasi dan nekrosis yang teruk (2.6±0.22). Tanduk

    rahim haiwan dalam kumpulan pertama selepas sebulan jangkitan menunjukkan sel-sel

    radang (1.4±0.00), kesesakan sel darah yang sederhana (1.9±0.00) dan degenerasi dan

    nekrosis yang minima (1.3±0.00). Dalam kumpulan yang dijangkiti selama dua bulan

    menunjukkan degenerasi dan nekrosis yang minima (1.4±0.19), kesesakan sel darah

    yang sederhana (2.3±0.13) dan sel-sel radang yang minima (1.4±0.21). Untuk

    kumpulan yang dijangkiti selama tiga bulan, tanduk rahim menunjukkan degenerasi

    dan nekrosis yang minima (1.3±0.21), sel-sel radang yang sederhana (1.9±0.04) dan

    kesesakan sel darah yang sederhana (2.2±0.06). Rahim kumpulan yang dijangkiti

    selama sebulan menunjukkan sel-sel radang yang minima (1.2±0.00), kesesakan sel

    darah yang minima (0.8±0.45) dan degenerasi dan nekrosis yang minima (1.4±0.45).

    Bagi kumpulan yang dijangkiti selama dua bulan, rahim menunjukkan sel-sel radang

    yang minima (1.0±0.04), kesesakan sel darah yang minima (1.1±0.13) dan degenerasi

  • © CO

    PYRI

    GHT U

    PM

    vi

    dan nekrosis yang minima (0.5±0.22). Bagi kumpulan yang menerima jangkitan

    selama tiga bulan, rahim menunjukkan kesesakan sel darah skala sederhana (1.5±0.22),

    sel-sel radang yang sederhana (1.6±0.22) dan degenerasi dan nekrosis yang sederhana

    (1.5±0.22). Untuk pangkal rahim, kumpulan yang dijangkiti selama sebulan

    menunjukkan kehadiran sel-sel radang yang minima dengan nilai min 1.2±0.45,

    kesesakan sel darah yang minima dengan nilai min 1.4±0.33 dan degenerasi dan

    nekrosis yang minima dengan nilai min 0.5±0.45. Bagi kumpulan yang dijangkiti

    selama dua bulan, pangkal rahim menunjukkan perubahan selular seperti sel-sel radang

    yang minima dengan nilai min 1.0±0.00, kesesakan sel darah yang minima dengan nilai

    min 1.1±0.13, dan kehadiran degenerasi dan nekrosis yang minima dengan nilai min

    0.8±0.19. Bagi kumpulan yang dijangkiti selama tiga bulan, pangkal rahim

    menunjukkan perubahan selular seperti kesesakan sel darah yang minima dengan nilai

    min 1.1±0.07, sel-sel radang yang sederhana dengan nilai min 1.5±0.22 dan degenerasi

    dan nekrosis yang sederhana dengan nilai min 1.5±0.22. Secara kesimpulannya, PCR

    dan histopatologi saluran pembiakan Katjang betina membuktikan bahawa C.

    pseudotuberculosis telah berjaya memasuki saluran pembiakan dan menembusi

    halangan fizikal yang terdapat dalam organ pembiakan dan telah menyebabkan luka

    yang teruk seperti yang diperhatikan dalam kajian ini. Kehadiran C. pseudotuberculosis

    menyebabkan peningkatan dalam kepekatan IL-1β, IL-6 dan estradiol sementara

    kepekatan hormon progesteron berkurangan secara beransur-ansur.

  • © CO

    PYRI

    GHT U

    PM

    vii

    ACKNOWLEDGEMENTS

    Praise be to Allah S.W.T Most Gracious, Most Beneficient

    My deepest appreciation to my supervisor Dr. Faez Firdaus Jesse bin Abdullah

    for his concern, continuous advice and encouragement throughout the master’s project.

    My gratitude also to my co-supervisors and his team, Prof. Dr. Mohd Zamri bin Saad,

    Prof. Dr. Abd Wahid bin Haron, Assoc. Prof. Dr. Zunita binti Zakaria, Mr. Yap Kee

    Heng and Mr. Jefri bin Norsidin for being patience and gave valuable guidance based

    on their many years of experienced on CLA.

    I would like to record my sincere thanks to all staff in the Department of

    Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia

    (UPM) for assist me and turn this research into valuable experiences.

    My utmost appreciation to my beloved family and friends for their

    understanding, patience and support throughout the project.

  • © CO

    PYRI

    GHT U

    PM

  • © CO

    PYRI

    GHT U

    PM

    ix

    This thesis was submitted to the Senate of Universiti Putra Malaysia and has been

    accepted as fulfillment of the requirement for the degree of Master of Science. The

    members of the Supervisory Committee were as follows:

    Faez Firdaus Jesse Abdullah, PhD

    Senior Lecturer

    Faculty of Veterinary Medicine

    Universiti Putra Malaysia

    (Chairman)

    Mohd Zamri Saad, PhD

    Professor

    Faculty of Veterinary Medicine

    Universiti Putra Malaysia

    (Member)

    Abd Wahid Haron, PhD

    Professor

    Faculty of Veterinary Medicine

    Universiti Putra Malaysia

    (Member)

    Zunita Zakaria, PhD

    Associate Professor

    Faculty of Veterinary Medicine

    Universiti Putra Malaysia

    (Member)

    BUJANG BIN KIM HUAT, PhD Professor and Dean

    School of Graduate Studies

    Universiti Putra Malaysia

    Date:

  • © CO

    PYRI

    GHT U

    PM

    x

    Declaration by graduate student

    I hereby confirm that:

    This thesis is my original work; Quotations, illustrations and citations have been duly referenced; This thesis has not been submitted previously or concurrently for any other

    degree at any other institutions;

    Intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia

    (Research) Rules 2012;

    Written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the

    form of written, printed or in electronic form) including books, journals,

    modules, proceedings, popular writings, seminar papers, manuscripts, posters,

    reports, lecture notes, learning modules or any other materials as stated in the

    Universiti Putra Malaysia (Research) Rules 2012;

    There is no plagiarism or data falsification / fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia

    (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra

    Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection

    software.

    Signature:

    Name and Matric No: Nur Amirah binti Abdul Latif GS40404

    Date:

  • © CO

    PYRI

    GHT U

    PM

    xi

    Declaration by Members of Supervisory Committee

    This is to confirm that:

    The research conducted and the writing of this thesis was under our supervision; Supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate

    Studies) Rules 2003 (Revision 2012-2013) are adhered to.

    Signature:

    Name of

    Chairman of

    Supervisory Committee: Dr. Faez Firdaus Jesse bin Abdullah

    Signature:

    Name of

    Member of

    Supervisory Committee: Prof. Dr. Mohd Zamri bin Saad

    Signature:

    Name of

    Member of

    Supervisory Committee: Prof. Dr. Abd Wahid bin Haron

    Signature:

    Name of

    Member of

    Supervisory Committee: Assoc. Prof. Dr. Zunita binti Zakaria

  • © CO

    PYRI

    GHT U

    PM

    xii

    TABLE OF CONTENTS

    Page

    ABSTRACT i

    ABSTRAK iv

    ACKNOWLEDGEMENTS vii

    APPROVAL viii

    DECLARATION x

    LIST OF TABLES xiv

    LIST OF FIGURES xv

    LIST OF ABBREVIATIONS xviii

    CHAPTER

    1 INTRODUCTION

    1.1 Background of study 1

    1.2 Objectives 3

    1.3 Hypotheses of this study 3

    2 LITERATURE REVIEW

    2.1 Caseous lymphadenitis (CLA) 4

    2.1.1 General 4

    2.1.2 Economic significance of CLA 5

    2.1.3 Global prevalence of CLA 6

    2.1.4 Route of infection 7

    2.1.5 Transmissions 7

    2.1.6 Clinical signs 8

    2.2 Corynebacterium pseudotuberculosis 8

    2.2.1 History 8

    2.2.2 Characteristics of Corynebacterium

    pseudotuberculosis 9

    2.2.3 Corynebacterium pseudotuberculosis susceptibility

    to antimicrobial agents

    10

    2.2.4 Pathogenesis of Corynebacterium

    pseudotuberculosis

    10

    2.2.5 Virulence factors 12

    2.2.6 Combating CLA 12

    2.3 Hormonal responses (progesterone and estrogen) 13

    2.4 Cytokines analysis (IL-1β and IL-6) 14

    2.5 Histopathological changes 16

    3 MATERIALS AND METHODS

    3.1 Animals and management 18

    3.1.1 Ethical consideration 18

  • © CO

    PYRI

    GHT U

    PM

    xiii

    3.1.2 Estrus synchronization 18

    3.1.3 Corynebacterium pseudotuberculosis inocula 19

    3.1.4 Samples collection and culture 19

    3.2 Polymerase Chain Reaction 21

    3.2.1 Agarose gel preparation 21

    3.3 Hormonal assay 21

    3.3.1 Progesterone assay 22

    3.3.2 Estradiol assay 22

    3.4 Cytokines assay 22

    3.4.1 Cytokines analysis 23

    3.5 Histological preparation 23

    3.5.1 Lesion scoring 24

    3.6 Statistical analysis 26

    4 RESULTS

    4.1 Molecular detection of Corynebacterium

    pseudotuberculosis by PCR

    27

    4.2 Hormonal profiles alteration in non-pregnant Katjang does

    inoculated with Corynebacterium pseudotuberculosis

    following intradermal route of infection in chronic form

    29

    4.3 Cytokines effects in non-pregnant Katjang does infected

    with Corynebacterium pseudotuberculosis following

    intradermal route of infection in chronic state

    31

    4.4 Correlation between hormone and cytokine concentration

    in non-pregnant Katjang does following experimental

    chronic infection with Corynebacterium

    pseudotuberculosis by intradermal route

    33

    4.5 Cellular changes in reproductive organ and associated

    lymph nodes of Katjang does infected with

    Corynebacterium pseudotuberculosis following chronic

    infection via intradermal route

    35

    5 DISCUSSION 47

    6 SUMMARY, GENERAL CONCLUSION AND

    RECOMMENDATION FOR FUTURE RESEARCH

    54

    REFERENCES 55

    APPENDICES 68

    BIODATA OF STUDENT 97

    LIST OF PUBLICATIONS 98

  • © CO

    PYRI

    GHT U

    PM

    xiv

    LIST OF TABLES

    Table Page

    3.5.1 Histopathological lesion scoring

    25

    4.1.1 Bacteriology of organ tissue Group 1 (intradermal) taken from non-

    pregnant Katjang does following intradermal route of infection.

