New Jacek Przybylski - Politechnika Częstochowska · 2009. 6. 29. · Podstawowe pojęcia i prawa...

54
Publikacja opracowana podczas realizacji projektu „Plan Rozwoju Politechniki Częstochowskiej” współfinansowanego przez Unię Europejską w ramach Europejskiego Funduszu Społecznego. Jacek Przybylski MECHANIKA Materiały pomocnicze do wykładu Przedmiot podstawowy w ramach kierunku Mechatronika– studia stacjonarne inżynierskie. Semestr II. Instytut Mechaniki i Postaw Konstrukcji Maszyn POLITECHNIKA CZĘSTOCHOWSKA

Transcript of New Jacek Przybylski - Politechnika Częstochowska · 2009. 6. 29. · Podstawowe pojęcia i prawa...

  • Publikacja opracowana podczas realizacji projektu „Plan Rozwoju Politechniki Częstochowskiej”

    współfinansowanego przez Unię Europejską w ramach Europejskiego Funduszu Społecznego. Jacek Przybylski

    MECHANIKA Materiały pomocnicze do wykładu Przedmiot podstawowy w ramach kierunku Mechatronika– studia stacjonarne inżynierskie. Semestr II.

    Instytut Mechaniki i Postaw Konstrukcji Maszyn

    POLITECHNIKA CZĘSTOCHOWSKA

  • Podstawowe pojęcia i prawa mechaniki Mechanika klasyczna zwana także newtonowską jest nauką opisującą zagadnienia działania sił i związane z tym problemy równowagi i ruchu ciał materialnych. Jakkolwiek historię mechaniki tworzyli już Arystoteles (384-322 p.n. e.) i Archimedes (287-212 p.n. e.), to dopiero Newton na przełomie XVII i XVIII wieku sformułował jej podstawowe prawa. Prawa te wyrażone w zmodyfikowanej postaci przez d’Alemberta, Lagrange’a i Hamiltona są nadal aktualne w odniesieniu do ciał materialnych poruszających się z prędkościami mniejszymi od prędkości światła. Mimo poznanych ograniczeń mechaniki związanych z teorią względności Einsteina i teorii kwantów Plancka, stanowi ona podstawę nauk inżynierskich. Podstawowymi pojęciami mechaniki, które nie są jednoznacznie definiowalne są: - przestrzeń - czas - masa - siła. Prawa Newtona 1. Jeżeli siła wypadkowa działająca na punkt materialny jest równa zeru, to punkt ten

    pozostaje w spoczynku (jeśli był w spoczynku przed przyłożeniem sił) lub porusza się ze stałą prędkością wzdłuż linii prostej (jeśli początkowo był w ruchu).

    2. Jeżeli siła wypadkowa działająca na punkt materialny o masie m nie jest równa zeru, to

    punkt ten będzie się poruszał z przyspieszeniem proporcjonalnym do wartości tej siły i zgodnie z jej zwrotem i kierunkiem

    mFa =

    3. Siły wzajemnego oddziaływania między ciałami znajdującymi się w kontakcie mają tę

    samą wartość, linię działania i przeciwny zwrot. Podział mechaniki klasycznej 1. Statyka. W ramach statyki bada się zagadnienia równowagi układów sił działających na

    ciała pozostające w spoczynku. 2. Kinematyka. W kinematyce opisuje się ruch ciał bez uwzględniania sił wywołujących ten

    ruch. 3. Dynamika. Dynamika dotyczy ruchu ciał powstającego na skutek działania określonego

    układu sił. W mechanice ciała materialne są aproksymowane modelami idealnymi takimi jak punkt materialny lub ciało doskonale sztywne. Punkt materialny to ciało o znikomo małych rozmiarach; w trakcie jego ruchu pomija się zmiany położenia wywołane przez obrót. Ciało doskonale sztywne to ciało stałe, którego dwa dowolne punkty nie zmieniają wzajemnej odległości pod wpływem przyłożonego obciążenia.

  • 3

    STATYKA Elementy rachunku wektorowego Wielkości występujące w naukach fizykalnych to wielkości skalarne (skalarowe) lub wielkości wektorowe. Wielkości skalarowe są określane przez podanie ich wartości. Wielkości wektorowe określa się przez podanie ich wartości, kierunku i zwrotu. Dodatkowo w przypadku wektorów nieswobodnych należy podać ich punkt zaczepienia. Rzut wektora na prostą

    a

    a ′ l

    α

    Rzutem wektora a na prostą l jest wektor a ′ leżący na tej prostej o module

    αcosaa =′

    Suma dwóch wektorów

    b

    a

    c

    Sumą dwóch wektorów a i b jest wektor c wychodzący z punktu przyłożenia i leżący na przekątnej równoległoboku

    bac += Moduł wektora c jest równy długości przekątnej równoległoboku. Prawo przemienności dodawania wektorów

    abba +=+

  • 4

    Odejmowanie wektorów

    b−

    a

    c

    b

    ( )babac −+=−= Odejmowanie wektorów polega na dodawaniu wektora przeciwnego. Wektorem przeciwnym do wektora b jest wektor b− o tym samym kierunku, module i przeciwnym zwrocie. Suma wektora i wektora przeciwnego jest równa zeru, stąd takie dwa wektory noszą nazwę dwójka zerowa.

    ( )babac −+=−= Mnożenie wektora przez liczbę Przy mnożeniu wektora przez liczbę dodatnią kierunek i zwrot wektora pozostają nie zmienione, natomiast zmianie ulega jego moduł.

    O

    b

    a 0 >k

    akb =

    Składowe wektora w prawoskrętnym kartezjańskim układzie współrzędnych W układzie współrzędnych prostokątnych wektor może być rozłożony na trzy składowe o kierunkach osi układu współrzędnych.

  • 5

    α β

    γ a

    yaxa

    za

    x

    y

    z

    zyx aaaa ++=

    222zyx aaaa ++=

    Cosinusy kierunkowe wektora a

    aax=αcos ,

    aay=βcos ,

    aaz=γcos

    Wektor jednostkowy (wersor) Wersorem (wektorem jednostkowym) danego wektora a nazywamy wektor o module równym jedności mającym kierunek i zwrot zgodny z modułem równym wektora a .

    aia =

    Wersory osi układu współrzędnych x, y i z są oznaczane odpowiednio i , j , k . Iloczyn skalarny dwóch wektorów Iloczynem skalarnym dwóch wektorów jest skalar o wartości iloczynu mnożonych wektorów i cosinusa kąta zawartego między tymi wektorami

    a ·b = a b cosα

  • 6

    Wyrażając mnożone wektory przez sumy geometryczne ich składowych, iloczyn skalarny będzie równy

    a ·b = ( )kajaia zyx ++ · ( )kbjbib zyx ++ = zzyyxx bababa ++

    Iloczyn wektorowy dwóch wektorów Iloczynem wektorowym dwóch wektorów niekolinearnych jest wektor prostopadły do płaszczyzny utworzonej przez mnożone wektory i module równym iloczynowi modułów tych wektorów przez sinus kąta zawartego między tymi wektorami

    bac ×= ,

    gdzie: c = a b sinα

    α ab

    c

    π

    Zwrot wektora w przypadku prawoskrętnego układu współrzędnych ustala reguła trzech palców prawej dłoni. Wykorzystując własności wyznacznika iloczyn wektorowy dwóch wektorów wyraża się następująco:

    ( ) ( ) ( )=−+−+−==× xyyxzxxzyzzyzyx

    zyx babakbabajbabaibbbaaakji

    ba

    ccccckcjci zyxzyx =++=++=

    Siła jako wektor liniowy

    Podstawowym pojęciem wektorowym w mechanice jest siła. W tekstach drukowanych wektory sił oznacza się dużymi literami z kreską u góry ( ,...) , , PGF , bądź drukiem wytłuszczonym (F, G, P,...). Zapis ten jest stosowany w dalszej części wykładu.

