Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos...

165
Notas de Aula — FIS0999 - Termodinˆamica e F´ ısica Estat´ ıstica Ezequiel C. Siqueira 2013 Notas de Aula — FIS0999 Termodinˆamicae F´ ısica Estat´ ıstica Ezequiel C. Siqueira Departamento de F´ ısica e Qu´ ımica Faculdade de Engenharia de Ilha Solteira UNIVERSIDADE ESTADUAL PAULISTA

Transcript of Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos...

Page 1: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

Notas

deAula

—FIS0999

-Term

odinam

icaeFısica

Estatıstica

Ezeq

uiel

C.Siqueira

2013

Notas de Aula — FIS0999Termodinamica e FısicaEstatıstica

Ezequiel C. Siqueira

Departamento de Fısica e QuımicaFaculdade de Engenharia de Ilha Solteira

UNIV

ERSID

ADEESTADUALPAULISTA

Page 2: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

Sumário

1 Introdução aos Métodos Estatísticos 5

1.1 O problema da caminhada aleatória e a distribuição binomial . . . . . . . . . . . . . . . . . . . . 7

1.1.1 O problema da caminhada aleatória unidimensional . . . . . . . . . . . . . . . . . . . . . 9

1.2 Discussão geral de valores médios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Cálculo dos valores médios para o problema da caminhada aleatória . . . . . . . . . . . . 15

1.3 Distribuição de probabilidades para N grande . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Distribuições de probabilidade Gaussianas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5 Discussão Geral do problema da caminhada aleatória . . . . . . . . . . . . . . . . . . . . . . . . 29

1.5.1 Distribuições de probabilidades envolvendo várias variáveis . . . . . . . . . . . . . . . . 30

1.5.2 Comentários sobre distribuições de probabilidade contínuas . . . . . . . . . . . . . . . . 32

1.5.3 Cálculo geral dos valores médios para a caminhada aleatória . . . . . . . . . . . . . . . . 38

2 Descrição Estatística de um Sistema de Partículas 47

2.1 Formulação Estatística do Problema Mecânico . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.1.1 Especificação dos Estados do Sistema . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.1.2 Ensemble Estatístico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.1.3 Postulados Básicos da Física Estatística . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.1.4 Alcance do estado do equilíbrio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.1.5 Cálculos de Probabilidade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.1.6 O comportamento da densidade de estados . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.2 Interação entre Sistemas Macroscópicos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.2.1 Interação Térmica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.2.2 Interação Mecânica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.2.3 Interação Geral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

1

Page 3: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

2 SUMÁRIO

2.3 Processos Quasi-Estáticos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.3.1 Trabalho quasi-estático realizado pela pressão . . . . . . . . . . . . . . . . . . . . . . . . 66

2.4 Diferenciais Exatas e Inexatas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3 Termodinâmica Estatística 75

3.1 Irreversibilidade e a aproximação para o equilíbrio . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.1.1 Condições de equilíbrio e restrições . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.1.2 Processos Reversíveis e Irreversíveis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2 Interação entre Sistemas Macroscópicos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2.1 Interação térmica entre sistemas macroscópicos . . . . . . . . . . . . . . . . . . . . . . . 77

3.2.2 A aproximação do equilíbrio térmico . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.2.3 Temperatura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.2.4 Reservatório de Calor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2.5 Análise de largura da distribuição de probabilidades . . . . . . . . . . . . . . . . . . . . 86

3.3 Interação Geral entre Sistemas Macroscópicos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.3.1 Dependência da densidade de estados com os parâmetros externos . . . . . . . . . . . . . 89

3.4 Equilíbrio entre Sistemas Interagentes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.4.1 Processos quasi-estáticos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.4.2 Condições de equilíbrio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.4.3 Propriedades da Entropia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.5 Cálculo Estatístico de Quantidades Termodinâmicas . . . . . . . . . . . . . . . . . . . . . . . . . 97

4 Termodinâmica e suas aplicações 99

4.1 Grandezas Extensivas e Intensivas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2 Parâmetros Macroscópicos e suas medidas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2.1 Trabalho e Energia Interna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2.2 Calor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2.3 Temperatura Absoluta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3 Calor Específico e Capacidade Térmica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3.1 Entropia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3.2 Conseqüências da definição da entropia absoluta . . . . . . . . . . . . . . . . . . . . . . 106

4.4 Aplicações simples da Termodinâmica macroscópica à um gás ideal . . . . . . . . . . . . . . . . 108

4.4.1 Propriedades dos gases ideais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Page 4: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

SUMÁRIO 3

4.5 Relações gerais para uma substância homogênea . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.5.1 Variáveis independentes S e V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.5.2 Variáveis independentes S e p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.5.3 Variáveis Independentes T e V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.5.4 Variáveis Independentes T e p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.5.5 Relações de Maxwell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.6 Capacidades Térmicas (caso geral) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.7 Manipulando Derivadas Parciais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.7.1 Jacobianos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.7.2 Aplicações de Jacobianos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.8 Entropia e Energia Interna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.9 Expansão livre e o processo de Joule-Thomson . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.9.1 Expansão livre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.9.2 Processo de Joule-Thomson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.10 Máquinas Térmicas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.10.1 A máquina de Carnot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.10.2 Entropia do ciclo de Carnot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.10.3 Eficiência de uma máquina de Carnot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.11 Refrigeradores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.12 Eficiência de Máquinas Térmicas Reais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.13 Condições de Equilíbrio e Transições de Fase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.13.1 Sistemas em contato com um reservatório à temperatura constante . . . . . . . . . . . . . 151

4.13.2 Sistema em contato térmico com um reservatório térmico a volume e pressão constantes . 153

4.13.3 Aplicação dos princípios de energia mínima: transições de fase . . . . . . . . . . . . . . . 154

4.13.4 Trocas de fase de uma substância simples . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.13.5 Cálculo aproximado da pressão de vapor . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.14 Transformações de fase e a equação de estado . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Page 5: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

4 SUMÁRIO

Page 6: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

Capítulo 1

Introdução aos Métodos Estatísticos

A Física Estatística é uma disciplina da física onde são estudados sistemas constituídos por um número gigan-

tesco de partículas. Por um número gigantesco, queremos dizer quantidades maiores ou da ordem do número

de Avogadro (6,02×1023). Desta forma, esta disciplina fornece métodos gerais que podem ser empregados em

todas as áreas da física e mesmo em outras áreas como Química, Biologia, Economia, etc. De fato, todos os

sistemas que apresentam dimensões observáveis com uso da luz no espectro do visível (sistemas e organismos de

nosso cotidiano) são constituídos por um número gigantesco de átomos e moléculas. Neste curso, consideraremos

sistemas como sólidos, líquidos, radiação eletromagnética, etc., e veremos que estes se comportam segundo leis

absolutamente gerais embora seus constituintes tenham caráter completamente distintos microscopicamente. De

fato, atualmente sabemos descrever boa parte dos sistemas do ponto de vista microscópico através da aplicação

dos métodos de Mecânica Quântica, no entanto, quando estamos considerando sistemas de muitas partículas, os

métodos ficam muito complicados de serem implementados. Isso se deve não apenas à questões técnicas como

limitações computacionais na soluções de equações mas também devido ao comportamento coletivo ser comple-

tamente diferente do comportamento individual das moléculas. Um exemplo simples são os organismos vivos

que embora sejam constituídos por átomos e moléculas, cujas interações e características sabemos descrever bem,

não é possível prever as suas capacidades de interagir com o ambiente e de se reproduzir. Estas são capacidades

oriundas de um comportamento coletivo de seus constituintes.

Aqui, faz-se necessário definir alguns termos que serão utilizados de maneira recorrente ao longo do curso.

Quando falamos em sistemas microscópicos nos referimos à sistemas com tamanho da ordem ou menor do que

0,1 nm. Isso implica em sistemas do tamanho de átomos e moléculas. Sistemas macroscópicos, por outro lado,

são sistemas constituídos por um número muito grande de átomos e moléculas cujas dimensões são superiores a

micrometros. A escala intermediária entre o micro e o macro é chamada de escala mesoscópica e não estaremos

5

Page 7: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

6 CAPÍTULO 1. INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS

interessados nesta escala de tamanho. Este é um regime intermediário onde tanto os efeitos macro e microscópicos

competem em pé de igualdade. Existe uma área ativa de pesquisa nesta escala de comprimento, mais complicada

de ser estudada. Os objetos macroscópicos podem ser descritos através de grandezas como volume, temperatura,

pressão, magnetização, etc., que são parâmetros gerais válidos para o sistema como um todo. Sendo assim, quando

dizemos que a pressão de vapor de um gás encerrado em uma câmara é 1M Pa, estamos dizendo que na média

a pressão em todos os pontos do gás mede este valor. Esta é uma afirmação válida somente quando o gás como

um todo está em um situação de equilíbrio, i.e, a pressão, volume, e demais parâmetros que caracterizam o gás

não variam no tempo. Em todo o curso, estaremos estudando sistemas em equilíbrio, i.e., sistemas cujas variáveis

macroscópicas estão fixas no tempo. Fora do equilíbrio nada podemos afirmar sobre o sistema.

A chamada Termodinâmica é a disciplina onde se estuda as relações entre as variáveis macroscópias que

caracterizam o sistema. Devido ao fato de se tratar de variáveis que descrevem sistemas de muitas partículas, suas

leis básicas (Lei Zero, 1a, 2a e 3a leis da termodinâmica) são completamente gerais e intuitivas. Isto também explica

o fato da termodinâmica ter suas origens no final do século XVIII e início do século XIX. É importante ressaltar

que estas leis são válidas quando os sistemas estão em equilíbrio. Embora a termodinâmica seja extremamente

importante mesmo nos dias de hoje, não é possível fazer progresso no entendimento detalhado dos sistemas sob

consideração devido à sua generalidade. De fato, a virtude de permitir formular leis completamente gerais também

é maior fraqueza desta disciplina pois não permite entender as diferenças observadas entre diversos sistemas. O

progresso científico nesta área se deu quando tentou-se formular os problemas de um ponto de vista microscópico.

O objetivo da Física Estatística é obter leis gerais que descrevem comportamentos de sistemas de muitas partículas

através de uma aproximação microscópica. Neste caso, e isso ficará claro futuramente, conseguimos obter todos

os resultados da termodinâmica mais resultados gerais baseados em aspectos microscópicos. No entanto, ainda

temos a limitação à sistemas em equilíbrio assim como no caso da termodinâmica. Sistemas fora do equilíbrio

são extremamente complicados não permitindo formular leis tão gerais como no caso do estado de equilíbrio.

Atualmente, muito trabalho tem sido desenvolvido em problemas de não-equilíbrio, porém, para entender estas

teorias precisamos aprender a formulação de equilíbrio.

Por fim, notamos que é possível descrever sistemas analisando as interações entre as partículas constituintes

em detalhes e então calcular as variáveis macroscópicas. Esta metodologia é aplicada na chamada teoria cinética

e é válida também para sistemas fora do equilíbrio. No entanto, é o método mais difícil de ser aplicado além de

não permitir a generalidade que é obtida na teoria de física estatística de equilíbrio que estaremos estudando.

Page 8: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

1.1. O PROBLEMA DA CAMINHADA ALEATÓRIA E A DISTRIBUIÇÃO BINOMIAL 7

1.1 O problema da caminhada aleatória e a distribuição binomial

Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

Isso de deve ao caráter estastístico da teoria que iremos considerar agora. O adjetivo “estatística" está relacionado

à aplicação de métodos de teoria de probabilidades na descrição dos sistemas físicos. De fato, como não temos

como calcular todas as quantidades físicas a partir de primeiros princípios, partimos para uma descrição coletiva

do sistema. Com isso, fica subentendido que não estamos preocupados com a descrição detalhada de cada partícula

no sistema.

Quando falamos em probabilidade, estamos considerando a chance de um determinado evento ocorrer quan-

tificando essa chance através de um valor situado entre 0 e 1. Assim, quanto mais próximo de 1, maiores são as

chances do evento ocorrer. Este número só faz sentido quando consideramos um número muito grande de tentati-

vas de maneira que a probabilidade é a fração de eventos que ocorrem dentro do número total de tentativas. Para

ficar mais claro, consideremos um exemplo simples de jogo de cara e coroa. Quando dizemos que a probabilidade

é de 50% de aparacer cara, estamos na verdade afirmando que após um número muito grande de lançamentos da

moeda, em metade dos lançamentos teremos cara como resultado final. Isto, é claro, considerando que a moeda

é “honesta" ou seja, que as condições em que a moeda foi lançada são iguais em todos os lançamentos. De ma-

neira equivalente, podemos pensar em um número muito grande de moedas sendo lançadas ao mesmo tempo e

sob as mesmas condições. A teoria da probabilidade nos diz que neste caso, aproximadamente metade das moedas

apresentará cara e a outra metade coroa. O ponto essencial aqui, é o fato de que a descrição estatística só faz

sentido quando consideramos um número N muito grande de sistemas similarmente preparados. Este conjunto de

sistemas é chamado de ensemble estatístico. A probabilidade de ocorrência de um evento é definida com respeito

a este ensemble e então definida pela fração de sistemas no ensemble que são caracterizados pela ocorrência deste

evento particular.

A seguir, vamos desenvolver os conceitos básicos probabilidade em um problema específico cujos resultados

são bastante úteis e recorrentes em várias problemas físicos. Este problema, é chamado de problema da caminhada

aleatória ou do inglês the random-walk problem. Em sua forma mais simples, o problema é formulado da seguinte

forma:

Um homem bêbado se desloca a partir de um poste localizado em x= 0 (Veja Fig. 1.1). Cada passo dado pelo

homem, para direita ou esquerda, tem um comprimento igual a l e é independente do passo precedente. Tudo o

que pode ser dito é que existe uma probabilidade do passo ser dado para a direita é p e q = 1−p é a probabilidade

para um passo à esquerda. No caso mais simples, q = p e as probabilidades são iguais, no entanto, no caso geral

temos p = q. Isto pode ser realizado considerando que a rua tem uma inclinação de maneira que a probabilidade

Page 9: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

8 CAPÍTULO 1. INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS

poste

Figura 1.1: O problema da caminhada aleatória em 1 dimensão.

de dar um passo para baixo é maior do que para cima.

Desde que cada passo tem um um comprimento fixo e igual a l, então a distância percorrida pelo homem tem

a forma geral x=ml onde m é um número inteiro positivo, negativo ou zero. A questão de interesse é então: após

N passos dado pelo homem, qual é a probabilidade dele estar a um distância x = ml em relação ao poste? Em

termos estatísticos, estamos considerando um ensemble com um número muito grande de homens que deslocam

a partir da origem e a probabilidade a ser determinada corresponde a fração de homens no ensemble que estão

localizados em x=ml após os N passos.

É claro que este problema pode ser generalizado para o caso de duas e três dimensões. Nestes casos, teremos

que adicionar vetores posição de mesmo módulo l e direções aleatórias e no final perguntar qual é a distância

percorrida após a adição de N vetores. Notamos também que a distância entre a extremidade do último vetor e

a origem não é mais um número inteiro, múltiplo de l, mas apresenta um valor qualquer. Porém, fica claro que a

idéia geral permanece a mesma: determinar a posição do homem após N passos considerando-se probabilidades

de se ter um passo em um determinado sentido e direção.

O principal objetivo de se estudar o problema da caminhada aleatória é o fato de que muitos sistemas físicos na

natureza exibem um comportamento similar. Um dos principais exemplos deste tipo são sistemas magnéticos com

spin 1/2. Nestes sistemas, os átomos magnéticos podem apresentar duas orientações (denominadas up e down)

em relação à uma dada direção (em geral determinada por um campo magnético externo). Neste caso, a questão

a ser respondida é qual o momento magnético total de um ensemble de N átomos se conhecemos a probabilidade

das orientações up e down. Outro exemplo muito importante é a difusão de uma molécula em um gás. A colisão

da molécula com as demais torna seu deslocamento aleatório e então o interesse é a determinação do caminho

percorrido pela molécula após sofrer N colisões. As colisões determinam as direções e sentidos dos vetores

a serem somados na caminhada aleatória em três dimensões. Na verdade o movimento difusivo, caracterizado

pelo movimento aleatório das partículas, está presente em vários sistemas físicos diferentes. O movimento dos

elétrons em um metal, por exemplo, é completamente difusivo de maneira similar à de moléculas em um gás.

Quando aplicamos um campo elétrico externo, forçamos os elétrons a se movimentarem em uma dada direção

em superposição ao movimento difusivo. Como resultado, temos uma resistência elétrica devida às colisões sendo

Page 10: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

1.1. O PROBLEMA DA CAMINHADA ALEATÓRIA E A DISTRIBUIÇÃO BINOMIAL 9

medida pelo chamado tempo de relaxação, que é calculado através do modelo de caminhada aleatória. Você mesmo

pode experimentar o movimento difusivo quando tenta caminhar no meio de uma multidão em algum lugar lotado.

Neste caso, fica muito difícil caminhar em linha reta e no final, após N passos, a sua posição será determinada de

maneira probabilística, conforme discutido a seguir.

1.1.1 O problema da caminhada aleatória unidimensional

Vamos considerar o problema da caminhada aleatória no caso unidimensional em detalhes. Aqui será conveniente

usar uma nomenclatura mais técnica onde falamos de uma partícula fazendo N deslocamentos ou passos a partir

de uma dada origem. Após um total de N passos, cada um de comprimento l, a partícula estará localizada em

x=ml (1.1)

onde m é um número inteiro dentro do intervalo

−N ≤m≤N. (1.2)

O objetivo é calcular a probabilidade PN (m) de encontrar a partícula na posição x = ml após N passos.

Vamos denotar o número de passos para a direita por n1 e n2 o número de passos para a esquerda. Estes valores

estão relacionados por

n1 +n2 =N. (1.3)

O deslocamento líquido (medido para a direita em unidades do comprimento l) é dado por

m= n1 −n2. (1.4)

Combinando as Eqs. (1.3) e (1.4) podemos escrever ainda

m= n1 −n2 = n1 − (N −n1) = 2n1 −N

donde vemos que se N é ímpar, os possíveis valores de m também são ímpares. Reciprocamente, se N é par então

os valores de m também devem ser pares.

Aqui consideramos uma hipótese fundamental para que o problema da caminhada aleatória possa ser resolvido.

Consideramos que os passos dados pela partícula são estatisticamente independentes. Neste caso, cada passo é

caracterizado por sua respectiva probabilidade e a probabilidade para um conjunto deN passos pode ser facilmente

calculada através do produto de probabilidades individuais. Abaixo, fazemos as seguintes definições:

p= probabilidade de que o passo seja para a direita

q = 1−p= probabilidade de que o passo seja para a esquerda.

Page 11: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

10 CAPÍTULO 1. INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS

A probabilidade de uma seqüência de n1 passos para a direita e n2 passos para a esquerda é dado simplesmente

pelo produto das probabilidades de cada passo, i.e.,

p p · · ·p︸ ︷︷ ︸n1fatores

q q · · ·q︸ ︷︷ ︸n2fatores

= pn1qn2 . (1.5)

Agora, existem diferentes maneira possíveis de dar n1 passos para a direita e n2 passos para a esquerda de

modo que o número total de passos seja igual N . O número das diferentes possibilidades é dado por

N !n1!n2!

. (1.6)

A Eq. (1.6) é bem conhecida em problemas de análise combinatória. Para ilustrar este ponto, considere o

seguinte problema: temos N cadeiras e desejamos acomodar N pessoas. De que maneiras diferentes podemos

distribuir estas pessoas nas cadeiras? Para resolver isso, considere que existem N maneiras diferentes de colocar

uma pessoa na primeira cadeira. Após a primeira cadeira ser ocupada, sobram (N − 1) maneiras diferentes de

ocupar a segunda cadeira; em seguida, sobram N − 2 maneiras diferentes de ocupar a terceira cadeira e assim por

diante. No final, o número total de modos de ocupar as cadeiras é dado por:

N(N −1)(N −2)(N −3)(N −4)(N −5) · · ·1 ≡N !

Na equação acima consideramos que todas as pessoas são diferentes. Mas agora considere que dentre as N

pessoas, temos n1 mulheres e n2 homens. Se consideramos apenas o sexo como característica que diferenciam

estas pessoas, então as n1! permutações das mulheres entre elas próprias não levam a um modo diferente de

acomodarN pessoas. Similarmente, as n2! permutações dos homens levam ao mesmo resultado. Assim, o número

total de diferentes modos de acomodar N pessoas é dado por N !/n1!n2!. O mesmo raciocínio é usado para chegar

na Eq. (1.6) em relação ao número de passos para a direita e esquerda no caso da caminhada aleatória.

A probabilidade WN (n1) de tomar n1 passos para a direita e n2 passos para a esquerda, em um total de N

passos e em qualquer ordem, é obtida pelo produto da probabilidade dada pela Eq. (1.5) e os diferentes modos de

dar os passos (Eq. (1.6)). Assim, escrevemos:

WN (n1) = N !n1!n2!

pn1qn2 (1.7)

e desde que n1 +n2 =N , podemos escrever ainda

WN (n1) = N !n1!(N −n1)!

pn1qN−n1 . (1.8)

A Eq. (1.8) é chamada de distribuição binomial. A razão é que a Eq. (1.8) representa um termo típico

encontrado na expansão do binômio (p+ q)N pelo teorema binomial. A expansão binomial é dada pela fórmula:

(p+ q)N =N∑

n=0

N !n!(N −n)!

pnqN−n. (1.9)

Page 12: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

1.2. DISCUSSÃO GERAL DE VALORES MÉDIOS 11

Já mostramos que se sabemos que a partícula efetuou n1 passos para a direita então podemos determinar o

seu deslocamento m uma vez que conhecemos o número total N de passos. Assim, a probabilidade PN (m) que

a partícula esteja localizada em uma posição m é equivalente à probabilidade WN (n1) de que a partícula deu n1

passos, i.e.,

PN (m) =WN (n1).

Podemos obter PN (m) simplesmente escrevendo WN (n1) em termos de m. Isso é realizado combinando as

Eqs. (1.3) e (1.4):

n1 = 12

(N +m),

n2 = 12

(N −m).

Substituindo-se estas relações na Eq. (1.7), podemos escrever finalmente:

PN (m) = N ![(N +m)/2]![(N −m)/2]!

p(N+m)/2(1−p)(N−m)/2 (1.10)

onde usamos que q = 1 − p conforme mostramos acima. Note que N +m e N −m são inteiros pares pois são

iguais a 2n1 e 2n2.

Como um exemplo ilustrativo, considere que as probabilidades dos passos para a direita e esquerda são iguais,

i.e., p= q = 1/2 e que o número total de passos é N = 20. Substituindo-se estes valores na Eq. (1.10) obtemos o

gráfico mostrado na Fig. 1.2. O resultado é óbvio: a distribuição tem um máximo para m = 0, ou seja, como as

probabilidades são iguais para a direita e esquerda, o deslocamento líquido mais provável é zero. Assim, após N

passos é mais provável que a partícula esteja em torno da origem.

1.2 Discussão geral de valores médios

Agora que temos uma expressão para a probabilidade, precisamos ainda determinar as quantidades físicas relevan-

tes a partir da Eq. (1.10). No exemplo acima, consideramos todos os possíveis valores de m e substituímos estes

valores correspondentes na Eq. (1.10) para obter os valores das probabilidades. Como resultado, obtivemos um

valor máximo em m = 0, coerente com o valor esperado para iguais probabilidades de dar passos à direita ou à

esquerda da origem.

É claro que é possível extrair informações adicionais a partir da distribuição binomial, e nesta seção, vamos

aprender a fazer isso. Para tal, vamos considerar o caso geral de uma variável u que pode assumir M valores

Page 13: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

12 CAPÍTULO 1. INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS

-20 -15 -10 -5 0 5 10 15 200.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

P20

(m)

m

P20(m)

Figura 1.2: Nesta figura, temos um total N = 20 passos e iguais probabilidades para esquerda e direita. O envelope em

destes valores discretos é uma curva em forma de sino. O significado físico disto é óbvio. Após N passos aleatórios, a

probabilidade da partícula estar a uma distância de N passos da origem é muito pequena enquanto que é mais provável que

a partícula fique localizada em torno da origem para m= 0.

discretos

u1, u2, u3, u4, u5, · · · uM

com as respectivas probabilidades

P (u1), P (u2), P (u3), P (u4), P (u5), · · · P (uM ).

O valor médio (ou simplesmente média) de u, denotado por u, é definido por:

u= P (u1)u1 +P (u2)u2 +P (u3)u3 + · · ·+P (uM )uM

P (u1)+P (u2)+P (u3)+ · · ·+P (uM ),

o que pode ser expresso em uma notação mais compacta:

u=

M∑n=1

P (un)un

M∑n=1

P (un). (1.11)

Page 14: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

1.2. DISCUSSÃO GERAL DE VALORES MÉDIOS 13

A Eq. (1.11) já foi usada por você quando calcula médias aritméticas. De fato, se queremos calcular a média

das notas de uma classe, fazemos isso simplesmente somando todas as notas e então dividimos pelo no total de

alunos. Mas isso é exatamente o que está sendo proposto na Eq. (1.11). Para ver isso, precisamos apenas organizar

os dados. Vamos considerar que para uma turma de N alunos, temos n1 alunos com nota u1, n2 alunos com nota

u2, etc.. Isto significa que temos uma probabilidade P (u1) = n1/N de encontrar alunos com nota u1, P (u2) =

n2/N de encontrar alunos com nota u2 e assim sucessivamente. Aqui convém lembrar que a probabilidade é

definida como a razão do número de eventos que ocorrem no ensemble pelo número total de elementos. Assim,

média u das notas da turma pode ser calculada da seguinte forma:

u= u1P (u1)+u2P (u2)+ · · ·uNP (uN )P (u1)+P (u2)+ · · ·P (uN )

e substituindo-se os valores das probabilidades como P (uj) = uj/N obtemos ainda

u=u1n1N

+u2n2N

+ · · ·uNnN

Nn1N

+ n2N

+ · · ·+ nN

N

u= u1n1 +u2n2 + · · ·uNnN

n1 +n2 + · · ·nN= u1n1 +u2n2 + · · ·uNnN

N

e reconhecemos a última fração como a média aritmética das notas dos alunos. Note que a média aritmética

aparece quando a distribuição de probabilidades se reduz à frações do tipo nj/N . No caso geral, a distribuição

de probabilidades pode ser mais complicada e representada por uma função qualquer. No caso do problema da

caminhada aleatória, deduzimos que P (uj) é uma distribuição binomial.

Para uma dada função f(u) qualquer, podemos calcular o seu valor médio da seguinte maneira:

f(u) =

M∑n=1

P (un)f(un)

M∑n=1

P (un). (1.12)

A expressão dada pelas Eqs. (1.11) e (1.12) podem ser simplificadas considerando que a soma de todas as

probabilidades deve ser igual a 1. Isto equivale a dizer que a probabilidade de se ter qualquer resultado possível,

dentro é claro de todas as possibilidades, é de 100%. Assim, temos:

P (u1)+P (u2)+ · · ·+P (uM ) =M∑

n=1P (un) = 1

que é chamada “condição de normalização" satisfeita por toda distribuição de probabilidade. Como resultado, a

Eq. (1.12) se torna:

f(u) =M∑

n=1P (un)f(un). (1.13)

Page 15: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

14 CAPÍTULO 1. INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS

A partir da Eq. (1.13) podemos obter alguns resultados gerais. Se f(u) e g(u) são quaisquer duas funções de

u, então podemos escrever

f(u)+g(u) =M∑

n=1P (un)[f(un)+g(u)] =

M∑n=1

P (un)f(un)+M∑

n=1P (un)g(u)

ou seja,

f(u)+g(u) = f(u)+g(u). (1.14)

Além disso, se temos um constante C multiplicando a função f(u), então podemos escrever:

Cf(u) =M∑

n=1P (un)Cf(un) = C

M∑n=1

P (un)f(un)

ou seja,

Cf(u) = Cf(u). (1.15)

Acima calculamos o valor médio das notas de uma turma com N estudantes. O valor médio u meramente nos

mostra o valor central em torno do qual os demais valores ui distribuídos. Isto nos permite determinar uma das

características da distribuição de probabilidade. Para obter informações mais detalhadas acerca da distribuição,

precisamos determinar outras quantidades médias. Neste caso, a próxima quantidade importante é o desvio do

valor médio, definido como:

∆u≡ u− u (1.16)

que nos fornece uma medida quantitativa da distribuição dos valores ui em torno da média. Usando a Eq. (1.14)

podemos calcular o valor médio do desvio:

∆u= u− u= u− ¯u.

Agora, a quantidade ¯u é a média do valor médio. Desde que o valor médio é um número, então para fins de

cálculo este se comporta como uma constante, assim, temos que ¯u= u. Verifique isso usando a definição da média.

Assim, temos que:

∆u= u− u= u− u= 0.

Este resultado nos diz que o desvio médio em relação a média é zero. Isso é resultado do fato do desvio

apresentar valores positivos e negativos de maneira que a média fica no centro destes valores. Como resultado o

valor médio do desvio deve ser nulo.

Page 16: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

1.2. DISCUSSÃO GERAL DE VALORES MÉDIOS 15

Outro valor médio útil é a média do desvio ao quadrado, que também é chamado de segundo momento de u

em torno de sua média ou ainda, de dispersão de u. Este é definido como:

(∆u)2 =M∑

n=1P (un)(un − u)2 ≥ 0 (1.17)

onde notamos que a dispersão de u é sempre um no positivo. Note então que, diferente da média do desvio, a

dispersão somente será nula para o caso de todos valores un serem iguais a média. Além disso, quanto maior o

espalhamento dos valores un em torno da média, maior será o valor de (∆u)2.

Para calcular a dispersão de qualquer distribuição, observamos primeiramente a seguinte relação:

(∆u)2 = (u− u)2 = u2 −2uu+ u2

= u2 −2uu+ u2 = u2 −2u2 + u2 = u2 − u2

(∆u)2 = u2 − u2 (1.18)

o que implica em

u2 ≥ u2, desde que (∆u)2 ≥ 0.

Podemos ainda definir momentos de ordem superior tais como (∆u)n, o n-ésimo momento de u em torno de

sua média para n > 2. Estes momentos de ordem superior são menos úteis nos cálculos e, em geral, utilizamos os

momentos até segunda ordem.

Notamos ainda que o conhecimento de P (u) nos fornece a informação completa sobre a distribuição de proba-

bilidades. Um conhecimento de poucos momentos, como u e (∆u)2 implica em apenas uma informação parcial,

embora útil, sobre a distribuição de valores. Em problemas gerais de física, podemos determinar apenas alguns

destes momentos da distribuição sendo muito raro ter acesso à equação para a função distribuição. No caso do

problema da caminhada aleatória, conhecemos a distribuição e podemos determinar todos os momentos da dis-

tribuição. A seguir, faremos o cálculo do valor médio e da dispersão dos valores do deslocamento em torno da

média.

1.2.1 Cálculo dos valores médios para o problema da caminhada aleatória

No problema da caminhada aleatória obtivemos a função distribuição dada pela Eq. (1.8)

W (n1) = N !n1!(N −n1)!

pn1qN−n1 .

Page 17: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

16 CAPÍTULO 1. INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS

onde omitimos o índice N em W para simplificar a notação.

Antes de calcular os valores médios, vamos verificar a condição de normalização que deve ser verificada por

toda a distribuição de probabilidades:

N∑n1=1

W (n1) = 1.

Substituindo-se a distribuição de probabilidades (1.8) obtemos:

N∑n1=1

N !n1!(N −n1)!

pn1qN−n1

mas como vimos pela Eq. (1.9), a soma acima é a própria distribuição de Newton, i.e.,

N∑n1=1

N !n1!(N −n1)!

pn1qN−n1 = (p+ q)N

mas como q = 1 −p então vemos que

(p+ q)N = (p+1−p)N = 1,

logo, vemos que a condição de normalização é satisfeita.

Cálculo dos valores médios

Vamos agora determinar o valor médio de n1, o número de passos para a direita. Usando a definição do cálculo do

valor da média temos que:

n1 =N∑

n1=0W (n1)n1 =

N∑n1=0

n1N !

n1!(N −n1)!pn1qN−n1

n1 =N∑

n1=0

N !n1!(N −n1)!

[n1pn1 ]qN−n1

onde destacamos o fator n1pn1 . Desde que o problema se resume a calcular a soma acima, observamos que:

n1pn1 = p

∂p(pn1)

e, assim, substituindo esta equação na soma temos:

n1 =N∑

n1=0

N !n1!(N −n1)!

qN−n1p∂

∂p(pn1)

Page 18: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

1.2. DISCUSSÃO GERAL DE VALORES MÉDIOS 17

e desde que não existe dependência dos limites da soma com p, podemos retirar o fator p∂/∂p para fora da soma,

i.e.,

n1 = p∂

∂p

N∑n1=0

N !n1!(N −n1)!

qN−n1pn1

e usando novamente a distribuição binomial temos que:

n1 = p∂

∂p(p+ q)N .

Aqui convém notar que o cálculo desenvolvido é válido considerando que p e q são dois parâmetros arbitrários.

Assim, não podemos efetuar a troca de p= 1− q pois esta seria uma particularização de p e q. Assim, aplicando a

derivada parcial sobre o binômio, segue que:

n1 =Np(p+ q)N−1.

Agora sim, uma vez que temos o resultado geral, podemos fazer a particularização do mesmo para o caso em

que p+ q = 1. Assim, obtemos o resultado simples:

n1 =Np. (1.19)

Agora sabemos também que

n1 +n2 =N

e tomando a média, temos que:

n2 =N − n1

e substituindo-se n1 =Np, segue que:

n2 =N −Np=N(1−p) =Nq.

O valor do deslocamento médio pode ser facilmente determinado uma vez que temos a média do no de passos

em ambos os sentidos. De fato, segundo a definição do deslocamento médio, temos:

m= n1 −n2

logo, o valor médio será

m= n1 − n2

e substituindo-se os valores de n1 e n2, obtemos ainda:

m=N(p− q).

Page 19: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

18 CAPÍTULO 1. INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS

Calculo da dispersão

O próximo passo é a determinação da dispersão definida pela Eq. (1.18), a qual pode ser particularizada para o

caso presente:

(∆n1)2 ≡ n1 − n21 = n2

1 − n21. (1.20)

Como já conhecemos o valor da média, precisamos apenas determinar o valor médio de n21. Para isso, aplica-

mos a Eq. (1.13) com a distribuição binomial no lugar de P (un), assim, segue que:

n21 =

N∑n1=0

W (n1)n21

e substituindo W (n1) obtemos:

n21 =

N∑n1=0

N !n1!(N −n1)!

pn1qN−n1n21.

Aqui usamos o mesmo procedimento adotado para o cálculo da média do valor n1. Neste caso, observamos

que a expressão abaixo nos permite eliminar o fator n21:

n21p

n1 =(p∂

∂p

)2pn1 .

Podemos verificar a expressão acima calculando diretamente:(p∂

∂p

)2pn1 = p

∂p

(p∂pn1

∂p

)= p

[∂pn1

∂p+p

∂2pn1

∂p2

]

(p∂

∂p

)2pn1 = p

∂pn1

∂p+p2∂

2pn1

∂p2

e aplicando as derivadas, segue que:(p∂

∂p

)2pn1 = n1p

n1 +p2n1(n1 −1)pn1−2 = n1pn1 +n2

1pn1 −n1p

n1 = n21p

n1

que é a relação que gostaríamos de demonstrar.

Substituindo esta relação na equação para o valor médio, obtemos:

n21 =

N∑n1=0

N !n1!(N −n1)!

qN−n1 [n21p

n1 ]

ou ainda

n21 =

N∑n1=0

N !n1!(N −n1)!

qN−n1

(p∂

∂p

)2pn1

Page 20: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

1.2. DISCUSSÃO GERAL DE VALORES MÉDIOS 19

e trocando a ordem entre a soma e a integração, segue que:

n21 =

(p∂

∂p

)2 N∑n1=0

N !n1!(N −n1)!

qN−n1pn1

e considerando novamente que q e p são arbitrários, podemos escrever a soma usando a relação do teorema bino-

mial, i.e.,

n21 =

(p∂

∂p

)2(p+ q)N = p

∂p

[p∂(p+ q)N

∂p

]= p

∂p

[pN(p+ q)N−1

]e aplicando a outra derivada obtemos:

n21 = p

[pN(N −1)(p+ q)N−2 +N(p+ q)N−1

]e como este é o resultado final, podemos particularizar para o caso em que p e q são probabilidades onde vale a

restrição p+ q = 1, assim:

n21 = p[N(N −1)p+N ] = p[pN2 −pN +N ] = p[pN2 +(1−p)N ] = (pN)2 +Npq

e de acordo com a Eq. (1.19) temos que n1 =Np assim, podemos escrever:

n21 = n2

1 +Npq ∴ n21 − n2

1 =Npq

e identificamos o primeiro membro com a dispersão através da Eq. (1.20), assim, temos:

(∆n1)2 =Npq. (1.21)

Quando a Eq. (1.21) é comparada com os deslocamentos, vemos que a dispersão é quadrática no deslocamento.

Em outras palavras, como x= (n1 −n2)l, então uma quantidade que depende do quadrado do número de passos à

direita estará relacionada com o quadrado do deslocamento x. Assim, sua raíz quadrada, chamada de desvio médio

quadrático ou do inglês root mean square deviation1 é linear no comprimento e fornece uma medida linear da

largura do intervalo dentro do qual os valores de n1 estão distribuídos. Definimos então o desvio médio quadrático

da seguinte forma:

∆∗n1 = [(∆n1)2]1/2 =√Npq. (1.22)

Outra medida muito usada para a dispersão é a chamada largura relativa definida como a razão do desvio médio

quadrático pelo valor médio, i.e.,

∆∗n1n1

=√Npq

Np=√q

p

1√N. (1.23)

1Esta quantidade também é escrita como rms deviation. Você já deve ter ouvido falar em potência rms ou ainda na velocidade rms na

introdução à teoria cinética dos gases no seu curso de física introdutório.

Page 21: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

20 CAPÍTULO 1. INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS

Note que embora o valor médio aumente com N a largura relativa diminui com N−1/2 e a distribuição vai se

tornando cada vez mais concentrada a medida que N cresce.

Agora que determinamos os parâmetros relativos ao no de passos para a direita, podemos determinar as mesmas

quantidades para o deslocamento líquido m. Com efeito, temos que

m= 2n1 −N

o que nos permite escrever:

∆m=m− m

∆m= 2n1 −N − (2n1 −N) = 2(n1 − n1) = 2∆n1 ∴ (∆m)2 = 4(∆n1)2

ou ainda,

(∆m)2 = 4(∆n1)2

e substituindo-se o valor previamente calculado de (∆n1)2 temos que:

(∆m)2 = 4Npq.

1.3 Distribuição de probabilidades para N grande

Conforme podemos observar da Eq. (1.23), a distribuição binomial W (n1) tende a apresentar um máximo pro-

nunciado para um dado valor n1 = n1 e decresce rapidamente para grandes valores de N . Podemos usar este fato

para obter uma expressão aproximada para W (n1) válida para N → ∞.

Para N grande, considere regiões próximas do valor máximo da distribuição binomial, onde n1 também é

grande. Neste caso, a mudança fracional de W (n1) quando n1 muda por uma unidade é relativamente pequena,

ou seja,

|W (n1 +1)−W (n1)| ≪W (n1).

Com isso, podemos considerar como uma ótima aproximação, que W pode ser considerado uma função contí-

nua da variável n1 embora n1 só tenha significado para valores inteiros. A localização do valor máximo da função

distribuição é determinada através da condição:

∂W

∂n1

∣∣∣∣n1=n1

= 0, ou, equivalentemente,∂ lnW∂n1

∣∣∣∣n1=n1

= 0.