    28

    4.1.2 Bacteriology of organ tissue taken from Group 2 (control) non-

    pregnant Katjang does following intradermal route of PBS

    administration.

    28

    4.4.1 Pearson correlation between pro-inflammatory cytokine and

    reproductive hormones in does infected intradermally with C.

    pseudotuberculosis.

    34

    4.5.1 Table showing pathological lesions scoring in reproductive organs

    and iliac lymph nodes of non-pregnant Katjang does following

    chronic intradermal infection with C. pseudotuberculosis.

    37

    A3.1 Polymerase chain reaction (PCR) technique for bacteria

    identification.

    71

    A4.1 The amount needed in each labeled tube for progesterone assay.

    74

    A4.2 The amount needed in each labeled tube for estradiol assay. 76

  • © CO

    PYRI

    GHT U

    PM

    xv

    LIST OF FIGURES

    Figure Page

    3.1.4 Flow chart of experimental design.

    20

    4.2.1 Comparative progesterone analysis (pg/ml) in non-pregnant does

    in control group (G2) and experimentally inoculated with C.

    pseudotuberculosis (G1) following intradermal route of infection

    in chronic form. Each bar allocates the standard error mean

    (mean± SE).

    30

    4.2.2 Comparative estrogen analysis (ng/ml) in non-pregnant does from

    control group (G2) and experimentally inoculated with C.

    pseudotuberculosis (G1) following intradermal route of infection

    in chronic form. Each bar allocates the standard error mean

    (mean± SE).

    30

    4.3.1 Inflammatory cytokines (IL-1β) concentrations in non-pregnant

    does experimentally infected with C. pseudotuberculosis via

    intradermal route and the control group. Each bar allocates the

    standard error mean (mean± SE).

    32

    4.3.2 Inflammatory cytokines (IL-6) concentrations in non-pregnant

    does experimentally infected with C. pseudotuberculosis via

    intradermal route and the control group. Each bar allocates the

    standard error mean (mean± SE).

    32

    4.5.1 Photomicrograph of a section of an iliac lymph node of a non-

    pregnant Katjang does inoculated intradermally with C.

    pseudotuberculosis after one month post-infection: (blue arrow)

    mild degeneration and necrosis of the cortex (H & E, 400x).

    38

    4.5.2 Photomicrograph of a section of an iliac lymph node of a non-

    pregnant Katjang does inoculated intradermally with C.

    pseudotuberculosis after two months post-infection: (blue arrow)

    mild necrosis and degeneration and (black arrow) mild

    inflammatory cells of the cortex (H & E, 400x).

    38

    4.5.3 Photomicrograph of a section of an iliac lymph node of a non-

    pregnant Katjang does inoculated intradermally with C.

    pseudotuberculosis after three months post-infection: (blue arrow)

    severe degeneration and necrosis, (black arrow) moderate

    inflammatory cells and (red arrow) mild congestion of the cortex

    (H & E, 200x).

    39

    4.5.4 Photomicrograph of a section of an ovary of a non-pregnant

    Katjang does inoculated intradermally with C. pseudotuberculosis

    after one month post-infection: (blue arrow) moderate

    degeneration and necrosis, (black arrow) mild inflammatory cells,

    39

  • © CO

    PYRI

    GHT U

    PM

    xvi

    and (red arrow) mild congestion of the stromal cell (H & E, 200x).

    4.5.5 Photomicrograph of a section of an ovary of a non-pregnant

    Katjang does inoculated intradermally with C. pseudotuberculosis

    after two months post-infection: (blue arrow) moderate

    degeneration and necrosis, and (black arrow) mild inflammatory

    cells of the stromal cell (H & E, 200x).

    40

    4.5.6 Photomicrograph of a section of an ovary of a non-pregnant

    Katjang does inoculated intradermally with C. pseudotuberculosis

    after three months post-infection: (blue arrow) severe degeneration

    and necrosis, (black arrow) mild inflammatory cells, and (red

    arrow) moderate congestion seen in medulla of ovary (H & E,

    200x).

    40

    4.5.7 Photomicrograph of a section of a vagina of a non-pregnant

    Katjang does inoculated intradermally with C. pseudotuberculosis

    within one month post-infection: (blue arrow) mild degeneration

    and necrosis, and (black arrow) mild inflammatory cells of the

    major vestibular gland (H & E, 200x).

    41

    4.5.8 Photomicrograph of a section of a vagina of a non-pregnant

    Katjang does inoculated intradermally with C. pseudotuberculosis

    after two months post-infection: (blue arrow) moderate

    degeneration and necrosis, and (black arrow) mild inflammatory

    cells at the muscularis of vagina (H & E, 200x).

    41

    4.5.9 Photomicrograph of a section of a vagina of a non-pregnant

    Katjang does inoculated intradermally with C. pseudotuberculosis

    after three months post-infection: (blue arrow) severe degeneration

    and necrosis, and (black arrow) mild inflammatory cells at the

    muscularis of vagina (H & E, 200x).

    42

    4.5.10 Photomicrograph of a section of uterine horn of a non-pregnant

    Katjang does inoculated intradermally with C. pseudotuberculosis

    after one month post-infection: (blue arrow) moderate

    degeneration and necrosis, (black arrow) mild inflammatory cells,

    and (red arrow) mild congestion of the myometrium (H & E,

    200x).

    42

    4.5.11 Photomicrograph of a section of uterine horn of a non-pregnant

    Katjang does inoculated intradermally with C. pseudotuberculosis

    after two months post-infection: (blue arrow) moderate

    degeneration and necrosis, and (red arrow) mild congestion at the

    myometrium (H & E, 200x).

    43

    4.5.12 Photomicrograph of a section of uterine horn of a non-pregnant

    Katjang does inoculated intradermally with C. pseudotuberculosis

    after three months post-infection: (blue arrow) moderate

    degeneration and necrosis, and (red arrow) mild congestion at the

    myometrium (H & E, 200x).

    43

  • © CO

    PYRI

    GHT U

    PM

    xvii

    4.5.13 Photomicrograph of a section of a uterus of a non-pregnant

    Katjang does inoculated intradermally with C. pseudotuberculosis

    after one month post-infection: (blue arrow) mild degeneration and

    necrosis of the myometrium wall (H & E, 200x).

    44

    4.5.14 Photomicrograph of a section of a uterus of a non-pregnant

    Katjang does inoculated intradermally with C. pseudotuberculosis

    after two months post-infection: (blue arrow) moderate tissue

    degeneration and necrosis, and (red arrow) mild congestion at the

    endothelium gland (H & E, 200x).

    44

    4.5.15 Photomicrograph of a section of a uterus of a non-pregnant

    Katjang does inoculated intradermally with C. pseudotuberculosis

    after three months post-infection: (blue arrow) moderate tissue

    degeneration and necrosis, (black arrow) moderate congestion, and

    (red arrow) mild congestion of the myometrium (H & E, 200x).

    45

    4.5.16 Photomicrograph of a section of a cervix of a non-pregnant

    Katjang does inoculated intradermally with C. pseudotuberculosis

    after one month post-infection: (blue arrow) mild degeneration and

    necrosis at the muscularis of cervix (H & E, 200x).

    45

    4.5.17 Photomicrograph of a section of a cervix of a non-pregnant

    Katjang does inoculated intradermally with C. pseudotuberculosis

    after two months post-infection: (blue arrow) severe degeneration

    and necrosis, and (red arrow) mild congestion in cervix of uterus

    (H & E, 200x).

    46

    4.5.18 Photomicrograph of a section of a cervix of a non-pregnant

    Katjang does inoculated intradermally with C. pseudotuberculosis

    after three months post-infection: (blue arrow) severe degeneration

    and necrosis, and (red arrow) mild congestion in cervix of uterus

    (H & E, 200x).