  • 7

    Siła jest wyrazem i miarą wzajemnego oddziaływania ciał na siebie, przy czym siły mogą być wywierane bezpośrednio w wyniku kontaktu ciał, bądź mogą być wywierane na odległość. Siły zewnętrzne to siły działające na punkty materialne danego układu wywołane działaniem innego układu, siły wewnętrzne to siły oddziaływania między punktami materialnymi układu. Siły czynne to siły, które dążą do wprowadzenia ciała w ruch; siły bierne wyrażają działanie więzów. Więzy W statyce rolę więzów pełnią podpory. Rodzaje podstawowych podpór podano w tabelach.

    Podpory o znanych kierunkach reakcji

    R

    R

    Podpora gładka

  • 8

    R

    Podpora przegubowa przesuwna

    R1 R2

    Cięgno

    R1 R2

    Nieważkie pręty przegubowe

    Podpory o nieznanych kierunkach reakcji

    R

    T

    R

    T

    Podparcie szorstkie

  • 9

    RAy

    RAx(RAz)

    A

    Podpora przegubowa przesuwna

    (układ płaski – 2 składowe reakcji; układ przestrzenny 3 składowe reakcji)

    Utwierdzenia

    Ry

    M

    - przesuwne

    (w układzie przestrzennym należy dodać drugą składową reakcji i drugą składową

    wektora momentu)

    - sztywne

    (w układzie przestrzennym należy dodać

  • 10

    Ry

    MRx

    trzecią składową reakcji i dwie składowe wektora momentu)

    Moment siły względem punktu i prostej Moment siły względem punktu Moment siły P względem punktu O jest wektorem otrzymanym w wyniku mnożenia wektorowego promienia wektora r (ramienia) i siły P

    MO = r × P

    Ramię r jest wektorem poprowadzonym od punktu O do początku siły P, a moduł wektora MO jest równy podwojonemu polu powierzchni trójkąta OAB:

    MO = P r sinϕ Moduł wektora momentu można przedstawiać jako iloczyn siły i ramienia poprowadzonego od punktu O pod kątem prostym do linii działania siły:

    MO = P h Na podstawie podanego rysunku łatwo sprawdzić, że

    h = r sin (180 - ϕ) = r sin ϕ

  • 11

    O

    ϕ

    MO

    P

    rh

    AB

    Umieszczając wektory siły i ramienia w przestrzeni względem układu współrzędnych kartezjańskich o początku w punkcie O i zapisując je jako sumy geometryczne rzutów na osie tego układu, ich iloczyn wektorowy przyjmie postać

    MO = r × P = (i rx + j ry + k rz) × (i Px + j Py + k Pz) =

    =

    zyx

    zyx

    PPPrrrkji

    = ( ) ( ) ( )xyyxzxxzyzzy PrPrPrPrPrPr −+−+− kji =

    = ( ) ( ) ( )xyyxzxxzyzzy PrPrPrPrPrPr −+−+− kji =

    = zyx MMM kji ++ = Mx + My + Mz Moment siły względem początku układu współrzędnych (punktu O) jest więc sumą momentów względem osi x, y i z. Z tego wyprowadzenia wynika definicja momentu siły względem prostej.

  • 12

    x

    y

    z

    O

    A

    B

    ϕγ

    γ

    MOP

    r

    r' P'B'

    A'

    Mz

    Moment siły względem prostej Na podstawie rysunku moment siły P względem prostej (osi) z można zdefiniować jako moment rzutu tej siły (P’) na płaszczyznę prostopadłą do tej prostej względem punktu przebicia tej prostej z tą prostopadłą płaszczyzną, czyli

    ==′×′=00

    yx

    yxz

    PPrr

    kjiPrM ( ) zxyyx MPrPr kk =−

    Moduł tego wektora można więc wyrazić następująco:

    γcosΟ=−= MPrPrM xyyxz Para sił Parą sił nazywamy układ dwóch sił równoległych o równych modułach i przeciwnych zwrotach. Suma pary sił jest równa zeru, ale siły te nie równoważą się gdyż nie działają wzdłuż jednej prostej. Para sił jest elementarnym układem, który nie może być zastąpiony jedną siłą, ponieważ nie ma wypadkowej.

  • 13

    Para sił jest równoważna wektorowi momentu M, którego kierunek jest prostopadły do płaszczyzny wyznaczonej przez linie działania sił pary. Zwrot wektora momentu wynika z reguły śruby prawoskrętnej.

    M

    P

    -P

    Moment pary sił względem bieguna O

    O

    ϕ

    h

    rP1 P2

    r2

    r1

    O1

    Przy założeniu, że P1 = P, P2 = - P, moment pary sił względem bieguna O jest równy:

    MO = r1 × P1 + r2 × P2 = r1 × P - r2 × P = (r1 - r2) × P = r × P

  • 14

    Ławo zauważyć, że ramię r = r1 - r2 nie zależy od położenia punktu O. Stąd wynika wniosek, że moment pary sił zależy jedynie od wartości tych sił i ich wzajemnej odległości. Na podstawie rysunku moduł wektora momentu pary sił jest równy

    hPPrM sin 1

    ==Ο ϕ Moment pary sił jest wektorem swobodnym, ponieważ nie zależy od punktu na płaszczyźnie, względem którego jest obliczany. Parę sił można więc przenosić w płaszczyźnie jej działania. Redukcja dowolnego przestrzennego układu sił Redukcja układu sił polega na zastąpieniu go innym prostszym, którego skutek działania na ciało materialne jest identyczny z tym jaki wynika z działania układu niezredukowanego. Redukcja siły do punktu

  • 15

    OA

    P

    O A

    PP

    -P

    r

    O A

    P

    MO

    Zadanie polega na przeniesieniu siły P działającej w punkcie A do punktu O bez zmiany efektu oddziaływania tej siły na ciało materialne. W tym celu w punkcie O przykładamy dwójkę zerową złożoną z sił P i – P. Wektor ramienia r wyznacza położenie punktu A względem punktu O. Siła P przyłożona w punkcie A i siła -P zaczepiona w punkcie O tworzą parę sił o momencie MO:

    MO = r × P Wniosek: Przesunięciu siły z jednego punktu do drugiego towarzyszy dodanie momentu siły zależnego od punktu końcowego przesu-nięcia. Wektor momentu ma kierunek prostopadły do płaszczyzny odpowiedniej pary.