Page 22: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

1.3. DISTRIBUIÇÃO DE PROBABILIDADES PARA N GRANDE 21

Esta condição é sempre usada para determinar o ponto de inflexão de uma função. Em nosso caso, a distribui-

ção binomial tem apenas um pico de modo que o ponto de inflexão é exatamente o ponto de máximo. Note que no

caso geral, precisamos ainda determinar o sinal da segunda derivada no ponto onde a primeira derivada se anula

para verificar se o ponto de inflexão é máximo ou mínimo. Recomendamos uma revisão deste tópico nos livros de

cálculo elementar.

Desde que a função W (n1) é fortemente concentrada para N grande, trabalhamos com o seu logaritmo

lnW (n1) que apresenta uma variação muito mais suave em comparação com a própria W (n1). De fato, pode

ser mostrado que a convergência da série do logaritmo é muito mais rápida do que a convergência da série da

função.

Isto pode ser observado analisando-se a expansão para a função f = (1 + y)−N para N grande. Se y ≪ 1,

podemos escrever a expansão para esta função por meio da série de Taylor:

f(y) = 1−Ny+ 12N(N +1)y2 + · · ·

e vemos então que para N grande a série acima diverge desde que Ny & 1 mesmo para valores pequenos de y.

Um modo que contornar esta dificuldade, é trabalhar com o logartimo da função acima, ou seja,

lnf = −N ln(1+y)

e expandindo o logartimo2, temos que:

lnf = −N(y− y2

2+ y3

3+ · · ·

)o que nos permite escrever:

f(y) = e−N

(y− y2

2 + y33 +···

)que converge rapidamente para N grande e y . 1.

Vamos então obter a expansão de lnW em série de Taylor em torno do ponto de máximo n1. Assim, escreve-

mos:

lnW (n1) = lnW (n1)+B1η+ 12B2η

2 + 13!B3η

3 + · · · (1.24)

2É completamente simples obter a expansão do logaritmo. Para isso lembramos que

11 + x

=∑

n

(−1)nxn

e integrando em ambos os lados obtemos∫ x

0

11 + x

dx =∑

n

(−1)n

∫ x

0xn dx ∴ ln(1 + x) =

∑n

(−1)n xn+1

n + 1 = x − x2

2 + x3

3 − ·· ·

Page 23: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

22 CAPÍTULO 1. INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS

onde definimos

η = n1 − n1

e

Bγ = dγ lnW (n1)dnγ

1

como a γ-ésima derivada de lnW calculada no ponto n1 = n1. Desde que estamos expandindo a função em

torno de seu ponto de máximo, a primeira derivada deve ser nula neste ponto, assim B1 = 0. Além disso, desde

que é um ponto de máximo, então a derivada segunda deve ter um valor negativo quando calculada neste ponto.

Explicitamente, escrevemos então B2 = −|B2|. Usando a notação abreviada W = W (n1), podemos escrever a

Eq. (1.24) da seguinte maneira

W (n1) = We12 B2η2+ 1

6 B3η3+··· = We− 12 |B2|η2

e16 B3η3···. (1.25)

Como estamos considerando regiões em torno do ponto de máximo, então η ≪ 1 e, assim, podemos desprezar

os termos de terceira ordem em η e superiores. Com isso, escrevemos a Eq. (1.25) na forma aproximada:

W (n1) ∼ We− 12 |B2|η2

. (1.26)

Resta determinar o valor da derivada de W (n1). Para isso, recorremos à expressão de W dada pela Eq. (1.8)

W (n1) = N !n1!(N −n1)!

pn1qN−n1 .

e tomando logaritmo, segue que:

lnW (n1) = lnN !− lnn1!− ln(N −n1)!+n1 lnp+(N −n1) lnq

e, em princípio, precisaríamos determinar o valor da derivada de um fatorial. No entanto, podemos simplificar

a expressão acima no limite de n1 grande que estamos considerando. Com efeito, se n1 ≫ 1, então podemos

considerar lnn1! aproximadamente contínuo desde que a mudança de n1 por uma unidade causa uma mudança

muito pequena no logaritmo. Assim, podemos aproximar a derivada de lnn1 usando a definição de derivada, i.e.,

d lnn1!dn1

≈ ln(n1 +1)!− lnn1!1

= ln (n1 +1)!n1!

= ln(n1 +1)

e como n1 ≫ 1, então ln(n1 +1) ≈ lnn1 e obtemos a nossa derivada aproximada na forma:

d lnn1!dn1

≈ lnn1. (1.27)

Page 24: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

1.3. DISTRIBUIÇÃO DE PROBABILIDADES PARA N GRANDE 23

Tomando a derivada de lnW usando a Eq. (1.27) e levando em conta que N é constante, temos:

d lnW (n1)dn1

= −d lnn1!dn1

− d ln(N −n1)!dn1

+ d[n1 lnp]dn1

+ d[(N −n1) lnq]dn1

d lnW (n1)dn1

= − lnn1 +ln(N −n1)+ lnp− lnq = ln[(N −n1)p

n1q

]e calculando esta derivada no seu valor máximo, i.e., fazendo n1 = n1, devemos ter a derivada acima igual a zero,

então temos:

d lnW (n1)dn1

∣∣∣∣n1=n1

= ln[(N − n1)p

n1q

]= 0

de onde obtemos:

(N − n1)pn1q

= 1 ∴ Np− n1p= n1q

e como p+ q = 1, obtemos ainda

n1 =Np.

Agora, precisamos determinar a segunda derivada de lnW , para isso basta diferenciar a primeira derivada mais

uma vez:

d2 lnW (n1)dn2

1= d

dn1ln[(N −n1)p

n1q

]= n1q

(N −n1)pd

dn1

[(N −n1)pn1q

]

d2 lnW (n1)dn2

1= n1q

(N −n1)p

[−pn1q− q(N −n1)pn2

1q2

]= − n1q

(N −n1)p

[pqN

n21q

2

]

d2 lnW (n1)dn2

1= − N

n1(N −n1)

e fazendo-se n1 = n1, vamos obter:

d2 lnW (n1)dn2

1

∣∣∣∣∣n1=n1

= − N

Np(N −Np)= − 1

Npq

logo,

B2 = − 1Npq

Page 25: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

24 CAPÍTULO 1. INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS

e vemos que apresenta um valor negativo como era esperado poisW deve apresentar um valor máximo em n1 = n1.

Resta ainda determinar o valor W que pode ser calculado requerendo que a soma sobre todos os valores de

W deve igual à unidade. Lembremos que a função distribuição nos fornece a probabilidade de que a partícula

tenha dado n1 passos. Assim, quando somamos sobre todos os valores de n1 estamos na verdade considerando a

probabilidade da partícula dar qualquer passo, o que deve ser igual a 1.

Como estamos considerando uma aproximação em que n1 se assemelha à uma variável contínua, então deve-

mos trocar a soma por uma integração. Assim, o que estamos dizendo efetivamente se reduz a

N∑n1=0

W (n1) ≈∫W (n1) dn1 =

∫ +∞

−∞W (η) dη = 1.

Aqui são importantes duas observações: (a) η = n1 − n1 e, portanto, pode assumir tanto valores positivos

quanto negativos; (b) estendemos os limites da integração em η para ±∞ o que equivale a dizer que N → ∞,

ou seja, estamos considerando uma aproximação dentro da qual o número de passos é tão grande que pode ser

considerado infinito. Desde que a distribuição se torna cada mais estreita e localizada em torno de seu valor

máximo n1, então W é essencialmente zero para valores de n1 com três ou quatro vezes o valor da dispersão.

Assim, os limites podem ser estendidos com um erro negligenciável.

Para obter o valor do coeficiente W basta substituir a distribuição dada pela Eq. (1.26) na integral acima, i.e.,∫ +∞

−∞W (η) dη = 1

W

∫ +∞

−∞e− 1

2 |B2|η2dη = 1

onde mantivemos W fora do sinal de integração porque este é constante. A integral tem solução conhecida:∫ +∞

−∞e− 1

2 |B2|η2dη =

√2π

|B2|

assim,

W

√2π

|B2|= 1 ∴ W =

√|B2|2π

.

Substituindo-se este resultado na Eq. (1.26) obtemos a seguinte distribuição normalizada:

W (n1) =

√|B2|2π

e− 12 |B2|(n1−n1)2

. (1.28)

A distribuição acima é chamada de distribuição Gaussiana. Para chegar nesta distribuição apenas tomamos o

limite contínuo da distribuição binomial. Da mesma forma que a distribuição binomial, a distribuição Gaussiana é

Page 26: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

1.4. DISTRIBUIÇÕES DE PROBABILIDADE GAUSSIANAS 25

bastante geral e aparece em vários ramos da Física e outras áreas. Com efeito, esta distribuição aparece sempre que

trabalhamos com estatísticas de grandes números. Como já determinamos o valores deB2 e n1, vamos substituí-los

na Eq. (1.28):

W (n1) = 1[2πNpq]1/2 exp

[−(n1 −Np)2

2Npq

]. (1.29)

Se voltarmos aos resultados da distribuição binomial para a dispersão e o valor médio da distribuição binomial:

W (n1) = 1[2π(∆n1)2]1/2

exp[−(n1 − n1)2

2(∆n1)2

]. (1.30)

1.4 Distribuições de probabilidade Gaussianas

Podemos escrever a Eq. (1.29) em termos do deslocamento líquido m de modo que a distribuição de probabili-

dade forneça a probabilidade de um determinado deslocamento para um grande número N de passos. Para isso,

relembramos que n1 = (N +m)/2. Assim, temos que:

P (m) =W

(N +m

2

)= 1

[2πNpq]1/2 exp[−((N +m)/2−Np)2

2Npq

].

Para simplificar o numerador do argumento da exponencial, escrevemos:

N +m

2−Np= 1

2(N +m−2Np) = 1

2[N +m−N(p+1− q)]

= 12

[N +m−Np−N +Nq)] = 12

[m−N(p− q)]

e substituindo na distribuição, segue que:

P (m) = 1[2πNpq]1/2 exp

[− [m−N(p− q)]2

8Npq

].

Aqui será conveniente trabalhar com o deslocamento real x da partícula o qual está relacionado com o deslo-

camento líquido pela Eq. (1.1)

x=ml

lembrando que l é o comprimento de cada passo. Note que como os valores de m estão separados por ∆m= 2, x

varia em incrementos de 2l. Agora, se l é muito pequeno comparado ao menor comprimento físico de interesse,

os incrementos de 2l são muito pequenos e x também pode ser tomado como uma variável contínua no limite

de N grande. Além disso, neste mesmo limite P (m) não pode variar muito de um dado valor m para o seu

valor adjacente, ou seja, |P (m+ 2) −P (m)| ≪ P (m). Com isso, a distribuição de probabilidade P (m) pode ser

Page 27: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

26 CAPÍTULO 1. INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS

considerada como uma função contínua de x da mesma forma que fizemos com W (n1). Na Fig. 1.3 é mostrado

um esboço de um histograma para um valor grande de N . Este gráfico é similar ao que foi calculado na Fig. 1.2

para N = 20. A densidade de barras é muito alta e a curva que toca os pontos de cada barra pode ser considerada

uma função contínua.

Figura 1.3: A probabilidade P (m) do deslocamento líquido m quando o número de passos N é muito grande e o compri-

mento l de cada passo é muito pequeno.

Nestas circunstâncias consideramos x como uma variável contínua em uma escala macroscópica e queremos

determinar a probabilidade de encontrar a partícula após N passos no intervalo definido entre x e x+ dx. É

importante observar que dx é uma diferencial no sentido macroscópico, i.e., se L é a menor distância de relevância

macroscópica, então dx ≪ L. No entanto, temos ainda que o intervalo dx compreende muitos passos l, ou seja,

dx≫ l. Em resumo, dx é microscopicamente grande mas macroscopicamente pequeno.

Para obter a probabilidade para que a partícula esteja no intervalo entre x e x+dx, precisamos somar todas as

probabilidades P (m) que estão contidas no intervalo dx. Este valor é simplesmente igual a dx/2l que é o número

de pontos contidos no intervalo dx. Vemos então que a probabilidade é proporcional a dx e é usualmente escrita

na seguinte forma:

P(x) dx= P (m) dx2l

onde a quantidade P(x), que independe do tamanho do intervalo dx, é a chamada densidade de probabilidade.

Note que para calcular a probabilidade sempre devemos multiplicar P(x) pelo elemento de comprimento dx.

Page 28: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

1.4. DISTRIBUIÇÕES DE PROBABILIDADE GAUSSIANAS 27

Substituindo P (m), vamos obter:

P(x) dx= 1[2πNpq]1/2 exp

[− [m−N(p− q)]2

8Npq

]dx

2l

e como x=ml, segue que:

P(x) dx= 1[2π4Npql2]1/2 exp

[− [x−N(p− q)l]2

8Npql2

]dx.

Aqui, definimos as seguintes quantidades:

σ = 2l√Npq (1.31)

µ= (p− q)Nl (1.32)

e substituindo-se estas definições na distribuição Gaussiana, obtemos ainda

P(x) dx= 1√2πσ

exp[− [x−µ]2

2σ2

]dx. (1.33)

A distribuição Gaussiana é completamente geral no sentido de que quaisquer considerações probabilísticas

sobre um número muito grande de experimentos preparados de maneira similar pode levar à expressão dada pela

Eq. (1.33). Da mesma forma que fizemos para a distribuição binomial, é possível determinar os momentos da

distribuição através da Eq. (1.33) da mesma forma que fizemos com a distribuição binomial. Neste caso, porém,

teremos que lidar com integrações em vez de somas sobre números discretos. Além disso, a aproximação que

permite fazer os limites de integração tenderem ao infinito pode ser realizada desde que P(x) ser torna muito

pequeno a medida que |x| se torna muito grande. A seguir, ilustramos em detalhes os cálculos dos momentos da

distribuição Gaussiana da mesma forma que foi realizado para o caso da distribuição binomial. Primeiramente,

consideramos a verificação da normalização da distribuição Gaussiana:∫ +∞

−∞P(x) dx= 1√

2πσ

∫ +∞

−∞exp

[− [x−µ]2

2σ2

]dx

e fazendo a troca de variável y = (x−µ)/√

2σ, podemos escrever ainda∫ +∞

−∞P(x) dx= 1√

π

∫ +∞

−∞e−y2

dy

e usando o resultado3

∫ +∞

−∞e−x2

dx=√π (1.34)

3O resultado que usamos [Eq. (1.34)] na verificação da condição de normalização é bastante conhecida. O cálculo desta integração é

realizado no apêndice A.2., pg. 606 do livro-texto do Reif. Recomendo fortemente o estudo do cálculo desta integral.

Page 29: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

28 CAPÍTULO 1. INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS

podemos escrever: ∫ +∞

−∞P(x) dx= 1√

2πσ

∫ +∞

−∞exp

[− y2

2σ2

]dy

vemos que

∫ +∞

−∞P(x) dx= 1√

π

√π = 1,

e a distribuição está normalizada.

O próximo passo é a determinação do valor médio do deslocamento, i.e., calcular x. Para isso, usamos a

definição da média:

x=∫ +∞

−∞xP(x) dx

e substituindo a distribuição, segue que:

x= 1√2πσ

∫ +∞

−∞xexp

[− [x−µ]2

2σ2

]dx

e fazendo-se a troca de variável y = x−µ, obtemos:

x= 1√2πσ

∫ +∞

−∞ye−y2/2σ2

dy+ µ√2πσ

∫ +∞

−∞e−y2/2σ2

dy

e vemos que a primeira integral é zero pois é uma integral de uma função ímpar4 em um intervalo simétrico

enquanto que a segunda integral é simplesmente a integral da distribuição multiplicada pela constante µ. Assim,

4Lembre-se que uma função ímpar é qualquer função que tenha a propriedade:

f(−x) = −f(x) (1.35)

e a integral de uma função ímpar em um intevalo simétrico do tipo [−a,a] é nula. Podemos mostrar isso facilmente. Considere a integral

abaixo: ∫ +a

−a

f(x) dx =∫ 0

−a

f(x) dx +∫ +a

0f(x) dx

e fazendo a troca de variável x = −x′ na primeira integração segue que:∫ +a

−a

f(x) dx = −∫ 0

a

f(−x′) dx′ +∫ +a

0f(x) dx

e invertendo os limites da primeira integral, cancelamos o sinal negativo, assim:∫ +a

−a

f(x) dx =∫ a

0f(−x) dx +

∫ +a

0f(x) dx =

∫ +a

0[f(−x) + f(x)] dx = 0

onde voltamos a chamar x′ de x pois isto não altera o valor da integração. Além disso, agrupamos as duas integrais em apenas uma de 0

até +a. Usando a definição de função ímpar [Eq. (1.35)], mostramos então que a última integral é nula.

Page 30: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

1.5. DISCUSSÃO GERAL DO PROBLEMA DA CAMINHADA ALEATÓRIA 29

como já provamos que a distribuição é normalizada, então a integral é igual a 1. Logo, escrevemos:

x= 0+µ×1 ∴ x= µ. (1.36)

Se você fizer um gráfico de P irá notar que a distribuição é simétrica em torno do ponto µ. Assim, o resultado

da média do valor de x ser igual a µ já era um resultado esperado.

A próxima quantidade é a dispersão. Já usando o valor da média como sendo igual a µ, podemos escrever:

(x−µ)2 = 1√2πσ

∫ +∞

−∞(x−µ)2 exp

[− [x−µ]2

2σ2

]dx

e trocando y = x−µ, podemos escrever ainda5

(x−µ)2 = 1√2πσ

∫ +∞

−∞y2e−y2/2σ2

dy = 1√2πσ

[√π

2(2σ2)3/2

]

logo,

(x−µ)2 = σ2 (1.37)

Como já conhecemos os valores de µ e σ [Eqs. (1.31) e (1.32)], podemos escrever a média e a dispersão na

forma:

x= 2l√Npq, (1.38)

(∆x)2 = (p− q)Nl. (1.39)

1.5 Discussão Geral do problema da caminhada aleatória

Até o momento consideramos o problema da caminhada aleatória como sendo realizado através de uma séries de

N passos de tamanhos fixos e iguais a l no caso unidimensional. Após isso, consideramos o limite de um número

muito grande de passos e obtivemos a distribuição Gaussiana. No entanto, a generalização dos resultados obtidos

para outras dimensões e ainda para o caso em que os passos têm tamanhos diferentes é bastante complicada. Por

esta razão, aqui nos voltamos para um formalismo mais geral apropriado para a aplicação nos sistemas futuros que

iremos estudar. Começamos considerando distribuições que são funções de mais de uma variável e então iremos

aplicar a generalização para o caso de um ensemble.

5Veja apêndice A.4. do livro do Reif para ver a solução da integral∫ +∞

−∞y2e−y2/2σ2

dy.

Page 31: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

30 CAPÍTULO 1. INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS

1.5.1 Distribuições de probabilidades envolvendo várias variáveis

A descrição estatística de uma situação envolvendo mais de uma variável requer a generalização dos argumentos

probabilísticos que desenvolvemos para o caso de uma variável. Por simplicidade, vamos considerar o caso de

duas variáveis u e v que podem assumir os seguintes valores:

ui, onde i= 1,2,3 · · · ,M

vj , onde j = 1,2,3 · · · ,N.

Seja P (ui,vj) a probabilidade de que a variável u assuma o valor ui e a variável v assuma o valor vj . A

probabilidade que u e v assumam qualquer valor dentre todos valores possíveis deve ser igual à unidade, i.e.,

fazendo-se a soma sobre i e j devemos obter o requerimento de normalização:

M∑i=1

N∑j=1

P (ui,vj) = 1. (1.40)

A probabilidade de u assumir o valor u1, independente do valor assumido por v, é a soma de todas as probabi-

lidades de todas as situações possíveis consistentes com todos os valores de u, i.e.,

Pu(ui) =N∑

j=1P (ui,vj) (1.41)

onde a soma é realizada sobre todos os valores de vj . Similarmente, a probabilidade da variável v assumir o valor

vj independentemente do valor assumido por u é obtida somando-se sobre todos os valores de u:

Pv(vj) =M∑

i=1P (ui,vj). (1.42)

Convém notar que :

M∑i=1

Pu(ui) =N∑

j=1Pv(vj) =

M∑i=1

N∑j=1

P (ui,vj) = 1,

que é a condição de normalização.

De todas as possibilidades relacionadas com as relações entre as variáveis u e v, consideraremos uma situação

particular em que os valores assumidos por uma variável não dependem dos valores da outra variável. Neste caso,

dizemos que as variáveis são estatisticamente independentes ou não-correlacionadas. Com isso, a distribuição

de probabilidades pode ser expressa de maneira muito simples em termos da probabilidade que u assuma um valor

ui para qualquer valor de v, que definimos como Pu(ui), e em termos da probabilidade de v assumir o valor vj

para qualquer valor de Pv(vj). Neste caso, podemos escrever:

P (ui,vj) = Pu(ui)Pv(vj) (1.43)

Page 32: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

1.5. DISCUSSÃO GERAL DO PROBLEMA DA CAMINHADA ALEATÓRIA 31

se u e v são estatisticamente independentes.

Da mesma forma que foi feito para o caso de uma variável, podemos calcular os valores médios a partir da

distribuição P (ui,vj). Para isso, consideremos uma função F (u,v) qualquer. O valor médio de F é definido

como:

F (u,v) =M∑

i=1

N∑j=1

P (ui,vj)F (ui,vj). (1.44)

Note que se f(u) é uma função apenas de u, segue pela Eq. (1.41) que

f(u) =M∑

i=1

N∑j=1

P (ui,vj)f(ui) =M∑

i=1

N∑j=1

P (ui,vj)

f(ui)

f(u) =M∑

i=1Pu(ui)f(ui).

No caso de duas funções de u e v denotadas por F e G, então temos os seguintes resultados gerais:

F +G=M∑

i=1

N∑j=1

P (ui,vj)(F (ui,vj)+G(ui,vj))

=M∑

i=1

N∑j=1

P (ui,vj)F (ui,vj)+M∑

i=1

N∑j=1

P (ui,vj)G(ui,vj)

= F + G

e observamos que a média da soma é igual a soma das médias.

Agora, considere duas funções f(u) e g(v). Se consideramos que as probabilidades de u e v são estatistica-

mente independentes, então podemos escrever:

f(u)g(v) =M∑

i=1

N∑j=1

P (ui,vj)f(ui)g(vj)

e como estamos considerando que não há correlação então vale a Eq. (1.43), i.e,

f(u)g(v) =M∑

i=1

N∑j=1

Pu(ui)Pv(vj)f(ui)g(vj) =[

M∑i=1

Pu(ui)f(ui)] N∑

j=1Pv(vj)g(vj)

ou seja,

f(u)g(v) = f(u) g(v) (1.45)

i.e., a média de um produto é igual ao produto das médias se u e v são estatisticamente independentes. A Eq.

(1.45) não é válida no caso em que a independência estatística não é verificada.

É claro que é possível generalizar os resultados obtidos acima para o caso de um número arbitrário de variáveis.

Page 33: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

32 CAPÍTULO 1. INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS

1.5.2 Comentários sobre distribuições de probabilidade contínuas

Consideremos primeiramente o caso em que temos apenas uma variável u que pode assumir qualquer valor no

intervalo a1 < u < a2. Conforme discutimos anteriormente, se propomos uma descrição probabilística para a

variável u, podemos focar em um intervalo infinitesimal entre u e u+du e perguntar pela probabilidade da variável

u assumir um valor dentro deste intervalo. Considerando um intervalo suficientemente pequeno, podemos escrever

esta probabilidade na forma P(u) du onde P(u) é a densidade de probabilidade, independente do tamanho do

intervalo considerado. No entanto, é possível reduzir o problema variáveis contínuas para um problema equivalente

de variáveis discretas.

Para isso, começamos dividindo o intervalo entre a1 e a2 em intervalos de tamanhos iguais a δu. Cada in-

tervalo pode ser rotulado por um índice i. O valor de u em cada intervalo é ui e P (ui) é a probabilidade de

encontrar a variável dentro deste intervalo δu. Esta subdivisão do intervalo nos permite trabalhar com um número

contável de valores da variável u. Isto permite utilizar todas as expressões desenvolvidas para o caso discreto que

demonstramos previamente.

O estabelecimento da conexão entre variáveis contínuas e discretas pode ser realizado considerando que o

intervalo du contém um grande número de intervalos δu. Assim, a probabilidade de encontrar u dentro do intervalo

δu é dada por

P (u) = P(u) δu (1.46)

Considerando que du ≫ δu, então podemos dizer que há du/δu valores possíveis de ui no intervalo du.

Considerando que a probabilidade dentro de cada intervalo δu é aproximadamente a mesma, i.e., P (ui) = P (u),

então a probabilidade de encontrar u no intervalo du, será:

P(u) du= P (u) duδu

(1.47)

onde trocamos a densidade de probabilidade pelo seu valor dado pela Eq. (1.46). A Eq. (1.47) oferece a conexão

entre a variável discreta e a contínua. De fato, P (u) é definida apenas em valores discretos determinados pela

quantidade de subdivisões δu contidas no intervalo total a1 < u < a2.

Notamos que os valores médios e outras quantidades, que são definidas em termos de somatórios no caso

de variáveis discretas, serão determinadas através de integrações quando a variável é contínua. A condição de

normalização, por exemplo, é definida por:

∑i

P (ui) = 1. (1.48)

Page 34: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

1.5. DISCUSSÃO GERAL DO PROBLEMA DA CAMINHADA ALEATÓRIA 33

Mas no caso da variável contínua, é possível primeiramente somar as probabilidades discretas definidas no

intervalo du, o que nos permite obter P(u)du e, em seguida, efetuar a integração sobre u sobre todo o intervalo6.

Desta forma a Eq. (1.48) se torna:

∫ a2

a1P(u) du= 1, (1.49)

que é a expressão da condição de normalização em termos da densidade de probabilidade. Similarmente, podemos

escrever os valores médios previamente definidos em termos de P(u). Com efeito, o valor médio de uma função

qualquer f(u) pode ser escrito na forma:

f(u) =∫ a2

a1P(u)f(u) du.

Vamos considerar agora o caso mais geral em que temos duas variáveis u e v, tal que a1 <u<a2 e b1 <v < b2.

Neste caso, podemos falar da probabilidade de P(u,v) du dv que as variáveis estejam no intervalo u e u+du e

v e v+ dv, respectivamente, onde P(u,v) é densidade de probabilidade independente do tamanho do elemento

du dv. Note que neste caso, os intervalos du e dv correspondem a uma área do espaço definido pelas variáveis u

e v. Este espaço é ilustrado na Fig. 1.4 onde observamos que os intervalos du e dv são subdivididos em intervalos

δu e δv ainda menores rotulados por índices i e j. Como resultado, podemos falar na probabilidade P (ui,vj) de

6Note que a soma dada pela Eq. (1.48) ocorre sobre todo o intervalo a1 < u < a2. No entanto, podemos escrever a soma acima na

forma:

∆u1/δu∑j=1

P (uj) +∆u2/δu∑

j=1

P (uj) + · · · +∆uN /δu∑

j=1

P (uj) = 1.

onde subdividimos o intervalo em N intervalos de largura ∆u e os rotulamos por ∆uj , com j = 1,2, · · · ,N . Se P (uj) é igual para todos

os subintervalos δuj , então podemos escrever as somas acima na forma:

P (u1)∆u1/δu∑

j=1

+ P (u2)∆u2/δu∑

j=1

+ · · · + P (uN )∆uN /δu∑

j=1

= 1.

ou ainda,

N∑k=1

P (uk)∆uk

δu= 1 ∴

N∑k=1

P(uk)∆uk = 1.

onde usamos a Eq. (1.48). Agora note que ∆ui = (a2 − a1)/N . Assim, quando N → ∞ ∆ui → du e a soma sobre os valores inteiros se

transforma em uma integral de a1 até a2. Assim, temos:

N∑k=1

P(uk)∆uk = 1 N→∞−−−−→∫ a2

a1

P(u) du = 1.

que o resultado final para o limite contínuo.

Page 35: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

34 CAPÍTULO 1. INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS

encontrar simultâneamente u= ui e v = vj . De maneira análoga, escrevemos esta probabilidade na forma:

P(u,v) du dv = P (u,v)duδu

dv

δv

onde o fator multiplicando P (u,v) é simplesmente o número de células infinitesimais de tamanho δuδv contidas

no intervalo delimitado por u e u+du e v e v+dv. A condição de normalização dada pela Eq. (1.40) é escrita na

Figura 1.4: Generalização do caso unidimensional. Aqui o espaço definido pelas variáveis u e v é particionado em unidades

de δu e δv.

forma: ∫ a2

a1

∫ b2

b1P(u,v) du dv = 1. (1.50)

O valor médio de uma função F (u,v) também pode ser definido usando a densidade de probabilidade de modo

que a Eq. (1.44) se torna:

F (u,v) =∫ a2

a1

∫ b2

b1F (u,v)P(u,v) du dv. (1.51)

Logicamente que todas as propriedades relacionadas com o cálculo de valores médios permanecem válidas

uma vez que as duas formulações são equivalentes.

Page 36: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

1.5. DISCUSSÃO GERAL DO PROBLEMA DA CAMINHADA ALEATÓRIA 35

Funções de Variáveis Aleatórias

Aqui consideramos um caso geral que será recorrente na análise de problemas físicos do ponto de vista estatístico.

Seja uma única variável u e suponha que φ(u) seja alguma função contínua de u. Se P(u) du é a probabilidade de

encontrar u no intervalo delimitado por u e u+du, qual é densidade de probabilidade W (φ) dφ correspondente

de encontrar φ no intervalo entre φ e φ+ dφ? Isto é feito somando-se todas as probabilidades para as quais u

assume valores em que φ fique dentro intervalo dφ; em símbolos:

W (φ) dφ=∫

dφP(u) du

onde a integral é realizada no intervalo de u e u+du. Assim, podemos escrever a integral acima na forma:

W (φ) dφ=∫ φ+dφ

φP(u)

∣∣∣∣dudφ∣∣∣∣ dφ (1.52)

onde o módulo é usado afim de garantir que o lado esquerdo da equação tenha apenas valores positivos. Agora,

desde que dφ é pequeno, a integral acima se reduz a

W (φ) dφ= P(u)∣∣∣∣dudφ

∣∣∣∣(φ+dφ−φ)

W (φ) dφ= P(u)∣∣∣∣dudφ

∣∣∣∣ dφ. (1.53)

Os passos tomados da Eq. (1.52) até a Eq. (1.53) consideram que φ é uma função unívoca de u, i.e., temos

um único valor de u para cada valor de φ. Nem sempre isto é válido, conforme ilustrado na Fig. 1.5 onde temos

dois valores diferentes de u para o mesmo valor de φ. Nestes casos temos que considerar todas as contribuições

no cálculo da probabilidade W (φ) dφ que entram no intervalo de interesse.

Quando temos uma função de várias variáveis, os argumentos usados aqui podem ser generalizados para estes

casos conforme estudaremos futuramente.

Exemplo

1. (Reif., pg. 31) Suponha que um vetor B bi-dimensional de comprimento constante B = |B| é equiprovável de

ser encontrado em qualquer direção especificada pelo ângulo θ entre o vetor e o eixo vertical y. A probabilidade

P(θ) dθ que este ângulo fique entre θ e θ+dθ é então dada pela razão entre o intervalo angular dθ pelo intervalo

total 2π subtendido pelo círculo, assim:

P(θ) dθ = dθ

2π.

Page 37: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

36 CAPÍTULO 1. INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS

Figura 1.5: Exemplo de uma função biunívoca. Neste caso temos dois intervalos de u em que se tem o mesmo valor da função

φ(u). Neste caso é necessário atenção no cálculo da distribuição de probabilidades aplicando a Eq. (1.53) em intervalos

separados onde a função apresenta caráter unívoco.

Se o vetor faz um ângulo θ com o eixo x, a componente x do campo magnético Bx pode ser escrita como:

Bx =B cosθ.

Qual é a probabilidade W (Bx) dBx de encontrar a componente Bx do vetor no intervalo entre Bx e Bx +

dBx?

Solução

Para resolver este problema, primeiro deve-se notar se a função Bx(θ) unívoca. Desde que para 0< θ < 2π e

−B <Bx <+B vemos que não é caso pois existem dois valores de θ que permitem o mesmo valor da componente

Bx. Assim, uma alternativa seria subdividir o intervalo de 0 a π e o outro de π a 2π. Desde que as probabilidades

se somam e sempre são positivas, os dois trechos de θ fornecem o mesmo valor. Assim, basta fazer o cálculo para

um dos trechos e multiplicar o resultado por 2. Nos trechos especificados, a função é unívoca e podemos aplicar a

Eq. (1.53), assim, escrevemos:

W (Bx) dBx = 2 ×P(θ)∣∣∣∣ dθdBx

∣∣∣∣dBx

Page 38: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

1.5. DISCUSSÃO GERAL DO PROBLEMA DA CAMINHADA ALEATÓRIA 37

onde o fator 2 vem do fato da função não ser unívoca de 0 a 2π. Precisamos determinar a derivada de θ(Bx). Para

isso, temos duas alternativas. Primeiramente, invertemos Bx(θ). Assim, temos:

θ(Bx) = arccos[Bx

B

]

e tomando a derivada, obtemos ainda:

dθ(Bx)dBx

= d

dBxarccos

[Bx

B

]= 1B

d

d(Bx/B)arccos

[Bx

B

]= − 1

B

1√1− B2

x

B2

= − 1√B2 −B2

x

e substituindo-se na distribuição de probabilidades, segue que:

W (Bx) dBx = 2 12π

1√B2 −B2

x

dBx = dBx

π√B2 −B2

x

.

Podemos também escrever a expressão genérica na seguinte forma:

W (Bx) dBx = 2×P(θ)

∣∣∣∣∣∣∣∣1dBx

∣∣∣∣∣∣∣∣dBx

e substituindo a expressão para Bx dada no enunciado, ficamos com:

W (Bx) dBx = 2×P(θ)∣∣∣∣ 1B sinθ

∣∣∣∣dBx

e como sinθ =√B2 −B2

x/B, segue que:

W (Bx) dBx = 2×P(θ) dBx√B2 −B2

x

que é o mesmo resultado que vamos obter acima a substituição do valor da densidade de probabilidade. Assim,

escrevemos a resposta final como:

W (Bx) dBx = dBx

π√B2 −B2

x

, −B ≤Bx ≤ +B

= 0, p/ B fora do intervalo.

Vemos então que a probabilidade é maxima quando B tem o valor máximo B = Bx e é zero quando Bx =

0. Além disso, note que a densidade de probabilidade apresenta um infinito quando Bx → B. Isto não é um

problema desde que P não é a probabilidade e sim sua densidade. Após a integração desta função devemos ter

uma probabilidade que deve ser finita.

Page 39: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

38 CAPÍTULO 1. INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS

1.5.3 Cálculo geral dos valores médios para a caminhada aleatória

Usando as considerações que fizemos nas últimas seções, vamos reconsiderar o problema da caminhada aleatória

no caso unidimensional. Seja si o deslocamento (positivo ou negativo) do i-ésimo passo. Então denotamos por

w(si) dsi a probabilidade do i-ésimo deslocamento estar no intervalo entre si e si +dsi.

É assumido que esta probabilidade é independente de quais deslocamentos ocorrem em outros passos. Por

simplicidade, consideramos ainda que a distribuição de probabilidade w é a mesma para todos os passos. No

entanto, é importante notar que a situação aqui é mais geral do que no caso inicial pois agora estamos considerando

que a magnitude de cada passo é variável, sendo determinada pela distribuição w(s).

O interesse neste problema é determinar o deslocamento x após um total deN passos. Isto equivale a perguntar

pela probabilidade P(x) dx do deslocamento estar situado entre x e x+dx. Podemos determinar também os va-

lores médios (momentos) de x. A seguir, mostramos como determinar estes valores médios sem um conhecimento

prévio da distribuição P(x).

O deslocamento x total é dado pela soma:

x= s1 +s2 +s3 + · · ·+sN =N∑

i=1si (1.54)

e tomando a média, obtemos:

x=N∑

i=1si. (1.55)

Agora note que o valor médio para um dado si é dado por:

si =∫wi(s)s ds

onde omitimos o índice i na variável de integração desde que é uma variável muda. Agora, desde que a distribuição

é a mesma para todos os passos, então, estamos querendo dizer quewi(s) =w(s), assim, segue que todos os valores

médios são os mesmos, i.e.,

si =∫w(s)s ds= s

assim, podemos escrever o deslocamento médio x, dado pela Eq. (1.55), na forma:

x=Ns. (1.56)

A dispersão é dada por:

(∆x)2 = (x− x)2. (1.57)

Page 40: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

1.5. DISCUSSÃO GERAL DO PROBLEMA DA CAMINHADA ALEATÓRIA 39

Usando as Eqs. (1.54) e (1.55), podemos escrever

x− x=∑

i

(si − si) ∴ ∆x=N∑

i=1∆si

e tomando o quadrado da equação acima, obtemos:

(∆x)2 =(

N∑i=1

∆si

) N∑j=1

∆sj

=∑

i

(∆si)2 +∑i,ji=j

(∆si)(∆sj)

e tomando a média, segue que:

(∆x)2 =∑

i

(∆si)2 +∑i,ji=j

(∆si)(∆sj)

Para resolver a soma para i = j, fazemos a hipótese de que os passos são estatisticamente independentes. Neste

caso, a média pode ser fatorada na forma de um produto, i.e.,

(∆si)(∆sj) = (∆si) (∆sj) = 0

desde que

∆si = si − s= 0.

Desde que os termos cruzados desaparecem na média, a dispersão se reduz a

(∆x)2 =N∑

i=1(∆si)2

e desde que a distribuição de passos é a mesma para todo i, então, a dispersão será independente do índice i da

mesma forma que fizemos no cálculo da média. Neste caso, escrevemos diretamente

(∆x)2 =N(∆s)2 (1.58)

onde (∆s)2 é a dispersão do deslocamento por passo dada por:

(∆si)2 = (∆s)2 ≡∫ds w(s)(∆s)2. (1.59)

Apesar da simplicidade, as Eqs. (1.56) e (1.58) são gerais e importantes. A dispersão, como já foi mencionado

anteriormente, é uma medida do quadrado da largura da distribuição do deslocamento líquido em torno do valor

médio x. O desvio é definido pela raíz quadrada da dispersão ∆∗x ≡ [(∆x)2]1/2. Os resultados obtidos acima,

permite tirar conclusões gerais sobre a soma de variáveis estatisticamente independentes. Se a média s = 0 e

o número de passos N aumenta, nota-se que a média cresce proporcionalmente a N . A largura da distribuição

Page 41: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

40 CAPÍTULO 1. INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS

também aumenta, porém proporcionalmente a N1/2. Desta forma, a largura relativa definida pela razão do desvio

pelo valor médio, i.e., ∆∗x/x, diminui com N−1/2; explicitamente, escrevemos:

∆∗x

x= ∆∗s

s

1√N.

A relação acima indica que o desvio percentual dos valores de x em torno da média x se torna cada vez mais

desprezível a medida que N se torna grande.

Exemplo

1. (Reif., Prob. 1.5, pg. 41) No jogo de roleta Russa (não recomendado pelo autor), alguém insere um único

cartucho no tambor de um revólver, deixando as outras cinco câmaras do tambor vazias. Alguém então gira o

tambor, aponta para a cabeça de alguém e puxa o gatilho.

(a) Qual é a probabilidade de estar vivo após puxar o gatilho N vezes?

(b) Qual é a probabilidade de sobreviver (N − 1) vezes e então levar o tiro na N -ésima vez que alguém puxa o

gatilho?

(c) Qual é o número médio de vezes que um jogador tem a oportunidade de puxar o gatilho neste jogo macabro?

Solução

Seja então a probabilidade p da pessoa permanecer viva e q a probabilidade da pessoa ser morta. Desde que

temos apenas uma bala em um tambor que comporta seis balas, então, temos que:

p= 56

e q = 1−p= 16.

Note que podemos estabelecer um paralelo com o problema da caminhada aleatória considerando que o número

de passos para a direita é igual ao número de vezes que a pessoa permanece viva. Com estas informações estamos

aptos a resolver os itens solicitados no problema.