    46

    A9.1 Flow chart of reproductive pathophysiology. 96

  • © CO

    PYRI

    GHT U

    PM

    xviii

    LIST OF ABBREVIATIONS

    % Percentage

    CLA Caseous lymphadenitis

    Cfu Colony forming unit

    C. pseudotuberculosis Corynebacterium pseudotuberculosis

    DPX Distyrene plasticizer xylene

    E3 Estrogen

    P4 Progesterone

    Fig. Figure

    IL-1β Interleukin-1β

    IL-6 Interleukin-6

    N Number of animal(s)

    PBS Phosphate buffer saline

    PCR Polymerase chain reaction

    RIA Radioimmunoassay

    ELISA Enzyme-linked immunosorbent assay

    UPM Universiti Putra Malaysia

    GnRH Gonadotropin releasing hormone

    FSH Follicle stimulating hormone

    LH Luteinizing hormone

    ml Milliliter

    SEM Standard error of mean

    SPSS Statistical Package for Social Sciences

    TPU Taman Pertanian Universiti

    DNA Deoxyribonucleic acid

    MgCl2 Magnesium chloride

    TAE Tris-acetate-EDTA

    bp Base pair

    UV Ultra violet

    RT Room temperature

    QC Quality control

    W Watt

    PLD Phospholipase D

    Std. Standard

  • © CO

    PYRI

    GHT U

    PM

    1

    CHAPTER 1

    INTRODUCTION

    1.1 Background of study

    Caseous lymphadenitis (CLA) has been a prevalent disease among farmed small

    ruminants in the majority of goat-rearing countries since 1888 (Jesse et al., 2013a). As

    it is a chronic disease, introduction of control measures in many countries has been

    slow or absent, resulting in a steady increase in the incidence of the disease. This, in

    turn, has impacted upon small ruminant livestock producers with respect to significant

    economic losses, not to mention issues of animal welfare, through (in extreme cases)

    chronic ill-thrift, carcass condemnation at abattoirs and reduced wool yields (Baird &

    Fontaine, 2007).

    CLA is generally multicontinental and it has been reported to be widely prevalent in

    Europe, Africa, Australia, South and North America, and the Middle East (Robins,

    1991; Paton et al., 2005). CLA, in many of these countries, had been generally

    considered as a devastating disease which is characterized by economic losses and

    other problems associated with animal (Cesari, 1930). In Malaysia, CLA was first

    detected in imported sheep during meat inspection at the Johor Bahru abattoir in 1960

    (Department of Veterinary Services, 2015). A decade later, another case of CLA was

    reported when the causative organism was successfully isolated from a goat at the

    Veterinary Research Institute, Ipoh (VRI) and one year later, the bacterium was

    isolated from an ovine case (Stoops et al., 1984; Komala et al., 2008).

    Corynebacterium pseudotuberculosis is a Gram-positive actinomycete which is the

    cause of chronic CLA in farmed small ruminants (Khuder et al., 2012). In addition, C.

    pseudotuberculosis infection in humans has been reported on several occasions, thus,

    CLA is a zoonotic disease (House et al., 1986). The significance of the disease is

    evidenced by the scientific research and political debate which has been ongoing in

    relation to this topic for over a century.

    Infection of small ruminants with C. pseudotuberculosis usually results in the

    formation of pyogranulomatous lesions which present in two different forms (Baird &

    Fontaine, 2007). The external form, also known as cutaneous or superficial, is

    characterized by the development of abscesses within the superficial lymph nodes or

    within the subcutaneous tissue resulting in the loss of overlying hair and often leads to

    rupture of abscess. The second form of CLA is the visceral form which is characterized

    by the formation of lesions within the animal that cannot be observed externally

    (Dorella et al., 2006; Baird & Fontaine, 2007). The site of these lesions is commonly

    the internal lymph nodes (primarily the mediastinal lymph nodes) or lungs, although

    other tissues may also be affected which primarily includes the liver, kidneys or the

    mammary gland and less frequently the heart, brain, spinal cord, testes, uterus and

    joints (Dorella et al., 2006; Baird & Fontaine, 2007).

  • © CO

    PYRI

    GHT U

    PM

    2

    Skin abrasions due to ear tagging, castration, shearing, docking and by environmental

    hazards such as nails, wired fences, splintered wood and metal edges are the possible

    causes of CLA transmission within a herd (Batey, 1986; Dorella et al., 2006; Baird &

    Fontaine, 2007; Jesse et al., 2013a). Abscesses from the affected animal can be

    surgically drained and flushed with iodine solution. However, draining the abscess will

    increase the risk of transmission of the organism to other animals if they are exposed to

    the pus (Dorella et al., 2006). In a case where the abscess has ruptured, usually the

    infected animal will be moved to an isolation pen to minimize contamination of the

    environment (Braga et al., 2006).

    The insidious effects of CLA in reproduction often make the veterinarians and farmers

    overlooked its direct relation to fertility reduction and this contributes to the fact that

    farmers have little concern about CLA. Although many studies have mentioned that

    chronic diseases such as CLA affect the reproduction of farm animals, yet these studies

    did not adequately highlight the mechanisms involved in the pathophysiology of the

    reproductive system of affected animals (Williamson, 2001; Arsenault et al., 2003;

    Paton et al., 2003; Peterhans et al., 2004). Therefore, the pathophysiologic mechanisms

    leading to infertility due to prolong C. pseudotuberculosis infection through

    intradermal route is the main focus of this study. Hence, this study provides better

    information on how C. pseudotuberculosis affects reproductive efficiency by

    pathologic changes of reproductive organs that influence reproductive hormones

    concentration, proinflammatory cytokines concentration in does following chronic

    challenged with C. pseudotuberculosis via intradermal route.

  • © CO

    PYRI

    GHT U

    PM

    3

    1.2 Objectives

    The objectives of this study were to:

    1. Ascertain the progesterone and estrogen concentrations in non-pregnant Katjang goats following chronic intradermal infection with Corynebacterium

    pseudotuberculosis.

    2. Determine the cytokines concentration (interleukin-1 and interleukin-6) of non-pregnant Katjang goats following chronic intradermal infection with

    Corynebacterium pseudotuberculosis.

    3. Investigate the reproductive pathophysiology of chronic caseous lymphadenitis in non-pregnant Katjang goats following intradermal infection

    with Corynebacterium pseudotuberculosis.

    1.3 Hypotheses of the study

    The hypotheses of this study were as follows:

    HA1= Infection of Corynebacterium pseudotuberculosis in non-pregnant Katjang

    does through intradermal route in chronic form may alter the progesterone and

    estrogen concentrations.

    HA2= There might be changes in the cytokines concentrations associated with

    Corynebacterium pseudotuberculosis infection following chronic intradermal

    infection.

    HA3= There will be pathologic changes of reproductive organs in non-pregnant

    Katjang goats following chronic intradermal infection with Corynebacterium

    pseudotuberculosis.

  • © CO

    PYRI

    GHT U

    PM

    55

    REFERENCES

    Abdinasir, Y. O., Jesse, F. F. A., Saharee, S., and Jasni, S. (2012). Acute phase

    response in mice experimentally infected with whole cell and exotoxin (PLD)

    extracted from Corynebacterium pseudotuberculosis. Journal of Animal and

    Veterinary Advances, 11(21): 4008-4012.

    Adamson, P. J., Wilson, W. D., Hirsh, D. C., Baggot, J. D., and Martin, L. D. (1985).

    Susceptibility of equine bacterial isolates to antimicrobial agents. American

    Journal of Veterinary Research, 46: 447-450.

    Adza-Rina, M. N., Zamri-Saad, M., Shahirudin, S., Normah, M. Y., and Niecorrita, W.

    (2013a). Efficacy of a commercially available vaccine against caseous

    lymphadenitis in goats. Proceedings of the 25th

    Annual General Meeting and

    Veterinary Association Malaysia Congress, Malaysia, 50.

    Adza-Rina, M. N., Zamri-Saad, M., Jesse, F. F. A., Saharee, A. A., Haron, A. W., and

    Shahirudin, S. (2013b). Clinical and pathological changes in goats inoculated

    Corynebacterium pseudotuberculosis by Intradermal, intranasal and oral

    routes. Online Journal of Veterinary Research, 17(2): 73-81.

    Alcamo, I. E. (1998). Fundamentals of microbiology (5

    th ed.) (pp. 649-683). Animprint

    of Addison Wesley Longman Inc.

    Al-Eknah, M. M., and Noakes, D. E. (1989). Uterine activity in cows during the estrus

    cycle after ovariectomy and following exogenous estradiol and progesterone.

    The British veterinary journal, 145: 328-336.

    Al-Gaabary, M. H., Osman, S. A., Ahmed, M. S., and Oreiby, A. F. (2010). Abattoir

    survey on caseous lymphadenitis in sheep and goats in Tanta, Egypt. Small

    Ruminant Research, 94: 117-124.

    Ali, O. S., Adamu, L., Abdullah, F. F. J., Ilyasu, Y., Abba, Y., Hamzah, H., Mohd

    Azmi, M. L., Haron, A. W., and Mohd Zamri, S. (2014). Alterations in

    interleukin 1β and 12 interleukin 6 in mice inoculated through the oral routes

    using graded doses of P. multocida type b: 2 and its lipopolysaccharide.

    American Journal of Animal and Veterinary Sciences, 9(4): 177-184.

    Anderson, S., Clark, S., Keane, B., Mogel Pliego, J., and Trejo Diaz, W. (2001).

    Parcela-Solar: an experience in combining campesino and conventional

    experimentation. Final Technical Report to the Livestock Production

    Programme. DFID, United Kingdom.

    Anon. (2005). SAC monitoring scheme for caseous lymphadenitis. Veterinary Record,

    157: 303.