  • 16

    Redukcja układu n sił do punktu

    x

    y

    z

    O

    β

    MO P1

    M1

    P2 M2

    Pn

    Mn

    P

    Każda siła układu n sił jest przesuwana do punktu O, który jest środkiem redukcji. Przesunięciu siły Pi towarzyszy dodanie odpowiedniego wektora momentu Mi, który ma kierunek prostopadły do wektora siły (Mi ⊥ Pi ). Po geometrycznym dodaniu wszystkich wektorów sił otrzymuje się główny wektor siły:

    ∑=

    =n

    ii

    1PP

    Geometryczna suma wektorów momentów daje wektor głównego momentu:

    ∑=

    =n

    ii

    1O MM

    Redukcja układu sił umożliwia więc zastąpienie go dwoma wektorami: głównym wektorem siły P i wektorem głównego momentu MO. W ogólnym przypadku oba wektory mają linie działania nachylone pod dowolnym kątem zaznaczonym na rysunku jako β. Niezmienniki układu sił 1. Główny wektor siły jest niezmiennikiem, ponieważ nie zależy on od położenia środka

    redukcji (punktu O). Wektor głównego momentu nie jest niezmiennikiem – jego wielkość jest zdeterminowana położeniem środka redukcji.

    2. Iloczyn skalarny głównego wektora siły i wektora głównego momentu P · MO = const = P MO cosβ

    Analityczny warunek równowagi dowolnego przestrzennego układu sił Dowolny przestrzenny układ sił redukuje się do wektora głównego i momentu głównego

    ∑=

    =n

    ii

    1PP ∑

    =

    =n

    ii

    1O MM

    Równowaga takiego układu sił możliwa jest tylko wtedy i tylko wtedy gdy suma geometryczna wszystkich sił jest równa zeru oraz gdy suma geometryczna momentów od wszystkich sił względem punktu O jest równa zeru

    01

    == ∑=

    n

    iiPP 0

    1O == ∑

    =

    n

    iiMM

  • 17

    Wiedząc, że

    01111

    =++== ∑∑∑∑====

    n

    iiz

    n

    iiy

    n

    iix

    n

    ii PPP kjiPP

    0 1111

    O =++== ∑∑∑∑====

    n

    iiz

    n

    iiy

    n

    iix

    n

    ii MMM kjiMM

    powyższe równania mogą być spełnione tylko wtedy, gdy

    01

    =∑=

    n

    iixP

    01

    =∑=

    n

    iiyP

    01

    =∑=

    n

    iizP

    01

    =∑=

    n

    iixM

    01

    =∑=

    n

    iiyM

    01

    =∑=

    n

    iizM

    Sześć powyższych równań tworzy analityczny warunek równowagi dowolnego przestrzennego układu sił, który ma następujące brzmienie:

    Przestrzenny dowolny układ sił jest w równowadze gdy sumy rzutów tych sił na osie układu współrzędnych oraz sumy momentów tych sił względem osi układu współrzędnych są równe

    zeru Metody analityczne w statyce układów płaskich Z płaskim układem sił mamy do czynienia gdy linie działania wszystkich sił układu leżą w jednej płaszczyźnie. W tym przypadku wektor główny siły P znajduje się także w płaszczyźnie układu, a wektor głównego momentu MO jest prostopadły do tej płaszczyzny.

    x

    y

    z

    O

    MO

    P

  • 18

    Wektor główny ma więc dwie składowe w rzutach na osie układu współrzędnych, a wektor głównego momentu ma jedną składową. Wektorowy warunek równowagi płaskiego układu sił prowadzi do równań

    0111

    =+== ∑∑∑===

    n

    iiy

    n

    iix

    n

    ii PP jiPP

    0 11

    O OO === ∑∑==

    n

    ii

    n

    ii MkMM ,

    które będą spełnione gdy

    01

    =∑=

    n

    iixP

    01

    =∑=

    n

    iiyP

    01

    =∑=

    Ο

    n

    iiM

    Płaski dowolny układ sił jest w równowadze gdy sumy rzutów wszystkich sił na osi x i y układu współrzędnych oraz moment od wszystkich sił względem punktu O są równe zeru. Alternatywne warunki równowagi kładu płaskiego dowolnego: a)

    01

    =∑=

    n

    iixP

    01

    =∑=

    Α

    n

    iiM

    01

    =∑=

    Β

    n

    iiM ,

    przy czym punkty A i B nie mogą leżeć na prostej prostopadłej do osi x.

    b)

    01

    =∑=

    Α

    n

    iiM

    01

    =∑=

    Β

    n

    iiM ,

    01

    C =∑=

    n

    iiM

    przy czym punkty A, B i C nie mogą leżeć na jednej prostej.

  • 19

    Układy płaskie zbieżne i złożone Układ sił płaski zbieżny (środkowy) to taki układ, w którym wektorów sił leżących w jednej płaszczyźnie przecinają się w jednym punkcie. Warunek analityczny równowagi takiego układu jest następujący:

    01

    =∑=

    n

    iixP

    01

    =∑=

    n

    iiyP

    Układ płaski złożony tworzy kilka lub kilkanaście ciał materialnych połączonych ze sobą więzami. Rozwiązanie układu złożonego polega na rozdzieleniu poszczególnych ciał i zapisaniu warunków równowagi dla każdej z brył z osobna. Poniżej zaprezentowany układ jest złożony z dwóch ciał materialnych: płyty i belki. Płyta wsparta jest w punkcie A na podporze przegubowej stałej, natomiast w punkcie D opiera się o belkę. Belka jest zamocowana na podporze przegubowej w punkcie B i jest oparta o płaskie sztywne podłoże w punkcie C. Znając masy belki i płyty, kąt nachylenia belki do poziomu oraz wymiary geometryczne obu elementów można, po rozdzieleniu obu ciał, wyznaczyć reakcje we wszystkich wskazanych punktach zapisując sześć równań wynikających z warunku równowagi dla układu płaskiego dowolnego.

    A

    B

    D

    αC

    Kratownice płaskie Kratownica jest układem złożonym z nieważkich sztywnych prętów połączonych ze sobą przegubami i obciążanym siłami skupionymi w niektórych przegubach.

  • 20

    P1 P2P3

    A B

    Warunkiem statycznej wyznaczalności kratownic jest by liczba prętów p spełniała warunek

    p = 2 w - 3

    gdzie w jest liczbą węzłów. W podanym przykładzie mamy 7 prętów i 5 węzłów, czyli jest to kratownica statycznie wyznaczalna. Rozwiązanie kratownicy polega na obliczeniu reakcji podpór, a następnie obliczeniu sił wzdłużnych w poszczególnych prętach. Analitycznymi metodami rozwiązywania kratownic są metoda Rittera i metoda równoważenia sił w węzłach. Tarcie. Równowaga sił z uwzględnieniem sił tarcia Tarcie zewnętrzne jest zjawiskiem fizycznym, jakie występuje na powierzchniach kontaktu ciał materialnych. Natura sił tarcia, przeciwdziałających ruchowi względnemu stykających się ciał, nie jest jeszcze poznana do końca, ale wynikają one z chropowatości powierzchni i zjawiska adhezji. Rozróżniamy dwa typy tarcia - tarcie suche zwane tarciem Coulomba – badacza zjawiska tarcia - tarcie płynne występujące między warstwami płynu poruszającego się z różnymi

    prędkościami. Jeśli do bryły stojącej na płaskiej powierzchni przyłożymy poziomą siłę P, to bryła będzie pozostawała w spoczynku dopóki wartość tej siły nie przekroczy maksymalnej wartości siły tarcia T.

  • 21

    P

    G

    T

    N

    Relację między poziomą wartością bezwzględną siły P a modułem siły tarcia T można zobrazować na wykresie.