(a)

Neste caso, temos o produto de N termos correspondendo à probabilidade p de sobreviver:

pN =(5

6

)N

(b)

Page 42: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

1.5. DISCUSSÃO GERAL DO PROBLEMA DA CAMINHADA ALEATÓRIA 41

Neste caso temos um produto de N − 1 fatores p, para a probabilidade de N − 1 vezes sem levar o tiro, pela

probabilidade de levar o tiro, i.e.,

pN−1q =(5

6

)N−1 16.

(c)

Consideramos que o jogador puxa o gatilho n vezes e então é morto na última vez. Neste caso, teríamos a

seguinte distribuição:

P (N) = pN−1q

onde p= 5/6 e q = 1/6.

O número médio N de vezes é dado por:

N =∞∑

N=1NpNq = ∂

∂p

( ∞∑N=1

pN

)q

mas como p < 1 e q não depende de q, pois consideremos as probabilidades p e q estatisticamente independentes,

então podemos escrever:

∞∑N=1

pN = p

1−p

e substituindo este resultado, segue que:

N =∞∑

N=1NpNq = ∂

∂p

(p

1−p

)q

e como devemos ter p+ q = 1, podemos escrever ainda

N = q

(1−p)2

e substituindo-se os valores, obtemos:

N =

16(

1− 56

)2 = 366

∴ N = 6.

2. (Reif., Prob. 1.19, pg. 45) Uma bateria de força eletromotriz (f.e.m) total V está conectada a um resistorR;

como resultado, uma quantidade de potência P = V 2/R é dissipada no resistor. A bateria consiste de N células

individuais conectadas em série de modo que V é dada pela soma da f.e.m’s de todas as células. A bateria, no

entanto, é velha de modo que nem todas as células estão em perfeito estado. Portanto, o que podemos dizer é que

existe uma probabilidade p que a fem de qualquer célula individual tenha seu valor normal v; e uma probabilidade

Page 43: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

42 CAPÍTULO 1. INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS

q = 1 −p que a fem de qualquer célula individual seja zero porque a célula foi curto-circuitada internamente. As

células individuais são estatisticamente independentes uma da outra. Sob estas condições, calcule a potência

média P dissipada no resistor, expressando o resultado em termos de N , v e p.

Solução

Notamos que a força eletromotriz total que pode ser fornecida pela bateria é V , de modo que este valor

será V = Nv no caso em que todas as células estivessem em perfeito estado. No entanto, como este não é o

caso, precisamos determinar o valor real fornecido pela bateria. Notamos também que a potência média pode ser

determinada tomando a média do quadrado do potencial, i.e.,

P = V 2

R

e nos resta determinar a média do quadrado do potencial. Para isso, precisamos da distribuição de probabilidades.

Para isso, notamos que este problema é completamente análogo ao problema da caminhada aleatória. Os possíveis

valores de V são aqueles envolvendo todas as combinações diferentes de células em perfeito estado e células

danificadas. Isso se deve ao fato das células estarem conectadas em série de modo que o potencial total é dado pela

soma dos potenciais oriundos das células boas. Assim, como temos o mesmo problema da caminhada aleatória,

podemos usar a distribuição binomial para obter o valor médio de V . Para isso, notamos que o potencial V é dado

por

V = vn1

tal que V = Nv quando n1 = N , ou seja, quando todas as células estão em perfeito estado. Note que n1 é no de

células boas. Tomando o quadrado e fazendo a média, segue que:

V 2 = v2n21.

O valor de n21 já foi determinado para a distribuição binomial. Na página 19, obtivemos o seguinte resultado:

n21 = n2

1 +Npq

como também já mostramos que n1 =Np, segue que:

n21 = (Np)2 +Npq =N2p2

[1+ (1−p)

Np

]E , portanto, o valor médio de V 2 será:

V 2 = v2N2p2[1+ (1−p)

Np

]

Page 44: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

1.5. DISCUSSÃO GERAL DO PROBLEMA DA CAMINHADA ALEATÓRIA 43

e a potência média é dada por:

P = v2

RN2p2

[1+ (1−p)

Np

]que é o resultado procurado. Note que quando todas as células estão em perfeito estado, p= 1 e então a potência

fica reduzida a

P ′ = v2

RN2 = V 2

R

que seria o potência máxima total obtido pela bateria em perfeito estado.

3. (Reif., Prob. 1.9, pg. 41) A probabilidade W (n) que um evento caracterizado por uma probabilidade p

ocorrendo n vezes em N tentativas foi mostrado ser dada pela distribuição binomial

W (n) = N !n!(N −n)!

pn(1−p)N−n. (1.60)

Considere uma situação onde a probabilidade p é pequena (p≪ 1) e onde alguém está no caso n≪N . (Note

que se N é grande, W (n) se torna muito pequeno se n → N porque o fator pn é fortemente reduzido quando

p ≪ 1. Então, W (n) é realmente somente apreciável quando n ≪ N .) Várias aproximações podem ser feitas

para reduzir a Eq. (1.60) para uma forma mais simples.

(a) Usando o resultado ln(1−p) ≈ −p, mostre que (1−p)N−n ≈ e−Np

(b) Mostre que N !/(N −n)! ≈Nn

(c) Mostre então que a Eq. (1.60) se reduz

W (n) = λn

n!e−λ (1.61)

onde λ=Np é o número médio de eventos. A distribuição é chamada distribuição de Poisson.

Solução

(a)

Devemos mostrar que (1−p)N−n ≈ e−Np dado que ln(1−p) ≈ −p. Seja a variável auxiliar

x= (1−p)N−n

Page 45: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

44 CAPÍTULO 1. INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS

e tomando o logaritmo em ambos os membros, segue que:

lnx= ln[(1−p)N−n

]= (N −n) ln(1−p) ≈ (N −n)(−p)

de onde obtemos:

x≈ e−(N−n)p

e como estamos considerando que N ≫ n, então temos ainda

x≈ e−Np

e substituindo o valor de x que definimos acima chegamos à igualdade procurada:

(1−p)N−n ≈ e−Np.

(b)

Temos que

N !(N −n)!

= N(N −1)(N −2) · · · [N −n+1](N −n)!(N −n)!

=N(N −1)(N −2) · · · [N −n+1]

= (N −0)(N −1)(N −2) · · · [N −n+1]

e notamos que temos n termos e como N ≫ n e como n> n−1>n−2> · · ·3> 2> 1, então podemos escrever:

N !(N −n)!

≈N.N.N.N.N.N.N.N · · ·N︸ ︷︷ ︸n termos

=Nn.

(c)

Agora resta substituir as expressões dos itens anteriores na Eq. (1.60). Para isso, temos que:

W (n) = N !n!(N −n)!

pn(1−p)N−n = 1n!

N !(N −n)!

pn(1−p)N−n

W (n) ≈ 1n!Nnpne−Np

W (n) = λn

n!e−λ

Page 46: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

1.5. DISCUSSÃO GERAL DO PROBLEMA DA CAMINHADA ALEATÓRIA 45

que é a distribuição de Poisson. Note que usamos λ=Np.

3. (Reif., Prob. 1.11, pg. 42) Assuma que os erros tipográficos cometidos em uma máquina de escrever

ocorrem de maneira completamente aleatória. Suponha que um livro de 600 páginas contém 600 erros. Use a

distribuição de Poisson para calcular a probabilidade

(a) que uma página não contenha erros

(b) que uma página contenha ao menos três erros

Solução

A distribuição de probabilidade é dada pela distribuição de Poisson, assim temos que

W (n) = 1n

n!e−λ

Temos um erro por página, assim p= 1/600 e λ=Np= 600/600 = 1. Logo,

W (n) = 1n

n!e−1 = e−1

n!

(a)

A probabilidade de não haver erros é obtida fazendo-se n= 0 na distribuição, assim, obtemos:

W (0) = 10!e−1 = 0,37.

(b)

Aqui a probabilidade é dada pela soma sobre todos os n’s partindo de 3. No entanto, é mais fácil subtrair de 1

as possibilidades de se obter n= 0,1 e 2. Assim, escrevemos:

p= 1 −2∑

n=0

e−1

n!= 0,08.

na seção 1.5.3

Page 47: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

46 CAPÍTULO 1. INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS

Page 48: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

Capítulo 2

Descrição Estatística de um Sistema de

Partículas

Após o estudo dos conceitos básicos de probabilidade, podemos prosseguir e aplicar estes conceitos na descrição

física de um sistema de muitas partículas. Neste sentido, temos como objetivo combinar a teoria de probabilidade

com os conceitos de Mecânica. Para fazer progresso na formulação estatística de um sistema de muitas partículas,

considere um experimento simples em que alguém lança dez dados de dentro de um copo em uma mesa. Para

analisar este experimento simples, precisamos especificar o estado do sistema, i.e., precisamos definir algo que

permita descrever com precisão o resultado do experimento. Neste caso, o resultado é especificado dizendo quais

são as faces dos 10 dados que ficaram para cima. Agora, note que se pudéssemos determinar todas as condições

iniciais em que os dados são lançados, ou seja, dizer as posições e velocidades dos dados no momento do lan-

çamento e como o copo foi manipulado poderíamos, usando as leis da Mecânica Clássica, determinar qual é o

resultado do experimento. No entanto, como não temos estas informações, precisamos lançar mão da teoria de

probabilidades. Com isso, queremos dizer que não consideramos apenas um experimento em que alguém lança

os 10 dados, mas pensamos em uma coleção de experimentos preparados de maneira idêntica, chamado ensemble

estatístico, e perguntamos pela probabilidade de ocorrência de um resultado particular, i.e., qual é fração dos expe-

rimentos caracterizada por um resultado particular. Portanto, o segundo ingrediente para a descrição de um sistema

de muitas partículas é o chamado ensemble estatístico. Isto também nos dá uma idéia de como as probabilidades

podem ser medidas experimentalmente: basta repetir um experimento nas mesmas condições e determinar a fração

de experimentos que retornam um resultado particular.

Para trabalhar com um sistema de muitas partículas e aplicar os conceitos de probabilidade, precisamos de

um postulado sobre as probabilidades. No caso do experimento que estamos considerando, se consideramos que

47

Page 49: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

48 CAPÍTULO 2. DESCRIÇÃO ESTATÍSTICA DE UM SISTEMA DE PARTÍCULAS

os dados têm densidade de massa uniforme e as faces iguais, não existe nada nas leis da Mecânica que nos leve

a pensar que uma determinada face caia virada para cima com probabilidade maior do que qualquer outra face.

Então podemos postular que a priori1 todas as faces têm a mesma probabilidade de caírem viradas para cima. O

postulado é razoável e não apresenta nenhum conflito com as leis da Mecânica. Este é o chamado postulado de

iguais probabilidades a priori. É importante notar que, como qualquer postulado, é necessário que seja verificado

experimentalmente através da aplicação do mesmo na descrição teórica dos experimentos e os resultados previstos

comparados com os obtidos experimentalmente. Finalmente, de posse da descrição de estados no ensemble e do

postulado de iguais probabilidades, podemos fazer o cálculo de probabilidades a partir da teoria desenvolvida no

capítulo anterior.

2.1 Formulação Estatística do Problema Mecânico

A seguir, discutimos como os conceitos mencionados na introdução prévia são aplicados na descrição de problemas

de Mecânica.

2.1.1 Especificação dos Estados do Sistema

Para qualquer sistema de partículas, não importa o quão complicado, a sua descrição é realizada através de uma

função de onda ψ(q1, q2 · · · , qf ) a qual é uma função de f coordenadas (incluindo spin). O número f é chamado de

número de graus de liberdade do sistema. Um estado do sistema é definido através dos f números quânticos. A

descrição é completa uma vez que conhecemos ψ(q1, q2 · · · , qf ) em um dado instante pois a função de onda pode

ser determinada em outros instantes de tempo através da equação de Schrödinger.

Descrição Clássica

Eventualmente, podemos estudar uma situação usando uma descrição clássica. Considere, por exemplo, uma

partícula clássica em movimento unidimensional. Podemos dar uma descrição completa do movimento através do

conhecimento de sua coordenada q e momento p. As leis de Newton permitem determinar p e q em um momento

posterior. Geometricamente, podemos representar os valores possíveis de p e q através do chamado espaço de fase

que nada mais é do que um espaço definido pelos eixos p e q, conforme ilustrado na Fig. 2.1. A descrição é feita

especificando um ponto no espaço de fase. À medida que a partícula se movimenta, esta descreve uma trajetória

neste espaço. Para permitir uma descrição em termos de estados, subdividimos o espaço de fase em células de

1do latim, significa “em princípio".

Page 50: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

2.1. FORMULAÇÃO ESTATÍSTICA DO PROBLEMA MECÂNICO 49

Figura 2.1: Diagrama mostrando o espaço de fase para uma partícula em um movimento unidimensional. Ao lado direito

temos o particionamento do espaço de fase em células de dimensões δpδq = h0 de modo que a descrição clássica implica

em determinar a probabilidade de encontrar a partícula com momento entre p e p+ δp e q e q+ δq.

volume2 dado por

δp δq = h0.

Com este particionamento, o estado é então especificado dizendo que suas coordenadas estão em algum inter-

valo entre q e q+dq e p e p+dp. Aqui, novamente, consideramos que as diferenciais dp e dq são muito maiores

do que as divisões δp e δq. A especificação se torna mais precisa a medida que os elementos de volume se tornam

cada vez menores3.

É claro que este princípio pode ser generalizado para o caso de um número N arbitrário de partículas com

f graus de liberdade. Tal sistema pode ser descrito por f coordenadas q1, q2, · · ·qf e f correspondentes momen-

tos p1,p2, · · · ,pf , i.e., por um total de 2f parâmetros. O número das f coordenadas independentes necessárias

para descrever o sistema é chamado de número de graus de liberdade. No caso de N partículas, temos então

3N graus de liberdade, desde que temos três coordenadas para cada partícula. Assim, o conjunto de números

q1, q2, · · ·qf ,p1,p2, · · ·pf pode ser novamente considerado como um ponto no “espaço de fase" de 2f dimensões

no qual cada eixo cartesiano é rotulado por uma de suas coordenadas ou momentos. Novamente, consideramos

que o espaço de fase 2f -dimensional pode ser subdividido pequenas células de volume δq1 · · ·δqfδp1 · · ·δpf = hf0 .

Com isso, o estado do sistema pode ser especificado fornecendo a probabilidade das coordenadas estarem dentro

de um determinado elemento do volume deste espaço.

Assim, o estado microscópico pode ser especificado enumerando-se os possíveis estados quânticos descritos

2no caso de um espaço de fase 2D o volume do espaço de fase é uma área.3De acordo com a Mecânica Quântica, existe um limite para o tamanho da célula dado pelo constante de Planck. Este limite vem do

princípio da incerteza de Heisenberg que diz que δpδq ≥ h.

Page 51: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

50 CAPÍTULO 2. DESCRIÇÃO ESTATÍSTICA DE UM SISTEMA DE PARTÍCULAS

pela função de onda ψ. Por exemplo, no caso de um elétron no átomo de hidrogênio, descrito pela função de

onda ψ(r,θ,φ), seus estados possíveis são rotulados pelo conjunto de números quânticos n, l,ml e ms. No caso

de uma descrição clássica, podemos rotular todas as células do espaço de fase por um índice (r = 0,1,2, · · ·) e

especificando-se a célula particular r. Desta forma, vemos que ambas as descrições são equivalentes de maneira

que os estados quânticos são análogos às células do espaço de fase clássico.

2.1.2 Ensemble Estatístico

Como mostramos no exemplo dos 10 dados lançados de dentro de um copo, poderíamos prever os resultados se

fosse possível conhecer todos os detalhes do movimento dos dados. No entanto, como isto não é possível, tudo o

que pode ser feito é uma análise probabilística resultante da falta de conhecimento sobre o sistema. No caso da

descrição de um sistema de muitas partículas, temos um problema de natureza completamente determinística, no

sentido de que a especificação da função de onda do sistema em um determinado instante de tempo nos habilita

determinar a função de tempo em todos os tempos (a mesma situação se verifica no caso da descrição clássica

onde se especifica as coordenadas p e q em um dado instante de tempo). No entanto, de maneira análoga ao

exemplo do experimento dos dados, nunca temos informação completa sobre o sistema de muitas partículas e,

assim, não é possível fazer uma descrição completamente precisa do mesmo. Como resultado, partimos para

uma descrição probabilística, onde não consideramos apenas um único sistema, mas um ensemble de sistemas

submetidos às mesmas condições externas. Os sistemas neste ensemble, em geral, estarão em diferentes estados

quânticos sendo caracterizados por diferentes variáveis macroscópicas. Neste caso, perguntamos pela fração de

sistemas caracterizados por um estado específico.

Com isso, nosso objetivo é determinar a probabilidade de encontrar um dado estado quântico no ensemble

usando-se alguns postulados básicos da teoria de probabilidades. Tudo o que podemos dizer é que o sistema

pode estar em algum conjunto de estados compatíveis com as informações que dispomos sobre o mesmo. A este

conjunto de estados, damos o nome de “estados acessíveis ao sistema". Com isso, percebemos que o ensemble

representativo contém somente estados consistentes com o conhecimento disponível sobre o sistema, assim, os

sistemas que compõem o ensemble devem estar distribuídos sobre os vários estados acessíveis.

Para esclarecer a noção de estados acessíveis, na tabela 2.1 são representados todos os estados possíveis para

um sistema composto pot três partículas de spin 1/2 submetidos a um campo magnético externo H. Neste caso, os

possíveis momentos magnéticos são denotados por ±µ. As energias magnéticas por partícula são ±µH e, portanto,

temos dois estados possíveis caracterizados por estes valores de energia. No caso de um sistema de três partículas

com spin 1/2 temos 23 = 8 estados possíveis do sistema. Rotulamos estes estados por um índice r = 1,2, · · · ,8,

Page 52: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

2.1. FORMULAÇÃO ESTATÍSTICA DO PROBLEMA MECÂNICO 51

mostrados na primeira coluna. Na segunda coluna, são apresentados os possíveis estados das três partículas onde

os sinais + e − denotam os estados com momento magnético paralelo e anti-paralelo ao campo aplicado H . Na

última coluna, são especificados os valores de energia para os 8 estados possíveis para este sistema. Assim, se

temos o conhecimento de sua energia total, podemos especificar os possíveis estados correspondentes a este valor

de energia (que são os estados acessíveis). Por exemplo, se dizemos que a energia total do sistema é +µH , então

sabemos que os estados acessíveis ao sistema são os estados para r = 5,6,7. Note, porém, que não sabemos ao

certo em qual destes estados o sistema se encontra. Tudo o que podemos dizer é que o sistema pode ser encontrado

em qualquer um dos três estados acessíveis, rotulados por 5, 6 e 7.

Índice do estado r Números Quânticos m1, m2 e m3 Momento Magnético Total Energia Total

1 +++ 3µ −3µH

2 ++− µ −µH

3 +−+ µ −µH

4 −++ µ −µH

5 +−− −µ µH

6 −+− −µ µH

7 −−+ −µ µH

8 −−− −3µ 3µH

Tabela 2.1: Tabela mostrando os possíveis estados quânticos de um sistema de três partículas de spin 1/2 submetidas a um

campo magnético externo. Note que cada partícula pode ser encontrada em dois estados rotulados por + e −.

2.1.3 Postulados Básicos da Física Estatística

Com o objetivo de progredir na descrição estatística de processos físicos, precisamos recorrer a um postulado

fundamental sobre o cálculo das probabilidades de encontrar o sistema em algum de seus estados acessíveis. Para

isso, faremos duas suposições sobre as condições do sistema sob consideração: supomos que o sistema é isolado e

encontra-se em equilíbrio. A seguir, vamos definir o que significam estas condições.

Um sistema é dito isolado se este não pode trocar energia com suas vizinhanças. Neste caso, a Mecânica

nos diz que a energia do sistema é conservada. Com isso, estamos aptos a caracterizar o sistema por seu valor

de energia e os estados acessíveis ao sistema são aqueles que correspondem a este valor fixo de energia. Neste

Page 53: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

52 CAPÍTULO 2. DESCRIÇÃO ESTATÍSTICA DE UM SISTEMA DE PARTÍCULAS

caso, como em geral temos muitos estados acessíveis para um dado valor de energia, como podemos determinar

as probabilidades de encontrar o sistema em qualquer um destes valores de energia? Neste ponto é que entra a

necessidade de supor que o sistema encontra-se em equilíbrio. O estado de equilíbrio é definido como aquele em

que as probabilidades de encontrar o sistema em qualquer estado não variam no tempo. Como conseqüência, as

variáveis macroscópicas como pressão, temperatura, volume, magnetização, etc., são também independentes do

tempo.

Quando o sistema está isolado e em equilíbrio, temos que o sistema está distribuído em um conjunto de estados

acessíveis consistentes com um dado valor de energia total. Desde que todos os estados são consistentes com o

valor de energia prescrito, não há nada nas leis da Mecânica que permitam afirmar que alguns dos estados acessíveis

são mais prováveis do que outros. Por esta razão, fazemos o seguinte postulado:

Um sistema isolado e em equilíbrio é equiprovável de ser encontrado em qualquer

um de seus estados acessíveis.

O postulado acima, da mesma forma que no experimento do 10 dados citado no início do capítulo, deve ser

verificado experimentalmente. É importante notar que se alguém considera um ensemble de sistemas isolados

em equilíbrio, distribuídos uniformemente sobre seus estados acessíveis em um dado instante de tempo, eles irão

permanecer distribuídos desta forma em qualquer instante de tempo posterior. Este fato é uma conseqüência do

chamado Teorema de Liouville. Uma prova deste teorema é dada no apêndice A-13 do Reif.

No caso do exemplo ilustrado na Tabela 2.1, se especificamos que a energia do sistema é por exemplo igual a

+µH então o sistema estará uniformemente distribuído entre os estados

(++−), (+−+), (−++) (2.1)

de modo que é equiprovável do sistema ser encontrado em qualquer um dos três estados acima. Note que a

especificação da probabilidade é dada em termos do estado como um todo, i.e., de existirem dois spin apontando

na mesma direção do campo e o terceiro apontando na direção contrária. No entanto, não podemos dizer qual dos

três spins é o que está alinhado no sentido anti-paralelo ao campo.

2.1.4 Alcance do estado do equilíbrio

Considere agora que o sistema de interesse está isolado, porém, não se encontra em uma situação em que é equi-

provável de ser encontrado em qualquer um de seus estados acessíveis. Neste caso, o postulado fundamental não

garante que esta situação pode ser um estado de equilíbrio. Como resultado, as probabilidades e as correspon-

dentes variáveis macroscópicas irão evoluir no tempo até que se atinja a situação de equilíbrio caracterizada pelo

postulado fundamental.

Page 54: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

2.1. FORMULAÇÃO ESTATÍSTICA DO PROBLEMA MECÂNICO 53

Para entender a razão do sistema evoluir no tempo até que se atinja o estado de equilíbrio, é necessário discutir

a natureza dos estados acessíveis que temos definido. Estes estados não são os estados quânticos exatos de um

sistema perfeitamente isolado e com todas as interações levadas em consideração. Com efeito, é impossível obter

tal descrição porque não temos a informação completa sobre o sistema de muitas partículas e nem temos o interesse

em tal descrição dentro de uma aproximação probabilística. Neste caso, consideramos apenas estados quânticos

aproximados, baseados em algum modelo que leve em consideração o conhecimento disponível que temos sobre

o sistema. Desta forma, quando o sistema é conhecido de estar em algum estado específico, o sistema não irá

permanecer neste estado indefinidamente mas irá evoluir com o tempo ocupando outros estados acessíveis. Isto

ocorre devido às pequenas interações residuais entre as partículas não levadas em conta no modelo aproximado.

Suponha que um sistema está distribuído em um subconjunto de estados acessíveis em um certo tempo t. Desde

que não existem restrições sobre o sistema que o proíbe de ocupar os demais estados acessíveis, i.e., estes esta-

dos são compatíveis com a conservação da energia e demais restrições impostas ao sistema, então em um tempo

posterior o sistema irá fazer transições para estes estados devido às interações residuais entre as partículas que

compõem o sistema. Como não existe nada que torne um estado acessível preferencial, como o passar do tempo

o sistema continuará fazendo transições entre estes diversos estados. Assim, a questão a ser respondida é: qual a

probabilidade de encontrar o sistema em quaisquer destes estados após um tempo muito longo? Para responder

esta pergunta, consideramos um ensemble de sistemas identicamente preparados em um subconjunto particular

de seus estados acessíveis. Os sistemas no ensemble irão sofrer várias transições entre seus diversos estados de

maneira que após um tempo longo, o sistema pode ser encontrado em qualquer de seus estados acessíveis. Esta

situação é análoga ao problema de determinar a probabilidade de encontrar uma determinada carta em um maço

de baralho. Quando as cartas são embaralhadas por um tempo suficientemente longo, a probabilidade de encontrar

qualquer carta em cima da pilha é a mesma para todas as cartas e independente das posições iniciais das cartas. De

modo similar, no caso do ensemble de sistemas, esperamos que após um tempo suficientemente longo estes sis-

temas estejam distribuídos uniformemente sobre seus estados acessíveis e a probabilidade de encontrar o sistema

em qualquer estado não dependa das condições iniciais. De fato, no equilíbrio o sistemas estão completamente

randomizados de maneira que o sistema é equiprovável de ser encontrado em qualquer um de seus estados aces-

síveis. Estas considerações têm sido verificadas experimentalmente e também demonstradas formalmente através

da aplicação das leis da mecânica e considerações inerentes do problema de física estatística. Estas hipóteses são

conseqüência do chamado “Teorema H". Este teorema também está provado no livro do Reif, apêndice A-12.

Até o momento não fizemos nenhum comentário acerca do tempo que o sistema leva para atingir o estado do

equilíbrio. Desde que este processo depende das interações residuais não levadas em conta na descrição estatística,

o alcance do estado de equilíbrio varia de sistema para sistema. Este tempo, chamado tempo de relaxação, pode

Page 55: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

54 CAPÍTULO 2. DESCRIÇÃO ESTATÍSTICA DE UM SISTEMA DE PARTÍCULAS

variar desde microsegundos até centenas de anos. Tudo depende da natureza das interações entre as partículas e

das taxas de transição entre os estados acessíveis. As taxas de transição são em geral muito difíceis de calcular. No

entanto, o problema da descrição dos sistemas após o sistema ter atingido o equilíbrio podem ser bastante simples

desde que podemos usar o postulado de iguais probabilidades a priori.

Para ilustrar estas considerações vamos voltar ao nosso sistema de spins da Tabela 2.1. Considere que o sistema

tem energia +µH de modo que os estados acessíveis são dados pela Eq. (2.1). Agora suponha que o sistema seja

preparado no estado + + − de modo que a probabilidade é 100% de encontrar o sistema neste estado no tempo

inicial. Com o passar do tempo, as interações entre as partículas irá fazer com que o sistema transicione para os

estados +−+ e −++. Esta interação tem origem no momento magnético das partículas que produz um pequeno

campo magnético de intensidade Hm ≪H na posição da partícula vizinha. Com isso, a interação com este campo

pode induzir as transições entre os três estados acessíveis ao sistema. Para tempos longos em comparação com o

tempo de relaxação do sistema, o sistema se encontra em equilíbrio e é equiprovável de ser encontrado em qualquer

uma das três configurações.

2.1.5 Cálculos de Probabilidade

Seguindo o roteiro mencionado no início do capítulo, partimos para a descrição do cálculo de probabilidades para

sistemas físicos. Isso pode ser facilmente realizado quando consideramos sistemas isolados em equilíbrio. Para

exemplificar, considere um sistema cuja energia total é conhecida e está no intervalo delimitado por E e E+dE.

Para fazer alguma previsão estatística, consideramos um ensemble de sistemas cujas energias estão no mesmo

intervalo dE. Denotamos por Ω(E) o número total de estados do sistema neste intervalo de energia. Agora

considere um parâmetro qualquer y que pode assumir diversos valores denotados por yk. Este parâmetro pode

ser por exemplo, o momento magnético, pressão, volume, etc. Assim, considere que dentro do número total de

estados Ω(E) existe um certo número de estados Ω(E,yk) para os quais o parâmetro y assume o valor yk. O

postulado então nos assegura que dentre os diversos estados Ω(E), o sistema é equiprovável de ser encontrado em

qualquer um deles pois todos estão contidos no intervalo de energia especificado. Por esta razão, a probabilidade

Pk de encontrar o sistema neste intervalo de energia de maneira que o parâmetro y assuma o valor k é dado

simplesmente por:

P (yk) = Ω(E,yk)Ω(E)

. (2.2)

O valor médio do parâmetro y pode ser calculado na forma:

y =∑

k

ykP (yk)

Page 56: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

2.1. FORMULAÇÃO ESTATÍSTICA DO PROBLEMA MECÂNICO 55

e substituindo-se o valor da probabilidade dada pela Eq. (2.2), obtemos:

y =

∑k

ykΩ(E,yk)

Ω(E)(2.3)

que é a média sobre os sistemas no ensemble. A soma em k é feita sobre todos os estados acessíveis para os quais

Ω(E,yk) assume o valor yk.

Para exemplificar, vamos considerar o sistema da tabela 2.1. Digamos que a energia do sistema é µH e

perguntamos pela probabilidade de encontrar o primeira partícula com spin up. Neste caso, os estados acessíveis

são dados pela Eq. (2.1). Assim, temos dois estados em que a primeira partícula tem spin up então podemos

escrever:

Ω(−µH,+) = 2 e Ω(−µH) = 3 (no total de estados acessíveis para E = µH).

Assim a probabilidade é dada por:

P+ = Ω(−µH,+)Ω(−µH)

= 23.

e, de maneira análoga a probabilidade de encontrar a primeira partícula com spin down é dada por:

P− = Ω(−µH,−)Ω(−µH)

= 13.

O valor médio do momento magnético da primeira partícula pode ser calculado via Eq. (2.3):

µ=

∑k

µkΩ(E,yk)

Ω(E)= µ

23

−µ13

µ= µ

3.

2.1.6 O comportamento da densidade de estados

Em geral, o número de estados cresce muito com o número de partículas. Por exemplo, para um sistema de partícu-

las de spin 1/2, quando temos 3 partículas existem 8 estados possíveis. Para 4 partículas são 16 estados possíveis;

para 10 partículas temos 1024 estados e assim por diante. Vemos então que para um sistema macroscópico (um

bloco de cobre, uma piscina, etc.) o número de estados é gigantesco e o trabalho de contar estados fica muito

complicado. Desta forma, usamos a mesma estratégia que aplicamos no capítulo anterior, dividindo a escala de

energia em intervalos de tamanho δE cujo tamanho é muito maior do que o espaçamento entre os níveis de energia

Page 57: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

56 CAPÍTULO 2. DESCRIÇÃO ESTATÍSTICA DE UM SISTEMA DE PARTÍCULAS

mas macroscopicamente é muito pequeno para tratá-lo como uma diferencial. Neste caso, iremos determinar o

número de estados Ω(E) cujos valores de energia estão situados entre E e E+ δE.

Com isso, vemos que o número de estados depende da magnitude do intervalo δE o que não é desejável. No

entanto, desde que consideramos um intervalo macroscopicamente pequeno, então o número de estados deve ser

proporcional ao intervalo, assim, escrevemos:

Ω(E) = ω(E) δE (2.4)

onde ω(E) é independente do tamanho do intervalo δE 4. A função ω(E) é chamada de densidade de estados

e mede o número de estados por unidade de energia. Desde que todo cálculo estatístico envolve a contagem de

estados, é importante estudar como a densidade de estados depende da energia de um sistema macroscópico.

Para isso, vamos considerar um sistema macroscópico com f graus de liberdade. Neste caso, f números

quânticos são requeridos para especificar cada um de seus possíveis estados. Vamos definir E como a energia

medida em relação ao seu menor valor possível (no caso quântico em relação à energia do estado fundamental)

e vamos denotar por Φ(E) o número total de possíveis estados do sistema caracterizados por valores de energia

menores do que E. Obviamente, Φ(E) aumenta com o aumento de E. A seguir, vamos determinar o quão rápido

se dá este aumento.

Para fazer esta estimativa, começamos considerando um grau de liberdade f em particular. Seja Φ1(ϵ) o nú-

mero total de estados possíveis que podem ser assumidos pelo número quântico associado a este grau de liberdade,

quando este contribui com uma energia ϵ ou menor. Aqui novamente percebemos que Φ1(ϵ) deve aumentar com ϵ

(note que quando ϵ tem o seu valor mais baixo Φ1(ϵ) deve ser igual a 1). Se ϵ não é muito pequeno, podemos dizer

que Φ1 é da ordem de ϵ/∆ϵ onde ∆ϵ é o espaçamento médio entre os níveis quantizados de energia associados

com um típico grau de liberdade do sistema. Assim, podemos estimar que Φ1(ϵ) pode ser escrito na forma

Φ1(ϵ) ∝ ϵα (α≈ 1) (2.5)

onde estamos considerando que Φ1(ϵ) deve ser quase proporcional a ϵ desde que não temos informações detalhadas

para afirmar que Φ1(ϵ) varia linearmente com ϵ. Vamos considerar novamente o sistema completo com f graus de

liberdade e, portanto, descrito por s1,s2, · · ·sf números quânticos. Neste caso, a energia ϵ por grau de liberdade

é da ordem de:

ϵ≈E

f(2.6)

4De fato, o que estamos considerando é que δE seja pequeno o suficiente para que seja possível expandir o número de estados em série

de Taylor e os termos de ordem O(δE2) e superiores possam ser desprezados.

Page 58: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

2.1. FORMULAÇÃO ESTATÍSTICA DO PROBLEMA MECÂNICO 57

e, correspondendo a este valor de energia existem Φ1(ϵ) estados possíveis para cada grau de liberdade. Assim,

temos Φ1(ϵ) estados possíveis para o no quântico s1, Φ1(ϵ) estados possíveis para s2, etc. Então podemos estimar

o número de estados para o sistema completo como sendo da ordem

Φ(E) ≈ [Φ1(ϵ)]f , onde ϵ= E

f. (2.7)

A Eq. (2.7) nos fornece o número total de estados do sistema contidos no intervalo de energia E medidos a

partir de seu estado fundamental. Assim, o número de estados contido no intervalo de energia entre E e E+ δE,

será:

Ω(E) = Φ(E+ δE)−Φ(E) ≈ ∂Φ(E)∂E

δE (2.8)

e substituindo a Eq. (2.7) obtemos:

Ω(E) ≈ 1f

∂[Φ1(ϵ)]f

∂ϵδE

Ω(E) = Φf−11

∂Φ1∂ϵ

δE. (2.9)

Agora precisamos analisar a Eq. (2.9) lembrando que o número de graus de liberdade (f ) é extremamente

grande, sendo da ordem do número de Avogadro, i.e., ∼ 1024. Para estabelecer a ordem de grandeza de Ω(E),

vamos considerar o logaritmo da Eq. (2.9):

lnΩ(E) = (f −1) lnΦ1 +ln(∂Φ1∂ϵ

δE

). (2.10)

e precisamos verificar qual é a contribuição de cada termo na Eq. (2.10). Considere o primeiro termo. Este é

da ordem de f desde que f ≫ 1 e o argumento do logaritmo é da ordem de ϵ se estamos considerando valores

de energia muito maiores do que o estado fundamental. O segundo termo pode ser estimado lembrando que a

derivada é da ordem de α que por sua vez é aproximadamente 1. O intervalo δE ≈ fδϵ e assim, podemos estimar

o logaritmo como sendo da ordem de lnf . Portanto, temos uma soma de um termo proporcional a f e outro

proporcional a lnf . Como f ∼ 1024, então temos que lnf ≪ f e podemos escrever a Eq. (2.10) na forma:

lnΩ(E) ≈ f lnΦ1 (2.11)

ou seja,

lnΩ(E) ≈ O(f), E > 0 (2.12)

Page 59: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

58 CAPÍTULO 2. DESCRIÇÃO ESTATÍSTICA DE UM SISTEMA DE PARTÍCULAS

considerando que estamos longe da energia do estado fundamental do sistema. A Eq. (2.12) nos permite escrever

finalmente:

Ω(E) ≈ Φf1 ≈ Ef (2.13)

onde fizemos α = 1 por simplicidade . Isto é possível porque não vai afetar a estimativa de maneira significativa.

Vemos então que o número de estados acessíveis cresce rapidamente com o número de graus de liberdade do

sistema.

Gás ideal no limite clássico

Vamos aplicar as idéias desenvolvidas acima no problema de um gás ideal constituído por N moléculas idênticas

encerrado em um volume V . No caso mais geral, a energia do gás é dada por:

E =K+U +Eint (2.14)

onde K é a energia cinética total de translação das moléculas. Se o momento do centro de massa da i-ésima

molécula é pi, então a energia cinética pode ser escrita na forma:

K =K(p1,p2, · · · ,pN ) = 12m

N∑i=1

p2i . (2.15)

A quantidade U = U(r1,r2, · · · ,rN ) representa a energia potencial de interação mútua entre as moléculas do

gás. Esta energia depende da distância relativa entre as moléculas e, portanto, das coordenadas de seus centros de

massa denotadas por ri.

No caso em que as moléculas não são monoatômicas, os átomos de cada molécula podem também girar e

rotacionar em relação ao seu centro de massa. Sejam as coordenadas e momentos intramoleculares denotados

por Q1,Q2,Q3, · · · ,QM e P1,P2,P3, · · · ,PM . Agora, a energia interna Eint depende apenas destas coordenadas.

Notamos também que se as moléculas são monoatômicas então Eint = 0.

Um caso particularmente simples é aquele onde a energia de interação mútua entre as moléculas é desprezi-

velmente pequena. Então U ≈ 0 e as moléculas são ditas formar um “gás ideal". Esta situação é implementada

fisicamente no limite em que a concentração de moléculas N/V → 0 de modo que o gás está tão rarefeito que a

distância entre as moléculas é grande o suficiente para desprezar os efeitos de interação.

No caso de um gás ideal, qual seria o número de estados acessíveis Ω(E)? Por simplicidade, vamos considerar

a situação no limite clássico, i.e., quando a energia do gás é alta o suficiente para que os números quânticos que

descrevem os estados sejam grandes. Neste caso, a descrição clássica é razoável e podemos representar os estados

Page 60: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

2.1. FORMULAÇÃO ESTATÍSTICA DO PROBLEMA MECÂNICO 59

do gás no espaço de fase. O número de estados é então proporcional ao volume compreendido pelas superfícies E

e E+ δE no espaço de fase. Este volume define o valor de Ω(E) e pode ser escrito na forma

Ω(E) ≈∫ E+δE

E· · ·∫d3r1 · · ·

∫d3rN

∫d3p1 · · ·

∫d3pN

∫dQ1 · · ·

∫dQN

∫dP1 · · ·

∫dPN (2.16)

onde usamos a notação abreviada

d3ri = dxi dyi dzi

d3pi = dpix dpiy dpiz.

A Eq. (2.16) permite determinar o número de estados para energias entre E e E+ δE. Note que constitui em

uma soma sobre todas as coordenadas e momentos para os quais o valor de energia total está dentro do intervalo

considerado. Desde que a energia potencial é nula para um gás ideal, então a energia total é independente das

coordenadas do centro de massa. Lembrando que a energia de interação é a única contribuição que depende

da distância entre as moléculas. Assim, podemos efetuar as integrais em ri imediatamente. Considerando que∫d3ri = V , então como temos N integrais, podemos escrever a Eq. (2.16) na forma:

Ω(E) ≈ V Nχ(E) (2.17)

onde definimos:

χ(E) =∫ E+δE

E· · ·∫d3p1 · · ·

∫d3pN

∫dQ1 · · ·

∫dQN

∫dP1 · · ·

∫dPN . (2.18)

que é independente do volume V desde que tanto a energia cinéticaK quanto a energia internaEint não dependem

do volume do container. A Eq. (2.17) varia com V N e, com isso, verificamos que se o volume do container é

duplicado, o número de estados acessíveis aumenta por um fator de 2N . Isto é esperado desde que o número

de estados acessíveis para cada partícula é duplicada; para N partículas temos então que o número de estados

acessíveis aumenta por 2×2×2×·· ·2 = 2N .