    Arsenault J., Girard, C., Dubreuil, P., Daignault, D., Galarneau, J. R., Boisclair, J.,

    Simard, C., and Bélanger D. (2003). Prevalence of and carcass condemnation

    from maedi-visna, paratuberculosis and caseous lymphadenitis in culled sheep

    from Quebac, Canada. Preventive Veterinary Medicine, 59: 67-81.

  • © CO

    PYRI

    GHT U

    PM

    56

    Arthur, G. H., Noakes, D. E., and Pearson, H. (1989). Veterinary reproduction and

    obstetrics (6th

    ed.) (p. 340). England: Bailliere Tindall.

    Asselineau, J., and Lanéelle, G. (1998). Mycobacterial lipids: a historical perspective.

    Frontiers in Bioscience, 3: 164-174.

    Ayers, J. L. (1977). Caseous lymphadenitis in goats and sheep: a review of diagnosis,

    pathogenesis, and immunity. Journal of the American Veterinary Medical

    Association, 171: 1251-1254.

    Ayers, J. L. (1986). Caseous lymphadenitis. In J. L. Howard (Ed.), Current Veterinary

    Therapy; Food Animal Practice (2nd

    ed.) (pp. 605-606). Philadelphia: W. B.

    Saunders Company.

    Azawi, O. I. (2008). Postpartum uterine infection in cattle. Animal Reproduction

    Science, 105: 187-208.

    Baird, G. J. (2003). Current perspectives on caseous lymphadenitis. In Practice:

    Journal of Postgraduate Clinical Study, 25: 62-68.

    Baird, G. J., and Fontaine, M. C. (2007). Corynebacterium pseudotuberculosis and its

    role in ovine caseous lymphadenitis. Journal of Comparative Pathology, 137:

    179-210.

    Batey, R. G. (1986). The effect of caseous lymphadenitis on body condition and weight

    of Merino mutton carcases. Australian Veterinary Journal, 63: 268.

    Braga, W. U., Chavera, A., and Gonzalez, A. (2006). Corynebacterium

    pseudotuberculosis infection in highland alpacas (Lama pacos) in Peru.

    Veterinary Record, 159: 23-24.

    Breed, R. S., Murray, E. G. D., and Smith, N. R. (1948). Bergey’s manual of

    determinative bacteriology (6th

    ed.). Baltimore: The Williams & Wilkins

    Company.

    Brinsfield, T. H., and Hawk, H. W. (1968). Stimulation by intra-uterine devices of

    motility of sheep myometrium. Journal of Reproduction and Fertility, 16: 129.

    Brinsfield, T. H., and Hawk, H. W. (1969). Modification of the direction of uterine

    contractions by intra-uterine devices in the ewe. Journal of Reproduction and

    Fertility, 18: 535.

    Brogden, K. A., and Engen, R. L. (1990). Alterations in the phospholipid composition

    and morphology of ovine erythrocytes after intravenous inoculation of

    Corynebacterium pseudotuberculosis. American Journal of Veterinary

    Research, 51: 874-877.

    Brown, C. C., and Olander, H. J. (1987). Caseous lymphadenitis of goats and sheep: a

    review. Veterinary Bulletin, 57: 1-12.

  • © CO

    PYRI

    GHT U

    PM

    57

    Cameron, C. M. (1964). The significance of the endotoxin and pyogenic factor of

    Corynebacterium pseuotuberculosis in immunity. Onderstepoort Journal of

    Veterinary Research, 31: 119-132.

    Cameron, C. M., and Minnaar, J. L. (1969). Immunization of mice agaist

    Corynebacterium pseudotuberculosis infection. Onderstepoort Journal of

    Veterinary Research, 36: 207-210.

    Cameron, C. M., and Smit, M. C. (1970). Relationship of Corynebacterium

    pseudotuberculosis protoplasmic toxins to the exotoxin. Onderstepoort

    Journal of Veterinary Research, 37: 97-103.

    Carne, H. R. (1940). The toxin of Corynebacterium ovis. The Journal of Pathology and

    Bacteriology, 51(2): 199-212.

    Carne, H. R., Wickham, N., and Kater, J. C. (1956). A toxic lipid from the surface of

    Corynebacterium ovis. Nature, 178: 701-702.

    Carter, P. B., and Collins, F. M. (1974). The route of enteric infection in normal mice.

    The Journal of Experimental Medicine, 139(5): 1189-1203.

    Cesari, E. (1930). Diagnosis of caseous lymphadenitis by the intradermal-reaction test,

    after using preisznocardine. Veterinary Record, 10: 1151-1152.

    Ҫetinkaya, B., Karahan, M., Atil, E., Kalin, R., Baere, T. D., and Vaneechoutte, M.

    (2002). Identification of Corynebacterium pseudotuberculosis isolates from

    sheep and goats by PCR. Veterinary Microbiology, 88: 75-83.

    Chen, H-F., Shew, J-Y., Chao, K-H., Chang, L-J., Ho, H-N., and Yang, Y-S. (2000).

    Luteinizing hormone up-regulates the expression of interleukin-1β mRNA in

    human granulosa-luteal cells. American Journal of Reproductive Immunology,

    43: 125-133.

    Clarridge, J. E., and Spiegel, C. A. (1995). Corynebacterium and related organisms. In

    E. J. Barron (Ed.), Manual of Clinical Microbiology (6th

    ed.) (pp. 357-370).

    Washington: American Society for Microbiology.

    Collins, M. D., and Cummins, C. S. (1986). Genus Corynebacterium. In P. H. A.

    Sneath, N. S. Mair, M. E. Sharpe & J. G. Holt (Eds.), Bergey’s Manual of

    Systematic Bacteriology (2nd

    ed.) (pp. 1266-1276). Baltimore: Williams and

    Wilkins Company.

    Collett, M. G., Bath, G. F., and Cameron C. M. (1994). Corynebacetrium

    pseudotuberculosis infections. In J. Coetzer, G. R. Thomson & R. C. Tustin

    (Eds.), Infectious diseases of livestock with special reference to Southern

    Africa (2nd

    ed.) (pp. 1387-1395). Cape Town: Oxford University Press.

    Costa, I. R., Spier, S. J., and Hirsh, D. C. (1998). Comparative molecular

    characterization of Corynebacterium pseudotuberculosis of different origin.

    Veterinary Microbiology, 62: 135-143.

  • © CO

    PYRI

    GHT U

    PM

    58

    Coyle, M. B., Hollis, D. G., and Groman, N. B. (1985). Corynebacterium spp. and

    other coryneform organisms. In E. H. Lennette, A. Balows, W. J. Hausler &

    H. J. Shadomy (Eds.), Manual of Clinical Microbiology (4th

    ed.) (pp. 198-

    199). Washington: American Society for Microbiology.

    Delgado, C., Rosegrant, M., Steinfeld, H., Ehui, S., and Courbois, C. (1999). Livestock

    to 2020: The next food revolution. Food, Agriculture, and the Environment

    Discussion Paper 28. International Food Policy Research Institute:

    Washington.

    Department of Veterinary Services. (2015). Animal disease information centre

    (A.D.I.C). Retrieved from http://www.dvs.gov.my.

    Dercksen, D. P., ter Laak, E. A., and Schreuder, B. E. (1996). Eradication programme

    for caseous lymphadenitis in goats in The Netherlands. Veterinary Record,

    138: 237.

    Dinarello, C. A. (2010). Anti-inflammatory agents. Present Future Cell, 140: 935-950.

    Dorella, F. A., Pacheco, L. G. C., Oliveira, S. C., Miyoshi, A., and Azevedo, V. (2006).

    Corynebacterium pseudotuberculosis: microbiology, biochemical properties,

    pathogenesis and molecular studies of virulence. Veterinary Research, 37:

    201-218.

    El-Enbaawy, M. I., Saad. M. M., and Selim, S. A. (2005). Humoral and cellular

    immune responses of a murine model against Corynebacterium

    pseudotuberculosis antigens. Egyptian Journal of Immunolgy, 12: 13-20.

    Ellis, W. A., Songer, J. G., Montgomery, J., and Cassels, J. A. (1986). Prevalence of

    Leptospira interrogans serovar Hardjo in the genital and urinary tracts of non-

    pregnant cattle. Veterinary Record, 118: 11-13.

    Ellis, T. M., Sutherland, S. S., Wilkinson, F. C., Mercy, A. R., and Paton, M. W.

    (1987). The role of Corynebacterium pseudotuberculosis lung lesions in the

    transmission of this bacterium to the other sheep. Australian Vterinary

    Journal, 64: 261-263.

    Fernández, E. P., Vela, A. I., Las Heras, A., Domínguez, L., Fernández-Garayzábal, J.

    F., and Moreno, M. A. (2001). Antimicrobial susceptibility of corynebacteria

    isolated from ewe’s mastitis. International Journal of Antimicrobial Agents,

    18: 571-574.

    Földi, J., Kulcsár, M., Pécsi, A., Huyghe, B., de Sa, C., Lohuis, J. A. C. M., Cox, P.,

    and Huszenicza, G. Y. (2006). Bacterial complications of postpartum uterine

    involution in cattle. Animal Reproduction Science, 96: 265-281.

    Fontaine, M. C., and Baird, G. J. (2008). Caseous lymphadenitis. Small Ruminant

    Research, 76: 42-48.

    Fontaine, M. C., Baird, G., Connor, K. M., Rudge, K., Sales, J., and Donachie, W.