    T

    P

    TkTm

    Równowagastatyczna Ruch bryły

    Wzrost wartości siły czynnej P powoduje proporcjonalny wzrost siły tarcia aż do osiągnięcia wartości maksymalnej Tm, poczym bryła rozpoczyna ślizganie się względem podłoża. Wtedy siła tarcia maleje do wartości Tk – siły tarcia kinetycznego, jaką utrzymuje niezależnie od wzrostu siły poziomej P i wzrostu prędkości ruchu. Badania eksperymentalne wskazują, że siła tarcia statycznego jest równa

    NT sm µ= natomiast siłę tarcia kinetycznego określa wzór

    NT kk µ=

    gdzie: N to siła nacisku, a µs i µk to współczynniki tarcia statycznego i kinetycznego.

  • 22

    Siła tarcia, a także współczynniki tarcia, nie zależą od wielkości powierzchni kontaktu między ciałami, zależą natomiast od rodzaju materiału z jakiego wykonane są ciała. Tabela wartości współczynników tarcia

    Współczynniki tarcia Rodzaj materiałów ciał w kontakcie statycznego kinematyczn.

    guma/beton 0.9 0.75 szkło/szkło 0.94 0.4 metal/metal 0.4-0.6 0.3-0.5

    metal/kamień 0.3-0.7 0.4-0.6 lód/lód 0.1 0.03

    teflon/teflon 0.04 0.04 Ciało na równi pochyłej Na ciało o ciężarze G znajdujące się na równi pochyłej nachylonej do poziomu pod kątem α działają także siła nacisku N oraz siła tarcia T.

    αG

    T

    N

    α

    xy

    Bryła będzie w równowadze statycznej jeśli sumy rzutów tych sił na osie układu współrzędnych będą równe zeru:

    01

    =∑=

    n

    iixP T – G sinα = 0

    01

    =∑=

    n

    iiyP N – G cosα = 0

    Przenosząc składowe siły ciężkości na prawą stronę i dzieląc oba równania przez siebie otrzymuje się:

    αtg=NT

    Na podstawie prawa tarcia wiadomo, że T = µ N, czyli

  • 23

    µ = tg α Stąd można zauważyć, że ciało znajdujące się na równi pochyłej będzie w spoczynku jeśli kąt nachylenia równi α będzie mniejszy lub równy kątowi tarcia ρ, co można zapisać

    ρα ≤≤0 Zwiększenie kąta nachylenia równi ponad wartość kąta tarcia spowoduje zsunięcie bryły, co jest możliwe do zaobserwowania na drodze prostego eksperymentu. Przestrzenny układ sił równoległych. Środek ciężkości Przestrzenny układ sił równoległych tworzą siły o równoległych kierunkach działania. Wypadkową takiego układu znajdujemy sumując wszystkie siły składowe

    ∑=

    =n

    ii

    1PP ,

    natomiast punkt przyłożenia wypadkowej jest wyznaczany na podstawie równań

    =

    == n

    ii

    n

    iii

    C

    P

    xPx

    1

    1 ,

    =

    == n

    ii

    n

    iii

    C

    P

    yPy

    1

    1 ,

    =

    == n

    ii

    n

    iii

    C

    P

    zPz

    1

    1

    gdzie: Pi to moduł i-tej siły składowej; xi, yi, zi to współrzędne punktu zaczepienia i-tej siły składowej. Punkt C, przez który przechodzi wypadkowa układu sił równoległych jest nazywany środkiem sił równoległych.

  • 24

    Pi

    Ai

    x

    y

    z

    O

    zi

    xi

    yi

    P1

    A1

    P2A2

    P

    C

    zC

    xCyC

    Metody wyznaczania środków ciężkości figur płaskich i brył przestrzennych. Twierdzenie Guldina Podstawowym układem sił równoległych jest układ sił ciężkości.

    Gi

    x

    y

    z

    O

    zi

    xi

    yi

    G

    C

    zC xCyC

    Środek sił równoległych w odniesieniu do sił ciężkości jest nazywany środkiem ciężkości. Po podzieleniu całej bryły na n elementarnych objętości o znanym ciężarze każdego z elementów, położenie środka ciężkości jest wyznaczone przez następujące współrzędne:

  • 25

    =

    == n

    ii

    n

    iii

    C

    G

    xGx

    1

    1 ,

    =

    == n

    ii

    n

    iii

    C

    G

    yGy

    1

    1 ,

    =

    == n

    ii

    n

    iii

    C

    G

    zGz

    1

    1

    gdzie: GGn

    ii =∑

    =1 jest ciężarem całej bryły, a xi, yi, zi to współrzędne położenia i-tej

    objętości o ciężarze elementarnym Gi. Gdy ciało materialne zostanie podzielone na nieskończenie wiele elementów dG o wymiarach i ciężarze bliskich zeru, to położenie środka ciężkości wyrażają następujące wzory:

    G

    dGxx GC

    ∫=

    , G

    dGyy GC

    ∫=

    , G

    dGzz GC

    ∫=

    W jednorodnym polu ciężkości ciężar jest iloczynem masy m i przyspieszenia ziemskiego g, można więc zapisać, że

    mgG = , dmgdG =

    Stąd:

    m

    dmxx mC

    ∫=

    , m

    dmyy mC

    ∫=

    , m

    dmzz mC

    ∫=

    czyli:

    W jednorodnym polu ciężkości środek masy pokrywa się ze środkiem ciężkości Dla ciał jednorodnych ich masa właściwa (gęstość) jak również ciężar właściwy to wielkości stałe. Po podstawieniu: m = ρV i dm = ρ dV, gdzie ρ to gęstość materiału bryły, dV to objętość jej nieskończenie małego elementu, a V to objętość całkowita, otrzymuje się wzory na środek masy (ciężkości) bryły przestrzennej w postaci

    V

    dVxx VC

    ∫=

    , V

    dVyy VC

    ∫=

    , V

    dVzz VC

    ∫=

    W przypadku ciała, które jest powierzchnią jednorodną o stałej grubości f, czyli jego masa jest równomiernie rozłożona na całej powierzchni, prawdziwe są następujące relacje:

  • 26

    SfV = , dSfdV = gdzie: S to całkowite pole powierzchni, a dS to powierzchnia elementarna. Środek masy takiej powierzchni wyrażają wzory:

    S

    dSxx SC

    ∫=

    , S

    dSyy SC

    ∫=

    , S

    dSzz SC

    ∫=

    Dla płaskiej płyty leżącej na płaszczyźnie Oxy współrzędna środka masy zC = 0. Niektóre ciała takie jak liny, druty, cięgna mogą być uważane z dostateczną dokładnością za linie jednorodne o stałym polu powierzchni przekroju A. Objętości całkowita i elementarna takiego ciała są równe

    lAV = , dlAdV = gdzie l to długość całkowita linii, dl to długość elementarna. Środek masy linii elementarnej określają wzory:

    l

    dlxx lC

    ∫=

    , l

    dlyy lC

    ∫=

    , l

    dlzz lC

    ∫=

    Środki mas ciał złożonych Przy wyznaczaniu położenia środka masy ciał złożonych dzieli się je na ciała podstawowe, których położenia środków mas są znane, a następnie wykorzystuje się odpowiednie formuły definiujące momenty statyczne poszczególnych ciał podstawowych. Jeśli np. figurę płaską można podzielić na określoną liczbę figur prostych takich jak prostokąty, trójkąty, koła, półkola itp., to współrzędne środka masy figury złożonej są następujące:

    S

    xSx

    n

    iii

    C

    ∑== 1 ,

    S

    ySy

    n

    iii

    C

    ∑== 1

    gdzie: ∑=

    =n

    iiSS

    1 to pole powierzchni całej figury złożonej z n figur podstawowych, Si - pole

    powierzchni i-tej figury, xi , yi – współrzędne środka masy i-tej figury.