Vamos considerar agora um caso particularmente simples em que as moléculas são monoatômicas de modo

que Eint = 0 e, deste modo, não existem as coordenadas internas Qi e Pi. Assim, a contribuição para a energia

vem apenas da energia cinética. Desde que temos N átomos que podem se deslocar em três dimensões, a energia

é dada por:

E = 12m

N∑i=1

3∑α=1

p2iα (2.19)

onde a soma em α representa as três componentes do momento, i.e., p2 = p2x + p2

y + p2z onde x,y,z são repre-

sentados pelos números 1, 2 e 3. A soma contém portanto 3N = f termos quadrados. Vemos então que quando

Page 61: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

60 CAPÍTULO 2. DESCRIÇÃO ESTATÍSTICA DE UM SISTEMA DE PARTÍCULAS

E é uma constante, a Eq. (2.19) então descreve uma esfera de raio R(E) = (2mE)1/2 no espaço f -dimensional

das componentes do momento. Portanto, o número estados acessíveis Ω(E) é determinado pelo volume situado

entre as duas esferas de raios R(E+ δE) e R(E). Agora, o volume de uma esfera em um espaço f -dimensional

é proporcional a Rf , desde que é essencialmente obtida multiplicando f dimensões lineares. O número total de

estados Φ(E) em esfera de raio E é proporcional ao raio Rf , i.e.,

Φ(E) ∝Rf = (2mE)f/2 ∝ Ef/2

O número de estados acessíveis pode então ser determinado usando a Eq. (2.8)

Ω(E) ∝ ∂Φ(E)∂E

∝ Ef/2−1 ≈ E3N/2

onde desprezamos a unidade desde que N ≫ 1 e trocamos f = 3N . Combinando este resultado com a Eq. (2.17),

podemos escrever Ω(E) na forma final

Ω(E) =BV NE3N/2 (2.20)

onde a constante B é independente do volume V do container e da energia E do gás.

2.2 Interação entre Sistemas Macroscópicos

2.2.1 Interação Térmica

Conforme discutimos, a descrição de sistemas compostos por muitas partículas é realizada através da especificação

de variáveis macroscópicas independentes (x1,x2, · · · ,xN ) que caracterizam o estado do sistema. Estes parâmetros

macroscópicos podem ser volume, pressão, campo magnético, campo elétrico, etc. Os níveis de energia do sistema

certamente irão depender dos valores destes parâmetros, assim se Er é um nível qualquer de energia do sistema,

podemos escrever

Er = Er(x1,x2, · · · ,xN ). (2.21)

O estado macroscópico ou macroestado do sistema é definido fornecendo-se os valores das variáveis ma-

croscópicas do sistema. No caso de um sistema isolado, além das variáveis macroscópicas, temos que especificar

também o valor da sua energia total desde que está fixa. Assim, o ensemble representativo deste sistema é composto

por uma coleção de sistema similarmente preparados com estes valores de parâmetros; no entanto, cada sistema

Page 62: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

2.2. INTERAÇÃO ENTRE SISTEMAS MACROSCÓPICOS 61

do ensemble pode estar em qualquer um de seus estados acessíveis que também chamamos de microestados (i.e.,

estados quânticos).

Vamos considerar dois sistemas interagentes denotados por A e A′. Estes sistemas podem, portanto, trocar

energia entre eles de maneira que a soma das energias (energia total) permanece constante. Assim, o sistema total

composto por ambos tem sua energia constante no tempo, o que equivale a dizer que A e A′ formam um sistema

maiorA(0) =A+A′ que está isolado. Em uma descrição macroscópica, podemos distinguir duas maneiras em que

estes sistemas podem interagir entre si. Eles podem trocar energia com variação dos parâmetros externos, onde

então seus níveis de energia podem mudar de posição; ou trocar energia com as demais variáveis macroscópicas

fixas no tempo. Neste último caso, os níveis de energia permanecem inalterados mudando-se apenas a população

partículas nos respectivos níveis de energia.

O segundo caso em que os níveis de energia deA eA′ ficam fixos é chamada de interação puramente térmica.

No caso de uma descrição estatística desta interação, estaremos interessados nos estados acessíveis dos sistemas

A e A′. Sendo assim, pensamos em um ensemble de sistemas A(0) de maneira que a energia total (soma das

energias) trocada entre A e A′ seja igual para todos os membros do ensemble mas que a energia dos sistemas

A e A′ individualmente mudam de um sistema para o outro do ensemble. Com isso, podemos caracterizar esta

interação em termos da energia média do ∆E do sistema A. Equivalentemente , a energia média do sistema A′

é representada por ∆E′. Esta energia média é chamada de calor e o representamos pela letra Q. Note que Q

pode ser tanto negativo quanto positivo dependendo da variação de ∆E. Assim, quando Q > 0 dizemos que o

sistema A recebeu calor (no caso presente do sistema A′) e quando Q < 0 dizemos que o sistema A cedeu calor

(no caso presente para o sistema A′). Desde que as trocas de energia devem ser tais que a energia total do sistema

combinado permanece constante, então escrevemos:

∆E+∆E′ = 0 (2.22)

ou, usando a definição de calor, podemos escrever:

Q+Q′ = 0 ou Q= −Q′. (2.23)

As Eqs. (2.22) e (2.23) representam a conservação da energia simplesmente dizendo que o calor cedido pelo

sistema A é igual ao calor recebido pelo sistema A′ e vice-versa.

Desde que os parâmetros externos permanecem fixos no processo, então os níveis de energia estão fixos. Desta

forma, a mudança da energia dos sistemas ocorre devido à mudança na distribuição dos sistemas no ensemble

sobre os estados acessíveis do sistema.

Page 63: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

62 CAPÍTULO 2. DESCRIÇÃO ESTATÍSTICA DE UM SISTEMA DE PARTÍCULAS

2.2.2 Interação Mecânica

Quando um sistema não pode interagir termicamente, então dizemos que o sistema está termicamente isolado.

Neste sentido, as mudanças de energia deste sistema não podem ocorrer via transferência de calor. Para implemen-

tar este tipo de sistema experimentalmente, podemos colocá-los suficientemente separados ou envolvê-los com

um “isolante térmico". No último caso, isolantes térmicos são materiais com baixa condutividade térmica. Os

sistemas isolados térmicamente são também chamados de sistemas adiabáticos. Quando os sistemas A e A′ estão

termicamente isolados um do outro, cada sistema pode estar em equilíbrio individualmente sendo caracterizado

por um conjunto de variáveis macroscópicas. Naturalmente, estas variáveis serão diferentes para A e A′ no caso

geral. No entanto, é ainda possível que os dois sistemas interajam trocando energia através de outras formas. Neste

caso, temos o segundo tipo de interação que chamamos de interação puramente mecânica.

No caso da interação puramente mecânica, os sistemas trocam energia através da realização de um “trabalho

macroscópico" sobre o outro. Da mesma forma que no caso da interação térmica, consideramos um ensemble de

sistemas de modo que a energia trocada entre os sistemas A e A′ é uma energia média sobre um ensemble de

sistemas similarmente preparados. Assim, se denotamos a variação da energia média de A como ∆xE, então o

“trabalho macroscópico" realizado sobre o sistema é dado por:

W = ∆xE. (2.24)

O trabalho realizado pelo sistema é o negativo do trabalho dado pela Eq. (2.24), e portanto, definido por:

W = −W = −∆xE. (2.25)

Sempre que nos referimos ao trabalho de maneira geral, nos referimos ao trabalho feito pelo sistema, i.e., o

trabalhoW dado pela Eq. (2.25). A conservação da energia ainda se aplica neste caso, e assim, desde que a energia

do sistema combinado é fixa (pois A(0) está isolado) então podemos escrever

W +W ′ = 0 ou W = −W ′. (2.26)

Como já mencionado, a interação mecânica altera os níveis de energia dos sistemas porque consiste na al-

teração de parâmetros externos. Além disso, as alterações nos níveis de energia Er podem ser diferentes para

diferentes valores de r. Isto ocorre mesmo quando os níveis de energia tinham iguais valores antes da interação.

Além disso, também podem ocorrer transições entre os diferentes níveis juntamente com a alterações de seus valo-

res. Portanto, vemos que no caso da interação mecânica, a situação pode ser bastante complicada mesmo quando

os sistemas atingem o equilíbrio após os efeitos da interação.

Page 64: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

2.2. INTERAÇÃO ENTRE SISTEMAS MACROSCÓPICOS 63

Embora pareça extremamente complicado, o trabalho realizado por um sistema pode ser medido experimental-

mente. Como um exemplo, considere como nosso sistema A um gás confinado em um reservatório adiabático cuja

parede superior pode ter sua posição alterada pela ação de um pistão, conforme ilustrado na Fig. 2.2. O sistema

A′, portanto, é o conjunto do pistão e do peso composto pelo recipiente com as bolinhas de chumbo. Considere

que este recipiente tenha um peso w. Quando o pistão é liberado de sua posição inicial, este desloca-se para baixo

aplicando um trabalho dado por W ′ = w∆s, onde ∆s = sf − si é o deslocamento vertical do pistão. Usando a

Eq. (2.26) notamos que o trabalho realizado pelo sistema A é igual a −w∆s contra o movimento do pistão. Desde

que tanto a força peso w quanto o deslocamento do pistão ∆s podem ser acessados experimentalmente, então a

energia trocada neste processo pode ser medida.

Figura 2.2: Um sistema simples onde um gás ideal está encerrado em uma câmara que cujo tamanho pode ser controlado

por um pistão via realização de um trabalho W .

2.2.3 Interação Geral

No caso mais geral possível, os parâmetros externos não são fixos nem o sistema está termicamente isolado.

Neste caso, a transferência de energia ocorre através dos dois processos, térmico e mecânico. Assim, a variação

de energia média ∆E apresenta as duas contribuições. Seja ∆xE = W a contribuição devido à mudança dos

parâmetros externos, i.e., devido a um trabalho realizado sobre o sistema. Então a mudança total na energia média

do sistema pode ser escrita na forma:

∆E = ∆xE+Q= W +Q (2.27)

Page 65: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

64 CAPÍTULO 2. DESCRIÇÃO ESTATÍSTICA DE UM SISTEMA DE PARTÍCULAS

onde a quantidade Q é o calor fornecido ao sistema através da interação térmica com algum outro sistema. A Eq.

(2.27) nos permite definir o calor em termos do trabalho e da variação da energia do sistema, assim, escrevemos:

Q≡ ∆E−W = ∆E+W (2.28)

onde usamos W = −W , onde W é o trabalho realizado pelo sistema. A Eq. (2.28) é a definição do calor recebido

pelo sistema. Note que esta relação se reduz ao caso da interação puramente térmica quando fazemos o trabalho

W igual a zero. A Eq. (2.28) nos permite separar as duas contribuições para a variação da energia do sistema em

mecânica e térmica. Notamos também que tanto o calor como o trabalho tem dimensões de energia, ou seja, são

medidos em Joules no sistema internacional de unidades.

Quando consideramos mudanças infinitesimais na energia, então a Eq. (2.27) pode ser escrita na forma dife-

rencial

dQ= dE+dW (2.29)

onde denotamos pordW a quantidade infinitesimal de trabalho realizado pelo sistema edQ a quantidade infinitesi-

mal de calor trocado; dE é a variação correspondente da energia do sistema.

É importante lembrar que tanto o trabalho como o calor não são variáveis de estado, assim, não faz sentido em

falar de trabalho e calor antes e depois do processo ou a diferença entre estes. Estas são quantidades referentes ao

próprio processo termodinâmico.

2.3 Processos Quasi-Estáticos

Nas seções anteriores definimos dois tipos de processos que podem alterar o estado de um sistema. Estes processos

são completamente gerais pois não fizemos nenhuma particularização sobre como estes processos são realizados.

Um caso especial e muito importante, é quando o sistemaA interage com algum outro sistema de maneira tão lenta

que o sistema A permanece arbitrariamente próximo do estado de equilíbrio em todos os estágios do processo. Tal

processo é chamado de quasi-estático para o sistema A. Uma questão natural que surge é qual o tempo que o

processo deve levar para ser considerado como quasi-estático. A resposta está no tempo τ (tempo de relaxação)

do sistema, que é o tempo que o sistema gasta para entrar em equilíbrio se é repentinamente perturbado. Para ser

lento o bastante, o tempo que o processo leva para ir de um estado inicial a um estado final deve ser muito maior

que o tempo de relaxação. Por exemplo, se o gás do container da Fig. 2.2 tem um tempo τ = 10−3s, então se o

volume do gás é reduzido à metade em 0,1s então podemos considerar o processo como sendo quasi-estático.

Page 66: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

2.3. PROCESSOS QUASI-ESTÁTICOS 65

Se os parâmetros externos do sistema são denotados pelos valores x1,x2, · · · ,xn, então a energia do sistema

em um estado quântico definido r tem o valor

Er = Er(x1,x2, · · · ,xn). (2.30)

Quando os parâmetros externos são alterados, a energia deste estado r muda de acordo com a relação funcional

dada pela Eq. (2.30). Em particular, quando os parâmetros são mudados de forma infinitesimal, i.e., de modo que

xα → xα +dxα para cada α, então a Eq. (2.30) nos permite computar a mudança na energia:

dEr =n∑

α=1

∂Er

∂xαdxα. (2.31)

O trabalho dW feito pelo sistema quando ele permanece neste estado particular r é então definido da seguinte

forma:

dWr ≡ −dEr =∑

α

Xα,r dxα (2.32)

onde introduzimos a definição:

Xα,r = −∂Er

∂xα. (2.33)

A Eq. (2.33) é chamada de “força generalizada" (conjugada ao parâmetro externo xα) no estado r. Quando xα

denota uma distância, então Xα denota simplesmente uma força ordinária.

Vamos considerar agora um ensemble de sistemas com o objetivo de fazer uma descrição estatística. Quando

os parâmetros externos do sistema são alterados de maneira quasi-estática, então as forças generalizadas Xα,r têm

valores médios bem definidos. Estes valores médios podem ser determinados através da média sobre o ensemble

de sistemas correspondendo à situação de equilíbrio, consistentes com os valores dos parâmetros externos naquele

instante. Assim, tomando a média sobre todos os estados acessíveis r, podemos escrever

dW =n∑

α=1Xα,r dxα (2.34)

onde

Xα,r = −∂Er

∂xα(2.35)

é a força média generalizada conjugada à variável xα. Aqui as quantidades médias são determinadas com a

distribuição de equilíbrio dos sistemas no ensemble correspondendo aos valores fixos dos parâmetros α. O trabalho

macroscópico W resultante de uma mudança quasi-estática finita pode ser obtida por meio de uma integração.

Page 67: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

66 CAPÍTULO 2. DESCRIÇÃO ESTATÍSTICA DE UM SISTEMA DE PARTÍCULAS

2.3.1 Trabalho quasi-estático realizado pela pressão

Vamos considerar agora um exemplo importante de processo quasi-estático, onde uma pressão realiza um trabalho

de maneira que o único parâmetro externo é o volume do sistema V . Então o trabalho feito para mudar o volume

de V para V + dV pode ser calculado através do uso de mecânica elementar através do produto da força pelo

deslocamento. Suponha que o sistema é um conjunto de um pistão comprimindo um gás contido em um cilindro

(sistema mostrado na Fig. 2.2). Se o sistema está no estado r, então denote a pressão sobre a áreaA do pistão como

sendo pr. A força exercida pelo sistema sobre o pistão é simplesmente prA. O volume do sistema é especificado

por V = As, onde s é a posição inicial do pistão. Se o pistão é deslocado lentamente por uma distância ds de

modo que o sistema permanece em equilíbrio no estado r, o sistema realiza um trabalho dado por:

dWr = (prA) ds= pr dV (2.36)

e desde que dEr = −dWr, então segue que:

pr = −∂Er

∂V(2.37)

e vemos então que a pressão é a força generalizada conjugada à variável volume.

Se o volume do sistema é alterado de maneira quasi-estática, o sistema permanece em equilíbrio térmico de

maneira que a pressão apresenta um valor médio bem definido p. O trabalho macroscópico é então dado pela

média da Eq. (2.36):

dW = p dV. (2.38)

Agora suponha que o trabalho é realizado de maneira quasi-estática de modo que o volume varia desde um

valor inicial Vi até um valor final Vf . Neste caso, a pressão média p tem uma dependência com o volume descrita

por alguma função p = p(V ). Assim, o trabalho total do estado inicial i até o estado final f é obtido através da

integração da Eq. (2.38):

Wif =∫ f

ip(V ) dV. (2.39)

Geometricamente, a integral dada pela Eq. (2.39) representa a área sob a curva p(V ) em um diagrama p-V .

2.4 Diferenciais Exatas e Inexatas

A Eq. (2.29) relaciona três diferenciais dE,dW edQ. Temos utilizado umd com um traço porque as diferenciais do

trabalho e do calor têm propriedades diferentes em comparação com a diferencial da energia. Vamos analisar estas

Page 68: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

2.4. DIFERENCIAIS EXATAS E INEXATAS 67

diferenciais em maiores detalhes. Para isso, vamos considerar o problema puramente matemático onde temos uma

função F (x,y) que depende de duas variáveis x e y. Assim, o valor de F é determinado uma vez que as variáveis

x e y são especificadas. Vamos considerar uma variação infinitesimal de x e y de modo que a variação de F (x,y)

possa ser escrita da seguinte forma:

dF = F (x+dx,y+dy)−F (x,y) (2.40)

o que também pode ser expresso na forma:

dF =A(x,y)dx+B(x,y)dy

onde identificamos A e B com as derivadas parciais:

A(x,y) = ∂F

∂x, B(x,y) = ∂F

∂y.

A Eq. (2.40) implica que F (x,y) é simplesmente uma diferencial, i.e., a diferença de valores de F entre dois

pontos adjacentes. A diferencial dF é chamada de diferencial exata para distinguí-la de outros tipos de diferenciais

que serão discutidas logo mais. Primeiro, notamos que para ir de um ponto inicial dado pelas coordenadas (xi,yi)

até um ponto final (xf ,yf ), a mudança na função F (x,y) pode ser determinada por meio de uma integração:

∆F = Ff −Fi =∫ f

idF =

∫ f

i[A(x,y)dx+B(x,y)dy]

Vemos então que a diferença no lado esquerdo da equação depende apenas da diferença entre dois pontos Ff

e Fi e, portanto, a integração do lado direito não pode depender do caminho tomado para ir do ponto i ao ponto f .

Este tipo de característica só ocorre com função cuja diferencial é exata, ou seja, que pode ser colocado na forma

da Eq. (2.40).

Vamos considerar agora um outro par de funções A′(x,y) e B′(x,y) tal que

A′(x,y)dx+B′(x,y)dy ≡ dG

onde o segundo membro é apenas uma maneira abreviada de escrever o primeiro membro. Apesar de dG ser

certamente uma quantidade infinitesimal, não é uma quantidade que pode ser considerada como uma diferencial

exata, i.e., em geral não é possível encontrar uma função G = G(x,y) tal que dG = G(x+dx,y+dy) −G(x,y)

igual à Eq. (2.40). De maneira equivalente, podemos dizer que em geral não é verdade que se alguém soma

(integra) quantidades infinitesimais dG indo de um ponto inicial i até um ponto final f ao longo de um certo

caminho, a integral resultante ∫ f

idG=

∫ f

i[A′(x,y)dx+B′(x,y)dy]

será independente do caminho escolhido. Neste caso chamamosdG de diferencial “inexata".

Page 69: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

68 CAPÍTULO 2. DESCRIÇÃO ESTATÍSTICA DE UM SISTEMA DE PARTÍCULAS

Exemplo

1. Considere a quantidade infinitesimal

dG= α dx+βx

ydy

onde α e β são constantes. Seja i o ponto inicial (1,1) e f o ponto (2,2). Considerando que estes pontos são as

diagonais de um quadrado, calcule a integral de dG ao longos dos caminhos:

(a) C1: (1,1) → (2,1) → (2,2)

(b) C2: (1,1) → (1,2) → (2,2)

Solução

(a)

Vamos considerar o primeiro caminho. Neste caso, temos que:∫C1dG=

∫C1

[α dx+βx

ydy] =

∫ 2

1α dx+

∫ 2

2ydy

∫C1dG= α+2β ln2.

(b)

No caso do caminho C2 temos ainda:∫C2dG=

∫C2

[α dx+βx

ydy] =

∫ 2

1ydy+

∫ 2

1α dx

∫C2dG= α+β ln2.

Vemos então que as integrais são diferentes para os caminhos C1 e C2 o que implica que G é uma diferencial

inexata.

Agora, a quantidade infinitesimal

dF ≡ dG

x= α

xdx+ β

ydy

Page 70: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

2.4. DIFERENCIAIS EXATAS E INEXATAS 69

é uma diferencial exata de uma função bem definida F (x,y) = α lnx+β lny. A integral de i até f é sempre igual

a

∫ f

idF =

∫ f

i

dG

x= (α+β) ln2

independente do caminho tomado do ponto i ao ponto f . Verifique isso!

Agora que ficou claro a diferença entre diferenciais exatas e inexatas, vamos voltar à discussão da descrição

estatística dos sistemas físicos. O macroestado é caracterizado através de quantidades macroscópicas como energia

média E, pressão p, volume V etc. Em geral, uma vez que temos especificado algumas das variáveis podemos

determinar outras quantidades macroscópicas. Por exemplo, uma vez que temos especificado E e p podemos obter

o volume do sistema. Assim, as diferenciais dp, dE são diferenças infinitesimais entre quantidades associadas a

estados físicos bem definidos. Desta forma, estas diferenciais são diferenciais ordinárias (i.e., diferenciais exatas).

Por exemplo, dE = Ef − Ei é simplesmente a diferença entre dois valores bem definidos de energia. Assim,

podemos escrever:

∆E = Ef − Ei =∫ f

idE

o que implica que a integral é uma soma sobre todos os incrementos de energia ganhos no processo que leva o

sistema do estado inicial até o final. Estes dependem apenas dos estados final e inicial e não do caminho tomado

do ponto i ao ponto f .

Por outro lado, considere o trabalho infinitesimal dW feito pelo sistema para ir de um macroestado i a um

macroestado final f . Em geral, dW =∑Xα dxα não é a diferença entre dois números correspondentes aos

macroestados final e inicial. Com efeito, esta é uma quantidade infinitesimal característica do processo indo do

ponto i ao ponto f . O trabalho é então, em geral, uma diferencial inexata. O trabalho total feito pelo sistema para

ir de um estado i ao estado f pode ser escrita como

Wif =∫ f

idW

onde a integral significa simplesmente uma soma de quantidades infinitesimais de trabalho dW feitos em cada

estágio do processo. Mas no geral, o valor da integral depende do processo particular tomado para ir de um

macroestado i ao macroestado f .

Desde que o trabalho depende do caminho tomado e energia média não depende, segue da Eq. (2.29) que o

calor Q também depende do caminho da mesma forma que o trabalho. Assim, a quantidade infinitesimal dQ é

meramente uma quantidade infinitesimal de calor trocado no processo e é uma diferencial inexata.

Page 71: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

70 CAPÍTULO 2. DESCRIÇÃO ESTATÍSTICA DE UM SISTEMA DE PARTÍCULAS

Note que quando o sistema está termicamente isolado, i.e., de modo que Q= 0, a Eq. (2.29) implica que

∆E = −Wif

ou seja, o trabalho depende apenas da diferença entre os valores de energia final e inicial e é independente do

processo. Neste caso, o trabalho se torna uma diferencial exata. Assim, temos um resultado que é referido como a

1a lei da Termodinâmica:

Se um sistema termicamente isolado é trazido de um macroestado inicial a um

macroestado final, o trabalho realizado pelo sistema é independente do processo

realizado.

Reciprocamente, se as variáveis externas são mantidas fixas, então o trabalho realizado pelo sistema é zero.

Neste caso,dW = 0 e pela Eq. (2.29) nos permite escrever:

dE = dQ

e o calor se torna uma diferencial exata. A quantidade de calor absorvido pelo sistema independe do processo

usado sendo dependente apenas dos pontos inicial e final.

Exemplos

1. Considere um ensemble de osciladores harmônicos clássicos unidimensionais.

(a) Seja x o deslocamento de um oscilador em função do tempo t dado por x = Acos(ωt+φ). Assuma que

o ângulo de fase φ é equiprovável de assumir qualquer valor no intervalo 0 < φ < 2π. A probabilidade

W (φ) dφ que φ esteja entre φ e φ+dφ é então simplesmente dado por W (φ) dφ = dφ/2π. Para qualquer

tempo fixo t, encontre a probabilidade P (x) dx que x fique entre x e x+ dx somando-se W (φ) dφ sobre

todos os ângulos φ para os quais x fique dentro deste intervalo. Expresse P (x) em termos de A e x.

(b) Considere o espaço de fase clássico para um ensemble de osciladores harmônicos, de modo que a energia

fique em um pequeno intervalo entre E e E+ δE. Calcule P (x) dx tomando a razão daquele volume do

espaço de fase dentro deste intervalo de energia e no intervalo entre x e x+dx pelo volume total do espaço

de fase para valores de energia situados no intervalo entre E e E+ δE (Veja Fig. 2-3-1 do livro do Reif.).

Relacionando E com a amplitude A, mostre que o resultado é o mesmo obtido na parte (a) do problema.

Solução

Page 72: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

2.4. DIFERENCIAIS EXATAS E INEXATAS 71

(a)

Para resolver o item (a), recorremos à Eq. (1.53), do capítulo 1 adaptada para o caso presente:

P (x) dx= 2W (φ)∣∣∣∣dφdx

∣∣∣∣ dxonde o fator 2 foi colocado para levar em consideração o fato do deslocamento x(t) ser uma função biunívoca da

fase. Assim, prescisamos determinar a derivada de φ em relação a x:∣∣∣∣dφdx∣∣∣∣= 1∣∣∣∣dxdφ

∣∣∣∣e substituindo-se x(t) =Acos(ωt+φ), segue que:∣∣∣∣dφdx

∣∣∣∣= 1|−Asin(ωt+φ)|

= 1∣∣∣∣∣−A√A2 −x2

A

∣∣∣∣∣= 1√

A2 −x2, −A< x <+A.

Assim, como W (φ) = 1/2π, podemos escrever a probabilidade P (x) dx diretamente:

P (x) dx= 2 12π

1√A2 −x2

dx, −A< x <+A

P (x) dx= dx

π√A2 −x2

onde −A< x <+A

que é a resposta procurada.

(b)

Vamos fazer o mesmo cálculo que no item (a), exceto que a metodologia aqui será a determinação da razão

entre o volume do espaço de fase a posição assume o valor entre x e x+dx e, ao mesmo tempo, a energia o valor

entre E e E+δE pelo volume total do espaço de fase onde a energia assume o valor entre E e E+δE. Para isso,

escrevemos abaixo a energia de um oscilador harmônico unidimensional:

E = p2

2m+ 1

2mω2x2

o que pode ser colocado na forma:

p2

2mE+ x2

2Emω2

= 1

que é a equação da elipse com semi-eixos a =√

2mE e b =√

2E/mω2. A área da elipse é simplesmente dada

por:

A= πab= π√

2mE√

2E/mω2

Page 73: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

72 CAPÍTULO 2. DESCRIÇÃO ESTATÍSTICA DE UM SISTEMA DE PARTÍCULAS

donde

A(E) = 2πωE

O número de estados acessíveis V (E) para o oscilador harmônico com energia entre E e E+ dE será dado

por:

V (E) =A(E+ δE)−A(E) ≈ ∂A

∂EδE

ou seja,

V (E) = 2πωδE.

Agora precisamos determinar o volume do espaço de fase de modo que a posição esteja entre x e x+ dx.

Para isso, verificamos simplesmente que o volume é dado por dxdp que é o elemento de área do espaço de fase.

No entanto, como a elipse está centrada na origem, então temos ainda um segundo conjunto de estados onde o

momento linear pode assumir valores negativos. Neste caso, temos um elemento de volume dxdp no primeiro

quadrante e um segundo elemento de volume idêntico no quarto quadrante. Com isso, temos então que:

v(E) = 2dxdp.

A probabilidade P (x)dx é então determinada pela razão:

P (x)dx= v(E)V (E)

= 2dxdp2πωδE

(2.41)

O elemento infinitesimal δE pode ser escrito em termos de dp:

δE = ∂E

∂pδp= ∂

∂p

(p2

2m

)dp= p

mdp

ou seja,

dp= m

pδE = m√

2mE−m2ω2x2δE (2.42)

onde isolamos p na expressão para a energia do oscilador harmônico.

Agora, notamos ainda que

p(t) =mdx

dt= −mωAsin(ωt+φ)

e substituindo p(t) e x(t) na expressão para a energia total, segue que:

E = p2

2m+ 1

2mω2x2

Page 74: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

2.4. DIFERENCIAIS EXATAS E INEXATAS 73

E = 12m

(−mωAsin(ωt+φ))2 + 12mω2 (Acos(ωt+φ))2 = mω2

2A2

o que nos permite escrever:

2mE =m2ω2A2

e substituindo este resultado na Eq. (2.42) segue que:

dp= m

pδE = m√

m2ω2A2 −m2ω2x2δE = δE

ω√A2 −x2

(2.43)

e substituindo este resultado na Eq. (2.41), obtemos:

P (x)dx= 2dx2πωδE

δE

ω√A2 −x2

ou ainda,

P (x) dx= dx

π√A2 −x2

, −A< x <+A

que o mesmo resultado obtido no item (a).

Page 75: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

74 CAPÍTULO 2. DESCRIÇÃO ESTATÍSTICA DE UM SISTEMA DE PARTÍCULAS

Page 76: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

Capítulo 3

Termodinâmica Estatística

Uma vez que temos estabelecido os princípios básicos da Física Estatística nos dois últimos capítulos, vamos

agora considerar sua conexão com a Termodinâmica. É importante notar que a Termodinâmica é uma ciência

completamente macroscópica sendo desenvolvida há muitos anos antes da Física Estatística. No entanto, neste

capítulo mostraremos que todas as leis da Termodinâmica são conseqüências naturais dos postulados básicos da

Física Estatística.

3.1 Irreversibilidade e a aproximação para o equilíbrio

Conforme temos mencionado ao longo do curso, as teorias que estamos estudando são aplicadas na condição de

equilíbrio. No entanto, diferentes estados de equilíbrio são obtidos para diferentes condições externas e, desta

forma, precisamos caracterizar o estado de equilíbrio em termos dos parâmetros macroscópicos que caracterizam

o macroestado. Além disso, veremos que a relação entre o equilíbrio e as variáveis externas que caracterizam o

sistema permitem determinar a reversibilidade dos processos termodinâmicos.

3.1.1 Condições de equilíbrio e restrições

Para analisar a função das restrições sobre as condições de equilíbrio do sistema, vamos considerar um sistema

isolado cuja energia está especificada em um intervalo entre E e E + δE. Como usual, chamamos de Ω(E)

o número de estados acessíveis a este sistema. No equilíbrio, o sistema é equiprovável de ser encontrado em

qualquer um destes estados. As restrições sobre o estado do sistema são implementadas especificando-se alguns

parâmetros y1,y2, · · · ,yn. O número de estados acessíveis será então uma função destes parâmetros:

Ω = Ω(y1,y2, · · · ,yn)

75

Page 77: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

76 CAPÍTULO 3. TERMODINÂMICA ESTATÍSTICA

tal que cada parâmetro yα tem seu valor no intervalo entre yα e yα + δyα.

Suponha que inicialmente o sistema está em equilíbrio com o número de estados acessíveis dado por Ωi.

Agora, suponha que retiramos algumas restrições de maneira que temos agora Ωf estados acessíveis. Os Ωi ainda

permanecem acessíveis mas agora temos mais estados do que a situação inicial, assim, podemos escrever:

Ωf ≥ Ωi. (3.1)

Quando consideramos um ensemble de sistemas identicamente preparados de maneira que tenham Ωi estados

acessíveis, então após a retirada da restrição, a fração de sistemas que ainda estarão ocupando os Ωi estados será:

Pi = Ωi

Ωf

que também pode ser interpretado como a probabilidade de encontrar um sistema na situação inicial após a retirada

da restrição. Aqui vale considerar o exemplo simples de uma câmara em que um gás está confinado em metade do

volume da câmara. Após a retirada da restrição, a probabilidade de encontrar o gás na condição inicial será:

P =(1

2

)N

onde N é o número de moléculas, que em geral, é da ordem do número de Avogadro, i.e., ∼ 1023.

Vamos considerar esta situação em termos dos parâmetros gerais y1,y2, · · · ,yn. Quando yi é permitido variar,

o sistema estará em equilíbrio quando todos os estados acessíveis são equiprováveis. Assim, a distribuição de

equilíbrio P (y) de encontrar o sistema entre y e y+ δy é proporcional ao número de estados acessíveis, ou seja,

P (y) ∝ Ω(y).

Esta propriedade implica na ocorrência dos possíveis valores de y, que em geral, será muito diferente da

situação inicial quando y = yi. Assim, a situação evolui no tempo até que a distribuição uniforme de sistemas

sobre os estados acessíveis seja atingida, i.e., os vários valores de y ocorram com a probabilidade dada por Ω(y).

Usualmente, Ω(y) tem um valor máximo pronunciado para um dado y. Neste caso, todos os sistemas terão

valores correspondendo à situação mais provável onde y ∼ y. Vemos então que quando yi = y, o parâmetro y vai

mudar no tempo após a restrição ser removida até que se atinja o valor de equilíbrio y.

Com isso, concluímos:

Se algumas restrições de um sistema isolado são retiradas, os parâmetros do sistema

tendem a se reajustar até que Ω(y1,y2, · · · ,yn) se aproxime de um valor máximo .

Ω(y1,y2, · · · ,yn) → máximo.

Page 78: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

3.2. INTERAÇÃO ENTRE SISTEMAS MACROSCÓPICOS 77

3.1.2 Processos Reversíveis e Irreversíveis

Se um sistema está inicialmente distribuído entre seus Ωi estados acessíveis, e então retiramos algumas restrições,

o sistema irá atingir um novo estado de equilíbrio caracterizado por Ωf estados acessíveis. Se recolocamos as

restrições, não conseguiremos recuperar a situação inicial.

Dizemos então que um processo é irreversível quando este leva um sistema de um estado inicial a um estado

final de modo que a imposição/retirada de restrições não restaura a situação inicial. Por outro lado, se conseguimos

recuperar a situação anterior dizemos que o processo é reversível. Em termos de estados acessíveis, um processo

irreversível é caracterizado por Ωf > Ωi. Certamente é possível encontrar um caso particular em que Ωf = Ωi.

Neste caso, impor ou remover restrições não irá modificar a distribuição dos estados do sistema. Assim, o equilíbrio

do sistema não é alterado e o processo é dito ser reversível.

Em resumo: se as restrições de um sistema isolado em equilíbrio são removidas, o número de estados acessíveis

pode somente aumentar ou permanecer o mesmo, i.e., Ωf ≥ Ωi. Com isso, temos duas possibilidades:

(a) Ωi = Ωf . O sistema já se encontra em equilíbrio e o processo é dito ser reversível.

(b) Ωi > Ωf . Ωi é uma situação improvável e o sistema muda no tempo até que uma nova situação de equilíbrio

seja alcançada.

3.2 Interação entre Sistemas Macroscópicos

Na seção anterior discutimos os conceitos de reversibilidade e de equilíbrio em termos de estados acessíveis a um

sistema isolado. Quando algum parâmetro externo (e.g., y) é permitido mudar no tempo, o sistema irá evoluir

até que se atinja um novo estado de equilíbrio caracterizado por um novo valor do parâmetro, diferente do valor

inicial. Este valor é encontrado a partir do máximo da função Ω(y). Esta prescrição é válida tão logo o sistema

esteja em equilíbrio. Vamos agora aplicar esta prescrição na análise entre dois sistemas que interagem primeiro

termicamente e, após isso, consideramos o caso geral em que os sistemas são permitidos realizarem trabalho um

sobre o outro.

3.2.1 Interação térmica entre sistemas macroscópicos

Distribuição de energia entre sistemas em equilíbrio

Vamos considerar dois sistemas interagentesA eA′ de modo que o sistema combinadoA(0) =A+A′ está comple-

tamente isolado. No entanto, os sistemas A e A′ podem trocar calor entre si de modo que no equilíbrio, o sistema

Page 79: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

78 CAPÍTULO 3. TERMODINÂMICA ESTATÍSTICA

A tem energia no intervalo entre E e E+δE e o sistema A′ tem energia entre E′ e E′ +δE′. Consideramos ainda

que os parâmetros externos estão fixos e os sistemas não podem realizar trabalho um sobre o outro. Com o objetivo

de analisar o estado de equilíbrio entre os dois sistemas, vamos denotar por Ω(E) e Ω′(E′) os números de estados

acessíveis para os sistemas A e A′.

Consideramos que a interação entre os sistemas seja fraca de modo que as energias dos sistemas são aditivas,

assim, podemos escrever:

E(0) = E+E′ = constante.

Suponha que A e A′ estão em equilíbrio um com o outro. Neste caso, podemos focar nossa atenção em um

ensemble representativo. Com isso, queremos dizer que A pode assumir um intervalo grande de valores de energia

com diferentes probabilidades. Se A tem uma energia E, então o sistema A′ deve ter uma energia dada por:

E′ = E(0) −E.

O número de estados acessíveis ao sistema combinadoA(0) pode ser escrito em termos de um único parâmetro,

a energia E do sistema A. Seja Ω(0) o número de estados acessíveis de A(0) quando o sistema A tem energia no

intervalo entre E e E+ δE. No equilíbrio, A(0) está uniformemente distribuído entre estes estados. Assim, a

probabilidade de encontrar o sistema A(0) em um estado em que o subsistema A tem um valor de energia entre E

e E+ δE é dado por:

P (E) = CΩ(0)(E). (3.2)

Quando A tem energia E, este sistema pode estar em qualquer um de seus Ω(E) estados. Ao mesmo tempo,

A′ pode estar em qualquer um de seus Ω′(E′) = Ω′(E(0) −E) estados. Com isso, podemos escrever a Eq. (3.2)

como:

P (E) = CΩ(E)Ω′(E(0) −E). (3.3)

Notamos que tanto Ω(E) quanto Ω′(E(0) −E) são funções que variam muito rapidamente em função de

seus argumentos. Com efeito, enquanto Ω(E) aumenta muito rapidamente com a energia E, Ω′ diminui muito

rapidamente com E. Como resultado, o produto destas funções deve exibir um máximo muito pronunciado para

um valor de energia específico E. Este valor de energia, para o qual temos um máximo em Ω(0), é obtido quando

sistema atinge o estado de equilíbrio. Desta forma, E pode ser localizado através da prescrição:

dP (E)dE

∣∣∣∣E=E

= 0 ∴ d lnP (E)dE

∣∣∣∣E=E

= 0

Page 80: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

3.2. INTERAÇÃO ENTRE SISTEMAS MACROSCÓPICOS 79

e substituindo a Eq. (3.3), segue que:

d lnP (E)dE

= d

dE

[lnC+lnΩ(E)+ lnΩ′(E′)

]= d lnΩ(E)

dE+ d lnΩ′(E′)

dE′dE′

dE

e como

dE′

dE= d(E(0) −E)

dE= −1

obtemos então

d lnP (E)dE

= d lnΩ(E)dE

− d lnΩ′(E′)dE′

e calculando no ponto E = E, podemos escrever ainda:

d lnP (E)dE

∣∣∣∣E=E

= d lnΩ(E)dE

∣∣∣∣E=E

− d lnΩ′(E′)dE′

∣∣∣∣E=E

= 0

de onde obtemos a igualdade:

β(E) = β′(E′). (3.4)

Aqui usamos a definição:

β ≡ d lnΩ(E)dE

(3.5)

e E′ =E(0)− E.