    (2006). Vaccination confers significant protection of sheep against infection

    http://www.dvs.gov.my/

  • © CO

    PYRI

    GHT U

    PM

    59

    with a virulent United Kingdom strain of Corynebacterium

    pseudotuberculosis. Vaccines, 24: 5986-5996.

    Freitas, V. J. F., Baril, G., and Saumande, J. (1997). Estrus synchronization in dairy

    goats: use of fluorogestone acetate vaginal sponges or norgestomet ear

    implants. Animal Reproduction Science, 46: 237-244.

    Garg, D. N., and Nain, S. P. S., and Chandiramani, N. K. (1985). Isolation and

    characterization of Corynebacterium ovis from sheep and goats. Indian

    Veterinary Journal, 62: 805-808.

    Gates, N. L., Everson, D. O., and Hulet, C. V. (1977). Effects of thin ewe syndrome on

    reproductive efficiency. Journal of the American Veterinary Medical

    Association, 171: 1266-1267.

    Goldberger, A. C., Lipsky, B. A., and Plorde, J. J. (1981). Suppurative granulomatous

    lymphadenitis caused by Corynebacterium ovis (pseudotuberculosis).

    American Journal of Clinical Pathology, 76: 486-490.

    Gomes, W. R., and Erb, R. E. (1965). Progesterone in bovine reproduction: a review.

    Journal of Dairy Science, 48: 314.

    Guimarães, A. S., Seyffert, N., Bastos, B. L. Portela, R. W. D., Meyer, R., Carmo, F.

    B., Cruz, J. C. M., McCulloch, J. A., Lage, A. P., Heinemann, M. B.,

    Miyoshi, A., Azevedo, V., Gouveia, A. M. G. (2009). Caseous lymphadenitis

    in sheep flocks of the state of Minas Gerais, Brazil: prevalence and

    management surveys. Small Ruminant Research, 87: 86-91.

    Guimaraes, A. S., Carmo, F. B., Pauletti, R. B., Seyffert, N., Ribeiro, D., Lage, A. P.,

    Heinemann, M. B., Miyoshi, A., Azevedo, V., and Gouveia, A. M. G. (2011).

    Caseous lymphadenitis: epidemiology, diagnosis, and control. Institute of

    Integrative Omics and Applied Biotechnology Journal, 2(2): 33-43.

    Hair-Bejo, M., Salina, S., Hafiza, H., and Julaida, S. (2000). In ovo vaccination against

    infectious bursal disease in broiler chickens. Journal of Veterinary Malaysia,

    12: 63-69.

    Henry, C. W., Brewer, R. N., and Edgar, S. A. (1980). Studies on infectious bursal

    disease in chickens. 2. scoring microscopic lesions in the bursa of fabricius,

    thymus, spleen, and kidney in gnotobiotic and battery reared white leghorns

    experimentally infected with infectious bursal disease virus. Poultry Science,

    59: 1006-1017.

    House, R. W., Schousboe, M., Allen, J. P., and Grant, C. C. (1986). Corynebacterium

    ovis (pseudotuberculosis) lymphadenitis in a sheep farmer: a new occupational

    disease in New Zealand. New Zealand Medical Journal, 99: 659-662.

    Hussain, A. M., and Daniel, R. C. W. (1991). Bovine endometritis current and future

    alternative therapy. Journal of Veterinary Medicine, 38: 641-651.

    http://www.sciencedirect.com/science/article/pii/S0378432096016144http://www.sciencedirect.com/science/article/pii/S0378432096016144http://www.sciencedirect.com/science/article/pii/S0378432096016144http://ps.oxfordjournals.org/search?author1=CRAIG+W.+HENRY&sortspec=date&submit=Submithttp://ps.oxfordjournals.org/search?author1=ROBERT+N.+BREWER&sortspec=date&submit=Submithttp://ps.oxfordjournals.org/search?author1=S.+ALLEN+EDGAR&sortspec=date&submit=Submit

  • © CO

    PYRI

    GHT U

    PM

    60

    Ibtisam, M. A. (2008). Some clinicopathogical and pathological studies of

    Corynebacterium ovis infection in sheep. Egypt Journal of Comparative

    Pathology and Clinic Pathology, 21: 327-343.

    Jazayeri, A., Carroll, B., and Vernallis. (2010). Interleukin-6 subfamily cytokines and

    rheumatoid arthritis: role of antagonists. International Immunopharmacology,

    10: 1-8.

    Jesse, F. F. A., Osman, A. Y., Adamu, L., Azri, N. A., Haron, A. W., Saad, M. Z.,

    Omar, A. R., and Sharee, A. A. (2013a). Caseous lymphadenitis in a goat.

    South Asian Journal of Life Sciences, 1(1): 19-20.

    Jesse, F. F. A., Adamu, L., Abdinasir, Y. O., Ahmad Fauzan, M., Abd Wahid, H., and

    Abdul Aziz, S. (2013b). Polymerase chain reaction of C. pseudotuberculosis

    in the brain of mice following oral inoculation. International Journal of

    Animal and Veterinary Advance (5): 29-33.

    Johnson, E. H., Vidal, C. E. S., Santa Rosa, J., and Kass, P. H. (1993). Observations on

    goats experimentally infected with Corynebacterium pseudotuberculosis.

    Small Ruminant Research, 12: 357-369.

    Jolly, R. D. (1965). The pathogenis action of the exotoxin of Corynebacterium ovis.

    Journal of Comparative Pathology, 75: 417-431.

    Jones, S. A., Horiuchi Topley, N., Yamamoto, N., and Fuller, G. M. (2001). The

    soluble interleukin-6 receptor: mechanisms of production and implications in

    disease. The FASEB Journal, 15: 43-58.

    Judson, R., and Songer, J. G. (1991). Corynebacterium pseudotuberculosis: in vitro

    susceptibility to 39 antimicrobial agents. Veterinary Microbiology, 27: 145-

    150.

    Kaplanski, G., Marin, V., Montero-Julian, F., Mantovani, A., and Farnarier, C. (2003).

    IL-6: A regulator of the transition from neutrophil to monocyte recruitment

    during inflammation. Trends in Immunology, 24(1): 25-29.

    Khuder, Z., Osman, A. Y., Jesse, F. F., Haron, A. W., Saharee, A. A., Sabri, J., Yusoff,

    R., and Abdullah, R. (2012). Sex hormone profiles and cellular changes of

    reproductive organs of mice experimentally infected with C.

    pseudotuberculosis and its exotoxin phospholipase D (PLD). IOSR Journal of

    Agriculture and Veterinary Science, 1(3): 24-29.

    Kim, S. G., Kim, E. H., Lafferty, C. J., Dubovi, E. (2005). Coxiella burnetii in bulk

    tank milk samples, United States. Emerging Infectious Diseases, 11: 619-621.

    Kishimoto, T., Akira, S., Narazaki, M., and Taga, T. (1995). Interleukin-6 family of

    cytokines and gp130. Blood, 86: 1243-1254.

    Knight, H. D. (1969). Corynebacterial infections in the horse: problems of prevention.

    Journal of the American Veterinary Medical Association, 155: 446-452.

  • © CO

    PYRI

    GHT U

    PM

    61

    Komala, T. S., Ramlan, M., Yeoh N. N., Surayani, A. R., and SharifahHamidah, S. M.

    A. (2008). Survey of caseous lymphadenitis in small ruminant farms from two

    districts in perak, Malaysia- Kinta and Hilir Perak. Tropical Biomedicine,

    25(3): 196-201.

    Kylie, H., Van der Hoek, C., Woodhouse, M., Mats Brãnnstrm, M., and Robert, J. N.

    (1998). Effects of interleukin (IL) 6 on luteinizing hormone- and IL- 1β-

    induced ovulation and steroidogenesis in the rat ovary. Biology of

    Reproduction, 58: 1266-1271.

    Lan, D. T. B., Makino, S., and Shirahata, T., Yamada, M., and Nakane A. (1999).

    Tumor necrosis factor alpha and gamma y interferon are required for the

    development of protective immunity to secondary Corynebacterium

    pseudotuberculosis infection in mice. Journal of Veterinary Medical Science,

    61: 1203-1208.

    LeBlanc, S. J., Duffield, T. F., Leslie, K. E., Bateman, K. G., Keefe, G. P., Walton, J.

    S., and Johnson, W. H. (2002). Defining and diagnosing postpartum clinical

    endometritis and its impact on reproductive performance in dairy cows.

    Journal of Dairy Science, 85: 2223-2236.

    Lehmann, K. B., and Neumann, R. O. (1896). Atlas und Grundriss der Bakteriologie

    und Lehrbuch der Speciellen Bacteriologischen Diagnostik. In K. B. Lehmann

    & R. O. Neumann (Eds.), mycotuberculosis (1st ed.) (pp. 1436-1457).

    München.

    Levinson, W., and Jawetz, E. (1994). Medical microbiology and immunology:

    examination and board review (3rd

    ed.). USA: Prentice Hall Publisher.

    Lilenbaum, L., Varges, R., Brandão, F. Z., Cortez, A., de Souza, S. O., Brandão, P. E.,

    Richtzenhain, L. J., and Vasconcellos, S. A. (2008). Detection of Leptospira

    spp. In semen and vaginal fluids of goats and sheep by polymerase chain

    reaction. Theriogenology, 69(7): 837-842.