    Sumy iloczynów ∑=

    n

    iii xS

    1 i ∑

    =

    n

    iii yS

    1 są definiowane jako momenty statyczne figur

    składowych względem osi odpowiednio y i x. Momentami statycznymi względem tych

  • 27

    samych osi są także iloczyny SxC i SyC ; równość odpowiednich momentów statycznych umożliwia wyprowadzenie podanych wzorów na położenie środka masy figury złożonej. Twierdzenia Guldina-Pappusa 1) Pole powierzchni obrotowej S, jaka powstaje w wyniku obrotu płaskiej jednorodnej linii o

    długości l dookoła osi znajdującej się w płaszczyźnie linii, jest równe iloczynowi długości tej linii pomnożonej przez długość obwodu okręgu jaki opisuje środek ciężkości tej linii.

    y

    x

    C

    xC

    l

    lxS 2 Cπ= ,

    l – długość linii

    2) Objętość bryły obrotowej V, jaka powstaje w wyniku obrotu jednorodnej figury płaskiej o

    polu powierzchni A dookoła osi znajdującej się w płaszczyźnie figury, jest równa iloczynowi pola powierzchni tej figury pomnożonej przez długość obwodu okręgu jaki opisuje środek ciężkości tej figury.

    y

    x

    C

    xC

    A

    AxV 2 Cπ= ,

    A – pole powierzchni

    figury

  • 28

    KINEMATYKA Kinematyka punktu Ruch ciała to zjawisko przebiegające w określonym czasie i polegające na zmianie położenia tego ciała w przestrzeni względem układu odniesienia. W mechanice przestrzeń i czas to pojęcia podstawowe, przy czym czas jest niezależny od układu odniesienia i jest taki sam dla wszystkich punktów przestrzeni. Ruch ciała materialnego jest uważany za znany jeśli jest możliwy do określenia i opisania ruch dowolnego punktu należącego do tego ciała. Opis ruchu we współrzędnych kartezjańskich. Tor punktu

    x

    y

    z

    O

    A

    z

    xy

    r

    k

    Położenie dowolnego punktu w przestrzeni określają trzy współrzędne układu Oxyz. W trakcie ruchu punktu współrzędne te ulegają zmianie w czasie, czyli są funkcjami czasu t:

    x = x(t) y = y(t) z = z(t)

    Równania te noszą nazwę równań ruchu punktu.

    Punkt A poruszający się w przestrzeni opisuje krzywą k, która jest miejscem geometrycznym jego położeń. Równania ruchu noszą także nazwę parametrycznych równań toru punktu, gdzie parametrem jest czas. Jeśli z równań tych zostanie wyrugowany czas, to otrzymuje się równanie toru punktu w postaci

    f(x, y, z) = 0 Równanie to obrazuje krzywą k, po której porusza się punkt. Wektorowe równanie ruchu punktu materialnego Położenie punktu w przestrzeni może być określane za pomocą promienia-wektora r. Jeśli punkt porusza się, to wektor r zmienia w czasie swą wartość, kierunek i zwrot. Stąd

    r = r(t) jest wektorowym równaniem ruchu punktu.

  • 29

    Po wprowadzeniu zapisu przy użyciu wersorów poszczególnych osi układu współrzędnych i, j, k otrzymuje się

    r(t) = i x(t) + j y(t) + k z(t)

    Opis ruchu we współrzędnych krzywoliniowych (sferycznych)

    x

    y

    z

    O

    A

    φ

    r

    k

    A’

    ψ

    Położenie punktu A w układzie sferycznym jest określane przez podanie długości r promienia wodzącego r, kąta dwuściennego φ między płaszczyzną Oxz a płaszczyzną OAA’ oraz kąta ψ nachylenia promienia r do płaszczyzny Oxz. Wszystkie te wielkości są funkcjami czasu i są powiązane ze współrzędnymi układu kartezjańskiego w następujący sposób:

    x(t) = r(t) cosψ(t) cosφ(t) y(t) = r(t) cosψ(t) sinφ(t)

    z(t) = r(t) sinψ(t) Ruch punktu wyrażony za pomocą współrzędnej łukowej

    x

    y

    z

    OA

    k

    s

    Zakładając, że tor poruszającego się punktu jest znany i może być zobrazowany jako krzywa k, to położenie punktu na torze można jednoznacznie określić przez podanie współrzędnej s mierzonej wzdłuż toru od danego punktu odniesienia O. Współrzędna s o długości równej długości łuku OA jest drogą punktu A.

    W trakcie ruchu punktu współrzędna ta jest funkcją czasu

    s = s(t)

    Zależność ta jest nazywana równaniem drogi lub równaniem ruchu punktu na torze. Prędkość punktu

  • 30

    Prędkość jako pochodna promienia wektora

    Punkt poruszając się po torze w chwili czasu t znalazł się w położeniu wyznaczonym przez promień wektor r(t), a następnie po czasie ∆t w położeniu określonym przez wektor r(t+∆t).

    O

    A

    r(t)A’

    r(t+∆t)

    ∆r

    Zmianę położenia punktu można także wyrazić przez wektor ∆r, który jest równy

    ∆r = r(t+∆t) - r(t)

    Prędkość średnia punktu jest wektorem definiowanym następująco:

    ∆t∆

    śrrV =

    Kierunek i zwrot wektora prędkości średniej Vśr jest taki sam jak wektora ∆r, ponieważ przyrost czasu jest wielkością skalarną o wartości większej od zera. Prędkość chwilową (prędkość) punktu definiujemy jako granicę ilorazu różnicowego

    dtd

    ∆tt∆tt

    ∆t∆

    ∆t∆trrrrV =−+== →→

    )()(limlim 00 ,

    czyli jest to pochodna promienia wektora względem czasu.

    V

    O

    A

    r(t)A’

    r(t+∆t)

    ∆rVśr

    (τ)

    Prędkość chwilowa V ma kierunek stycznej (τ) do toru ruchu punktu, ponieważ przy zmniejszaniu przyrostu czasu ∆t kierunek wektora ∆r i wyznaczany przez niego kierunek wektora Vśr zbliża się do kierunku stycznej do toru w punkcie A. Wyznaczanie prędkości punktu przy opisie ruchu za pomocą współrzędnej łukowej

  • 31

    W chwili czasu t punkt A znalazł się w położeniu określonym współrzędną łukową s(t) równą przebytej przez niego drodze. Po upływie czasu ∆t jego droga przyrosła o wartość ∆s, tak że w chwili czasu t +∆t całkowita długość przebytej drogi to s +∆s.