A Eq. (3.5) é uma das relações fundamentais da termodinâmica pois implica na condição necessária para

que dois sistemas interagentes estejam em equilíbrio. O parâmetro β tem dimensões do inverso da energia. É

conveniente trabalhar com um parâmetro adimensional T definido por:

kT = 1β

(3.6)

onde k é uma constante de proporcionalidade com dimensões de energia e cuja magnitude pode ser escolhida de

maneira arbitrária. Futuramente iremos discutir a convenção utilizada para fixar o valor da constante k.

Multiplicando a Eq. (3.5) por k e lembrando que é uma constante, podemos escrever:

kβ ≡ d[k lnΩ(E)]dE

.

Definindo a chamada entropia S como

S = k lnΩ (3.7)

Page 81: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

80 CAPÍTULO 3. TERMODINÂMICA ESTATÍSTICA

e usando a Eq. (3.6), podemos escrever:

1T

= dS

dE. (3.8)

Desde que a entropia é proporcional ao logaritmo da densidade de estados, podemos escrever a condição de

máximo da probabilidade da seguinte maneira:

S+S′ = máximo (3.9)

que ocorre quando

T = T ′. (3.10)

Notamos então que temos vários modos de obter a condição de equilíbrio para sistemas que interagem trocando

calor. Podemos estabelecer a condição através da igualdade T = T ′ (ou, alternativamente β = β′) ou ainda dizendo

que no equilíbrio a entropia do sistema (entropia total) é máxima.

3.2.2 A aproximação do equilíbrio térmico

Na seção anterior derivamos condições para que dois sistemas (A e A′) que trocam calor entre si fiquem em equilí-

brio. Quando esta condição é satisfeita, existe uma probabilidade muito grande de que o sistema A tenha um valor

de energia E e o sistema A′ tenha um valor de energia E′ = E(0) − E. Isto ocorre porque a probabilidade P (E)

tem um máximo para E = E e é muito reduzida para valores ligeiramente diferentes de E. Por esta razão, as ener-

gias médias dos sistemas A e A′ também são muito próximas do valor de energia que maximiza a probabilidade,

i.e.,

E = E e E′ = E′. (3.11)

Suponha agora que temos dois sistemasA eA′ inicialmente isolados um do outro, caracterizados pelas energias

médias Ei e E′i. Quando os sistemas são colocados em contato térmico, as energias mudam no tempo até que as

energias médias atinjam os valores Ef e E′f que satisfazem a condição:

Ef = E ∴ E′f = E′ (3.12)

onde E e E′ são os valores que maximizam a distribuição de probabilidades P (E).

Os parâmetros β dos sistemas são iguais quando os sistemas atingem o equilíbrio, assim, podemos escrever:

βf ≡ β(Ef ) e β′f ≡ β(E′

f ). (3.13)

Page 82: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

3.2. INTERAÇÃO ENTRE SISTEMAS MACROSCÓPICOS 81

A probabilidade no estado final é máxima, com isso, podemos expressar a condição de equilíbrio comparando

as entropias do estado final e estado inicial. Usando a Eq. (3.9), podemos escrever:

S(Ef )+S′(E′f ) ≥ S(Ei)+S′(E′

i) (3.14)

ou ainda, de maneira equivalente:

∆S+∆S′ ≥ 0, (3.15)

onde

∆S = S(Ef )−S(Ei),

∆S′ = S′(E′f )−S′(E′

i).

Desde que o sistema combinado A(0) está termicamente isolado com seus parâmetros externos fixos, então sua

energia é constante, assim, podemos expressar a conservação de energia na interação entre os sistemas na forma:

Ef + E′f = Ei + E′

i. (3.16)

Estamos considerando que os sistemasA eA′ não realizam trabalho um sobre o outro de modo que as variações

de energias que os sistemas sofrem são decorrentes de troca de calor. Como resultado, a conservação da energia

dada pela Eq. (3.16) pode ser escrita na forma:

Q+Q′ = 0 ∴ Q= −Q′ (3.17)

onde

Q=Ef − Ei,

Q′ =E′f − E′

i.

A Eq. (3.17) expressa o fato de que o calor cedido pelo sistema A′ é absorvido pelo sistema A. Por convenção,

chamamos o sistema que cede calor de “quente" e o sistema que absorve o calor de “frio". Existem duas situações

que podem ocorrer quando os sistemas A e A′ são colocados em contato térmico:

(a) As energias iniciais podem ser tais que βi = β′i. Neste caso, temos que Ei = E e a condição de máximo da

probabilidade (ou entropia) já está satisfeita. Como resultado, os corpos não trocam calor.

(b) De modo geral, as energias iniciais são diferentes, i.e., βi = β′i. Neste caso, após o contato térmico os sistemas

se encontram em uma situação muito improvável. Esta situação irá evoluir no tempo até que a condição de

máxima probabilidade seja satisfeita. Neste caso, encontramos as energias médias dos sistemas iguais a E = E

e E′ = E′ quando βf = β′f .

Page 83: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

82 CAPÍTULO 3. TERMODINÂMICA ESTATÍSTICA

3.2.3 Temperatura

Nas seções precedentes, definimos a quantidade

T = 1kβ

que tinha duas propriedades:

(a) Se dois sistemas tem o mesmo parâmetro β quando em equilíbrio individualmente, estes dois sistemas iriam

permanecer em equilíbrio quando fossem colocados em contato térmico um com o outro;

(b) Se os parâmetros fossem diferentes inicialmente, então os corpos não iriam permanecer em equilíbrio quando

colocados em contato térmico.

A conseqüência disso é resumida pela “lei zero da termodinâmica". Para entender esta lei, considere três

sistemasA,B eC caracterizados pelos parâmetros βA, βB e βC . Assim, se βA = βC e βB = βC , então concluímos

que ao colocar os sistemas A e B em contato, estes já estarão em equilíbrio pois βA = βB . Com isso, chegamos à

lei zero da termodinâmica:

Se dois sistemas estão em equilíbrio térmico com um terceiro sistema, então eles

estarão em equilíbrio térmico entre si.

Esta lei permite desenvolver dispositivos chamados termômetros que apresentam as seguintes características:

(a) Possuir um parâmetro (ϑ) que varia muito quando colocado em contato térmico com outros corpos; os demais

parâmetros permanecem fixos. Este parâmetro é chamado parâmetro termométrico;

(b) o termômetro deve ser muito pequeno de modo a não afetar o equilíbrio térmico do sistema que está sendo

testado.

Se o parâmetro termométrico ϑ é o mesmo quando o termômetro é colocado em contato térmico com os

sistemas A e B, então podemos dizer que A e B estão em equilíbrio térmico. Por outro lado, se ϑ tem valores

diferentes quando o termômetro é colocado em contato com A e B, então haverá troca de calor entre os dois

sistemas após o contato térmico. Os dois sistemas ficarão em equilíbrio térmico somente quando estiverem à

mesma temperatura.

Notamos então que o valor da temperatura apresenta uma arbitrariedade pois depende da substância termomé-

trica do termômetro. Assim, precisamos trabalhar com um tipo de parâmetro específico que não depende do tipo de

substância termométrica. Para isso, notamos que ao colocar o termômetro M em contato com o corpo A, devemos

ter βM = βA. Um termômetro M ′ levaria à condição βM ′ = βA. Vemos então que βM = βM ′ = βA e quando

Page 84: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

3.2. INTERAÇÃO ENTRE SISTEMAS MACROSCÓPICOS 83

usamos o parâmetro β como parâmetro termométrico, este leva à mesma leitura da temperatura para quaisquer

termômetros. O parâmetro T = 1/kβ é chamado de temperatura absoluta e mede uma propriedade fundamental

da densidade de estados do sistema.

Algumas propriedades da temperatura absoluta

Aqui relembramos que

1kT

= β ≡ ∂ lnΩ∂E

e como já sabemos, Ω é uma função que cresce rapidamente com a energia, e assim,

β > 0 e T > 0.

De fato, mostramos que

Ω(E) ∝ Ef

assim,

lnΩ(E) ∝ f lnE+ constante

o que nos permite escrever para E = E ≈ E

1kT

= β ≡ f

E∴ kT = E

f

o que nos permite dizer que a temperatura é uma medida grosseira da energia média, acima do estado fundamental,

por grau de liberdade.

Para dois sistemas em equilíbrio (com a mesma temperatura) esta condição equivale a dizer que os corpos

compartilham a energia total de modo que E/f é a mesma para ambos. Também podemos inferir o sentido do

fluxo de calor entre dois corpos interagentes através da temperatura. Para isso, usamos a equação para a entropia

máxima:

S(Ef )+S′(E′f ) ≥ S(Ei)+S′(E′

i)

ou ainda,

S(Ef )−S′(E′i) ≈ ∂S(Ei)

∂E(Ef − Ei)

Page 85: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

84 CAPÍTULO 3. TERMODINÂMICA ESTATÍSTICA

e o mesmo vale para a variável com linha. Então temos:

∂S(Ei)∂E

(Ef − Ei)+ ∂S′(E′i)

∂E′ (E′f − E′

i) ≥ 0

logo,

∂ lnΩ(Ei)∂E

(Ef − Ei)+ ∂ lnΩ′(E′i)

∂E′ (E′f − E′

i) ≥ 0

e usando as definições feitas previamente, temos que:

βiQ+β′iQ

′ ≥ 0

e levando em consideração o princípio da conservação da energia, temos que Q+Q′ = 0, o que nos permite

eliminar o calor Q′ da equação acima:

(βi −β′i)Q≥ 0

e se consideramos que Q> 0, temos que:

βi > β′i

o que implica em

T ′i ≥ Ti.

3.2.4 Reservatório de Calor

Vamos considerar agora a interação térmica entre dois sistemas interagentes A e A′ considerando que o sistema A′

é muito maior do que o sistema A. Dizemos que o sistema A′ é um reservatório de calor ou banho térmico com

respeito ao sistema menor. Se A′ é tão grande, a temperatura permanece inalterada independente da quantidade de

calor Q′ absorvido do sistema menor. De acordo com livro-texto, esta condição pode ser explicitada na forma1:∣∣∣∣ ∂β′

∂E′Q′∣∣∣∣≪ β′ (3.18)

1Esta condição vem da hipótese de que o parâmetro β não muda muito quando uma quantidade de calor Q′ é absorvida, assim,

escrevemos

β′(E′ + Q′) − β′(E′) ≪ β′(E′)

e expandindo o primeiro membro em torno da quantidade de calor Q′ (que consideramos ser muito pequena em relação à energia do

reservatório), podemos escrever

β′(E′ + Q′) − β′(E′) ≈ ∂β′

∂E′ Q′

Page 86: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

3.2. INTERAÇÃO ENTRE SISTEMAS MACROSCÓPICOS 85

que indica que a variação da temperatura com a energia é muito pequena. Isto ocorre porque a quantidade de calor

é muito pequena comparada com o valor médio da energia E′ do reservatório (sistema A′).

Com efeito,

∂β′

∂E′ = ∂

∂E′

(∂ lnΩ′

∂E′

)= ∂2

∂(E′)2

(f ′

E′

)o que nos permite escrever ∣∣∣∣ ∂β′

∂E′

∣∣∣∣∼ f ′

E′2 = β′

E′ .

Além disso, Q′ é da ordem da energia média do sistema A, assim,∣∣∣∣ ∂β′

∂E′Q′∣∣∣∣∼ ∣∣∣∣ β′

E′E

∣∣∣∣≪ β′

onde usamos a condição de A′ ser um reservatório de calor. Da relação acima, obtemos uma condição auxiliar

E

E′ ≪ 1

quando A′ é muito maior do que A.

Vamos agora considerar a variação do número de estados acessíveis do reservatório com a adição de calor

referente ao sistema A, assim,

lnΩ′(E′ +Q) = lnΩ′(E′)+(∂ lnΩ′

∂E′

)Q′ + 1

2

(∂2 lnΩ′

∂(E′)2

)Q′2 + · · ·

e aplicando a condição dada pela Eq. (3.18), podemos desprezar os termos de segunda ordem e superiores, temos:

lnΩ′(E′ +Q)− lnΩ′(E′) ∼ β′Q′

e multiplicando pela constante k, segue que

k lnΩ′(E′ +Q)−k lnΩ′(E′) ∼ kβ′Q′

e usando T ′ = 1/kβ′ e a definição da entropia dada pela Eq. (3.7), obtemos ainda:

∆S′ ∼ Q′

T ′ variação da entropia p/ um reservatório térmico. (3.19)

o que nos permite expressar a condição na forma:

∂β′

∂E′ Q′ ≪ β′(E′).

No caso do calor ser cedido por A′, teríamos um sinal negativo multiplicando a derivada. Esta é a razão de ser usado o módulo na Eq.

(3.18).

Page 87: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

86 CAPÍTULO 3. TERMODINÂMICA ESTATÍSTICA

Uma relação similar se mantém para qualquer sistema a uma temperatura T que absorve uma quantidade

infinitesimal de calor dQ. Neste caso, temos:

lnΩ′(E′ +dQ)− lnΩ′(E′) = ∂ lnΩ∂E

dQ′ = βdQ= dQ

kT(3.20)

isto implica em

dS = dQ

T, válido para qualquer sistema. (3.21)

Note que a Eq. (3.21) é válida independentemente do tamanho do sistema desde que a quantidade de calor

trocada seja infinitesimal.

3.2.5 Análise de largura da distribuição de probabilidades

Aqui desejamos determinar a largura da distribuição de probabilidades P (E). Para isso, vamos investigar a distri-

buição em torno do ponto máximo, assim, definimos:

η = E− E.

Expandindo lnΩ(E) em torno do máximo, segue que

lnΩ(E) = lnΩ(E)+ ∂ lnΩ(E)∂E

η+ 12∂2 lnΩ(E)∂E2 η2 + · · ·

onde as derivadas são calculadas no ponto E. Usando as definições:

β = ∂ lnΩ(E)∂E

λ≡ −∂2 lnΩ(E)∂E2 = − ∂β

∂E

podemos escrever

lnΩ(E) = lnΩ(E)+βη− 12λη2 + · · · . (3.22)

Podemos fazer o mesmo para o sistema A′ expandindo em torno de E′. Notando ainda que:

E′ − E′ = E(0) −E− (E(0) − E) = E−E = −(E− E) = −η

podemos fazer a expansão para o sistema A′:

lnΩ′(E′) = lnΩ′(E′)−β′η− 12λ′η2 + · · · . (3.23)

Page 88: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

3.2. INTERAÇÃO ENTRE SISTEMAS MACROSCÓPICOS 87

Somando as duas equações obtemos:

lnΩ(E)+ lnΩ′(E′) = lnΩ′(E′)+ lnΩ(E)+βη−β′η− 12λ′η2 − 1

2λη2 + · · · .

ou ainda

ln[Ω(E)Ω′(E′)] = ln[Ω′(E′)Ω(E)]+(β−β′)η− 12

(λ′ +λ)η2 + · · · .

Já discutimos que o produto Ω(E)Ω′(E′) é igual ao número de estados acessíveis do sistema combinado A(0)

que, por sua vez, é proporcional a probabilidade de encontrar o sistema A com energia E. Assim, podemos

escrever diretamente:

lnP (E) = lnP (E)+(β−β′)η− 12

(λ′ +λ)η2 + · · · .

e desprezando os termos além de segunda ordem e considerando que no equilíbrio β = β′ então escrevemos:

P (E) = P (E)e−λ0η2/2, onde definimos λ0 = λ′ +λ (3.24)

ou, explicitamente,

P (E) = P (E)e− 12 λ0(E−E)2

. (3.25)

Note que λ0 não pode ser negativo pois P (E) deve ter um máximo (ou, de maneira equivalente, não teríamos

um valor de E de equilíbrio). Além disso, podemos escolher A′ muito pequeno tal que λ ∼ λ0. Como λ0 ≥ 0,

λ também deve ser positivo. Argumento similar pode ser aplicado para o caso do sistema A onde chegamos à

conclusão de que λ≥ 0.

Considere agora que Ω guarda a seguinte relação de proporcionalidade:

Ω ∝ Ef

onde f é o número de graus de liberdade do sistema. Segue então que a segunda derivada de lnΩ é dada por

∂2 lnΩ∂E2 ∝ − f

E2

e, como

λ= −∂2 lnΩ∂E2 então λ≥ 0.

Havíamos argumentado que a distribuição de probabilidades P (E) tinha um valor máximo paraE= E. Agora,

demonstramos que P (E) é uma distribuição Gaussiana cujo valor médio pode ser obtido comparando com a sua

definição geral obtida no capítulo 1. Assim, o valor médio é realmente dado por

E = E

Page 89: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

88 CAPÍTULO 3. TERMODINÂMICA ESTATÍSTICA

ou seja, a média é realmente o valor de máxima probabilidade no equilíbrio. Adicionalmente, P (E) decresce rapi-

damente com E, conforme λ0(E− E)2/2 ≫ 1, ou seja, |E− E| ≫ λ−1/20 . De forma mais concreta, é improvável

que a energia do sistema seja muito maior do que E+ ∆∗E, onde (novamente comparando com os resultados do

capítulo 1),

∆∗E = λ−1/20 .

Considere que λ≫ λ′ tal que λ∼ λ0 e assim,

λ0 ∼ λ= f

E2= f

E2

assim, podemos obter uma relação explícita para o desvio da média da distribuição de probabilidade:

∆∗E = E√f

o que implica na largura fracional dada por:

∆∗E

E= 1√

f.

Se temos um mol de partículas, então podemos dizer que f ∼Na ∼ 1024 então ∆∗E/E ∼ 10−12.

Vemos então que a largura da distribuição é extremamente pequena, resultado de estarmos lidando com um

número gigantesco de partículas (Ex. Se E =1 J então ∆∗E/E ∼ 10−12 J). Além disso, note que P (E) se

torna desprezível quando o valor de E difere de seu valor médio em 1/1012!! Isto é verdadeiro em sistemas

macroscópicos, então não precisamos nos preocupar com flutuações dos valores da energia em torno da média.

Porém, se lidamos com sistemas muito pequenos, precisamos determinar de maneira precisa o maior número

possível dos momentos da distribuição de probabilidades.

A condição λ > 0 implica em

λ= −∂2 lnΩ∂E2 = − ∂β

∂E≥ 0 ∴ ∂β

∂E≤ 0

e substituindo-se β = 1/kT , segue que

∂β

∂E= ∂

∂E

( 1kT

)= − 1

kT 2∂T

∂E≤ 0

∂T

∂E≥ 0. (3.26)

A Eq. (3.26) apresenta um resultado importante: a temperatura sempre aumenta com a energia.

Page 90: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

3.3. INTERAÇÃO GERAL ENTRE SISTEMAS MACROSCÓPICOS 89

3.3 Interação Geral entre Sistemas Macroscópicos

Estudamos em detalhes a interação térmica entre sistemas. Vamos agora considerar o caso geral onde os sistemas

interagem também mecanicamente, ou seja, os parâmetros externos também são livres para mudar. Neste caso,

como já discutimos, o espectro do sistema também muda. Vamos verificar o comportamento dos estados acessíveis

ao sistema com a variação destes parâmetros externos.

3.3.1 Dependência da densidade de estados com os parâmetros externos

Por simplicidade, consideramos apenas o caso em que temos apenas um parâmetro externo variável, que chama-

remos de x. O número total de estados acessíveis ao sistema no intervalo entre E e E+ δE também depende de

x, assim, escrevemos o número total de estados neste intervalo como Ω(E,x). A questão é saber como Ω depende

de x.

Quando o parâmetro externo muda de x para x+dx, a energia de cada microestado Er(x) muda por

dEr = ∂Er(x)∂x

dx≡ Y dx (3.27)

onde definimos Y = ∂E(x)/∂x. Vemos então que a mesma variação de dx produz variações distintas para dife-

rentes estados, em outras palavras, Y = Yr. Assim, precisamos contar os estados levando-se em conta as diferentes

variações da energia. Para isso, consideramos que os possíveis valores de Y podem ser subdivididos em intervalos

dY .

Vamos considerar que temos um subconjunto de estados ΩY (E,x) tal que o valor da derivada Y tem valor

entre Y e Y + dY . Este subconjunto tem a propriedade de que todos os estados sofrem a mesma mudança de

energia δE quando x muda para x+ dx. Assim, todos os estados localizados em um estado Y dx abaixo de E

mudam para um valor maior do que E. Assim, o número destes estados pode ser calculado por

σY (E) = ΩY (E,x)δE

Y dx. (3.28)

O número total de estados σ(E) que muda de um valor menor para um valor maior do que E será:

σ(E) =∑Y

σY (E) =∑Y

ΩY (E,x)δE

Y dx.

o que pode ser escrito na forma

σ(E) = Ω(E,x)δE

Y dx, (3.29)

Page 91: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

90 CAPÍTULO 3. TERMODINÂMICA ESTATÍSTICA

onde a média da derivada Y é escrita na forma,

Y = 1Ω(E,x)

∑Y

Y ΩY (E,x) (3.30)

Notamos ainda que:

Y = ∂Er

∂x= −X

onde identificamos o valor médio de Y como sendo o negativo da força generalizada conjugada ao parâmetro

externo x.

Aqui vale um comentário final sobre o significado de σ(E): é o número total de estados, entre todos os estados

Ω(E,x), cuja energia muda de um valor menor do que E para um valor maior do que E quando o parâmetro

externo muda de x para x+dx.

Resta agora determinar como varia Ω(E,x) com x para um dado valor de E. Sabemos que a variação do

número de estados neste intervalo de energia é dado por:

∂Ω(E,x)∂x

dx=

no de estados que entram no intervalo

desde um valor menor do que E

no de estados que deixam este intervalo

para um valor maior do que E

.Em símbolos, podemos escrever:

∂Ω(E,x)∂x

dx= σ(E)−σ(E+ δE) = σ(E)−[σ(E)+ ∂σ

∂E(E+ δE−E)

]= − ∂σ

∂EδE

e substituindo-se σ da Eq. (3.29), obtemos:

∂Ω(E,x)∂x

dx= − ∂

∂E

(Ω(E,x)δE

Y dx

)δE

∂Ω∂x

dx= −∂(ΩY )∂E

dx

logo,

∂Ω∂x

= −Ω∂Y∂E

− Y∂Ω∂E

o que pode ser reescrito na forma:

1Ω∂Ω∂x

= −∂Y

∂E− Y

Ω∂Ω∂E

Page 92: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

3.4. EQUILÍBRIO ENTRE SISTEMAS INTERAGENTES 91

∂ lnΩ∂x

= −Y ∂ lnΩ∂E

− ∂Y

∂E.

Temos que Ω ∝ Ef o que nos permite inferir que a derivada do logaritmo é proporcional ao número de graus

de liberdade, i.e., ∂ lnΩ/∂E ∝ f/E, logo, o primeiro termo é da ordem de fY /E. O segundo termo é da ordem

de ∂Y /∂E ∝ Y /E, e assim, como f ∼ 1024 o segundo termo é muito menor do que o primeiro termo por um fator

mínimo da ordem do número de Avogadro. Com isso, podemos escrever como uma excelente aproximação

∂ lnΩ∂x

= −Y ∂ lnΩ∂E

= βX

onde identificamos a variável β e a força generalizada X = −Y .

No caso de N parâmetros externos, então Ω = Ω(E;x1,x2, · · · ,xN ) e a generalização para este caso é direta:(∂ lnΩ∂xα

)E

= βXα, α= 1,2,3, · · · ,N. (3.31)

3.4 Equilíbrio entre Sistemas Interagentes

Considere agora o caso geral onde os dois sistemas A e A′ estão interagindo via troca de calor e/ou realizando tra-

balho um sobre o outro. Neste caso, o macroestado do sistema A é especificado pela energia E e pelos parâmetros

externos x1,x2, · · · ,xN ; A′ é caracterizado pela energia E′ e pelos parâmetros x′1,x

′2, · · · ,x′

N .

O sistema combinado A(0) é novamente constituído pelos dois sistemas A e A′

A(0) =A+A′

e como consideramos que está completamente isolado, podemos escrever:

E(0) = E+E′ = constante,

o que nos permite determinar a energia do sistema A′ a partir do cálculo da energia do sistema A. A novidade

agora é que os parâmetros externos do sistema A′ também podem ser expressos em termos dos parâmetros do

sistema A.

O número de estados acessíveis do sistema combinado será Ω(0) = Ω(0)(E;x1,x2, · · · ,xN ) e terá um valor

máximo para um conjunto específico de valores, i.e., E = E e xα = xα. O estado de equilíbrio será caracterizado

pela máxima probabilidade do sistema A ter valores próximos de E e xα. Os valores médios destas quantidades

no equilíbrio serão iguais a E = E e xα = xα.

Page 93: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

92 CAPÍTULO 3. TERMODINÂMICA ESTATÍSTICA

3.4.1 Processos quasi-estáticos

Qual é variação no número de estados acessíveis quando o sistema A, devido à interação com A′, é trazido (de

modo quasi-estático) do estado de equilíbrio descrito por E e xα, (α = 1,2,3 · · · ,N) para um estado descrito por

E+dE e xα +dxα. Assim, podemos escrever:

d lnΩ = ∂ lnΩ∂E

dE+N∑

α=1

∂ lnΩ∂xα

dxα

e usando as definições prévias escrevemos

d lnΩ = βdE+N∑

α=1βXαdxα = β

[dE+

N∑α=1

Xαdxα

].

Aqui devemos reconhecer que a soma∑N

α=1 Xαdxα é simplesmente igual ao trabalho realizado pelo sistema,

i.e.,

dW =N∑

α=1Xαdxα

algo que já havíamos definido nos capítulos anteriores2.

Substituindo-se na diferencial d lnΩ, obtemos

d lnΩ = β[dE+dW

]= βdQ

onde fizemos uso da primeira lei da termodinâmica dE =dQ−dW . Agora, lembramos que:

βdQ= dQ

kTe S = k lnΩ

o que nos leva a escrever

TdS = dE+dW =dQ (3.32)

A Eq. (3.32) nos mostra que a relação dQ= TdS permanece válida mesmo na presença de trabalho quando o

processo é quasi-estático.

Vemos então que no caso particular em que os sistemas não trocam calor, dQ = 0, a entropia permanece

constante mesmo com as variações dos demais parâmetros externos xα, i.e.,

dS = 0, processo quasi-estático, na ausência de calor. (3.33)

Para reforçar escrevemos abaixo:

2Aqui é muito conveniente revisar os capítulos anteriores se este ponto não ficou claro.

Page 94: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

3.4. EQUILÍBRIO ENTRE SISTEMAS INTERAGENTES 93

Se os parâmetros externos de um sistema térmicamente isolado forem variados de modo

quasi-estático por qualquer quantidade, ∆S = 0.

Com isso, concluímos que um processo quasi-estático é um processo reversível, de acordo com a segunda lei

da termodinâmica.

3.4.2 Condições de equilíbrio

Vamos considerar um caso simples em que os parâmetros externos são V e V ′ para A e A′. O número de estados

acessíveis para o sistema combinado é dado pelo produto

Ω(0)(E,V ) = Ω(E,V )Ω′(E′,V ′)

e tomando o logaritmo, temos ainda:

lnΩ(0)(E,V ) = lnΩ(E,V )+ lnΩ′(E′,V ′)

o que nos permite escrever,

S(0) = S+S′.

O valor máximo ocorre quando d lnΩ(0) = 0, para E e V sendo os parâmetros variáveis. Seja,

d lnΩ(0) = d lnΩ+d lnΩ′

então temos:

∂Ω∂E

dE+ ∂Ω∂V

dV + ∂Ω′

∂E′dE′

dEdE+ ∂Ω′

∂V ′dV ′

dVdV = 0. (3.34)

Agora invocamos a condição E(0) = E+E′ = constante e V (0) = V +V ′ = constante, o que nos permite

escrever

dE′

dE= d(E(0) −E)

dE= −1

e

dV ′

dV= d(V (0) −V )

dV= −1

e voltando à condição de equilíbrio dada pela Eq. (3.34) segue que:

∂Ω∂E

dE+ ∂Ω∂V

dV − ∂Ω′

∂E′dE− ∂Ω′

∂V ′dV = 0. (3.35)

Page 95: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

94 CAPÍTULO 3. TERMODINÂMICA ESTATÍSTICA

Aqui precisamos notar que as derivadas são os parâmetros já definidos. Em particular, as derivadas de lnΩ e

lnΩ′ em relação ao volume são simplesmente as forças generalizadas conjugadas ao volumes V e V ′ multiplicadas

pelo parâmetro β. A força generalizada que provoca a variação no volume é simplesmente a pressão média p,

assim, reconhecendo o parâmetro β, a Eq. (3.35) toma a forma:

βdE+βpdV −β′dE−β′p′dV = 0.

(β−β′)dE+(βp−β′p′)dV = 0 (3.36)

de onde retiramos duas condições que devem ser satisfeitas para que A e A′ estejam em equilíbrio:

β = β′ (3.37)

βp= β′p′

mas se a primeira condição é satisfeita a segunda toma a forma mais simples:

p= p′. (3.38)

As Eqs. (3.37) e (3.38) revelam uma física muito simples: se os sistemas A e A′ são dois reservatórios

preenchidos com gás com uma parede diatérmica cuja posição é variável (um pistão, essencialmente), então a

situação de equilíbrio irá ocorrer quando os reservatórios estiverem à mesma temperatura e a parede ficará parada

em uma certa posição de modo que a pressão sobre ela seja nula (as pressões exercidas pelos gases de A e A′ são

iguais.).

3.4.3 Propriedades da Entropia

A entropia é uma quantidade que nos fornece uma medida do número de estados acessíveis ao sistema. De fato,

foi definida como S = lnΩ. Quando adicionamos uma quantidade de energia em um sistema ou uma quantidade

de partículas, enfim, quando efetuamos qualquer mudança sobre um sistema, causamos uma desordem que é

mensurada através das possíveis configurações do sistema. Quanto maior a configuração do sistema, maior é a

desordem, e em última análise, maior será a sua entropia. Assim, em geral nos referimos a entropia como uma

quantidade que mede a desordem do sistema. Abaixo relacionamos algumas propriedades da entropia que serão

úteis nos estudos subseqüentes.

Page 96: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

3.4. EQUILÍBRIO ENTRE SISTEMAS INTERAGENTES 95

A entropia é uma diferencial exata

Sabemos que o calor depende do modo como levamos um sistema de um macroestado inicial a um macroestado

final. Em termos matemáticos, dizemos que o calor não é representado por uma diferencial exata. No entanto,

quando determinamos a relação entre entropia e calor, chegamos à relação,

dS = dQ

T.

Embora a diferencial da entropia seja diferente do calor apenas pelo fator 1/T , a entropia é uma diferencial

exata. Em outras palavras, a entropia é uma quantidade que independe do processo termodinâmico que leva o

sistema de um estado inicial a um estado final. Assim, podemos escrever:

∆S = Sf −Si =∫ f

i

dQ

T

válido para qualquer sistema que é levado de um estado inicial a um estado final através de um processo quasi-

estático.

Definição Estatística

A definição estatística da entropia dada por

S = k lnΩ

implica que a entropia tem um valor absoluto, i.e., a entropia é diferente, por exemplo, da energia interna que

só tem sentido quando falamos em sua variação ou em seu valor em relação à algum referencial. Com efeito, a

entropia pode sempre ser determinada através da relação S = k lnΩ para um dado conjunto de parâmetros externos.

É importante notar que isto é também uma conseqüência da teoria da Mecânica Quântica desde que a Mecânica

Clássica nos permite conhecer a entropia a menos de uma constante. Para este ponto ficar claro, lembre-se que o

número de estados acessíveis é obtido classicamente através do volume do espaço de fase, i.e.,

Ω(E) = 1hf

0

∫ E+δE

E

∫dr1 · · ·

∫drN

∫dp1 · · ·

∫dpN

que é simplesmente a razão do volume do espaço de fase pelo volume de uma célula deste espaço dada por hf0 .

Assim, a entropia será

S = ln[∫ E+δE

E

∫dr1 · · ·

∫drN

∫dp1 · · ·

∫dpN

]−kf lnh0

e como em Mecânica Clássica h0 é arbitrário, a entropia é conhecida a menos de um valor constante. Na teoria

Quântica, o volume da célula do espaço de fase não é arbitrária mas fixada pela constante de Planck (h = 6,63 ×

10−34 J.s), através do princípio da incerteza de Heisenberg.

Page 97: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

96 CAPÍTULO 3. TERMODINÂMICA ESTATÍSTICA

Comportamento Limite

De acordo com a Mecânica Quântica, quando a energia de qualquer sistema é reduzida, chegamos a um valor

mínimo de energia que chamamos de estado fundamental, denotado por E0. Em geral, este estado fundamental

é único (embora existam casos em que o estado fundamental possa ser degenerado). Assim, a entropia que é

proporcional ao número de estados, ou é reduzida à zero ou a um valor mínimo também. Por outro lado, quando

a energia do sistema é elevada, a entropia cresce muito rapidamente pois é proporcional ao número de graus de

liberdade do sistema. Com efeito, como Ω ∝ Ef então S = k lnΩ ∝ kf lnE

Assim, podemos resumir o comportamento da entropia da seguinte forma:

S ∼ kf, se E ≫ E0

e

S → 0, se E → E0.

Notamos que a derivada da temperatura com respeito à energia é sempre positiva(∂T

∂E> 0

). Como con-

seqüência disso, podemos dizer que a temperatura do sistema diminui quando a energia do sistema é reduzida em

direção ao estado fundamental. Assim, a condição da entropia ser reduzida a um valor mínimo (ou zero), pode ser

escrita na forma:

S → 0, se T → 0.

Na prática, nunca conseguimos atingir a temperatura nula, ou como chamamos, o “zero absoluto". Assim,

podemos chegar em temperaturas da ordem de . 10−3 K mas nunca exatamente no zero. Assim, a entropia nunca

chega a um valor nulo mas sempre tende a um valor residual. Este valor residual pode ser atribuído aos spins dos

núcleos atômicos que têm uma energia de interação muito pequena de modo que mesmo uma perturbação muito

pequena pode modificar suas orientações. Assim, na prática, dizemos que a entropia tende a um valor S0 residual

à medida que a temperatura é reduzida ao mínimo experimental. Por esta razão, reescrevemos a condição acima

em uma forma mais realística:

S → S0, se T → 0+. (3.39)

onde denotamos 0+ por uma temperatura muito próxima de zero.

A Eq. (3.39) é muito importante e expressa a chamada terceira lei da termodinâmica que nos diz que em

T ∼ 0 a entropia assume um valor constante independente do sistema considerado.

Page 98: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

3.5. CÁLCULO ESTATÍSTICO DE QUANTIDADES TERMODINÂMICAS 97

3.5 Cálculo Estatístico de Quantidades Termodinâmicas

Vamos considerar agora como o conhecimento dos estados acessíveis Ω = Ω(E;x1,x2, · · · ,xN ) nos permite de-

terminar quantidades termodinâmicas. Vimos neste capítulo que

β = ∂ lnΩ∂E

e Xα = 1β

∂ lnΩ∂xα

.

Estas relações são fundamentais pois nos permitem determinar a temperatura absoluta e a força generalizada do

sistema associada à variável xα. Adicionalmente, a partir destas relações podemos obter equações que conectam as

diversas variáveis do sistema, que chamamos de equações de estado. As equações de estado são muito interessantes

pois podem ser verificadas experimentalmente.

Como já discutimos o comportamento do número de estados acessíveis para um gás ideal, vamos exemplificar

aqui a aplicação destas equações neste caso simples porém muito importante da Termodinâmica. No caso de

xα = V , a força generalizada é dada por Xα = p, assim, temos que:

p= 1β

∂ lnΩ∂V

(3.40)

o que nos permite determinar a função p = p(V,T ) que é essencialmente a equação de estado que procuramos.

Nas aulas anteriores, mostramos que para um gás ideal Ω era dada por:

Ω ∝ V Nχ(E)

onde V é o volume do gás constituído por N moléculas e com energia E. Tomando o logaritmo desta expressão,

segue que:

lnΩ =N lnV +lnχ(E)+ constante. (3.41)

Substituindo-se a Eq. (3.41) em (3.40), segue que

p= 1β

∂V[N lnV +lnχ(E)+ constante.]

p= 1β

N

V

desde que o segundo e terceiro termos são nulos. Assim, como β = 1/kT , temos ainda

p= kTN

V

Page 99: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

98 CAPÍTULO 3. TERMODINÂMICA ESTATÍSTICA

ou ainda,

pV =NkT.

Podemos expressar o número de moléculas em termos do número n de moles. Assim, temos que:

N = nNa

onde Na é o número de Avogadro. A equação de estado pode ser escrita como:

pV = nNakT.

e definindo

R= kNa

que é chamada constante dos gases ideais, obtemos o resultado final:

pV = nRT. (3.42)

É importante notar que a Eq. (4.16) não depende do tipo de molécula de que o gás ideal é formado. Assim,

um gás ideal tem um comportamento universal determinado pela lei dos gases ideais definida acima.

Resta ainda, aplicar a equação β = ∂ lnΩ/∂E, assim, usando Eq. (3.41), chegamos a

β = ∂ lnχ(E)∂E

que é um resultado muito importante pois χ(E) depende apenas da energia. Assim, se invertemos a relação acima,

poderíamos escrever a energia do gás como função da temperatura, i.e.,

E = E(T ). (3.43)

Assim, vemos que a energia do gás depende apenas da temperatura do gás. Se, por exemplo, dobramos o

volume do sistema não modificamos a energia cinética das partículas, apenas aumentamos a separação entre elas.

É importante lembrar que no caso de um gás ideal não temos interação entre as moléculas o que nos permite chegar

à Eq. (3.43).

Page 100: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

Capítulo 4

Termodinâmica e suas aplicações

Agora que já descrevemos a Física Estatística e já temos estabelecido sua conexão com a Termodinâmica, vamos

considerar algumas aplicações clássicas das leis da termodinâmica bem como a descrição das medidas das gran-

dezas básicas definidas anteriormente. Notamos ainda que todas as discussões que serão realizadas serão restritas

à sistemas em equilíbrio.

4.1 Grandezas Extensivas e Intensivas

Os parâmetros que caracterizam um sistema do ponto de vista termodinâmico podem ser classificados como ex-

tensivos e intensivos, dependendo de sua relação com o tamanho do sistema sob consideração. Para tornar este

ponto mais claro, considere um sistema dividido em 2 partes e denote por y1 e y2 os valores do parâmetro externo

para cada um dos subsistemas. Temos então duas possibilidades:

(a) y = y1 + y2, i.e., o parâmetro y que caracteriza o sistema total é a soma dos parâmetros que caracteriza cada

uma das partes do sistema, neste caso dizemos que o parâmetro y é extensivo;

(b) y = y1 = y2, i.e., o parâmetro y é independente do tamanho do sistema e dizemos então que y é um parâmetro

intensivo.

Já vimos exemplos de grandezas intensivas e extensivas nos capítulos anteriores. Exemplos de grandezas

intensivas são a temperatura, pressão, densidade ρ=M/V , calor específico, etc; grandezas extensivas são energia,

volume, massa, entropia, capacidade térmica, etc. Quando queremos trabalhar com grandezas extensivas mas de

maneira a não depender do tamanho do sistema, definimos a “densidade desta grandeza", e.g., podemos definir

uma entropia per mole s= S/n, com n sendo o no de moles, etc.

99

Page 101: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

100 CAPÍTULO 4. TERMODINÂMICA E SUAS APLICAÇÕES

Considere agora um sistema dividido em dois subsistemas,A eA′. Se temos dois gases separados uma partição

cuja posição é variável, então o estado de equilíbrio é caracterizado pela igualdade da temperatura e pressão dos

sistemas. Tanto a pressão como a temperatura são as mesmas em todos os pontos do reservatório que contém os

gases, ou seja, são definidas pontualmente. Por outro lado, a energia total é dada pela soma das energias cinéticas

de todas as moléculas dos gases. Desta forma, a energia depende da quantidade dos gases dentro do reservatório.