    Literák, I., Horváthova, A., Jahnová, M., Rychlik, I., and Skalka, B. (1999). Phenotype

    and genotype of the Slovak and Czech Corynebacterium pseudotuberculosis

    strains isolated from sheep and goats. Small Ruminant Research, 32: 107-111.

    Liu, W. J., and Hansen, P. J. (1993). Effect of the progesterone induced serpin like

    proteins of the sheep endometrium on natural killer cells in sheep and mice.

    Biology of Reproduction, 49: 1008-1014.

    Meltzer, E., Sidi, Y., Smolen, G., Banai, M., Bardenstein, S., and Schwartz, E. (2010). Sexually

    transmitted brucellosis in humans. Clinical Infectious Diseases, 51(2): e12-e15.

    Middleton, M. J., Epstein, V. M., and Gregory, G. G. (1991). Caseous lymphadenitis

    on Flanders island: prevalence and management surveys. Australian

    Veterinary Journal, 68: 311-312.

    Mikuni, M. (1995). Effect of interleukin-2 and interleukin-6 on ovary in the ovulatory

    period- establishment of the new ovarian perfusion system and influence of

    http://www.ncbi.nlm.nih.gov/pubmed/?term=Meltzer%20E%5BAuthor%5D&cauthor=true&cauthor_uid=20550455http://www.ncbi.nlm.nih.gov/pubmed/?term=Sidi%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=20550455http://www.ncbi.nlm.nih.gov/pubmed/?term=Smolen%20G%5BAuthor%5D&cauthor=true&cauthor_uid=20550455http://www.ncbi.nlm.nih.gov/pubmed/?term=Banai%20M%5BAuthor%5D&cauthor=true&cauthor_uid=20550455http://www.ncbi.nlm.nih.gov/pubmed/?term=Bardenstein%20S%5BAuthor%5D&cauthor=true&cauthor_uid=20550455http://www.ncbi.nlm.nih.gov/pubmed/?term=Schwartz%20E%5BAuthor%5D&cauthor=true&cauthor_uid=20550455

  • © CO

    PYRI

    GHT U

    PM

    62

    interleukins on ovulation rate and steroid secretion. Hokkaido Igaku Zasshi,

    70: 561- 572.

    Moshage, H. (1997). Cytokines and the hepatic acute phase. Journal of Pathology, 181:

    257-266.

    Mshelia, G. D., Bilal, V. T., Maina, V. A., Okon, K., Mamza, S. A., Peter, I. D., and

    Egwu, G. O. (2014). Microbiological studies on genital infections in

    slaughtered ewes from tropical arid zone of Nigeria. Sokoto Journal of

    Veterinary Sciences, 12(1): 18-22.

    Muckle, C. A., and Gyles, C. L. (1982). Characterization of strains of Corynebacterium

    pseudotuberculosis. Canadian Journal of Comparative Medicine, 46: 206-

    208.

    Muckle, C. A., and Gyles, C. L. (1986). Exotoxic activities of Corynebacterium

    pseudotuberculosis. Current Microbiology, 13: 57-60.

    Muckle, C. A., and Menzies, P. I. (1993). Caseous lymphadenitis in sheep and goats. In

    J. Howard (Ed.), Current Veterinary Therapy: Food Animal Practice (3rd

    ed.)

    (pp. 537-541). Philadelphia: W. B Saunders Company.

    Noakes, D. E., Parkinson, T. J., England, G. C. W., and Arthur, G. H. (2002). Arthur’s

    veterinary reproduction and obstetrics (8th

    ed.) (pp. 399-408). Elsevier

    Science Ltd.

    Nocard, E. (1896). Annals de I’nstitut Pasteur, 10: 609.

    Nuttall, W. (1988). Caseous lymphadenitis in sheep and goats in New Zealand.

    Surveillance, New Zealand, 15: 10-12.

    Olson, M. E., Ceri, H., Morck, D. W., Buret, A. G., and Read, R. R. (2002). Biofilm

    bacteria: formation and comparative susceptibility to antibiotics. Canadian

    Journal of Veterinary Research, 66: 86-92.

    Osmanu, S. T. (1979). Studies on bovine infertility at the agricultural research station

    (Legon) over half a decade (1972-77) (p.82) (Unpublished dissertation). Ghana

    University, Legon, Ghana.

    Othman, A. M., Jesse, F. F. A., Adza-Rina, M. N., Ilyasu, Y., Zamri-Saad, M., Wahid,

    A. H., Saharee, A. A., and Mohd-Azmi, M. L. (2014a). Responses of

    inflammatory cytokines in non-pregnant Boer does inoculated with

    Corynebacterium pseudotuberculosis via various routes. Research Opinions in

    Animal & Veterinary Sciences, 4(11): 597-600.

    Othman, A. M., Jesse, F. F. A., Adamu, L., Abba, Y., Adza-Rina, M. N., Saharee, A.

    A., Wahid, A. H., and Zamri-Saad, M. (2014b). Changes in serum

    progesterone and estrogen concentrations in non-pregnant Boer does

    following experimental infection with Corynebacterium pseudotuberculosis.

    Journal of Veterinary Advances, 4(5): 524-528.

  • © CO

    PYRI

    GHT U

    PM

    63

    Othman, A. M. (2014c). Pre reproductive pathophysiology changes in non-pregnant Boer does

    inoculated with Corynebacterium pseudotuberculosis via intradermal, intranasal and oral

    routes (Unpublished master’s dissertation). Universiti Putra Malaysia, Serdang.

    Paton, M. W., Collett, M. G., Pepin, M., and Bath, G. F. (2005). Corynebacterium

    pseudotuberculosis infections. In J. A. W. Coetzer and R. C. Tustin (Eds.),

    Infectious Diseases of Livestock (3rd

    ed.) (pp. 1917-1930). Cape Town, Oxford

    University Press Southern Africa.

    Palmieri, C., Schiavi, E., and Della Salda, L. (2011). Congenital and acquired pathology of ovary and

    tubular genital organs in ewes: A review. Theriogenology, 75(3): 393–410.

    Paton M. W., Walker, S. B., Rose, I. R., and Watt, G. F. (2003). Prevalence of caseous

    lymphadenitis and usage of caseous lymphadenitis vaccines in sheep flocks.

    Australian Veterinary Journal, 81: 91-95.

    Paton, M. W., Collett, M. G., Pépin, M., and Bath, G. F. (2005). Corynebacterium

    pseudotuberculosis infections. In J. A. W. Coetzer & R. C. Tustin (Eds.),

    Infectious Diseases of Livestock (3rd

    ed.) (pp. 1917-1930). Cape Town: Oxford

    University Press Southern Africa.

    Paton, M. W., Mercy, A. R., Wilkinson, F. C., Gardner, J. J., Sutherland, S. S., and

    Ellis, T. M. (1988). The effects of caseous lymphadenitis on wool production

    and body weight in young sheep. Australian Veterinary Journal, 65: 117-119.

    Paton, M. W., Rose, I. R., Hart, R. A., Sutherland, S. S., Mercy, A. R., Ellis, T. M., and

    Dhaliwal, J. A. (1994). New infection with Corynebacterium

    pseudotuberculosis reduces wool production. Australian Veterinary Journal,

    71: 47-49.

    Paule, B. J. A., Azevedo, V., Regis, L. F., Carminati, R., Bahia, C. R., Vale, V. L. C.,

    Moura-Costa, L. F., Freire, S. M., Nascimento, I., Goes, A. M., and Meyer, R.

    (2003). Experimental Corynebacterium pseudotuberculosis primary infection

    in goats: kinetics of IgG and interferon-gamma production, IgG avidity and

    antigen recognition by western blotting. Veterinary Immunology and

    Immunopathology, 96: 139.

    Pépin, M., Boisrame, A., and Marly, J. (1989). Corynebacterium pseudotuberculosis:

    biochemical properties, production of toxin and virulence of ovine and caprine

    strains. Annales de Recherches Veterinaires, 20: 111-115.

    Pépin, M., Paton, M., and Hodgson, A. L. (1994). Pathogenesis and epidemiology of

    Corynebacterium pseudotuberculosis infection in sheep. Current Topics in

    Veterinary Research, 1: 63-82.

    Pépin, M., Fontaine, J. J., Pardon, P., Marly, J., and Parodi, A. L. (1991).

    Histopathology of the early phase during experimental Corynebacterium

    pseudotuberculosis infection in lambs. Veterinary Microbiology, 29: 123-134.

    Pépin, M., Seow, H. F., Corner, L., Rothel, J. S., Hodgson, A. L., and Wood, P. R.

    (1997). Cytokine gene expression in sheep following experimental infection

  • © CO

    PYRI

    GHT U

    PM

    64

    with various strains of Corynebacterium pseudotuberculosis differing in

    virulence. Veterinary Research, 28(2): 149-163.

    Peterhans, E., Greenland, T., and Badiola, J. (2004). Routes of transmission and

    consequences of small ruminant lent viruses (SRLV’S) infection and

    eradication schemes. Veterinary Research, 35: 257-274.

    Peel, M. M., Palmer, G. G., Stacpoole, A.M., and Kerr, T. G. (1997). Human

    lymphadenitis due to Corynebacterium pseudotuberculosis: report of ten cases

    from Australia and review. Clinical Infection Disease, 24: 185-191.