    O

    As(t)

    A’t+∆t

    t∆s

    Wektor prędkości średniej Vśr średniej jest to wektor, który ma kierunek wzdłuż cięciwy AA’, zwrot zgodny z kierunkiem ruchu, a wartość

    ∆t∆s

    ∆tVśr ==

    AA'

    Prędkość średnia jest ilorazem drogi do czasu, w jakim ta droga została przebyta.

    s(t) V

    t+∆t VśrO

    A

    t+∆t

    t∆s A’

    (τ)

    Zmniejszanie przyrostu czasu ∆t i tym samym drogi ∆s powoduje, że kierunek wektora prędkości średniej Vśr zbliża się przy ∆t → 0 do kierunku stycznej to toru w punkcie A. Wektor V o kierunku stycznej (τ) nosi nazwę prędkości chwilowej (prędkości) punktu. Wartość wektora V jest definiowana w następujący sposób:

    )()()()(limlim 00 tsdttds

    ∆tts∆tts

    ∆t∆sV ∆t∆t &==

    −+== →→

    Wartość bezwzględna (moduł) wektora prędkości jest równy pierwszej pochodnej drogi względem czasu. W naukach fizykalnych pochodną względem czasu oznacza się często kropką rysowaną nad symbolem funkcji, która ma być poddana operacji różniczkowania. Przyspieszenie punktu materialnego

  • 32

    Wektor prędkości punktu materialnego poruszającego się po torze krzywoliniowym zmienia swój kierunek, a jeżeli ruch punktu jest ruchem zmiennym, to zmianie ulega także moduł wektora prędkości. Przyjmuje się, że w chwili czasu t prędkość punktu wyraża wektor V0, a po upływie czasu ∆t, czyli w chwili t +∆t prędkość jest wyrażona przez wektor V1.

    V V1

    A t+∆t

    t

    A1

    Różnica wektorów V1 - V0 = ∆V określa przyrost prędkości w czasie ∆t. Stosunek przyrostu wektora prędkości do czasu, w jakim ten przyrost nastąpił nazywamy przyspieszeniem średnim punktu aśr:

    ∆t∆

    śrVa =

    V

    V1

    A t+∆t

    A1∆V

    aśr

    V1

    Va ∆śr

    Wektor przyspieszenia średniego ma kierunek i zwrot wektora ∆V. Przyspieszeniem chwilowym (przyspieszeniem) punktu nazywamy wektor określany jako granicę ilorazu różnicowego

    dtd

    ∆t∆

    ∆tVVa == →0lim

    Ponieważ wektor prędkości jest definiowany jako

    dtdrV = ,

    to wektor przyspieszenia może być także wyrażony jako druga pochodna promienia wektora względem czasu

    2

    2

    dtd

    dtd rVa ==

  • 33

    Wektor przyspieszenia jest więc pierwszą pochodną wektora prędkości lub drugą pochodną promienia wektora względem czasu. Wektor przyspieszenia może być wyrażony w postaci sumy jego rzutów na osie prostokątnego układu współrzędnych:

    zyxzyx aaa kjiaaaa ++=++= Korzystając z definicji przyspieszenia i rozkładając na składowe wektory prędkości i położenia można napisać także, że

    dtdV

    dtdV

    dtdV

    dtd zyx kjiVa ++==

    lub

    2

    2

    2

    2

    2

    2

    2

    2

    dtzd

    dtyd

    dtxd

    dtd kjira ++==

    Stąd moduły składowych wektora przyspieszenia można przedstawić następująco:

    2

    2

    dtxd

    dtdVa xx == , 2

    2

    dtyd

    dtdV

    a yy == , 22

    dtzd

    dtdVa zz ==

    Długość wektora przyspieszenia jest równa

    222zyx aaaa ++=

    Przyspieszenie normalne i styczne W analizie ruchu wektor przyspieszenia jest wyrażany często poprzez składową styczną i normalną do toru

    nnttnt aadtd eeaaVa +=+==

    gdzie: at, an to przyspieszenia odpowiednio styczne i normalne, et to wersor stycznej (τ) do toru, en to wersor normalnej (n) do toru.

  • 34

    V

    S

    A et(τ)

    (n)

    en

    ρ

    Na rysunku zaznaczono promień krzywizny toru ρ, który jest położony na normalnej (n), i którego długość wyznacza położenie środka krzywizny toru - punktu S. Płaszczyzna utworzona przez wersory styczny et i normalny do toru en to płaszczyzna ściśle styczna, stąd wektor przyspieszenia leży w płaszczyźnie ściśle stycznej.

    V

    S

    A at(τ)

    (n)

    an

    ρ

    a

    Wartości bezwzględne wektorów przyspieszeń stycznego i normalnego oblicza się na podstawie wzorów

    dtdVat = , ρ

    2 Van =

    Ze wzorów tych wynika, że wartość przyspieszenia normalnego jest zawsze większa od zera, natomiast wartość przyspieszenia stycznego może być zarówno większa jak i mniejsza od zera, ponieważ zależy ona od zmiany wartości bezwzględnej prędkości w czasie. Zwrot wektora przyspieszenia stycznego może być więc zgodny lub przeciwny do zwrotu wektora prędkości. Moduł wektora przyspieszenia obliczyć można na podstawie wzoru

    22nt aaa +=

  • 35

    W przypadku ruchu odbywającego się ze stałą prędkością przyspieszenie styczne jest równe zeru, a ruch taki nazywamy jednostajnym. Przyspieszenie normalne jest równe zeru tylko w przypadku ruchu prostoliniowego. Ruch punktu materialnego po okręgu Rozpatruje się ruch punktu A po okręgu o promieniu r odbywający się od położenia początkowego A0.

    A

    at

    ϕr

    anV

    A0O

    s

    Współrzędna s o długości równej długości łuku AA0 jest drogą punktu A. Droga kątowa (ϕ) czyli kąt jaki zatoczył punkt A jest powiązana z drogą s (wyrażaną w mierze łukowej) związkiem

    rtts )()( ϕ= [m] Wartość bezwzględna prędkości liniowej V jest więc równa

    ωϕ rdtdr

    dtdsV === ⎥⎦

    ⎤⎢⎣⎡

    sm

    gdzie

    dtdϕω = ⎥⎦

    ⎤⎢⎣⎡

    srad

    to prędkość kątowa (pochodna drogi kątowej względem czasu). Przyspieszenie styczne jest pochodną prędkości liniowej (iloczynu prędkości kątowej i promienia), stąd można zapisać, że

  • 36

    εωω ) ( rdtdr

    dtrd

    dtdVat ==== ,

    gdzie

    ⎥⎦⎤

    ⎢⎣⎡== 22

    2

    srad

    dtd

    dtd ϕωε

    jest przyspieszeniem kątowym określającym zmianę prędkości kątowej w czasie. Przyspieszenie normalne w ruchu po okręgu wyraża się w funkcji prędkości kątowej przez podstawienie:

    ( )r

    rr

    rVan

    222

    ωω ===

    Przyspieszenie całkowite jest wektorem o wartości

    ( ) ( ) 4222222 ωεωε +=+=+= rrraaa nt Prędkość kątowa i przyspieszenie kątowe to wielkości wektorowe. Każdy z tych wektorów ma kierunek prostopadły do płaszczyzny okręgu, po jakim porusza się punkt. Ich zwrot dla prawoskrętnego układu współrzędnych jest ustalany za pomocą reguły śruby prawoskrętnej. W przypadku ruchu opóźnionego, gdy wartość prędkości kątowej maleje w funkcji czasu, zwrot wektora przyspieszenia kątowego ε jest przeciwny do zwrotu wektora prędkości kątowej ω (zwrot wektora przyspieszenia stycznego at będzie przez analogię przeciwny do zwrotu wektora prędkości liniowej V).