4.2 Parâmetros Macroscópicos e suas medidas

Aqui vamos considerar como parâmetros macroscópicos são determinados em um experimento. Um idéia de como

isto é realizado é fundamental para qualquer desenvolvimento de física teórica cujo objetivo é justamente descrever

resultados experimentais.

4.2.1 Trabalho e Energia Interna

O trabalho pode ser facilmente determinado uma vez que os parâmetros externos e as forças generalizadas podem

ser facilmente medidas. Exemplo: no caso de um pistão em que o gás varia o seu volume de Vi até Vf , a pressão

média tendo valor mensurável p(V ), temos então:

Wif =∫ Vf

Vi

p(V ) dV. (4.1)

A medida da energia interna E de um sistema pode ser reduzida à medida de um trabalho macroscópico. Com

efeito, para um sistema termicamente isolado Q= 0 e assim:

∆E = −W

ou seja,

Ef − Ei = −Wif = −∫ Vf

Vi

p(V ) dV.

Somente diferenças de energia interna tem sentido físico, assim, podemos definir qualquer macroestado i como

tendo energia nula, i.e., Ei = 0. A energia final Ef é definida com respeito à Ei = 0. Agora, como o valor final

Ef independente do caminho, segue que:

Ef − Ei = −Wif =Wfi.

Note que embora Wfi ainda é uma quantidade que depende do caminho, o que ocorre é que fixamos os ponto

inicial e final.

Page 102: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

4.2. PARÂMETROS MACROSCÓPICOS E SUAS MEDIDAS 101

4.2.2 Calor

O calor Qif absorvido pelo sistema que vai um macroestado i a um macroestado final f é definido por

Qif = Ef − Ei +Wif (4.2)

onde Wif é trabalho realizado pelo sistema . Como sabemos medir a energia interna e o trabalho, então Qif pode

ser determinado indiretamente através da Eq. (4.2).

Medida direta em termos do trabalho

Suponha que pretendemos medir o calor Qif absorvido pelo sistema A com seus parâmetros externos fixos, com

isso, A não pode realizar trabalho. Podemos trazer A em contato térmico com um segundo sistema sobre o qual

trabalho pode ser feito. Um exemplo, seria imergir um resistor na substância a ser medida conectado a uma bateria

externa. Fazendo trabalho W sobre o resistor, levamos A de um macroestado i para um macroestado f . Se o

resistor e o sistema A estão isolados, segue que:

W = ∆E+∆ε,

(a) ∆E é a variação da energia interna do sistema A;

(b) ∆ε é a variação da energia interna do resistor.

Mas como A não realiza trabalho então ∆E =Qif e, portanto,

Qif = W −∆ε

e como em geral, ∆ε ≪ ∆E podemos desprezar a variação da energia interna do resistor; podemos também

considerar que ∆ε possa ser determinado previamente através de algum parâmetro externo intrínseco do resistor.

Método da Comparação (ou método das misturas)

Mantendo-se os parâmetros externos fixos, trazemos A em contato térmico com um sistema de referência B cuja

energia interna é conhecida como função de seus parâmetros externos. Nenhum trabalho é realizado no processo.

A conservação da energia implica que

∆EA +∆EB = 0

ou ainda,

QA +QB = 0

Page 103: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

102 CAPÍTULO 4. TERMODINÂMICA E SUAS APLICAÇÕES

ou

QA = −QB

e como QB = −∆EB , que é conhecido para o sistema B, então o calor absorvido pelo sistema A está completa-

mente determinando.

4.2.3 Temperatura Absoluta

Agora vamos considerar a determinação da temperatura absoluta em termos operacionais. Comparado a um parâ-

metro temperatura arbitrário, a temperatura absoluta tem as seguintes características:

(a) é completamente independente do termômetro utilizado;

(b) é um parâmetro de significado fundamental entrando em todas as equações teóricas.

Qualquer relação teórica envolvendo T pode ser usada como base para a sua determinação experimental.

Temos dois tipos de relações:

(a) relações envolvendo aspectos microscópicos da teoria. Com o uso da Física Estatística podemos determinar

as equações de estado relacionando T com variáveis macroscópicas;

(b) relações macroscópicas, como a 2a lei da termodinâmica, que nos permite relacionar a variação da entropia

com o calor e a temperatura, dS =dQ/T .

O uso mais elementar do item (a) é a lei dos gases ideais:

pV = nRT

onde n é o número de moles do gás. Note que para T constante, a lei dos gases ideais se reduz a

pV = constante.

ou seja, temos várias hipérboles no digrama p−V caracterizadas por diferentes valores de temperatura.

Se o volume do gás ideal é mantido constante, então a pressão p e a temperatura T são proporcionais. Com um

par de valores de pressão e temperatura podemos determinar o valor da constante de proporcionalidade k. Com

este valor determinado podemos medir qualquer valor de temperatura a partir da pressão do sistema. A convenção

utilizada é o ponto triplo da água que é facilmente reproduzido experimentalmente. Convencionamos definir a

temperatura do ponto triplo Tt como

Tt = 273,16 exatamente.

Page 104: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

4.3. CALOR ESPECÍFICO E CAPACIDADE TÉRMICA 103

Sendo pt a pressão do ponto triplo, então a equação gases ideais fornece:

ptV = nRTt

e para um gás ideal qualquer com n moles ocupando um volume V podemos calcular o valor da constante R pois

conhecemos o valor de pt. O valor obtido, que independente do tipo de gás, é dado por:

R= (8,3143±0,0012) J/mol.K

e desde que sabemos o número de Avogadro Na = 6,02252±0,0028×1023 molec./mol, então podemos determi-

nar a constante k

k ≡ kB =R/Na = (1,38054±0,00108)×10−16 ergs/K.

A escala de temperatura Celsius, muito utilizada no Brasil, está relacionada com a temperatura absoluta pela

equação:

θ = T −273,15.

4.3 Calor Específico e Capacidade Térmica

Considere um sistema macroscópico caracterizado por sua temperatura T e seus parâmetros externos denotados

genericamente por y. Suponha que começando com uma temperatura T , uma quantidade infinitesimal de calordQ

é adicionada ao sistema enquanto todos os outros parâmetros y são mantidos fixos.

A mudança dT da temperatura do sistema depende da sua natureza bem como dos parâmetros T e y que

especificam o macroestado. Definimos a razão:

Cy ≡(∂Q

∂T

)y, (4.3)

no limite dQ → 0 (dT → 0) como a capacidade térmica do sistema. O subscrito y é usado para indicar que y é

mantido constante. Em geral, temos que,

Cy = Cy(T,y)

que nos indica que a quantidade de calor necessária para produzir uma variação da temperatura depende da tem-

peratura inicial bem como de quais parâmetros externos que estão fixos. Além disso, a variação da temperatura

também depende da quantidade de matéria do sistema. Com efeito, notamos que a variação com a temperatura é

proporcional à massa ou ao número de moles do sistema. Por esta razão, é mais conveniente trabalhar com uma

Page 105: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

104 CAPÍTULO 4. TERMODINÂMICA E SUAS APLICAÇÕES

quantidade que dependa apenas da natureza da substância, ou melhor, com uma quantidade intensiva. Definimos

o calor específico como sendo a capacidade térmica por unidade de massa (ou moles) da seguinte forma:

cy(T,y) ≡ 1m

(∂Q

∂T

)y, calor específico por massa

cy(T,y) ≡ 1n

(∂Q

∂T

)y, calor específico molar.

O calor específico por massa é medido em J/kg.K e o calor específico molar em J/mol.K. Neste curso estaremos

trabalhando mais com o calor específico molar que é mais conveniente para o caso em que a substância sob

consideração é um gás. A dependência da capacidade térmica com o parâmetro externo fixo é bastante pronunciada

nos casos de gases. De fato, vamos exemplificar isso considerando o caso simples em que temos um gás confinado

em uma câmara cujo volume pode ser variado através de um pistão. Assim, temos três grandezas que caracterizam

o macroestado deste gás: a temperatura, a pressão e o volume. Como resultado, podemos definir dois tipos de

capacidades térmicas para este sistema:

(a) capacidade térmica a volume constante CV , ou seja, mantendo-se o pistão fixo em uma determinada posição;

(b) capacidade térmica a pressão constante Cp, onde o pistão é livre para se mover de modo que seu próprio peso

distribuído sobre a área do pistão exerce uma pressão constante sobre o gás que agora pode variar seu volume.

Para determinar a capacidade térmica a volume constante (CV ), simplesmente prendemos o pistão mantendo

fixo o volume ocupado pelo gás. Como resultado, o gás não pode realizar trabalho e todo calor adicionado ao gás

é convertido em variação da energia interna do gás, i.e., no aumento de sua temperatura. Assim, de acordo com a

primeira lei da termodinâmica, temos neste caso que:

dQ= dE.

No caso da capacidade térmica a pressão constante (Cp), o gás pode se expandir e com isso realizar trabalho

sobre o pistão no momento que calor é adicionado ao gás. Assim, a quantidade de calor é parte convertida em

trabalho do gás sobre o pistão e parte em variação da sua temperatura. Assim, da primeira lei da termodinâmica,

podemos escrever:

dQ= dE+dW.

A comparação das duas situações nos indica que CV < Cp pois no segundo caso precisamos adicionar mais

calor para produzir a mesma variação de temperatura. No caso de substâncias nos estados líquido e no estado

sólido, CV e Cp não diferem muito entre si desde que a expansão térmica destas substâncias é muito pequena.

Page 106: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

4.3. CALOR ESPECÍFICO E CAPACIDADE TÉRMICA 105

Outra maneira de expressar a capacidade térmica é usando a relação dQ= TdS:

dQ=(∂Q

∂T

)ydT = CydT = TdS = T

(∂S

∂T

)ydT

assim,

Cy = T

(∂S

∂T

)y. (4.5)

No caso particular em que os parâmetros externos são mantidos constantes, o sistema não realiza trabalho e,

pela primeira lei da termodinâmica,dQ= dE. No caso do volume ser o único parâmetro externo, segue que:

dQ=(∂Q

dT

)VdT =

(∂E

dT

)V

dT,

e como:

CV =(∂Q

∂T

)V

segue que:

CV =(∂E

∂T

)V

(4.6)

A Eq. (4.6) é bastante útil e completamente geral sendo empregada em várias situações.

A determinação do calor específico requer, necessariamente, uma medida do calor. Antes do calor ser en-

tendido como uma forma de energia, era comum usar uma unidade de medida separada para o calor. Esta era

chamada de caloria definida com sendo a quantidade de calor necessária para elevar de 1oC a temperatura da água

de 14,5oC para 15,5oC à pressão de 1 atm. Joule mostrou através de um experimento clássico que o calor e energia

eram equivalentes, e além disso, através da medida da capacidade térmica da água permitiu expressar a caloria em

unidades absolutas de energia. Em joules, a caloria é dada por:

1 cal = 4,1840 J.

4.3.1 Entropia

Queremos determinar agora a variação da entropia através de medidas das grandezas definidas previamente. Para

isso, usamos a 2a lei da termodinâmica que nos permite expressar a entropia em termos da quantidade de calor:

dS = dQ

T

Page 107: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

106 CAPÍTULO 4. TERMODINÂMICA E SUAS APLICAÇÕES

que integrada nos permite determinar a variação da entropia entre dois macroestados i e f :

∆S = Sf −Si =∫ f

i(eq)

dQ

T(4.7)

onde o subscrito (eq) indica que o sistema sob consideração deve ler levado do macroestado inicial ao final através

de um processo reversível (quasi-estático). Neste caso, conforme já discutido, a diferença de entropia ∆S é

independente do caminho. Adicionalmente, o sistema encontra-se sempre em equilíbrio em todos os estágios do

processo.

Considere que um macroestado é especificado apenas pela temperatura e todos os demais parâmetros externos

são mantidos constantes. Se conhecemos Cy(T ) nestas condições, então a diferença de entropia pode ser escrita

na forma:

Sf −Si =∫ Tf

Ti

Cy(T ′)T ′ dT ′

No caso particular, em que Cy é independente da temperatura, segue que:

Sf −Si = Cy ln(Tf

Ti

), (Cy independente da temperatura). (4.8)

A Eq. (4.8) nos permite relacionar a variação da entropia que pode ser determinada através da teoria micros-

cópica, com a capacidade térmica que está relacionada com a quantidade de calor absorvida/cedida pelo sistema

e a correspondente variação da temperatura, ou seja, é uma medida puramente macroscópica. Assim, temos mais

uma vez, a conexão entre as duas teorias que temos estudado no curso.

4.3.2 Conseqüências da definição da entropia absoluta

A Eq. (4.7) nos permite determinar a diferença de entropia entre dois macroestados de um sistema. No entanto,

mencionamos quando discutimos Física Estatística, que é possível determinar a entropia de maneira absoluta, i.e.,

não apenas sua variação mas o seu valor absoluto assim como no caso da temperatura. Com efeito, a terceira lei

da termodinâmica implica que

S → S0, quando T → 0.

O fato da entropia ter um valor absoluto tem conseqüências importantes com reflexo na determinação de quan-

tidades experimentais a partir dos valores de entropia. Para exemplificar, descrevemos abaixo um dos exemplos

dados no livro-texto: a transição de fase do estanho-cinza para o estanho branco. Outros exemplos podem ser

encontrados no livro do Reif e demais livros de Termodinâmica e Física Estatística.

Page 108: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

4.3. CALOR ESPECÍFICO E CAPACIDADE TÉRMICA 107

A transição estanho cinza — estanho branco

O estanho existe na natureza em duas formas: acima da temperatura T0 ∼ 292 K, o estanho tem a forma chamada

estanho “branco" que é metálico; abaixo de T0 a forma mais estável é a “cinza" que é um semicondutor. Exatamente

na temperatura de transição T0, ambas as fases coexistem e precisamos de uma quantidade de calor Q0 para

transformar 1 mol de estanho cinza em estanho branco. No entanto, como a velocidade da transição é muito baixa,

é possível encontrar estanho branco em temperaturas T < T0. Assim, podemos medir a capacidade térmica do

estanho branco Cw(T ) em temperaturas abaixo da transição1. Da mesma forma, podemos medir a capacidade

térmica do estanho cinza Cg(T ) na mesma faixa de temperatura.

Como a transformação é muito lenta, podemos imaginar uma situação em que impomos uma restrição sobre

o sistema de maneira a prevenir a transformação de estanho branco em estanho cinza. Isto equivale a considerar

a amostra de estanho composta por dois subsistemas em equilíbrio tal que nossos argumentos de física estatística

sejam aplicados. Com isso em mente, vamos imaginar que T → 0 tal que a entropia do sistema é somente aquela

devido aos spins dos núcleos atômicos. Como resultado, a entropia do estanho branco tende para um valor absoluto

S0, i.e., Sw →S0 quando T → T0. Este resultado significa que a entropia é reduzida a uma contribuição consistente

com a estrutura cristalina do estanho branco, ou seja, dos núcleos atômicos do estanho branco. Podemos fazer o

mesmo raciocínio para o caso do estanho cinza, i.e., Sg → S0 para T → T0. Notamos que independentemente se

a fase é branca ou cinza, a entropia em T = T0 é a mesma pois temos os mesmos núcleos atômicos para as duas

fases. Assim, podemos escrever:

Sg(T ) → S0 e Sw(T ) → S0, T → 0. (4.9)

ou seja,

Sg(0) = Sw(0).

Considere que tomamos o estanho branco de T = 0 até T = T0 (temperatura de transição). A entropia do

sistema mudará de acordo com

Sw(T0) = Sw(0)+∫ T0

0

Cw(T ′)T ′ dT ′. (4.10)

Agora considere que fazemos o mesmo para 1 mole de estanho cinza, mas na transição aplicamos uma quanti-

dade de calor Q0 de transformação para converter todo o estanho cinza em estanho branco. Neste caso, a entropia

em T = T0 será igual à Sw(T0), i.e.,

Sg(T0) = Sg(0)+∫ T0

0

Cg(T ′)T ′ dT ′ + Q0

T0= Sw(T0) (4.11)

1Aqui estamos considerando que as capacidades térmicas são medidas à pressão constante.

Page 109: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

108 CAPÍTULO 4. TERMODINÂMICA E SUAS APLICAÇÕES

pois todo o estanho cinza é convertido em estanho branco na transição. Assim, levando também em consideração

que Sg(0) = Sw(0), podemos escrever Eq. (4.11) na forma:

Sw(T0) = Sw(0)+∫ T0

0

Cg(T ′)T ′ dT ′ + Q0

T0(4.12)

Subtraindo a Eq. (4.10) da Eq. (4.12) segue que:

Sw(0)+∫ T0

0

Cg(T ′)T ′ dT ′ + Q0

T0−(Sw(0)+

∫ T0

0

Cw(T ′)T ′ dT ′

)= 0 (4.13)

de onde podemos obter o calor de transformação da transição:

Q0T0

=∫ T0

0

Cw(T ′)T ′ dT ′ −

∫ T0

0

Cg(T ′)T ′ dT ′ (4.14)

A Eq. (4.14) nos permite determinar exatamente o calor de transformação para converter o estanho cinza

em estanho branco a partir da medida das capacidades térmicas dos dois tipos de estanho. Note que isso só é

possível devido à entropia apresentar um valor absoluto em T = 0. Caso a entropia fosse conhecida a menos

de uma constante arbitrária, não seria possível eliminar os valores da entropia na temperatura nula e o calor de

transformação não poderia ser previsto teoricamente.

4.4 Aplicações simples da Termodinâmica macroscópica à um gás ideal

Agora que já descrevemos todas as grandezas básicas que aparecem em termodinâmica, vamos considerar as con-

seqüências das leis da termodinâmica em sistemas simples. Como antes, consideramos que todas as quantidades

como pressão, energia, etc., são quantidades médias. No entanto, por simplicidade, vamos omitir as barras sobre

estas quantidades embora fique implícito que são quantidades médias.

A maioria dos sistemas que estudaremos serão caracterizados por apenas uma única variável externa, o volume

V . O macroestado do sistema será caracterizado por duas variáveis macroscópicas: o volume V e a energia interna

E. As outras quantidades como temperatura, pressão, etc., são então determinadas. Nem sempre a energia e o

volume são quantidades convenientes para se medir experimentalmente. Neste caso, as determinamos em termos

de outras variáveis macroscópicas.

A maioria dos cálculos envolvem troca de variáveis e cálculo de derivadas parciais. Para evitar ambigüidade,

usamos um índice para denotar as variáveis independentes que são mantidas constantes no cálculos das derivadas.

Por exemplo, se T e V são variáveis independentes, (∂E/∂T )V denota uma derivada onde V é constante. Por

outro lado, se p e T são mantidos como variáveis independentes, (∂E/∂T )p denota uma derivada onde p está fixo.

se escrevemos,

∂E

∂T

Page 110: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

4.4. APLICAÇÕES SIMPLES DA TERMODINÂMICA MACROSCÓPICA À UM GÁS IDEAL 109

sem nenhum índice, não fica claro qual é a variável que está fixa no cálculo da derivada.

A primeira lei da termodinâmica, aplicada a qualquer processo infinitesimal, é dada por

dE = dQ− dW

onde dE é a mudança na energia interna; dQ é o calor absorvido pelo sistema e dW é trabalho realizado pelo

sistema. Caso estejamos tratando de um processo quasi-estático, podemos expressar o calor absorvido em termos

da mudança na entropia do sistema, i.e., podemos aplicar a relação dS =dQ/T . O trabalho realizado pelo sistema

quando seu volume sofre uma variação infinitesimal dV é dado por pdV . Com isso, podemos escrever a primeira

lei da seguinte forma:

TdS = dE+pdV. (4.15)

A maioria dos resultados que iremos obter neste capítulo são derivados a partir da Eq. (4.15).

4.4.1 Propriedades dos gases ideais

Como um primeiro exemplo, vamos considerar um gás ideal que é macroscopicamente definido através da chamada

lei dos gases ideais:

pV = nRT (4.16)

onde n é o número de moles do gás.

Já derivamos a lei dos gases ideais a partir de argumentos microscópicos. Do ponto de vista macroscópicos, a

Eq. (4.16) nos indica o tipo de sistema que estamos trabalhando. Desta forma, a Eq. (4.16) pode ser considerada

como sendo puramente fenomenológica resumindo os principais resultados experimentais.

Provamos um segundo resultado importante, usando a Física Estatística, para os gases ideais: a energia do gás

depende apenas de sua temperatura, ou seja,

E = E(T ). (4.17)

A Eq. (4.17) nos mostra que caso o volume do sistema seja alterado, a energia do gás não é modificada. Pode-

mos mostrar que este resultado é uma conseqüência da leis dos gases ideais. Para isso, partimos do pressuposto de

que a energia do gás ideal dependa do volume, assim,

E = E(T,V )

Page 111: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

110 CAPÍTULO 4. TERMODINÂMICA E SUAS APLICAÇÕES

o que nos permite escrever,

dE =(∂E

∂T

)VdT +

(∂E

∂V

)TdV. (4.18)

Agora, considere a Eq. (4.15):

dS = dE

T+ p

TdV

e como pV = nRT , então a razão p/T pode ser escrita na forma:

dS = dE

T+ nR

VdV

e substituindo dE pela Eq. (4.18) segue que:

dS = 1T

(∂E

∂T

)VdT +

[ 1T

(∂E

∂V

)T

+ nR

V

]dV

Desde que a entropia é uma diferencial exata, podemos expressá-la como S = S(T,V ), assim:

dS =(∂S

∂T

)VdT +

(∂S

∂V

)TdV (4.19)

e comparando com a equação anterior, temos as seguintes igualdades:(∂S

∂T

)V

= 1T

(∂E

∂T

)V

(4.20)(∂S

∂V

)T

= 1T

(∂E

∂V

)T

+ nR

V(4.21)

Agora lembramos aqui que as segundas derivadas não dependem da ordem da diferenciação, assim, escreve-

mos:

∂2S

∂V ∂T= ∂2S

∂T∂V

ou ainda, (∂

∂V

)T

(∂S

∂T

)V

=(∂

∂T

)V

(∂S

∂V

)T

e substituindo as derivadas dadas pelas Eqs. (4.20) e (4.21), segue que:(∂

∂V

)T

[ 1T

(∂E

∂T

)V

]=(∂

∂T

)V

[ 1T

(∂E

∂V

)T

+ nR

V

]

1T

∂2E

∂V ∂T= − 1

T 2

(∂E

∂V

)T

+ 1T

∂2E

∂V ∂T

Page 112: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

4.4. APLICAÇÕES SIMPLES DA TERMODINÂMICA MACROSCÓPICA À UM GÁS IDEAL 111

onde usamos novamente o fato de que a segunda derivada independe da ordem. Assim, segue que:

0 = − 1T 2

(∂E

∂V

)T

(∂E

∂V

)T

= 0.

e vemos então que a derivada da energia em relação ao volume do sistema é zero. Como resultado, a energia média

do gás ideal independe do volume.

Calores específicos de um gás ideal

Vamos derivar agora algumas expressões para os calores específicos envolvendo um gás ideal. Para isso, partimos

da primeira lei da termodinâmica:

dQ= dE+pdV.

O calor específico molar a volume constante cV é dado por:

cV = 1n

(∂Q

∂T

)V

= 1n

(∂E

∂T

)V

onde já demonstramos a última igualdade válida para volume constante. Assim, podemos escrever:

dE = ncV dT.

Substituindo-se esta relação na primeira lei da termodinâmica, segue que:

dQ= ncV dT +pdV

Vamos agora considerar o cálculo do calor específico molar à pressão constante. Neste caso, podemos fazer a

troca pdV = nRdT , com p constante, na equação acima. Assim, segue que:

dQ= ncV dT +nRdT = n(cV +R)dT

podemos escrever ainda,

dQ=(∂Q

∂T

)pdT = ncpdT = n(cV +R)dT

de onde tiramos a relação:

cp = cV +R. (4.22)

Page 113: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

112 CAPÍTULO 4. TERMODINÂMICA E SUAS APLICAÇÕES

Vemos então que cp > cV , como era esperado desde que à pressão constante parte do calor é convertido

em trabalho realizado pelo gás em sua expansão; a volume constante todo o calor é convertido em variação da

temperatura.

Uma quantidade bastante útil é a razão dos calores específicos γ:

γ ≡ cp

cV

que no caso dos gases ideais pode ser escrita na forma alternativa através da Eq. (4.22)

γ = 1+ R

cV.

A razão γ pode ser determinada experimentalmente através da medida da velocidade do som no gás. Usando

os métodos de Física Estatística, podemos determinar o valor de γ através do número de estados acessíveis para o

gás ideal que determinamos anteriormente:

Ω(E) =BV NE3N/2

de onde obtemos:

lnΩ = lnB+N lnV + 3N2

lnE

o que nos permite escrever:

β = 1kBT

= ∂ lnΩ∂E

= 3N2E

assim,

E = 32NkBT = 3

2NankBT = 3

2nRT

e desde que temos o valor da energia média, podemos determinar o calor específico a volume constante:

cV = 1n

(∂E

∂T

)V

= 1n

32nR ∴ cV = 3

2R (4.23)

e substituindo em Eq. (4.22), podemos determinar o calor específico a pressão constante:

cp = 52R

o que nos permite determinar a razão γ:

γ = 1+ R32R

= 53

≈ 1,667.

Page 114: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

4.4. APLICAÇÕES SIMPLES DA TERMODINÂMICA MACROSCÓPICA À UM GÁS IDEAL 113

Compressão e Expansão adiabáticas de um gás ideal

Se fazemos um gás sofrer uma expansão ao mesmo tempo que fica em contato com um reservatório térmico, então

sua expansão é isotérmica (temperatura constante). Neste caso, a lei dos gases ideais nos garante que

pV = constante,

ou seja, no diagrama p−V a pressão será uma função inversa do volume.

Suponha agora que o gás encontra-se termicamente isolado de suas vizinhanças. Neste caso, se o gás se

expande, o trabalho realizado será feito às custas de sua própria energia interna e sua temperatura mudará. Isto

está em contraste com a expansão isotérmica onde o reservatório fornecia a energia necessária na forma de calor

para contrabalançar as perdas pelo trabalho realizado pelo gás.

Vamos então determinar a forma da função p(V ) que descreve a expansão adiabática do gás ideal. Para isso,

partimos, como sempre, da primeira lei da termodinâmica dada pela Eq. (4.15):

dQ= dE+pdV

e conforme já mostramos, dE = ncV dT logo:

dQ= ncV dT +pdV

e como estamos considerando uma expansão adiabática, entãodQ= 0, o que nos permite escrever:

0 = ncV dT +pdV.

Aqui podemos usar a equação de estado para os gases ideais:

pV = nRT

ou ainda,

V dp+pdV = nRdT ∴ dT = p

nRdV + V

nRdp

e substituindo-se na primeira lei, podemos escrever ainda

ncV

(p

nRdV + V

nRdp

)+pdV = 0

ou ainda,

cVp

RdV + cV

V

Rdp+pdV = 0

Page 115: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

114 CAPÍTULO 4. TERMODINÂMICA E SUAS APLICAÇÕES

cVV

Rdp+

(1+ cV

R

)pdV = 0

V cV dp+(R+ cV )pdV = 0

e lembrando que cp = cV +R assim,

V cV dp+ cppdV = 0

ou ainda

dp

p+γ

dV

V= 0,

onde usamos γ = cp/cV . Fazendo a integração, podemos escrever:

lnp+lnV γ = constante.

o que pode ser escrito na forma:

pV γ = constante. (4.24)

A Eq. (4.24) nos indica que no caso de uma expansão adiabática, a pressão varia mais rapidamente com o

volume que no caso isotérmico pois γ > 1.

Entropia de um gás ideal

A entropia do gás ideal pode ser obtida usando a equação geral, oriunda da primeira lei da termodinâmica:

TdS = ncV (T )dT +pdV

e dividindo pela temperatura, podemos expressar a variação da entropia em termos da temperatura e o volume do

gás:

dS = ncV (T )dTT

+ p

TdV

e como pV = nRT , podemos escrever ainda

dS = ncV (T )dTT

+nRdV

V. (4.25)

Page 116: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

4.5. RELAÇÕES GERAIS PARA UMA SUBSTÂNCIA HOMOGÊNEA 115

A Eq. (4.25) permite determinar a entropia de n moles de um gás ideal para quaisquer valores de temperatura

e volume. Porém, antes de efetuar a integração diretamente, notamos que S = S(T,V ) e, então, a variação da

entropia é determinada trazendo o sistema de um macroestado padrão [caracterizado pelos valores (T0,V0)] ao

macroestado final (T,V ). Como S é uma variável de estado, a entropia depende apenas dos estados final e inicial

e não do caminho percorrido entre os dois pontos. Notamos que estamos tratando de processos quasi-estáticos.

Vamos supor o caso mais simples possível onde temos um processo que leva o sistema do macroestado (T0,V0)

ao estado (T,V0) mantendo-se o volume constante; em seguida temos um segundo processo que leva o sistema do

macroestado (T,V0) ao macroestado final (T,V ) onde a temperatura é mantida constante.

No primeiro passo, a variação da entropia é dada por:

S(T,V0)−S(T0,V0) = n

∫ T

T0

cV (T ′)T ′ dT ′,

e o segundo processo ocorre à temperatura constante:

S(T,V )−S(T,V0) = nR

∫ V

V0

dV ′

V ′ dV ′ = nR ln V

V0

Somando-se as duas equações, podemos escrever:

S(T,V )−S(T,V0)+S(T,V0)−S(T0,V0) = n

∫ T

T0

cV (T ′)T ′ dT ′ +nR ln V

V0

S(T,V )−S(T0,V0) = n

∫ T

T0

cV (T ′)T ′ dT ′ +nR ln V

V0

o que também pode ser escrita na forma:

S(T,V ) = n

∫cV (T ′)T ′ dT ′ +nR lnV + constante.

4.5 Relações gerais para uma substância homogênea

Vamos considerar um sistema homogêneo cujo volume V é o único parâmetro externo de relevância. Partimos da

relação geral:

dQ= TdS = dE+pdV, (4.26)

e vamos obter várias relações gerais que serão úteis nos estudos subseqüentes.

Page 117: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

116 CAPÍTULO 4. TERMODINÂMICA E SUAS APLICAÇÕES

4.5.1 Variáveis independentes S e V

Temos que:

dE = TdS−pdV (4.27)

onde estamos considerando S e V como variáveis independentes de modo que a energia interna E = E(S,V ).

Assim, podemos escrever:

dE =(∂E

∂S

)VdS+

(∂E

∂V

)SdV

e comparando com a Eq. (4.27), obtemos as seguintes relações básicas:

T =(∂E

∂S

)V, (4.28a)

−p=(∂E

∂V

)S. (4.28b)

Note que o lado direito da Eq. (4.27) é sempre igual à uma diferencial exata de uma quantidade, neste caso, a

energia interna E. Assim, os parâmetros T, S, V e p não podem ser variados de modo arbitrário, pois existe uma

conexão entre elas para garantir que suas combinações permitam obter uma diferencial exata dE. Para achar esta

conexão, lembramos que a segunda derivada de qualquer quantidade em relação à duas variáveis quaisquer deve

ser independente da ordem da diferenciação, assim, podemos escrever:

∂2E

∂S∂V= ∂2E

∂V ∂S

ou seja, (∂

∂S

)V

(∂E

∂V

)S

=(∂

∂V

)S

(∂E

∂S

)V

e substituindo as Eqs. (4.28) obtemos: (∂T

∂V

)S

= −(∂p

∂S

)V. (4.29)

4.5.2 Variáveis independentes S e p

Poderíamos ter escolhido S e p como variáveis independentes. Para isso, usamos:

pdV = d(pV )−V dp

que é simplesmente a diferencial de duas variáveis. Substituindo o produto pdV na Eq. (4.27), segue que:

dE = TdS−pdV

Page 118: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

4.5. RELAÇÕES GERAIS PARA UMA SUBSTÂNCIA HOMOGÊNEA 117

dE = TdS− [d(pV )−V dp] = TdS−d(pV )+V dp

o que também pode ser colocado na forma:

d(E+pV ) = TdS+V dp

e definindo a entalpia como:

H = E+pV (4.30)

segue que:

dH = TdS+V dp (4.31)

e vemos que também se trata de uma função de estado H =H(S,p). Assim, temos a relação geral:

dH =(∂H

∂S

)pdS+

(∂H

∂p

)S

dp

e comparando com a Eq. (4.31) obtemos:

T =(∂H

∂S

)p

(4.32a)

V =(∂H

∂p

)S

(4.32b)

e da mesma forma que fizemos para a energia interna, consideramos que a segunda derivada da entalpia em relação

às variáveis S e p é independente da ordem de integração, i.e.,

∂2H

∂S∂p= ∂2H

∂p∂S

ou seja, (∂

∂S

)p

(∂H

∂p

)S

=(∂

∂p

)S

(∂H

∂S

)p

e substituindo as Eqs. (4.32a): (∂T

∂p

)S

=(∂V

∂S

)p. (4.33)

4.5.3 Variáveis Independentes T e V

Neste caso, devemos eliminar a variável S da Eq. (4.27). Para isso usamos,

TdS = d(TS)−SdT

Page 119: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

118 CAPÍTULO 4. TERMODINÂMICA E SUAS APLICAÇÕES

o que nos permite escrever:

dE = d(TS)−SdT −pdV

d(E−TS) = −SdT −pdV

e definindo

F = E−TS (4.34)

como sendo a energia livre de Helmholtz, podemos escrever:

dF = −SdT −pdV. (4.35)

De maneira geral, se F = F (T,V ), então a diferencial de F é dada por:

dF =(∂F

∂T

)VdT +

(∂F

∂V

)TdV

e comparando com a Eq. (4.35), obtemos:

−S =(∂F

∂T

)V

(4.36a)

−p=(∂F

∂V

)T

(4.36b)

Aqui novamente consideramos o fato de que a energia livre também é uma função de estado de modo que sua

segunda derivada em relação à T e V é independente da ordem de diferenciação, assim:

∂2F

∂T∂V= ∂2F

∂V ∂T

ou seja,

(∂

∂T

)V

(∂F

∂V

)T

=(∂

∂V

)T

(∂F

∂T

)V

e substituindo-se a Eq. (4.36a), chegamos à mais uma relação:

(∂p

∂T

)V

=(∂S

∂V

)T. (4.37)

Page 120: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

4.5. RELAÇÕES GERAIS PARA UMA SUBSTÂNCIA HOMOGÊNEA 119

4.5.4 Variáveis Independentes T e p

A última combinação de variáveis independentes será a pressão e o volume do sistema. Neste caso também

partimos da relação geral para a energia livre

dE = TdS−pdV

e agora desejamos eliminar tanto S como V em termos de T e p, respectivamente. Para isso, usamos simultanea-

mente:

TdS = d(TS)−SdT

pdV = d(pV )−V dp

assim, segue que:

dE = d(TS)−SdT −d(pV )+V dp

que leva a seguinte relação:

d(E−TS+pV ) = −SdT +V dp.

Definindo a energia livre de Gibbs na forma:

G= E−TS+pV

podemos escrever a diferencial acima como:

dG= −SdT +V dp.

Como antes, G=G(T,p) o que nos permite escrever a diferencial geral na forma:

dG=(∂G

∂T

)pdT +

(∂G

∂p

)T

dp

e comparando com a equação anterior, chegamos às seguintes igualdades:

−S =(∂G

∂T

)p

(4.38a)

V =(∂G

∂p

)T

(4.38b)

Da mesma forma que nos demais casos, a energia livre de Gibbs também tem a propriedade:

∂2G

∂T∂p= ∂2G

∂p∂T

Page 121: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

120 CAPÍTULO 4. TERMODINÂMICA E SUAS APLICAÇÕES

ou seja, (∂

∂T

)p

(∂G

∂p

)T

=(∂

∂p

)T

(∂G

∂T

)p

e substituindo (4.38), podemos escrever ainda(∂V

∂T

)p

= −(∂S

∂p

)T

. (4.39)

4.5.5 Relações de Maxwell

Toda a discussão precedente tem origem na relação fundamental

dE = TdS−pdV

através da qual obtivemos quatro igualdades dadas pelas Eqs. (4.29) a (4.39) que são chamadas de relações de

Maxwell. Estas relações são satisfeitas devido ao fato das variáveis termodinâmicas não serem completamente

independentes pois não podem variar de maneira arbitrária. Com efeito, as variações dos parâmetros externos

como V , p e T são tais que grandezas como entropia e energia interna independem do trajeto utilizado para

sair do ponto inicial e chegar ao ponto final do processo. Este vínculo pode ser implementado matematicamente

considerando que a segunda derivada da energia independe da ordem de diferenciação. Isto é válido para qualquer

função contínua que dependa de duas ou mais variáveis.

Quando discutimos a Física Estatística, mencionamos que era possível construir uma descrição macroscópica

para um sistema se tivéssemos o número de estados acessíveis ao sistema (Ω). De fato, obtivemos duas relações

fundamentais que permitiam obter tanto a temperatura como a força generalizada em termos de Ω. Usando a

relação fundamental da Física Estatística, S = kB lnΩ, podemos escrever estas relações na forma:

1T

=(∂S

∂E

)V

e p= T

(∂S

∂V

)E

(4.40)

e assim, bastava conhecer o número de estados acessíveis como função de E e V para se obter uma descrição

macroscópica do sistema. A Eq. (4.27) é resultado do fato da temperatura e pressão serem expressos em termos

da entropia:

dS =(∂S

∂E

)VdE+

(∂S

∂V

)EdV

e substituindo a Eq. (4.40) obtemos:

dS = 1TdE+ p

TdV ∴ dE = TdS−pdV

que é a Eq. (4.27). Assim, vemos então que tudo pode ser demonstrado a partir dos conceitos aprendidos nos

capítulos anteriores. Abaixo, apresentamos um quadro que resume as principais relações que desenvolvemos nesta

seção.

Page 122: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

4.6. CAPACIDADES TÉRMICAS (CASO GERAL) 121

Tabela 4.1: Tabela resumindo as funções termodinâmicas definidas nesta seção.

Energia Interna E = E(S,V ) dE = TdS−pdV

Energia livre de Helmholtz F = F (T,V ) dF = −SdT −pdV

Energia livre de Gibbs G=G(T,p) dG= −SdT +V dp

Entalpia H =H(S,p) dH = TdS+V dp

4.6 Capacidades Térmicas (caso geral)

Vamos considerar uma substância homogênea cujo volume V é o único parâmetro externo relevante. Aqui preten-

demos determinar uma relação geral entre a capacidade térmica a volume e pressão constantes. Estas relações são

importantes porque normalmente podemos determinar a CV teoricamente de maneira direta, porém, Cp é a quan-

tidade comumente determinada experimentalmente. Assim, a relação que será obtida nos permitirá estabelecer a

conexão entre as duas quantidades.

Começamos lembrando as definições das capacidades térmicas:

CV =(∂Q

∂T

)V

= T

(∂S

∂T

)V,

Cp =(∂Q

∂T

)p

= T

(∂S

∂T

)p.