    Piontkowski, M. D., and Shivvers, D. W. (1998). Evaluation of a commercially

    available vaccine against Corynebacterium pseudotuberculosis for use in

    sheep. Journal of the American Veterinary Medical Association, 212: 1765-

    1768.

    Praveena, P. E., Periasamy, S., Kumar A. A., and Singh, N. (2010). Cytokine profiles,

    apoptosis and pathology of experimental Pasteurella multocida serotype A1

    infection in mice. Research in Veterinary Science, 89: 332-339.

    Preïsz, H., and Guinard, L. (1891). Pseudotuberculose chez le mouton. Journal

    Medicine Veterinaire, 16: 563.

    Quevedo, J. M., Rodriguez Lostau, J. A., Risso, H. R., and Mettler, E. A. J. (1957).

    Evaluacicȼn de una vacuna contra linfadenite caseosa en lo oveja. Revista de

    Investigaciones Ganaderas, 1: 47.

    Quinn, P. J., Carter, M. E., Markey, B., and Carter, G. R. (1994). Corynebacterium

    species and Rhodoccus equi. In P. J. Quinn (Ed.), Clinical Veterinary

    Microbiology (pp. 137-143). London: Wolfe Publishing Company.

    Radostits, O. M., Gay, C. C., Blood, D. C., and Hinchcliff, K. W. (2000). Caseous

    lymphadenitis in sheep and goats. In W. B. Saunders (Ed.), Veterinary

    Medicine: A Textbook of the Diseases of Cattle, Sheep, Pigs, Goats and

    Horses (9th

    ed.). London.

    Renshaw, H. W., Graff, V. P., and Gates, N. L. (1979). Visceral caseous lymphadenitis

    in thin ewe syndrome: isolation of Corynebacterium, Staphylococcus, and

    Moraxella spp. from internal abscesses in emaciated ewes. American Journal

    of Veterinary Research, 40: 1110-1114.

    Robins, R. (1991). Focus on caseous lymphadenitis. State Veterinary Journal, 1: 7-10.

    Rodriguez-Martinez, H., McKenna, D., Weston, P. G., Whitmore, H. L., and

    Gustafsson, B. K. (1987). Uterine motility in the cow during the estrus cycle I

    spontaneous activity. Theriogenology, 27: 337-348.

    Sanad, Y. M., Jung, K., Kashoma, I., Zhang, X., Kassem, I. I., Saif, Y. M., and

    Rajashekara, G. (2014). Insights into potential pathogenesis mechanisms

    associated with Campylobacter jejuni-induced abortion in ewes. BMC

    Veterinary Research, 10: 274.

  • © CO

    PYRI

    GHT U

    PM

    65

    Schiefer, B., Pantekoek, J. F., and Moffatt, R. E. (1974). The pathology of bovine

    abortion due to Corynebacterium pyogenes. The Canadian Veterinary

    Journal, 15: 322-326.

    Seddon, H. R., Belschner, H. G., and Rose, A. L. (1929). Further observations on the

    method of infection in caseous lymphadenitis in sheep. Australian Veterinary

    Journal, 5: 139-149.

    Selim, A. S. (2001). Oedematous skin disease of buffalo in Egypt. Journal of

    veterinary medicine B Infectious diseases and veterinary public health, 48:

    241-258.

    Seyffert, N., Guimaraes, A. S., Pacheco, L. G., Portela, R. W. (2010). High

    Seroprevalence of caseous lymphadenitis in Brazilian goat herds revealed by

    Corynebacterium pseudotuberculosis secreted proteins-based ELISA.

    Research Veterinary Science, 88: 50-55.

    Shallali, A. A., Homeida, A. M., and Dafalla, E. A. (1987). Effects of intrauterine

    infection by Staphylococcus aureus and Mycoplasma capricolum on the

    fertility of Nubian goats. Reproduction Nutrition Development, 27(6): 999-

    1003.

    Sheldon, I. M., and Dobson, H. (2004). Postpartum uterine health in cattle. Animal

    Reproduction Science, 82: 295-306.

    Sheldon, I. M., Noakes, D. E., and Rycroft, A. N. (2002). The vagina on uterine

    bacterial contamination. The Veterinary Record, 151: 531-534.

    Sheldon, I. M., Williams, E. J., Miller, A. N. A., Nash, D. M., and Herath, S. (2008).

    Uterine diseases in cattle after parturition. Veterinary Journal, 176(1-3): 115-

    121.

    Sheldon, I. M., Cronin, J., Goetze, L., Donofrio, G., and Schuberth, H. J. (2009).

    Defining postpartum uterine disease and the mechanisms of infection and

    immunity in the female reproductive tract in cattle. Biology of Reproduction,

    81(6): 1025-1032.

    Shore, L. S., Rios, C., Marcus, S., Bernstein, M., and Shemesh, M. (1998).

    Relationship between peripheral estrogen concentrations at insemination and

    subsequent fetal loss in cattle. Theriogenology, 50: 101-107.

    Siiteri, P. K., and Seron-Ferren, M. (1981). Some new thoughts on the feto-placenta

    unit and parturition in primate. In M. J. Novy & J. A. Resko (Eds.), Fetal

    Endocrinology (pp. 1-34). New York: Academic Press.

    Simmons, C. P., Dunstan, S. J., Tachedjian, M., Krywult, J., Hodgson, A. L., and

    Strugnell, R. A. (1998). Vaccine potential of attenuated mutants of

    Corynebacterium pseudotuberculosis in sheep. Infection and Immunity, 66:

    474-479.

  • © CO

    PYRI

    GHT U

    PM

    66

    Smith, M. C., and Sherman, D. M. (2007). Goat medicine. Iowa, USA: Blackwell

    Publishing.

    Standford, K., Brogden, K., McClelland, L. A., Kozub, G. C., and Audibert, F. (1998).

    The incidence of caseous lymphadenitis in Aberta sheep and assessment of

    impact by vaccination with commercial and experimental. Vaccines. Canadian

    Journal of Veterinary Research, 62: 38-43.

    Stevenson, J. S. (1997). Clinical reproductive physiology of the cow. In R. S.

    Youngquist (Ed.), Current Therapy of Large Animal Theriogenology (pp. 257-

    267). Philadelphia: W. B. Saunders Co.

    Stoops, S. G., Renshaw, H. W. and Thilsted, J. P. (1984). Ovine caseous lymhadenitis:

    disease prevalence, lesion distribution, and thoracic manifestations in a

    population of mature culled sheep from western United States. American

    Journal of Veterinary Research, 45: 557-561.

    Tausk, M., and De Visser, J. (1971). Effects of progesterone on the structure and

    functions of the fallopian tubes. In M. Tausk (Ed.), Pharmacology of the

    Endocrine System and Related Drugs: Progesterone, Progestational Drugs

    and Antifertility Agents (pp. 251-263). New York: Pergamon Press.

    Valli, V. E. O., and Parry, B. W. (1993). Caseous lymphadenitis. In K. V. F. Jubb, P. C.

    Kennedy & N. Palmer (Eds.), Pathology of domestic animals (4th

    ed.) (pp.

    238-240). San Diego: Academic press.

    Vegad, J. L. (2007). A textbook of veterinary general pathology (2nd

    ed.) (pp. 105).

    India: International Book Distributing Co.

    Veno, G. P., Fracasso, M. E., Leone, R., and Milanino, R. (1981). Prostaglandin system

    and inflammation. In F. Berti & G. P. Veno (Eds.), The Prostaglandin System

    (pp. 97-106). New York, London: Plenum Press.

    Verhoeven, G., Cailleau, J., van Damme, J., and Billiau, A. (1988). Interleukin-1

    stimulates steriodogenesis in cultured rat leydig cells. Molecular and Cellular

    Endocrinology, 57: 51-60.

    Verthelyi, D., and Klinman, D. M. (2000). Sex hormone levels correlate with the

    activity of cytokine-secreting cells in vivo. Immunology, 100: 384-390.

    West, D. M., Bruere, A. N., Ridler, A. L. (2002). Caseous Lymphadenitis. In D. M.

    West, A. N. Bruere & A. L. Ridler (Eds.), The Sheep: Health, Disease, &

    Production. (2nd

    ed.) (pp. 274-279). Palmerston North: Foundation for

    Continuing Education.

    Williams, E. (1989). The Mediterannean fever commission-its origins and

    achievements. In E. J. Young, M. J. Corbel (Eds.), Brucellosis—clinical and

    laboratory aspects (pp. 11-24). Boca Raton: CRC Press.

    Williams, E. J., Fischer, D. P., Pfeiffer, D. U., England, G. C. W., Noakes, D. E.,

    Dobson, H., and Sheldon, I. M. (2005). Clinical evaluation of postpartum

  • © CO

    PYRI

    GHT U

    PM

    67

    vaginal mucus reflects uterine bacterial infection and the immune response in

    cattle. Theriogenology, 63(1): 102-117.

    Williamson, L. H. (2001). Caseous lymphadenitis in small ruminants. Veterinary

    Clinical North American, 17: 359-371.

    Windsor, P. A. (2011). Control of caseous lymphadenitis. Veterinary Clinics of Food

    Animal Practice, 27: 193-202.

    Wira, C. R., and Rossoll, R. M. (1995). Antigen presenting cells in the female

    reproductive tract: influence of estrus cycle on antigen presentation by uterine

    epithelial and stromal cells. Endrocrinology, 136: 4526-4534.