    ω

    VA

    ω 0

  • 37

    łącznie ze słupem związanym z podłożem, znajduje się w ruchu obrotowym jaki Ziemia wykonuje względem swej osi obrotu. Ruchy ciał są więc ruchami wielokrotnie złożonymi co nie jest jednoznaczne z tym, że wszystkie ruchy składowe muszą być brane pod uwagę przy opisywaniu konkretnego zjawiska. Ruchy jednych ciał względem innych, które są także w ruchu nazywamy ruchami względnymi. Ruch unoszenia to ruch ruchomego układu współrzędnych związanego z danym ciałem względem układu nieruchomego. Ruch bezwzględny punktu lub bryły to ruch względem nieruchomego układu współrzędnych. Składanie prędkości w ruchu złożonym Jeśli punkt A znajduje się w ruchu składającym się z dwóch ruchów, to jego prędkość bezwzględna V o kierunku stycznym do toru bezwzględnego będzie wypadkową prędkości względnej Vw, która jest styczna do toru względnego kw i prędkości unoszenia Vu, która jest styczna do toru unoszenia ku

    V = Vw + Vu

    A

    kuVw

    Vu

    V

    kw

    k

    Składanie przyspieszeń w ruchu złożonym. Przyspieszenie Coriolisa Przyspieszenie bezwzględne a w ruchu złożonym punktu jest równe sumie geometrycznej przyspieszenia w ruchu względnym aw, przyspieszenia w ruchu unoszenia au i przyspieszenia Coriolisa aC

    a = aw + au + aC Jeśli ruchy względny i unoszenia są ruchami zmiennymi krzywoliniowymi, to każde z przyspieszeń tych ruchów ma składową normalną i styczną i wtedy

    a = awn + awt + aun + aut + aC

  • 38

    Przyspieszenie Coriolisa aC, powodowane ruchem obrotowym układu unoszenia, jest równe podwojonemu iloczynowi wektorowemu prędkości kątowej w ruchu unoszenia ωu i prędkości względnej Vw

    wu VωaC 2 ×= Z definicji iloczynu wektorowego wynika, że: 1) długość wektora przyspieszenia Coriolisa jest równa αsin 2 wuC Vωa = , przy czym α jest

    kątem między wektorami ωu i Vw , 2) przyspieszenie Coriolisa będzie równe zeru jeśli:

    − ωu = 0, czyli gdy ruch unoszenia jest ruchem postępowym, − Vw = 0, czyli gdy prędkość względna jest w danej chwili równa zeru, − wu V||ω , tzn. gdy wektory prędkości kątowej w ruchu unoszenia i prędkości

    względnej są do siebie równoległe. Ruch płaski ciała sztywnego Ruch płaski ciała sztywnego to ruch, w trakcie którego wszystkie punkty tego ciała poruszają się w stałej odległości od płaszczyzny kierującej. Ruch płaski można sprowadzić do ruchu figury będącej rzutem bryły na płaszczyznę kierującą. W związku z tym może być on traktowany jako złożenie ruchu postępowego w płaszczyźnie kierującej i ruchu obrotowego względem osi prostopadłej do płaszczyzny kierującej.

    ω

    VA

    A

    B VB

    VBA

    VA

    Prędkość punktu B bryły sztywnej można interpretować jako sumę geometryczną prędkości punktu A (VA ) i prędkości punktu B względem punktu A (VBA ):

    AB×+=+= ωVVVV ABAAB

    gdzie długość wektora VBA jest równa VBA = ω AB

  • 39

    Ruch płaski bryły jako chwilowy ruch obrotowy względem chwilowego środka prędkości Ruch płaski można także rozważać jako chwilowy ruch obrotowy. Na tej podstawie twierdzi się, że w każdej chwili czasu prędkości punktów bryły są takie jakby bryła obracała się wokół pewnej osi prostopadłej do płaszczyzny ruchu (płaszczyzny kierującej). Oś ta jest chwilową osią obrotu, a punkt jej przecięcia z płaszczyzną kierującą nosi nazwę chwilowego środka obrotu.

    VB

    A

    B

    VA ⊥ ASVB ⊥ BS

    VS = 0

    VA

    ω

    S Punkt S to chwilowy środek obrotu. Punkt ten leży w miejscu przecięcia prostopadłych do wektorów prędkości wszystkich punktów bryły. W związku z tym może on w danej chwili należeć do figury będącej rzutem bryły na płaszczyznę kierującą lub też może znajdować się poza figurą. Jego prędkość liniowa jest równa zeru, a bryła wykonuje wokół niego ruch obrotowy z chwilową prędkością ω. Położenie chwilowego środka obrotu jest zmienne w czasie, a miejsce geometryczne jego kolejnych położeń tworzy płaską krzywą – centroidę. Znając prędkość punktu A, położenie chwilowego środka obrotu bryły oraz kierunek wektora prędkości punktu B, wartość VB można obliczyć wg schematu:

    ASBS BS

    AS ABBA VVVV === ωω

    Wyznaczanie prędkości w ruchu płaskim bryły Wyznaczyć prędkości punktów A, B, C i D jednorodnego krążka staczającego się swobodnie bez poślizgu po równi pochyłej jeśli prędkość jego środka masy jest równa VO.

  • 40

    α

    yVO O

    C

    B

    A

    D

    W przypadku toczenia bez poślizgu, występującym przy udziale tarcia nierozwiniętego między bryłą a równią, punkt D jest chwilowym środkiem obrotu. Jego prędkość jest więc równa zeru, a ruch krążka można traktować jako chwilowy ruch obrotowy wokół tego punktu z chwilową prędkością obrotową ω.

    α

    yVO

    ω

    O

    C

    B

    A

    DVA

    VBVC

    VD = 0

    Prędkości liniowe punktów A, B i C mają kierunki prostopadłe do odpowiednich odcinków łączących te punkty z chwilowym środkiem obrotu D. Zwroty wektorów prędkości są zdeterminowane przez kierunek obrotu krążka.

  • 41

    Wartość prędkości punktu B, który jest położony na średnicy BOD, jest proporcjonalna do prędkości punktu O. Interpretacja graficzna tej relacji polegała na wykreśleniu linii kropkowanej między punktem D a końcem wektora prędkości punktu B. Ze względu na lokalizację punktów B i O w stosunku do punktu D prędkość punktu B musi być dwa razy większa od prędkości punktu O, czyli

    VB = 2VO

    Ponieważ punkty A i C są położone w tej samej odległości od punktu D (AD = CD), to wartości ich prędkości muszą być takie same. Oznaczając przez r promień krążka łatwo zauważyć, że

    AD = CD = 2 r Stąd

    VA = VC = ω 2 r,

    gdzie

    rVO=ω

    i ostatecznie

    VA = VC = 2 VO DYNAMIKA Dynamika punktu materialnego Podstawy mechaniki klasycznej sformułowane przez Newtona w postaci trzech praw i ogłoszone w 1687 roku w pracy „Philosophiae naturalis principia mathematica” dotyczą punktu materialnego. Ze względu na to, że każde ciało można traktować jako zbiór punktów materialnych, to prawa Newtona mogą być przenoszone na bryły sztywne. Prawa Newtona 1. Jeżeli siła wypadkowa działająca na punkt materialny jest równa zeru, to punkt ten

    pozostaje w spoczynku (jeśli był w spoczynku przed przyłożeniem sił) lub porusza się ze stałą prędkością wzdłuż linii prostej (jeśli początkowo był w ruchu).