Experimentalmente, controlamos mais facilmente a pressão e a temperatura. Assim, vamos expressar o calor

como função destes parâmetros:

dQ= TdS = T

(∂S

∂T

)pdT +T

(∂S

∂p

)T

dp

o que nos permite escrever

dQ= TdS = CpdT +T

(∂S

∂p

)T

dp

enquanto que a outra derivada (∂S/∂p)T não é medida experimentalmente. Porém, podemos reescrevê-la usando

uma das relações de Maxwell: (∂S

∂p

)T

= −(∂V

∂T

)p

que é uma quantidade medida experimentalmente. É a variação do volume do sistema com a temperatura à pressão

constante. Definimos o coeficiente de expansão volumétrica como:

α= 1V

(∂V

∂T

)p

(4.41)

Page 123: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

122 CAPÍTULO 4. TERMODINÂMICA E SUAS APLICAÇÕES

o que nos permite escrever:

dQ= CpdT −αTV dp. (4.42)

Desde que procuramos uma relação entre Cp e CV , podemos escrever Eq. (4.42) na forma

dQ=(∂Q

∂T

)VdT = CpdT −αTV

[(∂p

∂T

)VdT +

(∂p

∂V

)TdV

]e desde que estamos considerando que a variação (∂Q/∂T )V a volume constante então dV = 0, o que nos permite

escrever:

CV dT = CpdT −αTV

(∂p

∂T

)VdT

ou ainda,

CV = Cp −αTV

(∂p

∂T

)V. (4.43)

Resta determinar a derivada (∂p/∂T )V . Para isso, expressamos a variação do volume em termos da pressão e

temperatura. Assim, segue que:

dV =(∂V

∂T

)pdT +

(∂V

∂p

)T

dp

e no caso de dV = 0, podemos escrever ainda(∂V

∂T

)pdT +

(∂V

∂p

)T

dp= 0

(∂V

∂p

)T

dp= −(∂V

∂T

)pdT

dp= −

(∂V

∂T

)p(

∂V

∂p

)T

dT

e expressando dp em termos da variação da temperatura e volume (mantido constante), obtemos que:

dp=(∂p

∂T

)VdT +0 = −

(∂V

∂T

)p(

∂V

∂p

)T

dT

Page 124: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

4.7. MANIPULANDO DERIVADAS PARCIAIS 123

(∂p

∂T

)V

= −

(∂V

∂T

)p(

∂V

∂p

)T

Aqui definimos a chamada compressibilidade isotérmica como:

κ= − 1V

(∂V

∂p

)T

(4.44)

onde o sinal de menos é usado na definição para que κ > 0. Assim, usando a definição (4.41), segue que:(∂p

∂T

)V

= α

κ

e substituindo na Eq. (4.43), temos:

CV = Cp −αTVα

κ

Cp −CV = TVα2

κ(4.45)

que é a relação procurada. Notamos que a Eq. (4.45) é completamente geral podendo ser aplicada para sólidos,

líquidos e gases. Os dois primeiros apresentam valores pequenos de α de maneira que Cp e CV diferem muito

pouco entre si.

4.7 Manipulando Derivadas Parciais

Faremos aqui uma digressão para discutir alguns aspectos técnicos relacionados com a manipulação de derivadas

parciais. Isto se faz necessário tendo-se em vista que nem sempre as relações de Maxwell são suficientes para se

obter todas as identidades termodinâmicas. Neste contexto, lançamos mão de um método elegante baseados nos

Jacobianos.

4.7.1 Jacobianos

O Jacobiano aparece quando estamos trabalhando com integrais múltiplas e desejamos efetuar uma troca de va-

riáveis. Por exemplo, para passar de coordenadas retangulares para cilíndricas ou esféricas. De modo geral, o

Jacobiano é um determinante de derivadas parciais, que no caso bidimensional, é definido por:

∂(u,v)∂(x,y)

∣∣∣∣∣∣∣∣∂u

∂x

∂u

∂y∂v

∂x

∂v

∂y

∣∣∣∣∣∣∣∣=(∂u

∂x

)y

(∂v

∂y

)x

−(∂v

∂x

)y

(∂u

∂y

)x

(4.46)

Page 125: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

124 CAPÍTULO 4. TERMODINÂMICA E SUAS APLICAÇÕES

onde na última linha utilizamos a notação que temos empregado no decorrer do curso. Os Jacobianos têm vá-

rias propriedades que os tornam úteis em aplicações em termodinâmica. Abaixo, apresentamos algumas destas

propriedades.

Simetria de Jacobianos

O Jacobiano troca de sinal sempre que duas variáveis do numerador são trocadas. Isto ocorre porque o sinal do

determinante é trocado quando invertemos suas linhas e colunas. Assim, temos:

∂(u,v)∂(x,y)

= −∂(v,u)∂(x,y)

= ∂(v,u)∂(y,x)

= −∂(u,v)∂(y,x)

. (4.47)

Derivadas Parciais e Jacobianos

Podemos estabelecer uma conexão direta entre derivadas parciais e Jacobianos. Para isso, podemos fazemos v = y

na Eq. (4.46):

∂(u,y)∂(x,y)

=

∣∣∣∣∣∣∣∣∂u

∂x

∂u

∂y∂y

∂x

∂y

∂y

∣∣∣∣∣∣∣∣=∣∣∣∣∣∣∣∂u

∂x

∂u

∂y

0 1

∣∣∣∣∣∣∣∂(u,y)∂(x,y)

=(∂u

∂x

)y

(4.48)

e vemos então que a derivada parcial é um caso particular do Jacobiano. Isto pode ser estendido para três ou mais

variáveis:

∂(u,y,z)∂(x,y,z)

=(∂u

∂x

)y,z.

Regra da Cadeira para Jacobianos

Podemos definir uma regra da cadeia para Jacobianos:

∂(u,v)∂(x,y)

= ∂(u,v)∂(r,s)

∂(r,s)∂(x,y)

. (4.49)

Para provar a Eq. (4.49), usamos a notação compacta

∂u

∂x≡ ux

assim, segue que:

∂(u,v)∂(r,s)

∂(r,s)∂(x,y)

=

∣∣∣∣∣∣∣ur us

vr vs

∣∣∣∣∣∣∣∣∣∣∣∣∣∣rx ry

sx sy

∣∣∣∣∣∣∣=∣∣∣∣∣∣∣urrx +ussx urry +ussy

vrrx +vssx vrry +vssy

∣∣∣∣∣∣∣=∣∣∣∣∣∣∣ux uy

vx vy

∣∣∣∣∣∣∣=∂(u,v)∂(x,y)

Page 126: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

4.7. MANIPULANDO DERIVADAS PARCIAIS 125

como queríamos demonstrar2.

Produtos de Jacobianos

Também podemos efetuar produtos de Jacobianos da seguinte forma:

∂(u,v)∂(x,y)

∂(a,b)∂(c,d)

= ∂(u,v)∂(c,d)

∂(a,b)∂(x,y)

. (4.50)

Você pode provar esta propriedade facilmente usando a regra da cadeia. Fica como exercício!

Recíprocos de Jacobianos

Considerando que

∂(u,v)∂(u,v)

= 1

por razões óbvias, usando a regra da cadeia, podemos escrever:

∂(u,v)∂(u,v)

= ∂(u,v)∂(r,s)

∂(r,s)∂(u,v)

= 1

ou seja,

∂(u,v)∂(r,s)

= 1(∂(r,s)∂(u,v)

) . (4.51)

Esta propriedade nos permite reescrever a regra da cadeia da seguinte forma:

∂(u,v)∂(x,y)

=

∂(u,v)∂(r,s)∂(x,y)∂(r,s)

. (4.52)

Uma particularização da Eq. (4.51) nos permite obter uma relação interessante entre derivadas parciais. Para

isso, fazemos v = s= y, e r = x na Eq. (4.51) o que nos leva a

∂(u,y)∂(x,y)

= 1(∂(x,y)∂(u,y)

) .2Aqui consideramos que:

∂u

∂x= ∂u

∂r

∂r

∂x+ ∂u

∂s

∂s

∂x∂u

∂y= ∂u

∂r

∂r

∂y+ ∂u

∂s

∂s

∂y.

e o mesmo válido para a variável v.

Page 127: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

126 CAPÍTULO 4. TERMODINÂMICA E SUAS APLICAÇÕES

mas pela propriedade ilustrada na Eq. (4.48) podemos escrever ainda(∂u

∂x

)y

= 1(∂x

∂u

)y

. (4.53)

4.7.2 Aplicações de Jacobianos

Para dar uma idéia concreta das aplicações de Jacobianos, vamos fazer alguns exemplos de aplicações dos mesmos

escrevendo algumas derivadas parciais em termos de quantidades conhecidas e medidas experimentalmente como

κ, α, etc.

Cálculo de(∂p

∂T

)V

Queremos expressar a derivada da pressão em relação à temperatura mantendo-se o volume constante. Para isso,

partimos da expressão desta derivada em temos de Jacobianos usando-se a Eq. (4.48):(∂p

∂T

)V

= ∂(p,V )∂(T,V )

e como queremos, em princípio, relacionar esta derivada com o coeficiente de expansão térmica e compressibili-

dade volumétrica, então temos que:(∂p

∂T

)V

= ∂(p,V )∂(p,T )

∂(p,T )∂(T,V )

= −∂(V,p)∂(T,p)

∂(p,T )∂(V,T )

onde invertemos a ordem dos elementos da primeira derivada tanto no numerador quanto denominador. No se-

gundo termo, apenas invertemos o par (T,V ) no denominador o que gerou o sinal negativo. Desde que o primeiro

termo é proporcional ao coeficiente de expansão volumétrica, então escrevemos:(∂p

∂T

)V

= −(∂V

∂T

)p

∂(p,T )∂(V,T )

e segundo termo pode ser reescrito usando-se a propriedade expressa pela Eq. (4.53):(∂p

∂T

)V

= −(∂V

∂T

)p

1∂(V,T )∂(p,T )

= −(∂V

∂T

)p

1(∂V

∂p

)T

= 1V

(∂V

∂T

)p

1[− 1V

(∂V

∂p

)T

]e lembrando que o coeficiente de expansão térmica α e a compressibilidade isotérmica κ são dados por:

α= 1V

(∂V

∂T

)p

κ= − 1V

(∂V

∂p

)T

então, substituindo estas relações então vamos obter:(∂p

∂T

)V

= α

κ(4.54)

Page 128: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

4.7. MANIPULANDO DERIVADAS PARCIAIS 127

Relação entre as capacidades térmicas Cp e CV

Podemos obter a Eq. (4.45) que relaciona as capacidades térmicas Cp e CV através do uso dos Jacobianos. Vamos

ilustrar este cálculo agora.

Temos que a capacidade térmica a volume constante é definida como:

CV = T

(∂S

∂T

)V

= T∂(S,V )∂(T,V )

= T∂(S,V )∂(T,p)

∂(T,p)∂(T,V )

= T∂(S,V )∂(T,p)

[∂(T,V )∂(T,p)

]−1

e como

∂(T,V )∂(T,p)

= ∂(V,T )∂(p,T )

=(∂V

∂p

)T

= −V κ

assim, temos que

CV = − T

V κ

∂(S,V )∂(T,p)

onde o Jacobiano restante não pode, em princípio, ser simplificado. Assim, usamos o determinante para calculá-lo

explicitamente:

∂(S,V )∂(T,p)

=

∣∣∣∣∣∣∣∣∣∣∣

∂S

∂T

∂S

∂p

∂V

∂T

∂V

∂p

∣∣∣∣∣∣∣∣∣∣∣=(∂S

∂T

)p

(∂V

∂p

)T

−(∂S

∂p

)T

(∂V

∂T

)p.

e substituindo na expressão para CV , vamos obter

CV = − T

V κ

[(∂S

∂T

)p

(∂V

∂p

)T

−(∂S

∂p

)T

(∂V

∂T

)p

]

onde podemos identificar várias quantidades previamente definidas:(∂S

∂T

)p

= Cp

T(∂V

∂p

)T

= −V κ(∂S

∂p

)T

= −(∂V

∂T

)p

= −V α(∂V

∂T

)p

= V α

e substituindo em CV , segue que:

CV = − T

V κ

[Cp

T(−V κ)− (−V α)V α

]=[Cp − TV α2

κ

]∴ Cp −CV = TV α2

κ

que é o mesmo resultado da Eq. (4.45).

Page 129: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

128 CAPÍTULO 4. TERMODINÂMICA E SUAS APLICAÇÕES

Cálculo de(∂T

∂p

)S

Vamos determinar o valor desta derivada em termos das quantidades anteriores. Para isso, partimos de(∂T

∂p

)S

= ∂(T,S)∂(p,S)

= ∂(T,S)∂(p,T )

∂(p,T )∂(p,S)

e invertendo a ordem do numerador do primeiro Jacobiano e usando a propriedade dada pela Eq. (4.53) podemos

escrever ainda: (∂T

∂p

)S

= −∂(S,T )∂(p,T )

1∂(p,S)∂(p,T )

= −∂(S,T )∂(p,T )

1∂(S,p)∂(T,p)

= −(∂S

∂p

)T

1(∂S

∂T

)p

e reconhecendo a capacidade térmica a pressão constante no denominador, podemos escrever ainda(∂T

∂p

)S

= −(∂S

∂p

)T

T

Cp=(∂V

∂T

)p

T

Cp

onde usamos uma das relações de Maxwell para transformar a primeira derivada. Agora, percebemos que a deri-

vada resultante é proporcional ao coeficiente de expansão térmica, assim, chegamos ao resultado final:(∂T

∂p

)S

= αV T

Cp. (4.55)

Provar que: TdS = Cp

αVdV +CV

κ

αdp.

Aqui temos que demonstrar a relação acima. Para isso, expressamos a variação da entropia em termos do volume

e pressão:

TdS = T

(∂S

∂V

)pdV +T

(∂S

∂p

)V

dp

e resta então escrever as duas derivadas em termos de quantidades conhecidas. Vamos começar com a primeira:(∂S

∂V

)p

= ∂(S,p)∂(V,p)

= ∂(S,p)∂(p,T )

∂(p,T )∂(V,p)

= ∂(S,p)∂(T,p)

∂(T,p)∂(V,p)

=(∂S

∂T

)p

(∂T

∂V

)p

(∂S

∂V

)p

=

(∂S

∂T

)p(

∂V

∂T

)p

=

Cp

TαV

= Cp

αTV

A outra derivada pode ser trabalhada da mesma forma:(∂S

∂p

)V

= ∂(S,V )∂(p,V )

= ∂(S,V )∂(T,V )

∂(T,V )∂(p,V )

=(∂S

∂T

)V

∂(T,V )∂(T,p)

∂(T,p)∂(p,V )

= −(∂S

∂T

)V

∂(V,T )∂(p,T )

∂(T,p)∂(V,p)

Page 130: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

4.8. ENTROPIA E ENERGIA INTERNA 129

(∂S

∂p

)V

= −(∂S

∂T

)V

(∂V

∂p

)T

(∂T

∂V

)p

= −(∂S

∂T

)V

(∂V

∂p

)T(

∂V

∂T

)p(

∂S

∂p

)V

= −CV

T

(−κV )αV

= CV κ

e substituindo os dois resultados na expressão, podemos escrever:

TdS = TCp

αTVdV +T

CV κ

Tαdp

TdS = Cp

αVdV + CV κ

αdp.

4.8 Entropia e Energia Interna

Considere a temperatura T e o volume V de uma substância como variáveis independentes. Então, podemos

escrever a entropia na forma:

S = S(T,V )

o que nos permite escrever a diferencial:

dS =(∂S

∂T

)VdT +

(∂S

∂V

)TdV

A primeira derivada é proporcional à capacidade térmica a volume constante enquanto que a segunda pode ser

reescrita usando uma relação de Maxwell, assim temos que:

dS = CV

TdT +

(∂p

∂T

)VdV. (4.56)

O lado direito da Eq. (4.56) pode ser calculado através da equação de estado. CV , em geral, é função de V e

T , assim segue que: (∂CV

∂V

)T

=(∂

∂V

)T

[T

(∂S

∂T

)V

]= T

∂2S

∂V ∂T= T

∂2S

∂T∂V

ou seja, (∂CV

∂V

)T

= T

(∂

∂T

)V

(∂S

∂V

)T

= T

(∂

∂T

)V

(∂p

∂T

)V

= T

(∂2p

∂T 2

)V

.

Já discutimos que todas as propriedades termodinâmicas pode ser calculadas a partir da sua entropia. Assim,

precisamos descobrir como a entropia pode ser determinada experimentalmente. Pode ser demonstrado que a

determinação da entropia pode ser realizada através das seguintes quantidades:

Page 131: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

130 CAPÍTULO 4. TERMODINÂMICA E SUAS APLICAÇÕES

(a) o calor específico (ou capacidade térmica) em função da temperatura para algum valor fixo V = Vi do volume;

(b) equação de estado.

Por exemplo, a equação de estado pode ser usada para determinar (∂CV /∂V )T como função da temperatura e

volume. Esta informação é suficiente para relacionar a capacidade térmica CV (T,V ) em qualquer volume com a

capacidade térmica no volume V1 e à mesma temperatura, i.e.,

dCV (T,V ) =(∂CV

∂V

)TdV

e integrando sobre o volume, podemos escrever:

CV (T,V ) = CV (T,V1)+∫ V

V1

(∂CV (T,V ′)

∂V

)TdV ′. (4.57)

Conhecendo o valor da capacidade térmica e usando o conhecimento de (∂p/∂T )V como função de T e V ,

fornecido pela equação de estado, podemos encontrar a entropia S = S(T,V ) em qualquer temperatura e qualquer

volume V em comparação com seu valor no macroestado (T0,V0). Assim, precisamos apenas integrar a Eq. (4.56)

usando alguma trajetória no diagrama T −V . Assim, por exemplo, podemos fazer:

S(T,V )−S(T0,V0) = S(T,V )−S(T0,V )+S(T0,V )−S(T0,V0)

ou seja,

S(T,V )−S(T0,V0) =∫ T

T0

CV (T ′,V )T ′ dT ′ +

∫ V

V0

(∂p(T,V ′)

∂T

)VdV ′

que nos permite determinar a variação da entropia a partir da medida da capacidade térmica e da equação de estado.

Vamos agora considerar a energia interna E e considerá-la como função da temperatura e volume, i.e.,

dE = TdS−pdV

e expressando a variação da entropia em termos do volume e temperatura, segue que:

dE = T

[CV

TdT +

(∂p

∂T

)VdV

]−pdV

e agrupando as diferenciais que têm fatores em comum, obtemos

dE = CV dT +[T

(∂p

∂T

)V

−p

]dV

o que nos permite escrever: (∂E

∂T

)V

= CV(∂E

∂V

)T

= T

(∂p

∂T

)V

−p

o que nos permite observar que a dependência da energia interna com o volume pode ser determinada a partir da

equação de estado.

Page 132: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

4.9. EXPANSÃO LIVRE E O PROCESSO DE JOULE-THOMSON 131

válvula

vácuo

isolante

Figura 4.1: O estágio inicial de um processo de expansão livre. Após a válvula ser aberta o gás ocupa as duas câmaras e,

depois de algum tempo, atinge um estado de equilíbrio.

4.9 Expansão livre e o processo de Joule-Thomson

Vamos considerar dois tipos de processos bastante comuns envolvendo substâncias homogêneas. O primeiro é a

expansão livre de um gás inicialmente confinado em um certo volume e então, é permitido se expandir e ocupar

um volume maior. Neste caso, perguntamos pelas condições de equilíbrio que caracterizam o estado do sistema

após a expansão. O segundo é o processo Joule-Thomson onde fazemos um gás passar por uma constrição que

pode ser representada por uma barreira porosa. A introdução desta constrição introduz variação na temperatura

e pressão do gás antes e depois de passar pela barreira. Este processo pode ser utilizado para esfriar ou aquecer

gases em sistemas como refrigeradores.

4.9.1 Expansão livre

Considere um gás confinado em um dos lados de uma câmara conforme mostrado na Fig. 4.1. Após a válvula ser

aberta, o gás irá se expandir e ocupar todo o volume da câmara. Neste caso, o gás irá assumir uma temperatura

T2 e o volume V2 da câmara, considerando que o mesmo tinha temperatura T1 e volume V1 antes da válvula ser

aberta.

Para determinar a temperatura e pressão finais, precisamos lembrar as condições sob as quais a expansão

ocorreu. Primeiramente, a câmara está isolada termicamente o que significa que não há trocas de calor assim,

Q= 0

Page 133: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

132 CAPÍTULO 4. TERMODINÂMICA E SUAS APLICAÇÕES

e desde que, inicialmente a segunda partição da câmara está vazia, então podemos escrever:

W = 0

pois o gás não realiza trabalho na expansão. Em termos mais simples, o gás não precisa “empurrar" nada na sua

frente para se expandir pois só temos vácuo.

Considerando que a capacidade térmica do reservatório é desprezível, a energia da câmara não muda. Assim,

a variação da energia interna pode ser determinada a partir da primeira lei da termodinâmica

∆E = E2 −E1 =Q−W = 0 E(T2,V2) = E(T1,V1) (4.58)

onde definimos Ei = E(Ti,Vi).

Para prever o resultado de um experimento, é necessário conhecer a energia interna do gás E(T,V ) como

função de temperatura e volume. Se conhecemos os valores de T1, V1 e V2, a Eq. (4.58) nos permite relacionar

estas variáveis permitindo-se determinar o valor da temperatura T2.

Para um gás ideal a energia não depende do volume do gás pois as moléculas não interagem (lembre-se do

cálculo do número de estados acessíveis para um gás ideal). Assim, a condição dada pela Eq. (4.58) toma a forma

mais simples:

E(T2) = E(T1)

o que é satisfeita somente quando

T1 = T2.

Vemos, portanto, que a expansão livre de um gás ideal não modifica sua temperatura. No entanto, para um gás

real, podemos fazer o gráfico da energia em função da temperatura para diferentes valores de V . Destes gráficos

podemos prever o valor da temperatura após a expansão. Outra maneira de se determinar a temperatura final, é

através do gráfico em um diagrama T ×V onde o conjunto de pontos para E constante forma uma curva bem

definida. Isto é análogo, por exemplo, a uma linha de temperatura constante em um diagrama p×V .

4.9.2 Processo de Joule-Thomson

Nesta seção consideramos um processo através do qual um gás passa através de um tampão poroso situado dentro

de um cano isolado adiabaticamente (Fig. 4.2).

O fluxo de gás constante é mantido através do tampão mantendo-se uma diferença de pressão nos dois lados

do cano, conforme mostra a Fig. 4.2. Como conseqüência, existe uma diferença de temperatura associada que

Page 134: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

4.9. EXPANSÃO LIVRE E O PROCESSO DE JOULE-THOMSON 133

também é constante no regime estacionário. Consideramos que nesta situação não existe fluxo de calor do gás para

as paredes do cano cuja distribuição de temperatura permanece fixa. Assim, a variação da energia interna do gás

entre os dois lados do tampão é dada por:

∆E = E(T2,p2)−E(T1,p1). (4.59)

fluxo de gás

tampão poroso

isolante térmico

Figura 4.2: Representação esquemática do processo Joule-Thomson. Um fluxo de gás passa através de um tampão poroso

devido à diferença de pressão entre os dois lados do cano. Note que a massa de gás ocupa um volume V1 no lado em que a

pressão é p1 e ocupa um volume V2 no lado em que a pressão é p2. Como resultado, o trabalho realizado pelo gás é dado

por p2V2 −p1V1. O resultado do trabalho na ausência de transferência de calor é igual a variação da energia interna do gás

nos dois lados do tampão que corresponde a diferentes temperaturas (ilustrada pelos termômetros que medem temperaturas

diferentes T1 e T2).

Neste processo, a quantidade de gás é transferida de um lado para outro através do trabalho realizado pela

diferença de pressão entre os dois lados do tampão. Este trabalho líquido é composto por duas contribuições: o

trabalho realizado sobre a massa de gás devido ao gás atrás do volume; o trabalho realizado pela massa de gás

sobre o que está a sua frente. Esta quantidade de trabalho líquida pode então ser escrita por:

W = p2V2 −p1V1.

Neste processo, o calor não é absorvido nem é cedido pelo gás, assim, podemos escrever:

Q= 0

o que nos permite escrever:

∆E =Q−W = −W

Page 135: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

134 CAPÍTULO 4. TERMODINÂMICA E SUAS APLICAÇÕES

e substituindo-se o valor do trabalho, segue que:

∆E = −p2V2 +p1V1

e como ∆E = E2 −E1, assim,

E2 −E1 = −p2V2 +p1V1

o que nos leva à seguinte igualdade:

E2 +p2V2 = p1V1 +E1 = constante.

Lembrando as definições dos potenciais termodinâmicos, identificamos a quantidade E+ pV como sendo a

entalpia H , assim, temos que:

H = constante.

ou ainda

H(T1,p1) =H(T2,p2). (4.60)

Assim, a Eq. (4.60) em um processo Joule-Thomson é mantida constante. Esta condição nos permite prever,

por exemplo, a variação da temperatura quando o gás passa pelo tampão poroso dado que saibamos as pressões

p1 e p2 e a temperatura inicial T1. Com efeito, se plotamos os valores de temperatura e pressão em um diagrama

p×T , iremos obter uma curva cujos pontos terão os mesmos valores da entalpia.

No caso específico de um gás ideal, temos que a entalpia Hgd é dada por:

Hgd =E+pV = E(T )+nRT =Hgd(T )

onde usamos a lei dos gases ideais pV = nRT , com n sendo o número de moles.

Vemos então que no caso de um gás ideal, a entalpia depende apenas da temperatura e, com isso, a condição

dada pela Eq. (4.60) se reduz a:

H(T1) =H(T2). (4.61)

A condição dada pela Eq. (4.61) é satisfeita somente quando

T1 = T2

ou seja, um processo Joule-Thomson envolvendo um gás ideal não modifica a temperatura do gás.

Page 136: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

4.9. EXPANSÃO LIVRE E O PROCESSO DE JOULE-THOMSON 135

No caso mais geral, podemos construir curvas da temperatura versus pressão para valores fixos de entalpia.

Com isso, os valores iniciais T1 e p1 fixam um valor particular da entalpia, e portanto, uma curva de entalpia

em particular. Para o processo descrito acima, devemos terminar em cima da mesma curva desde que a entalpia

permanece constante no processo de Joule-Thomson. A temperatura final T2 pode ser lida diretamente da curva

para qualquer valor da pressão p2.

Na Fig. 4.3 são mostradas várias curvas de entalpia constante referentes a processos Joule-Thomson. Notamos

que elas apresentam um valor máximo para valores particulares de pressão e temperatura. Conseqüentemente, é

possível obter uma situação em que a temperatura final do gás pode ser maior, menor ou igual à temperatura inicial

— antes de passar pelo tampão poroso. Para diferenciar estas situações, olhamos para a derivada da pressão em

relação à temperatura com a entalpia constante (∂p/∂T )H , que é essencialmente, a inclinação da curva da entalpia.

Esta quantidade é essencial para caracterizar o processo e a chamamos de coeficiente de Joule-Thomson:

µ≡(∂p

∂T

)H. (4.62)

Vemos então que se µ > 0, então para p2 < p1 a temperatura final é menor do que a inicial; se µ < 0 temos o

Figura 4.3: Conjunto de curvas de entalpia constante. Todas as curvas apresentam um ponto de máxima para um par de

valores de pressão e temperatura. A linha que conecta estes pontos é a chamada curva de inversão que separa duas regiões:

uma em que o coeficiente de Joule-Thomson (µ) é negativo e outra região em que o coeficiente de Joule-Thomson é positivo.

inverso, ou seja, a temperatura final aumenta em decorrência da redução pressão e, finalmente, quando µ = 0 a

temperatura não muda.

No gráfico da Fig. 4.3, é possível perceber uma linha ligando os pontos de máximo que divide as duas regiões

onde as inclinações das curvas de entalpia são diferentes. Esta linha é chamada de curva de inversão. Vamos obter

Page 137: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

136 CAPÍTULO 4. TERMODINÂMICA E SUAS APLICAÇÕES

uma expressão para o coeficiente de Joule-Thomson µ, e que por conseqüência, nos permitirá determinar a curva

de inversão.

Começamos considerando a equação fundamental:

dE = TdS−pdV

ou seja,

dE = TdS− [d(pV )−V dp] = TdS−d(pV )+V dp

o que nos permite escrever

d(E+pV ) = TdS+V dp= dH = 0

onde consideramos que H = E+pV é constante em um processo Joule-Thomson assim dH = 0.

Expressando a entropia como uma função da pressão e temperatura S = S(T,p), podemos escrever:

TdS+V dp= 0

T

[(∂S

∂T

)pdT +

(∂S

∂p

)T

dp

]+V dp= 0

e identificando a capacidade térmica a pressão constante, podemos escrever:

CpdT +[T

(∂S

∂p

)T

+V

]dp= 0

e escrevendo dT = (∂T/∂p)H dp temos ainda:Cp

(∂T

∂p

)H

+[T

(∂S

∂p

)T

+V

]dp= 0

o que nos permite escrever o coeficiente de Joule-Thomson na forma:

µ=(∂T

∂p

)H

= − 1Cp

[T

(∂S

∂p

)T

+V

].

Resta agora determinar a derivada da entropia em relação à pressão. Isto é realizado através da relação de

Maxwell: (∂S

∂p

)T

= −(∂V

∂T

)p

= −V α

e substituindo na expressão para µ obtemos:

µ= − 1Cp

[−αTV +V ]

Page 138: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

4.10. MÁQUINAS TÉRMICAS 137

µ= V

Cp[αT −1] (4.63)

No caso do gás ideal, o coeficiente de expansão térmica é o inverso da temperatura α = T−1 (verifique este

resultado!). Com isso, segue que µ= 0 como era esperado. A curva de inversão pode ser facilmente determinada

a partir da equação:

α= 1T, caso geral. Localização da curva de inversão.

4.10 Máquinas Térmicas

Um máquina térmica é um dispositivo que retira calor do ambiente e realiza trabalho na forma útil. As máquinas

térmicas usam uma “substância de trabalho" que opera em um ciclo, ou seja, uma série de processos termodinâmi-

cos, chamados tempos, voltando repetidamente a cada estado de ciclo.

Vamos aplicar as leis da termodinâmica para alguns exemplos de máquinas térmicas.

4.10.1 A máquina de Carnot

Aqui vamos considerar um protótipo de máquina térmica mais simples possível que chamamos de máquina ideal

ou máquina de Carnot, i.e., uma máquina cujos processos termodinâmicos são reversíveis e as transferências de

energia são realizadas sem perdas por atrito e turbulência. Este tipo de análise nos permite analisar o caráter geral

de uma máquina térmica sem as complicações de uma máquina real. Este exemplo, portanto, é apenas teórico.

A máquina térmica chamada máquina de Carnot, foi desenvolvida pelo engenheiro e cientista francês Sadi

Carnot em 1824. Esta máquina funciona retirando-se uma quantidade de calor QQ de um reservatório mantido a

uma temperatura fixa TQ e transformando parte deste calor em trabalho W e o restante é fornecido a um outro

reservatório térmico a uma temperatura mais baixa TF .

Uma realização física de uma máquina ideal é o exemplo do gás confinado em um cilindro com um êmbolo

como já discutido em casos anteriores. O cilindro é isolado termicamente em todos os lados exceto na base onde

existe uma parede diatérmica. A esta parede podemos conectar duas fontes de calor a temperaturas TQ e TF e

ainda uma parede isolante. A máquina opera de acordo com o ciclo mostrado na Fig. 4.4 chamado de ciclo de

Carnot. O ciclo é percorrido no sentido horário e é formado por quatro processos termodinâmicos: dois processos

isotérmicos (de a até b e de c até d) e dois processos adiabáticos (de b até c e de d até a). Abaixo, damos uma

descrição de cada processo termodinâmico:

Page 139: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

138 CAPÍTULO 4. TERMODINÂMICA E SUAS APLICAÇÕES

Q

Q

F

Figura 4.4: Um diagrama p−V do ciclo seguido pelo fluido de trabalho da máquina de Carnot. O ciclo é formado por duas

isotermas (ab e cd) e duas adiabáticas (dc e da). A área sombreada limitada pelo ciclo é igual ao trabalho W útil realizado

pela máquina de Carnot.

processo a→ b : Uma quantidade de calor QQ é fornecida ao gás que se expande de um volume inicial Va até

um volume Vb. Como o gás está a uma temperatura fixa TQ, temos uma expansão isotérmica. Consideramos

que este processo é realizado de maneira lenta de modo que o mesmo é reversível.

processo b→ c : Neste processo, trocamos o reservatório térmico na base do cilindro por uma placa isolante.

Com isso, o gás continua se expandindo de um volume Vb a um volume Vc, mas agora em um processo

adiabático. Como não existe troca de calor neste processo, a energia interna do gás diminui e a temperatura

cai para o valor TF .

processo c→ d : Agora retiramos a placa isolante e colocamos um reservatório térmico mantido em uma tempe-

ratura igual à do gás, i.e., com uma temperatura TF . Após isso, comprimimos o gás de modo que este tem

seu volume reduzido do valor Vc para o valor Vd. Como sabemos, a compressão do gás tende a aumentar

a sua energia interna e, portanto, a sua temperatura. No entanto, o reservatório térmico acoplado ao gás

garante que no processo a temperatura é mantida constante através da extração de uma quantidade de calor

QF necessária para manter a energia interna constante. Assim, este processo é uma compressão isotérmica.

processo d→ a : O gás é novamente isolado do ambiente colocando-se a placa isolante na base do cilindro. Após

isso, o gás é comprimido de maneira adiabática desde o valor inicial Vd até o valor final Va. Desde que agora

o gás está isolado, a compressão aumenta a energia interna do gás fazendo que sua temperatura aumente do

valor inicial TF até o valor final TQ. Assim, o estado final do gás no ciclo coincide com o estado inicial de

Page 140: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

4.10. MÁQUINAS TÉRMICAS 139

onde partiu. Portanto, colocando o gás novamente em contato com o reservatório térmico a temperatura TQ

podemos reiniciar o ciclo termodinâmico.

Observações:

• O trabalho líquido produzido no ciclo de Carnot é dado pela área do circuito fechado. Este trabalho é

positivo porque a área sob a curva do processo de expansão (a → b → c) é maior do que a área delimitada

pelo processo de compressão (c → d → a). Este trabalho é usado para elevar um objeto, rodar um motor,

etc. É o que chamamos de trabalho útil;

• As transferências de calor ocorrem apenas nos processos isotérmicos e as mudanças na temperatura somente

nos processos adiabáticos de modo que não se perca nenhuma energia.

Em resumo, fornecemos calor de uma fonte a temperatura TQ para uma fonte fria a temperatura TF e extraímos

um trabalho útil W . Na Fig. 4.5 temos um esquema resumido da máquina de Carnot.

No caso em que o ciclo é realizado no sentido contrário, temos o processo inverso, i.e., aplicamos um trabalho

W de modo a retirar calor de um fonte fria e adicionar o mesmo na fonte quente, assim, temos um refrigerador

ideal.

QQ

QF

TQ

TF

Figura 4.5: Diagrama ilustrando os elementos de uma máquina de Carnot. As duas setas pretas no centro indicam o ciclo

termodinâmico que retira o calor QQ do reservatório superior a uma temperatura TQ que é parte convertido em trabalho

W e parte entregue ao reservatório a uma temperatura inferior TF .

Page 141: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

140 CAPÍTULO 4. TERMODINÂMICA E SUAS APLICAÇÕES

4.10.2 Entropia do ciclo de Carnot

Temos que:

∆S =∫ f

i

dQ

T

que mostra que qualquer processo em que exista uma troca de energia na forma de calor tem uma variação da

entropia. Considerando o ciclo de Carnot, temos que no processo a→ b, o sistema absorve calor a uma temperatura

fixa TQ, logo ∆S > 0, pois QQ > 0. No processo c → d, o sistema cede calor QF a uma temperatura TF , assim,

∆S < 0 neste caso.

O trabalho útil W pode ser determinado através da 1a lei da termodinâmica:

∆Eint =Q−W

e como o ciclo é fechado, podemos escrever ∆Eint = 0, assim:

W =Q.

Agora, Q é o calor líquido trocado entre o reservatório e o sistema por ciclo. Assim, o sistema recebe uma

quantidade QQ do reservatório quente e cede uma quantidade QF para o reservatório frio, então podemos escrever

o trabalho útil por ciclo na forma:

W = |QQ|− |QF |. (4.64)

Variações na entropia

Voltando à questão da variação da entropia, vimos que existem duas transferências de calor nos processos isotérmi-

cos e nenhuma variação nos processos adiabáticos. Assim, desde que os processos são isotérmicos e conhecemos

o sentido da transferência do calor, podemos escrever a variação da entropia na forma:

∆S = |QQ|TQ

− |QF |TF

(4.65)

E como o ciclo é fechado e a entropia é uma variável de estado, então sabemos que ∆S = 0, assim, temos a

seguinte igualdade:

|QQ|TQ

= |QF |TF

(4.66)

Desde que TQ > TF a Eq. (4.66) nos mostra que |QQ| > |QF |, assim, temos uma quantidade maior de

energia extraída do reservatório quente do que fornecida à fonte fria. Isso era esperado desde que pela conservação

Page 142: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

4.11. REFRIGERADORES 141

da energia, válida neste processo reversível, a quantidade extraída de energia deve ser igual à soma da energia

cedida na forma de calor para a fonte fria com o trabalho útil realizado pelo sistema. Note que no caso de um

processo irreversível, caracterizado por aumento da entropia, parte da quantidade de calor extraída é transformada

no aumento de entropia do sistema e parte vai para a fonte fria. O que vai para o aumento da entropia do sistema

não é convertido em trabalho útil e assim, esta quantidade representa perdas no ciclo.

4.10.3 Eficiência de uma máquina de Carnot

De acordo com o que foi dito sobre o ciclo de Carnot, é natural medir o rendimento da máquina térmica pela razão

da energia extraída na forma de calor QQ pelo trabalho W útil realizado pela máquina, assim, podemos escrever:

ε= energia utilizadaenergia adquirida

= |W ||QQ|

que é a eficiência de uma máquina de Carnot.

Podemos reescrever a eficiência ε, substituindo a expressão para o trabalho W obtida acima:

ε= |QQ|− |QF ||QQ|

= 1− |QF ||QQ|

e usando a igualdade da entropia dada pela Eq. (4.66) podemos escrever ainda:

ε= 1− TF

TQ

Vemos que como TF <TQ, a máquina de Carnot tem necessariamente uma eficiência menor do que 100%. Os

100% seriam atingidos apenas nos limites TF = 0 ou TQ → ∞. É importante notar que as temperaturas estão em

kelvins, e assim, o limite do zero absoluto nunca é atingido de modo que o rendimento nunca será de 100%. Além

disso, conforme mostraremos a seguir, qualquer máquina real apresenta uma eficiência menor do que a máquina

de Carnot.

Este fato, nos permite enunciar a 2a lei de termodinâmica em termos da eficiência de máquinas térmicas:

“Não existe uma série de processos cujo único resultado seja a conversão total em

trabalho da energia contida em uma fonte de calor ” .

4.11 Refrigeradores

Já comentamos rapidamente sobre refrigeradores, quando dissemos que podemos construir um através da inversão

do ciclo de Carnot executando os processos no sentido anti-horário na Fig. 4.4. A idéia então é remover o calor

do reservatório frio a uma temperatura TF através da introdução de um trabalho externo W e adicioná-lo à fonte

Page 143: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

142 CAPÍTULO 4. TERMODINÂMICA E SUAS APLICAÇÕES

quente TQ. No caso de um refrigerador doméstico, o trabalho externo é realizado por um compressor elétrico para

transferir energia do compartimento onde estão guardados os alimentos (fonte fria) para o ambiente (fonte quente).

No caso de um ar condicionado a única diferença é que a fonte fria é o ambiente a ser resfriado e a fonte quente

é parte externa à este ambiente. Um aquecedor também funciona da mesma forma, no entanto, os ambientes são

invertidos. Na Fig. 4.6 mostramos um diagrama esquemático de um refrigerador ideal, ou refrigerador de Carnot,

que é similar à máquina térmica de Carnot exceto pelo sentido das setas.

QQ

QF

TQ

TF

Figura 4.6: Diagrama ilustrando os elementos de uma refrigerador de Carnot. As duas setas pretas no centro indicam o

ciclo termodinâmico que retira o calor QF do reservatório inferior a uma temperatura TF , através da aplicação de um

trabalho externo W , e então é entregue ao reservatório a uma temperatura TQ.

Note que em um refrigerador, da mesma forma que na máquina de Carnot, todos os processos são reversíveis, e

assim, as transferência de energia na forma de calor e trabalho são realizadas sem perdas por atrito ou turbulência.

Esta condição é necessária para manter a reversibilidade do ciclo. Não vamos considerar a análise do ciclo de

Carnot neste caso, porque é equivalente ao caso da máquina térmica exceto pelo sentido que agora é anti-horário.