    Wirth, M. (2007). Immunology of the genital tract: A review (Doctoral dissertation,

    Ludwig Maximilian University of Munich, Munich, Germany). Retrieved

    from https://edoc.ub.uni-muenchen.de/6831/1/Wirth_Monika.pdf.

    Yeruham, I., Braverman, Y., Shpigel, N. Y., Chizov-Ginzburg, A., Saran, A., and

    Winkler, M. (1996). Mastitis in dairy cattle caused by Corynebacterium

    pseudotuberculosis and the feasibility of transmission by houseflies.

    Veterinary Quaterly, 18: 87-89.

    Yeruham, I., Friedman, S., Perl, S., Elad, D., Berkovich, Y., and Kalgard, Y. (2004). A

    herd level analysis of a Corynebacterium pseudotuberculosis outbreak in a

    dairy cattle herd. Veterinary Dermatology, 15: 315-320.

    Zychlinsky, A., Fitting, C., Jean-Marc, C., and Sansonetti, P. J. (1994). Interleukin 1 is

    released by murine macrophages during apoptosis induced by Shigella

    flexneri. Journal of Clinical Investigation, 94: 1328-1332.

    https://edoc.ub.uni-muenchen.de/6831/1/Wirth_Monika.pdf

  • © CO

    PYRI

    GHT U

    PM

    68

    APPENDICES

    Appendix A1

    Preparation of Brain Heart Infusion (BHI) Broth

    1. Suspend 37 grams of the medium in 1 L of distilled water. Mix well while letting the medium dissolve by heating with frequent mixing.

    2. Boil for one minute until complete disintegration. Dispense into appropriate containers and sterilize at 121°C for 15 minutes.

    3. The prepared medium is stored at 2-8°C. The medium colour will be amber. For best results, the medium should be used on the same day or, if not, heated in a

    boiling water bed to expel the dissolved oxygen and left to cool before using.

    4. The dehydrated medium should be homogeneous, free−flowing and light toasted in colour. If there are any physical changes, the medium need to be discarded.

  • © CO

    PYRI

    GHT U

    PM

    69

    Appendix A2

    Preparation of Blood Agar

    1. Suspend 40 g of Blood agar powder in 1 L of distilled water by heating in a boiling water bath or in a current of steamed.

    2. The Blood agar solution was brought for autoclaved at 121°C for 15 minutes.

    3. The solution was left to cool for 50°C to 45°C.

    4. A 40 ml of sterile defibrinated horse blood was added and mix slowly as to avoid bubble formation.

    5. Ready to be poured into a petri dish.

  • © CO

    PYRI

    GHT U

    PM

    70

    Appendix A3

    Preparation of Polymerase Chain Reaction (PCR)

    1. All positive plates of C. pseudotuberculosis, the apparatus and the reagents involved (DNAzol, 100 µl of pipette and micropipette tips, 10 µl of pipette and

    micropipette tips, 1000 µl of pipette and micropipette tips, and ddH2O) were

    prepared.

    2. To obtain ddH2O, distilled water need to be sterilized or autoclaved at 121°C for 15 minutes. Deionized distilled water need to be used inside an air chamber to

    maintain its sterility.

    3. 2 µl of DNAzol was added into each PCR tubes using 10 µl of pipette. Then, clean sterilized 10 µl pipette tip was inserted to each PCR tubes except for the

    negative indicator tubes. Wait for 15 minutes and the master mix was prepared

    (Table A3.1).

    4. After the master mix have been mixed well, the micropipette tips were removed and 48 µl of master mix was added in each PCR tubes using 100 µl pipette.

    5. Finally, the PCR tubes were arranged in the SensQ Thermocycler machine and were set with 30 cycles of amplification.

    6. The PCR amplification process starts with an initial denaturizing step at 94°C for 5 minutes, denaturation at 94°C for 1 minute, annealing at 56°C for 1 minute,

    synthesis at 72°C for 2 minutes, and final synthesis at 72°C for 2 minutes.

  • © CO

    PYRI

    GHT U

    PM

    71

    Table A3.1. Polymerase chain reaction (PCR) technique for bacteria

    identification.

    Prepare 1.5 ml of Eppendorf tube for master mix

    N=1 N=10

    Template (DNAzol) 2 µl 20 µl

    Taq buffer 2 µl 20 µl

    MgCl2 2 µl 20 µl

    i-PCR Nucleotide Mix ½ µl 5.0 µl

    Forward primer ½ µl 5.0 µl

    Reversed primer ½ µl 5.0 µl

    Taq polymerase ½ µl 5.0 µl

    ddH2O (deionize distilled

    water)

    42 µl 420 µl

    TOTAL

    50 µl

    500 µl

  • © CO

    PYRI

    GHT U

    PM

    72

    Preparation of Gel Electrophoresis

    1. 0.3 g of Agarose powder was prepared and added into 100 ml of conical flask.

    2. 30 ml of 1x TBE buffer was poured into the same conical flask and was vigorously shake.

    3. The conical flask was placed inside the microwave oven for 1.5 minutes at 540 watt (W). The conical flask was removed after 1.5 minutes and 1.5 µl of DNA

    stain was quickly added by using pipette (10 µl).

    4. The Agarose solution was poured slowly into the wells to avoid bubbles formation. The Agarose solution was left to solidify for 1 hour. Now, the Agarose

    gel was ready to be loaded with samples of DNA.

    5. 6x DNA loading dye and 1kb DNA ladder were prepared. All of DNA samples and reagents were inserted inside the agarose gel according to one desire. 1 µl of

    DNA loading dye was added to each 7 µl of DNA samples (n=8) including with

    the negative well (n=1).

    6. The gel electrophoresis machine was set up for 68 minutes, 60 volt and 350 mA (milli Ampere) and the machine was filled with 1x TBE buffer until the well

    submerged.

  • © CO

    PYRI

    GHT U

    PM

    73

    APPENDIX A4

    Radioimmunoassay (RIA) Procedure for Progesterone (P4) Assay in Female Goats

    Serum

    1. All chemical reagents were thaw at room temperature (18°C - 25°C) before used for 30 minutes.

    2. A 100 µl of pipette, micropipette tips, and 2µl of pipette syringe were prepared for later used.

    3. The progesterone hormone test tubes were organized accordingly.

    4. All reagents and samples were mixed thoroughly before used.

    5. A 50 µl of progesterone calibrator was added to respective tubes by using 100 µl pipette (Table A5.1).

    6. All tubes were loaded with 2 µl of progesterone buffer including the “T” tubes.

    7. All racks were covered with aluminium. Mixed them well at room temperature (1 hour, 350 rpm). The racks were tie perfectly using a celotape to avoid them from

    falls down during shaking processes.

    8. Next, all samples were brought to radioactive room to be counted in a Gamma Counter Wizard 1470.

    9. The unknown samples concentrations were calculated using integrated computer software programmed and later, the data were analyze using SPSS software

    version 21.

  • © CO

    PYRI

    GHT U

    PM

    74

    Table A4.1. The amount needed in each labeled tube for progesterone assay.

    Volume (µl) Progesterone calibrator concentration

    (ng/ml)

    Tube(s)

    50 µl 0 Tube N and tube S0

    50 µl 0.16 Tube S1

    50 µl 0.53 Tube S2

    50 µl 2.3 Tube S3

    50 µl 11.0 Tube S4

    50 µl 55.2 Tube S5

    50 µl CS PPG (0.88-1.64) Tube QC

    50 µl Samples Tube 1 – tube 38

  • © CO

    PYRI

    GHT U

    PM

    75

    Radioimmunoassay (RIA) Procedure for Estrogen (E2) Assay in Female Goats Serum

    1. All reagents provided in estradiol kits were equilibrated at room temperature (18°C - 25°C) before used for 30 minutes.

    2. Apparatus such as 100 µl pipette with micropipette tips (Table A5.2), duplicate plain tubes for total counts (T) and non-specific binding (NSB) were

    prepared and labeled.

    3. A 50 µl of estradiol tracer was added to estradiol buffer and was thoroughly mixed. All reagents were mixed thoroughly before used including serum. A 2

    µl of estradiol buffer were added to all respective tubes.

    4. Covered the tube racks with aluminum foil before mixed with a shaker. Let reagents be on the shaker for 3 hours at 350 rpm (RT).

    5. All samples were brought to radioactive room to be counted with the gamma counter and all data were calculated using integrated computer software. The

    data were finalized again using SPSS software version 21.

  • © CO

    PYRI

    GHT U

    PM

    76

    Table A4.2. The amount needed in each labeled tube for estradiol assay.

    Volume (µl) Estradiol calibrator

    concentration (pg/ml) Tube(s)

    100 µl 0 Tube N and S0

    100 µl 19 Tube S1

    100 µl 52 Tube S2

    100 µl 152 Tube S3

    100 µl 556 Tube S4

    100 µl 1718 Tube S5

    100 µl 5322 Tube S6

    100 µl Control (61-112) Tube QC

  • © CO

    PYRI

    GHT U

    PM

    77

    APPENDIX A5

    Progesterone Analysis – Repeated Measures ANOVA Using SPSS Statistics

    1) The column label referring to the dependent variable “control group” that is measured at each month points.

    Within-Subjects Factors

    Measure: control

    month Dependent Variable

    1 Progestrone_Control1

    2 Progestrone_Control2

    3 Progestrone_Control3

    2) The table below provides important descriptive statistics for this analysis.

    Descriptive Statis