Aqui vamos definir o chamado desempenho do refrigerador em termos da razão da energia utilizada QF pelo

trabalho aplicado no processo W :

K = energia utilizadaenergia adquirida

= |QF ||W |

ondeK é o chamado coeficiente de desempenho do refrigerador. Note que não estamos falando de eficiência como

no caso da máquina térmica, são definições diferentes, embora o intento seja o mesmo de quantificar a qualidade

do dispositivo3. Aplicando a 1a lei da termodinâmica, podemos escrever o trabalho em termos das diferenças entre

3Se falamos de eficiência do refrigerador então temos que usar a razão W/|QQ| que é o ε.

Page 144: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

4.12. EFICIÊNCIA DE MÁQUINAS TÉRMICAS REAIS 143

o calor absorvido pelo calor cedido, desde que a energia interna não muda no processo reversível. Assim, temos

W = |QQ|− |QF |, o que nos permite escrever:

K = |QF ||QQ|− |QF |

Além disso, como o refrigerador de Carnot é simplesmente a máquina de Carnot operando em sentido contrá-

rio, então, podemos eliminar o calor em termos da temperatura dos reservatórios:

K = TF

TQ −TF

e vemos então que obtemos um melhor desempenho quando as duas fontes de calor apresentam temperaturas

próximas uma da outra.

Note que um refrigerador perfeito seria aquele em que não seria necessário nenhum trabalho externo para

remover o calor da fonte fria para colocar na fonte quente. No entanto, isso é impossível. Podemos ver isso

considerando a variação da entropia do sistema. Se não temos trabalho, então todo o calor é extraído da fonte fria

e assim, a variação da entropia dada pela Eq. (4.65) fica na forma:

∆S = |QQ|TQ

− |QF |TF

e fazendo |QQ| = |QF | = |Q|, então

∆S = |Q|TQ

− |Q|TF

(refrigerador perfeito)

e como TF <TQ então chegamos a conclusão de que ∆S < 0 o que violaria a 2a lei da termodinâmica pois estamos

considerando o sistema+fonte no cálculo da variação da entropia.

Assim, chegamos a uma terceira maneira de enunciar a 2a lei da termodinâmica:

“ Não existe uma série de processos cujo único resultado seja transferir energia

na forma de calor de uma fonte fria para uma fonte quente”. O que nos indica que não existe refri-

geradores perfeitos.

4.12 Eficiência de Máquinas Térmicas Reais

Não é possível construir uma máquina com um eficiência maior do que a máquina de Carnot. Isso pode ser

demonstrado considerando a hipótese contrária e então verificando que isso leva a um absurdo. Vamos supor então

que temos uma máquina térmica com eficiência εX > εC , onde εX é a eficiência da máquina hipotética e εC é a

eficiência da máquina de Carnot.

Page 145: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

144 CAPÍTULO 4. TERMODINÂMICA E SUAS APLICAÇÕES

Partimos então da condição:

εX > ϵC . (4.67)

Esta máquina então retira calor Q′Q de um reservatório quente e parte deste calor é transformado em trabalho

W e o restante Q′F é transferido para um reservatório frio.

Consideremos então que o trabalho realizado pela máquina X é usado em um refrigerador de Carnot como o

que acabamos de descrever na seção anterior. Então, temos um sistema fechado como o esquematizado na Fig.

4.7. De acordo com a Eq. (4.67), devemos ter:

|W ||Q′

Q|>

|W ||QQ|

.

Máquina

Refrigeradorde Carnot

Refrigeradorperfeito

Q’Q

Q’F

QQ

QF

TQ

TF

Figura 4.7: (a) máquina térmica X acoplada a um refrigerador Carnot. (b) No caso de uma máquina X com eficiência

maior do que a máquina de Carnot, a combinação da figura (a) é equivalente a um refrigerador perfeito que é proibido pela

2a lei da termodinâmica.

Da desigualdade acima, segue que:

|Q′Q|< |QQ|. (4.68)

Page 146: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

4.12. EFICIÊNCIA DE MÁQUINAS TÉRMICAS REAIS 145

Usando a 1a lei da termodinâmica, podemos relacionar a quantidade de calor líquida nas duas máquinas.

Assim, na máquina X , o trabalho é dado por:

W = |Q′Q|− |Q′

F |

e também,

W = |QQ|− |QF |

e eliminando W entre as duas equações, segue que:

|Q′Q|− |Q′

F | = |QQ|− |QF |

ou ainda,

|QQ|− |Q′Q| = |QF |− |Q′

F | =Q

e de acordo com a desigualdade dada pela expressão (4.68), Q > 0. A equação acima nos indica que o efeito do

refrigerador de Carnot e da máquina X trabalhando em conjunto é equivalente a um refrigerador ideal retirando

calor de uma fonte fria para uma fonte quente sem a necessidade de um trabalho externo. Isto equivale a um

refrigerador perfeito que já vimos não ser possível desde que viola a 2a lei da termodinâmica.

Exemplos

1. O ciclo Diesel, representado ma Fig. 4.8, ondeAB eCD são adiabáticas, esquematiza o que ocorre num motor

Diesel de 4 tempos. A diferença em relação ao ciclo de Otto (problema da prova) é que a taxa de compressão

rc = VA/VB adiabática é maior, aquecendo mais o ar e permitindo que ele inflame o combustível injetado sem

a necessidade de uma centelha de ignição: isto ocorre a pressão constante, durante o trecho BC; a taxa de

expansão adiabática associada a CD é re = VA/VC . (a) Mostre que a eficiência do ciclo Diesel é dado por:

ε= 1− 1γ

1rγ

e− 1rγ

c1re

− 1rc

O ciclo funciona da seguinte forma: no processo AB temos uma compressão adiabática que eleva a pressão

do sistema para o valor pA e um volume VA. Neste caso, como nenhum calor é trocado com o ambiente, todo

Page 147: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

146 CAPÍTULO 4. TERMODINÂMICA E SUAS APLICAÇÕES

Expansão apressão constante

Expansãoadiabática

Resfriamento avolume constante

Compressãoadiabática

A

B

C

D

Figura 4.8: Veja exemplo 1.

o trabalho realizado é convertido em um aumento da temperatura do sistema. A seguir, temos uma expansão a

pressão constante e um calor QBC deve ser adicionado ao sistema para compensar a perda de energia interna

devido à expansão do gás até o volume VC . Uma vez que o ponto C é atingido, ocorre mais uma expansão

adiabática que leva o sistema do ponto C ao ponto D. Neste caso, a temperatura do sitema é reduzida desde que

não há trocas de calor neste processo. Finalmente, temos uma redução da pressão do sistema a volume constante

que leva o sistema do pontoD ao pontoA, onde o ciclo é reiniciado. Note que neste processoDA, o sistema libera

uma quantidade de calor QDA para garantir que ocorra uma redução de pressão desde que o volume é fixo.

A eficiência da máquina Diesel é portanto, dada por:

ε= W

QBC

ondeW é trabalho útil obtido durante o ciclo eQAB é o calor adicionado na etapa de expansão a pressão constante.

De acordo com o enunciado do problema, temos as seguintes relações:

VA

VB= rc (4.69)

VA

VC= re (4.70)

Como objetivamos determinar a eficiência precisamos calcular o trabalho e o calor injetado. Vamos começar

Page 148: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

4.12. EFICIÊNCIA DE MÁQUINAS TÉRMICAS REAIS 147

com o cálculo do trabalho. Este é dado pela soma:

W =WAB +WBC +WCD

Vamos calcular cada termo separadamente. Comecemos com WAB:

WAB =∫ VB

VA

p dV

Agora precisamos da relação entre a pressão e o volume. Lembrando que o processo é adiabático, então

podemos escrever:

pAVγ

A = pV γ ∴ p= pAVγ

A

V γ

assim,

WAB = pAVγ

A

∫ VB

VA

dV

V γ= pAV

γA

(V 1−γ

B −V 1−γA

1−γ

)

e usando a Eq. (4.69), podemos eliminar o volume VA = rcVB da equação acima:

WAB = pBVγ

B

(V 1−γ

B − r1−γc V 1−γ

B

1−γ

)

onde usamos também a igualdade pAVγ

A = pBVγ

B . Após alguma álgebra podemos escrever:

WAB = −pBVB

γ−1

(1− 1

rγ−1c

)e como pBVB = nRTB , podemos escrever ainda

WAB = −nRTB

γ−1

(1− 1

rγ−1c

)(4.71)

Vamos agora determinar o trabalho no processo BC. Neste caso temos um processo a volume constante,

assim, é bastante simples calcular a integração:

WBC = pB(VC −VB) = pBVB

(VC

VB−1)

mas a razão no parênteses pode ser escrita como:

VC

VB= VC

VA

VA

VB= rc

re

e usando a lei dos gases ideais, segue que:

WBC = nRTB

(rc

re−1)

(4.72)

Page 149: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

148 CAPÍTULO 4. TERMODINÂMICA E SUAS APLICAÇÕES

Finalmente, vamos determinar o trabalho realizado no processo DA que é uma compressão adiabática. Como

o cálculo é similar ao processo AB:

WCD = pCVγ

C

∫ VD

VC

dV

V γ= pCV

γC

(V 1−γ

D −V 1−γC

1−γ

)

e como

VD = VA

podemos escrever:

WCD = pCVγ

C

(V 1−γ

A −V 1−γC

1−γ

)

mas VA = reVC , logo:

WCD = pCVγ

C

(r1−γ

e V 1−γC −V 1−γ

C

1−γ

)

ou seja,

WCD = pCVC

(r1−γ

e −11−γ

)

WCD = pCVC

γ−1

(1− 1

rγ−1e

)Para uniformizar a fórmula, escrevemos:

pCVC = pBVC = nRTBVC

VB= nRTB

rc

re

o que nos permite escrever:

WCD = nRTB

γ−1

[rc

re

(1− 1

rγ−1e

)](4.73)

O trabalho líquido pode agora ser determinado somando as três contribuições dadas pelas Eqs. (4.71), (4.72) e

(4.73):

W =WAB +WBC +WCD

W = −nRTB

γ−1

(1− 1

rγ−1c

)+nRTB

(rc

re−1)

+ nRTB

γ−1

[rc

re

(1− 1

rγ−1e

)]

Page 150: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

4.12. EFICIÊNCIA DE MÁQUINAS TÉRMICAS REAIS 149

W = −nRTB

γ−1

(1− 1

rγ−1c

)+ nRTB

γ−1

((γ−1)rc

re− (γ−1)

)+ nRTB

γ−1

[rc

re

(1− 1

rγ−1e

)]

W = nRTB

γ−1

(−1+ 1

rγ−1c

+γrc

re− rc

re−γ+1+ rc

re− rc

rγe

)

W = nRTB

γ−1

( 1rγ−1

c

+γrc

re−γ− rc

rγe

)

W = nRTB

γ−1

(rc

rγc

+γrc

re−γ− rc

rγe

)(4.74)

Vamos agora determinar o calor injetado no processo BC. Para isso, notamos que a injeção de calor ocorre em

um processo a pressão constante. Desde que a injeção de calor provoca uma variação da temperatura do sistema,

então escrevemos:

QBC = ncP (TC −TB)

Como sabemos a razão entre os calores específicos:

γ = cP

cV

e,

cP = cV +R

então podemos escrever o calor específico a pressão constante na forma:

cP = cP

γ+R ∴ cP = γR

γ−1

com isso, temos:

QBC = nRTB

γ−1γ

(TC

TB−1)

Agora precisamos a razão TC/TB , para isso usamos a lei dos gases ideais:

pCVC

pBVB= nRTC

nRTB∴ TC

TB= VC

VB= rc

re

Page 151: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

150 CAPÍTULO 4. TERMODINÂMICA E SUAS APLICAÇÕES

e assim, a expressão para o calor toma a forma:

QBC = nRTB

γ−1γ

(rc

re−1)

(4.75)

Agora podemos substituir as Eqs. (4.74) e (4.75) na equação para eficiência da máquina Diesel:

ε= W

QBC=

rc

rγc

+γrc

re−γ− rc

rγe

γ

(rc

re−1)

ε=

rc

rγc

(rc

re−1)

− rc

rγe

γ

(rc

re−1)

ε= 1+

rc

rγc

− rc

rγe

γ

(rc

re−1)

ε= 1− 1γ

rc

rγe

− rc

rγc

rc

re−1

ε= 1− 1γ

1rγ

e− 1rγ

c1re

− 1rc

(4.76)

4.13 Condições de Equilíbrio e Transições de Fase

Já discutimos, no contexto da Física Estatística, que o equilíbrio era caracterizado por um valor máximo do número

de estados acessíveis ao sistema. Com isso, podemos também afirmar que no equilíbrio a entropia deve apresentar

um valor máximo pois já mostramos que

S = kB lnΩ (4.77)

onde kB é a constante de Boltzmann e Ω é o número de estados acessíveis. Esta condição é válida para um sistema

isolado, ou seja, que não troca calor ou realiza trabalho.

Chamamos a condição de máximo do número de estados acessíveis como “condição de máxima entropia".

Este princípio nos permite determinar outras quantidades de equilíbrio de maneira sistemática. Existem outros

princípios alternativos, relacionados ao princípio de de máxima entropia, que são igualmente importantes. Vamos

considerá-los a seguir.

Page 152: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

4.13. CONDIÇÕES DE EQUILÍBRIO E TRANSIÇÕES DE FASE 151

4.13.1 Sistemas em contato com um reservatório à temperatura constante

A condição de máxima entropia é válida para um sistema isolado, i.e., com energia constante. A partir deste

princípio consideramos casos mais gerais de interesse prático. Por exemplo, um caso de interesse experimental é

aquele onde o sistema de interesse está em contato térmico com um reservatório de calor, ou seja, em que o sistema

é mantido à temperatura constante.

Para investigar as condições de equilíbrio vamos denotar o nosso sistema por A e o reservatório por A′ cuja

temperatura fixa é T0. O sistema composto A(0) = A+A′ está isolado de modo que sua energia total é fixa em

E(0). Após o equilíbrio entre A e A′ ser estabelecido, devemos ter no final do processo:

∆S(0) ≥ 0

que é escrito na forma:

∆S(0) = ∆S+∆S′ ≥ 0

onde ∆S é a mudança da entropia de A e ∆S′ é a mudança da entropia de A′. Mas se A absorve calor de A′, então

a mudança da entropia de A′ será dada por:

∆S′ = −Q

T0

onde o sinal negativo indica que o calor é cedido pelo reservatório.

Podemos relacionar o calor cedido pelo reservatório com as propriedades do sistema A usando a primeira lei

da termodinâmica:

Q= ∆E+W

e assim, a variação da entropia do sistema combinado pode ser escrito como:

∆S(0) = ∆S− Q

T0≥ 0

∆S(0) = ∆S− (∆E+W )T0

≥ 0

ou seja,

T0∆S−∆E−W

T0≥ 0 ∴ ∆(T0S−E)−W ≥ 0

Page 153: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

152 CAPÍTULO 4. TERMODINÂMICA E SUAS APLICAÇÕES

onde usamos o fato da temperatura T0 ser constante e colocamos a variação evidência. Reconhecendo a da energia

livre de Helmholtz,

F0 = E−T0S

podemos escrever:

−∆F0 −W ≥ 0.

Notamos que F0 é a energia livre de Helmholtz do sistema A quando a sua temperatura é igual à temperatura

do reservatório. Certamente, quandoA eA′ não estão em equilíbrio então os sistemas têm temperaturas diferentes.

Como T0 > 0, então ∆S0 ≥ 0 implica que:

−∆F0 ≥W (4.78)

o que nos mostra que o máximo trabalho realizado que pode ser feito pelo sistema A sobre o reservatório é −∆F0.

O máximo é obtido quando temos uma igualdade na Eq. (4.78), válida quando o processo é reversível que, por sua

vez, ocorre quando processo é quasi-estático4.

Se os parâmetros externos do sistema A são fixos, então W = 0, então podemos escrever:

∆F0 ≤ 0. (4.79)

Vemos então que para um sistema em contato um reservatório, sua energia livre diminui. Com isso, inferimos

o seguinte resultado:

Se um sistema, cujos parâmetros externos estão fixos está em contato térmico com um

reservatório térmico, a situação de equilíbrio será caracterizada por um mínimo na sua

energia livre de Helmholtz .

Isso pode ser escrito na forma:

F0 = mínimo

O mínimo da energia livre de Helmholtz é oriundo do fato de que quando o sistema A está em contato térmico

com o reservatório A′, a energia livre diminui. A redução irá ocorrer até que o equilíbrio seja estabelecido quando

F0 atinge o valor mínimo.

4Note que quando o sistema está completamente isolado, é dado por W = −∆E.

Page 154: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

4.13. CONDIÇÕES DE EQUILÍBRIO E TRANSIÇÕES DE FASE 153

4.13.2 Sistema em contato térmico com um reservatório térmico a volume e pressão constantes

Vamos considerar agora que o sistemaA está em contato térmico com um reservatório a temperatura T0 e a pressão

constante p0. A diferença neste caso, é que além da temperatura temos também a pressão fixa. O sistema A′ é

tão grande que sua temperatura permanece invariável mesmo com a troca de calor com o sistema A; similarmente,

sua pressão permanece fixa mesmo com o trabalho realizado pelo sistema A. Assim, como antes, no equilíbrio a

variação da entropia do sistema combinado deve obedecer a segunda lei da termodinâmica, assim:

∆S(0) ≥ 0

que é escrito na forma:

∆S(0) = ∆S+∆S′ ≥ 0

e a variação na entropia do reservatório pode ainda ser expressa em termos do calor cedido ao sistema A

∆S(0) = ∆S− Q

T0≥ 0.

No contexto da física estatística provamos que a relação ∆S′ = −Q/T0 é válida quando temos um reservatório

de calor. A novidade em relação ao caso anterior é que o calor recebido pode ser escrito como

Q= ∆E+p0∆V +W ∗

onde agora o trabalho é igual à variação da energia interna, somada ao trabalho realizado pelo sistema A devido à

sua variação de volume e a uma parcela que chamamos de W ∗ que seria um outro trabalho feito por A, como por

exemplo, um trabalho elétrico ou magnético. Com isso, podemos escrever:

∆S(0) = ∆S− (∆E+p0∆V +W ∗)T0

≥ 0

ou ainda:

T0∆S−∆E−p0∆V −W ∗

T0≥ 0

e como T0 e p0 são constantes, podemos escrever ainda:

∆(T0S−E−p0V )−W ∗

T0≥ 0

ou seja,

−∆G0 −W ∗

T0≥ 0

Page 155: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

154 CAPÍTULO 4. TERMODINÂMICA E SUAS APLICAÇÕES

onde reconhecemos a energia livre de Gibbs para T = T0 e p= p0:

G0 = E−T0S+p0V.

Assim, chegamos a seguinte condição:

−∆G0 ≥W ∗ (4.80)

que mostra que o trabalho W ∗ máximo que pode ser realizado pelo sistema é igual à energia livre de Gibbs.

Se todos os parâmetros externos (exceto o volume) do sistema A são fixos, então W ∗ = 0 e assim, podemos

escrever que

∆G0 ≤ 0

o que nos permite concluir:

Se um sistema está em contato com um reservatório a temperatura e pressão constantes

de modo que pode realizar trabalho apenas via variação de volume, então o equilíbrio do

sistema será caracterizado por um valor mínimo da energia livre de Gibbs .

Isso pode ser escrito na forma:

G0 = mínimo.

Os resultados acima permitem analisar o estado de equilíbrio em casos mais gerais onde os sistemas são

caracterizados por valores de temperatura e pressão constantes. A seguir, aplicamos estes conceitos na análise das

transições de fase onde uma substância pode modificar seu estado físico através da minimização de sua energia.

4.13.3 Aplicação dos princípios de energia mínima: transições de fase

Todas as substâncias podem existir em formas diferenciadas, chamadas fases, que correspondem a diferentes

estados de agregação das mesmas moléculas. Assim, uma determinada substância pode estar na forma sólida,

líquida ou gasosa dependendo de sua energia interna. A fase sólida é caracterizada por átomos ou moléculas

formando uma estrutura rígida. Na fase líquida, os átomos e moléculas apresentam maior mobilidade e energia de

modo que as estruturas formadas são transitórias e o líquido pode escoar. Na fase gasosa, a energia é ainda maior

e os átomos ou moléculas do gás não interagem exceto através de choques de curta duração.

O processo de transformação de uma fase sólida para uma fase líquida é chamada de fusão. Neste processo o

calor fornecido é usado para quebrar as ligações entre as moléculas do sistema. Um exemplo comum deste tipo de

Page 156: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

4.13. CONDIÇÕES DE EQUILÍBRIO E TRANSIÇÕES DE FASE 155

transformação é a transformação do gelo em água. O processo de solidificação é o inverso do processo de fusão e

exige a retirada de energia do líquido na forma de calor para que a estrutura rígida volte a se formar.

A transformação da fase líquida para a fase gasosa é chamada de vaporização. Neste processo, energia é

fornecida à fase líquida para quebrar os aglomerados moleculares. O processo de condensação é o inverso onde

energia é retirada do gás para que este passe para a fase líquida.

Para aplicar os conceitos desenvolvidos na seção anterior, vamos considerar duas fases de uma mesma subs-

tância em contato com um reservatório com temperatura e pressão constantes, veja a Fig. 4.9. Estas fases serão

chamadas por fase 1 e fase 2. Seja N1 o número de moléculas da substância que estão na fase 1 e N2 o número de

moléculas na fase 2. Desde que as moléculas permanecem confinadas no sistema, então devemos ter

N =N1 +N2 = constante.

temperatura, T

pressão, p0

0

reservatório

pistão

fase 1

fase 2

Figura 4.9: Sistema composto por uma substância encontrada em duas fases denominadas fase 1 e fase 2. O sistema

encontra-se em equilíbrio térmico com um reservatório com pressão p0 e temperatura T0 constantes.

Temos então as seguintes questões: no equilíbrio, caracterizado por uma temperatura T e pressão p, qual fase

estará presente? Somente a fase 1, a fase 2 ou ambas as fases? Para tentar responder esta questão, partimos do

princípio de mínimo da energia livre de Gibbs:

G= E−TS+pV = mínimo

Page 157: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

156 CAPÍTULO 4. TERMODINÂMICA E SUAS APLICAÇÕES

que caracteriza o equilíbrio. A energia livre do sistema é dada pela soma:

G=G1 +G2 (4.81)

onde Gi é a energia livre de Gibbs da fase i. Como G é uma grandeza extensiva, então é proporcional ao número

de moléculas, assim, é conveniente escrever a energia livre dada pela Eq. (4.81) na forma:

G=N1g1 +N2g2 (4.82)

onde gi é a energia livre de Gibbs por molécula da fase i. Como G dever ser um mínimo no equilíbrio, então

podemos obter a partir da Eq. (4.82) a condição para a coexistência entre as duas fases, i.e., devemos ter:

dG= 0 coexistência das fases.

Aplicando esta condição na Eq. (4.82) temos que:

g1dN1 +g2dN2 = 0

e como N é uma constante então dN1 = −dN2 o que nos permite escrever:

(g1 −g2)dN1 = 0

de onde obtemos:

g1(T,p) = g2(T,p), condição para coexistência das fases (4.83)

onde explicitamos a dependência das energias livres com a temperatura e pressão.

Após esta análise, temos as três possibilidades abaixo quando consideramos duas fases de uma substância em

contato com um reservatório térmico com pressão constante:

(a) g1 < g2. Neste caso, a substância passa para a fase 1 de maneira que a energia livre total é dada por G=Ng1;

(b) g1 > g2. Aqui a substância passa para a fase 2 de maneira que a energia livre total é dada por G=Ng2;

(c) g1 = g2. As fases coexistem de maneira que temos N1 moléculas na fase 1 e N2 moléculas na fase 2.

As duas primeiras alternativas indicam que a energia livre é dada pela soma das energias de todas as moléculas

de uma determinada fase. Como isso leva a um mínimo da energia total? Isso ocorre porque na passagem de uma

fase para outra, é necessária a remoção ou introdução de calor latente de transformação. Como resultado, quando

a energia livre de uma fase é menor do que a outra, todas as moléculas transicionam para a fase mais estável (fase

de menor energia) liberando uma energia na forma de calor latente.

Page 158: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

4.13. CONDIÇÕES DE EQUILÍBRIO E TRANSIÇÕES DE FASE 157

Considerando-se os valores de temperatura e pressão, então podemos construir uma linha no diagrama T ×p

em que a Eq. (4.83) é satisfeita. Esta linha é chamada de curva de equilíbrio e separa as regiões em que g1 < g2

(onde a fase 1 é a mais estável) e g1 > g2 (onde a fase 2 é a mais estável). O diagrama p×T é então chamado

de diagrama de fases. Na Fig. 4.10 temos a representação de um diagrama de fases com a curva de equilíbrio

separando as duas fases.

Figura 4.10: Diagrama de fases para onde pode-se observar duas regiões separadas pela curva de equilíbrio definida pela

condição g1 = g2. Para valores de temperatura e pressão que estão localizados na região g1 < g2 a fase 1 é a fase estável;

na região g1 > g2 a fase estável é a fase 2.

Para caracterizar a transição de fase, vamos considerar dois pontos a e b da curva de equilíbrio (Fig. 4.10). No

ponto a, devemos ter:

g1(T,p) = g2(T,p)

e no ponto b temos ainda:

g1(T +dT,p+dp) = g2(T +dT,p+dp)

e subtraindo da equação anterior, podemos escrever:

dg1(T,p) = dg2(T,p). (4.84)

Em virtude da definição de G(T,p), podemos escrever:

gi = Gi

Ni= Ei −TSi +pVi

Ni, i= 1,2.

onde usamos o fato de que a pressão e a temperatura são iguais para ambas as fases. Podemos escrever gi na forma:

gi = εi −Tsi +pvi, i= 1,2.

Page 159: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

158 CAPÍTULO 4. TERMODINÂMICA E SUAS APLICAÇÕES

onde definimos εi = Ei/Ni, si = Si/Ni e vi = Vi/Ni, que são a energia, entropia e volume por moléculas.

Tomando a diferencial de gi, podemos escrever

dgi = dεi −sidT −Tdsi +vidp+pdvi, i= 1,2.

e da primeira lei da termodinâmica,

dεi = Tdsi −pdvi

assim, a diferencial da energia livre de Gibbs, toma a forma:

dgi = Tdsi −pdvi −sidT −Tdsi +vidp+pdvi, i= 1,2.

dgi = −sidT +vidp, i= 1,2.

onde v2 = V2/n. Substituindo esta expressão na Eq. (4.84), segue que:

−s1dT +v1dp= −s2dT +v2dp

ou ainda,

(v1 −v2)dp= (s1 −s2)dT ∴ (v1 −v2) dpdT

dT = (s1 −s2)dT

o que nos leva à seguinte igualdade:

dp

dT= ∆s

∆v(4.85)

onde ∆v = v1 − v2 e ∆s= s1 − s2. Como a razão entre as densidades de entropia e volume é igual à razão entre

as variáveis extensivas, temos ainda:

dp

dT= ∆S

∆V. (4.86)

A variação na entropia pode ser relacionada com o calor latente de transformação da fase 1 para a fase 2:

∆S = L12T

onde definimos L12 como o calor latente de transformação. Substituindo esta expressão em (4.86), obtemos a

relação final:

dp

dT= L12T∆V

. (4.87)

que é a chamada equação de Clausius-Clapeyron.

Page 160: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

4.13. CONDIÇÕES DE EQUILÍBRIO E TRANSIÇÕES DE FASE 159

4.13.4 Trocas de fase de uma substância simples

De modo geral, as substâncias podem ser encontradas nas suas três fases. Como um exemplo, vamos considerar

o diagrama de fase de uma substância simples como a água ilustrado na Fig. 4.11. No ponto denotado por t

(chamado ponto triplo) as três fases podem coexistir. Em outras palavras, as energias livres das três fases são

iguais e, portanto, podemos ter uma quantidade arbitrária de qualquer uma das fases contanto que a soma das

moléculas de água seja fixa — estamos considerando aqui uma situação em que a amostra de água esteja em

contato com um reservatório térmico a pressão e temperatura constantes, como antes.

No ponto denotado por c, a curva de equilíbrio líquido-gás acaba e a partir deste ponto as fases se transformam

uma na outra sem variação de entropia. Na realidade, a partir deste ponto temos uma fase fluida de um gás tão

denso que não conseguimos diferenciar se a fase é um vapor ou líquido. Na passagem de sólido para líquido

sempre temos uma variação de entropia o que equivale a dizer que sempre precisamos de calor latente associado a

esta transição. Na maioria das vezes o sólido se dilata na fusão, assim ∆V e ∆S são positivos. Como resultado,

a curva de equilíbrio apresenta uma derivada positiva. No caso da água, por outro lado, a curva apresenta uma

derivada negativa, conforme ilustrado na Fig. 4.11. Isso ocorre porque a água apresenta uma anomalia onde se

observa um aumento do volume quando a água passa para o estado sólido, isto é chamado de dilatação anômala da

água.

4.13.5 Cálculo aproximado da pressão de vapor

Vamos aplicar a equação de Clausius-Clapeyron para determinar a pressão de vapor de um gás em equilíbrio com

a sua fase líquida (ou sólida) a uma certa temperatura. Para aplicar a Eq. (4.87) vamos considerar que a fase 1

é a fase líquida (ou sólida) e a fase 2 é a fase gasosa. Notamos que a fase gasosa deve ocupar todo o volume do

recipiente enquanto que a fase líquida ocupa apenas uma fração do volume do recipiente. Desta forma, podemos

fazer a seguinte aproximação:

∆V = V2 −V1 ≈ V2

assim, substituindo na Eq. (4.87) temos que:

dp

dT= L12TV2

= l12Tv2

(4.88)

onde no último passo passamos para quantidades intensivas, i.e., calor latente por molécula e volume por molécula.

Se a fase gasosa pode ser considerada como um gás ideal, podemos escrever:

pv2 =RT v2 = RT

p

Page 161: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

160 CAPÍTULO 4. TERMODINÂMICA E SUAS APLICAÇÕES

Figura 4.11: Ilustração do diagrama de fases da água. As três fases estão localizadas em regiões delimitadas pelas curvas

de equilíbrio da mesma forma que no caso de duas fases. O ponto de intersecção das três curvas, denotado por t, é o

chamado ponto triplo da água onde os estados sólido, líquido e gasoso coexistem. Notamos ainda que a curva de equilíbrio

gás-líquido termina no ponto c onde temos um gás de alta densidade onde as fases líquida e gasosa são convertidas uma na

outra sem variação de entropia.

e substituindo na Eq. (4.88) segue que:

dp

dT= p

l12RT 2 . (4.89)

A Eq. (4.89) é uma equação diferencial elementar pois é separável. Sendo assim, podemos resolvê-la direta-

mente para obter a pressão de vapor em termos da temperatura:∫dp

p= l12R

∫dT

T 2

lnp= l12R

(− 1T

)+C

onde C é uma constante de integração. A equação acima pode ser reescrita na forma:

p= p0e−l/RT (4.90)

onde redefinimos a constante de integração em termos do fator multiplicativo p0 que pode ser interpretado como

uma pressão de referência para um dado valor de temperatura.

A Eq. (4.90) é o resultado final e nos indica que a pressão de vapor de um gás aumenta com a temperatura.

Page 162: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

4.14. TRANSFORMAÇÕES DE FASE E A EQUAÇÃO DE ESTADO 161

4.14 Transformações de fase e a equação de estado

Agora que já consideramos as condições de estabilidade para uma dada fase, podemos analisar o caso geral de

uma transição de fase com base na equação de estado. Para isso, considere um sistema de apenas uma componente

cuja equação de estado

p= p(v,T ) (4.91)

é conhecida. Note que estamos considerando o volume molar v, por conveniência. A equação de estado dada pela

Eq. (4.91) pode ser representada em um diagrama p− v onde teremos várias curvas para diferentes valores de T ,

i.e., teremos diferentes isotermas. De modo geral, as curvas terão a forma de um S conforme ilustrado na Fig.

??. A curva T5 apresenta um ponto de inflexão chamado de ponto crítico abaixo do qual temos um região em que

é possível ocorrer a coexistência de duas fases (área sombreada definida pela linha pontilhada). Acima de T5, as

curvas apresentam um decréscimo monotônico como a curva T6. Neste caso, temos um único valor de volume

para um dado valor de pressão, característico da existência de apenas uma fase. Desta forma, a parte interessante

das transições de fase ocorre na região sombreada para temperaturas abaixo da temperatura crítica (T5). Na Fig.

4.12 temos uma isoterma representativa onde destacamos vários pontos importantes.

Se a pressão é suficientemente baixa, tal que p < p1, então temos um valor único valor para cada pressão

e volume. Além disso, notamos que ∂p/∂v < 0, que é a condição de estabilidade da fase. Adicionalmente,

percebemos que o módulo |∂p/∂v| é muito pequeno à medida que nos deslocamos em direção ao ponto O. Como

resultado, a compressibilidade isotérmica é grande o que ocorre para gases. Concluímos então que para p < p1

temos uma fase gasosa estável. Isso é esperado desde a redução da pressão incorre no aumento de v, o que deve

resultar em um gás. Agora vamos considerar que a pressão é alta de maneira que p > p2. Neste caso, temos ainda

uma inclinação negativa da curva de pressão em termos de temperatura mas agora |∂p/∂v| é grande. Neste caso,

temos novamente uma fase estável mas com baixa compressibilidade, o que implica que temos uma fase líquida

estável neste intervalo.

Vamos agora considerar o intervalo de pressões p1 < p < p2. Aqui existem três valores de volume para um

dado valor de pressão. A questão é reduzida à determinar qual valor de volume corresponde à situação mais

estável. Para isso, podemos lançar mão da condição de estabilidade que usamos nos outros intervalos. Sendo

assim, notamos que os valores de volume situados no intervalo v1 < v < v2 implicam em ∂p/∂v > 0, ou seja,

não rendem um estado estável e podem ser excluídos. Os dois pontos restantes, fora do intervalo v1 < v < v2,

estão situados em regiões onde a inclinação da curva é negativa e, portanto, são pontos correspondentes à fases

estáveis. Resta então, determinar qual destes pontos tem uma estabilidade maior e sob quais condições. Na Fig.

4.12, escolhemos um valor particular da pressão, denotado por pA, e queremos descobrir se o valor mais estável

Page 163: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

162 CAPÍTULO 4. TERMODINÂMICA E SUAS APLICAÇÕES

Figura 4.12: Diagrama esquemático mostrando as isotermas da substância. O ponto C é um ponto crítico. Para valores de

p e v dentro da região sombreada é possível existir duas fases ao mesmo tempo.

é v = vA ou v = vBPara isso, vamos comparar as magnitudes das energias livres de Gibbs gA(T,p) e gB(T,p)

— note que estas energias são energias per mole. Sabemos que a situação mais estável se reflete em um valor

menor da energia livre. Para determinar os valores de gA(T,p) e gB(T,p), lembramos que g(T,p) = ϵ−Ts+pv.

Considerando que a temperatura é constante sobre a isoterma, segue que:

Tds= dϵ+pdv

e assim,

dg = d(ϵ−Ts+pv) = pdv.

A relação acima permite determinar a variação da energia livre entre um ponto qualquer e um outro ponto

padrão O, assim, temos que:

g−gO =∫ p

pO

v dp

e vemos que a variação da energia livre é igual à area compreendida entre a curva da pressão e o eixo p. Como

resultado, se fazemos a integração ao longo da curva, começando do pontoO, vemos que a energia lire irá aumentar

Page 164: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

4.14. TRANSFORMAÇÕES DE FASE E A EQUAÇÃO DE ESTADO 163

até o ponto N , diminui do ponto N até o ponto J e volta a crescer partindo do ponto J ao ponto R. Com efeito, a

integral na região entre N e J é negativa o que contribui para a redução da energia livre. Considerando a variação

de g com p, podemos visualizar a variação de g usando o diagrama da Fig. 4.13.

Figura 4.13: Gráfico da equação de estado (Eq. (4.91)).

Com o auxílio da Fig. 4.13, podemos resumir o que ocorre para o intervalo completo das pressões. No pontoO,

temos apenas a fase de alta compressibilidade (gás); a medida que a pressão é aumentada até o intervalo p1 < p <

p2, existem três valores possíveis para a energia livre. Os valores de g ao longo da curva OKXN correspondem

aos valores da fase de alta compressibilidade; os valores de g ao longo da curva JXMR correspondem à fase de

baixa compressibilidade e finalmente os valores de g na curva JDN são aqueles valores para o intervalo instável.

Com estas informações, vemos que a medida que p aumenta a partir de p1 (correspondendo ao ponto K), a fase

gasosa apresenta o menor valor da energia livre e, portanto, é a mais estável. Esta situação permanece a mesma até

que o sistema atinja a pressão pX onde as curvas OKXN e JXMR se cruzam. Neste ponto, temos a transição

podendo haver quantidades arbitrárias de ambas as fases coexistindo. Acima do ponto X , a fase mais estável é

a líquida desde que a curva JXMR apresenta um valor menor da energia livre. Portanto, no ponto X o sistema

muda de uma curva para outra e, assim, pX é a pressão de transformação.

Vamos considerar a transformação de fase em maiores detalhes. Seja pA = pX a pressão de transformação de

modo que ambos os pontosA eB na Fig. 4.12 correspondem ao pontoX da Fig. 4.13. Além disso, vB é o volume

molar do gas e vA é o volume molar do líquido a pressão e temperatura correspondentes à transição. Sob estas

circunstâncias, temos uma fração ξ de moles da substância na fase gasosa e 1− ξ na fase líquida. O volume molar

vtot é então dado por:

vtot = ξvB +(1− ξ)vA

Page 165: Notas de Aula | FIS0999 Termodin^amica e F sica Estat stica€¦ · Na introdução, discutimos aspectos gerais da física estatística e sua aplicabilidade a sistemas de muitas partículas.

164 CAPÍTULO 4. TERMODINÂMICA E SUAS APLICAÇÕES

A medida que a transformação de fase ocorre, o sistema muda continuamente de um volume vB da fase

gasosa para vA da fase líquida com ξ variando de 1 até 0. Neste processo, haverá calor latente associado e, por

conseqüência, uma mudança na entropia. A linha BDA, ao longo da qual a transformação ocorre, nos permite

escrever para qualquer ponto sobre ela:

gB = gA.

Esta igualdade pode ser escrita em termos da integração sobre a curva BNDJA, i.e.,

gB −gA =∫

BNDJAv dp= 0 ∴

∫BNDJA

v dp= 0

ou seja, ∫ N

Bv dp+

∫ D

Nv dp+

∫ J

Dv dp+

∫ A

Jv dp= 0

e notamos que as integrais de N a D e de D até J são negativas, assim, podemos escrever∫ N

Bv dp−

∫ N

Dv dp+

(−∫ D

Jv dp+

∫ A

Jv dp

)= 0

ou que nos permite escrever

area(DNB)− area(AJD) = 0

onde a área DNB é aquela delimitada pela curva DB e a curva DNB; a área AJD é a área delimitada pela reta

AD e a curva AJD.

Vemos então que a localização da linha de transformação de fase ADB é determinada pela condição:

area(DNB) = area(AJD).

A medida que a temperatura aumenta, os pontos de extremo onde (∂p/∂v)T = 0 ficam cada vez mais próximos.

Isto equivale a dizer que a mudança de volume ∆v na transformação de fase diminui. Quando a temperatura é

elevada ainda mais chegamos a situação em que os dois pontos de extremo coincidem de maneira que não existe

mais a mudança de sinal da derivada. Neste ponto temos que (∂2p/∂v2)T = (∂p/∂v)T = 0, i.e., temos um ponto

de inflexão na curva pv. Este ponto é o chamado ponto crítico e os valores correspondentes T , p e v são as

chamadas temperatura, pressão e volume críticos. Acima desta temperatura não existe mais transição de fase e

a curva apresenta (∂p/∂v)T < 0 para todos os pontos caracterizando a existência de uma única fase estável para

todos os valores de pressão e volume.