    2. Jeżeli siła wypadkowa działająca na punkt materialny o masie m nie jest równa zeru, to

    punkt ten będzie się poruszał z przyspieszeniem proporcjonalnym do wartości tej siły i zgodnie z jej zwrotem i kierunkiem

    mFa =

  • 42

    3. Siły wzajemnego oddziaływania między ciałami znajdującymi się w kontakcie mają tę samą wartość, linię działania i przeciwny zwrot.

    Zasada d’Alemberta Przekształcając równanie opisujące drugie prawo Newtona można zapisać

    F = ma i dalej

    F – ma = 0 gdzie F jest wypadkową układu sił działających na punkt materialny, a jest przyspieszeniem punktu materialnego. Po przyjęciu oznaczenia

    B = – ma

    gdzie B to siła bezwładności lub siła d’Alemberta, ostatecznie otrzymuje się

    F + B = 0 Otrzymane równanie, które ma postać równania równowagi jak w zagadnieniach statyki, stanowi opis matematyczny zasady d’Alemberta: W czasie ruchu punktu materialnego siły rzeczywiste działające na ten punkt równoważą się

    w każdej chwili z odpowiednimi siłami bezwładności. Całkowanie równań różniczkowych ruchu punktu materialnego

    x

    y

    z

    O

    A

    r

    F

    m

    Wektorowe równanie ruchu Newtona

    F = ma

    po przywołaniu wzoru na przyspieszenie punktu

    2

    2

    dtd ra =

    przyjmuje postać następującą

    2

    2

    dtdm rF =

    Równanie to jest równoważne trzem równaniom skalarnym definiującym związki między składowymi siły wypadkowej działającej na punkt A o masie m a składowymi przyspieszenia wzdłuż osi układu odniesienia

  • 43

    2

    2

    dtxdmFx = , 2

    2

    dtydmFy = , 2

    2

    dtzdmFz =

    gdzie: Fx, Fy, Fz to długości składowych wektora siły F, xadtxd

    =22

    , yadtyd

    =22

    , zadtzd

    =22

    to długości składowych wektora przyspieszenia a. Otrzymane równania są równaniami różniczkowymi zwyczajnymi drugiego rzędu opisującymi ruch punktu materialnego. Ich rozwiązanie na drodze dwukrotnego całkowania z odpowiednimi warunkami początkowymi pozwala na wyznaczenie trzech funkcji zależnych od czasu

    x = x(t), y = y(t), z = z(t)

    które stanowią kinematyczne równania ruchu punktu. Analityczne rozwiązanie różniczkowych równań ruchu jest jednak na ogół trudne, ponieważ składowe siły Fx, Fy, Fz mogą być zależne od czasu t, położenia punktu określanego współrzędnymi x, y, z oraz prędkości punktu Vx, Vy, Vz. Ruch krzywoliniowy punktu materialnego Przykład Z wierzchołka półwalca o promieniu r wzdłuż jego gładkiej pobocznicy zsuwa się punkt materialny. Wiedząc, że ruch odbywa się bez prędkości początkowej, wyznaczyć kąt α, przy jakim punkt oderwie się od pobocznicy oraz miejsce jego upadku na podłoże.

    b

    O

    Dane: r Szukane: α, b

  • 44

    Rozwiązanie Celem opisu ruchu punktu od wierzchołka półwalca do miejsca upadku na podłoże należy wyróżnić dwie charakterystyczne fazy ruchu: pierwszą CD gdy punkt porusza się wzdłuż pobocznicy walca i drugą DE gdy jest wyrzucony z prędkością VD i porusza się w przestrzeni. Te dwie fazy ruchu różnią się torem ruchu oraz układem sił działających na punkt. Faza CD Przy opisie ruchu punktu po łuku okręgu najwygodniej jest rozpatrywać ten ruch w rzucie na kierunki naturalne związane z torem, czyli na kierunek stycznej i kierunek normalnej do toru. Do sformułowania rozwiązania przy tej fazie ruchu proponuje się zasadę d’Alemberta. Celem rozwiązania tej fazy ruchu jest wyznaczenie prędkości VD, czyli prędkości początkowej dla ruchu po krzywej DE.

    b

    O

    C

    E

    D

    α

    Bn

    G

    N=0

    Bt

    an

    at

    Wzdłuż łuku CD na punkt materialny działają dwie siły czynne:

    − siła ciężkości G, − siła normalna N wyrażająca oddziaływanie półwalca na punkt

    oraz dwie siły bezwładności: − siła bezwładności Bt = -m at o zwrocie przeciwnym do założonego zwrotu wektora

    przyspieszenia stycznego), − siła bezwładności Bn = -m an (o zwrocie przeciwnym do znanego zwrotu wektora

    przyspieszenia normalnego).

    W położeniu D określonym przez kąt α następuje oderwanie punktu od pobocznicy, więc siła normalna oddziaływania podłoża przyjmuje wartość równą zeru (N = 0). Biorąc pod uwagę zwroty wektorów sił czynnych i bezwładności można napisać następujące równania:

    − na kierunku stycznym do toru

  • 45

    Bt – G sinα = 0

    − na kierunku normalnym do toru Bn – G cosα = 0

    Po podstawieniach

    Bt = m at = m dtdVD

    , Bn = m an = m rVD

    2, G = mg

    równania te rozwiązuje się następująco:

    - dla kierunku stycznego - dla kierunku normalnego

    αsingdt

    dVD =

    ααα

    sin gdtd

    ddVD =

    Ponieważ

    rV

    dtd D== ωα ,

    to

    αα dgdVr

    VD

    D sin =

    Po obustronnym scałkowaniu otrzymuje się

    CgrVD +−= cos 21 2 α

    Stałą całkowania C wyznacza się z warunku początkowego: przy grCVD 20 ,0 =→==α Stąd ostatecznie otrzymuje się, że:

    ( ) cos12 2 α−= grVD

    αcos2

    gr

    VD =

    αcos2 grVD =

    Porównując oba otrzymane wzory na prędkość VD wyznacza się wartość kąta α, przy jakim nastąpi oderwanie punktu od pobocznicy:

    ( ) αα cos cos12 grgr =− cos α = 2/3

    α = arc cos(2/3)

    Znając wartość kąta α, prędkość grVD 32

    =

    Faza DE Ruch punktu po krzywej DE odbywa się pod działaniem siły ciężkości. Znając prędkość początkową tej fazy ruchu przyjmuje się układ współrzędnych Dxy o zwrotach osi zgodnych

  • 46

    ze zwrotem rzutów wektora prędkości na te osie. W tej fazie proponuje się sformułowanie rozwiązanie na podstawie drugiego prawa Newtona.

    x

    y

    b

    O

    C

    E

    D

    α

    ay

    VD

    axG

    hD

    Równania Newtona dla kierunków osi x i y są można napisać w następującej postaci:

    ∑=

    =n

    iixx Fma

    1, ∑

    =

    =n

    iiyy Fma

    1

    gdzie Fix, Fiy to składowe i-tej siły działającej na punkt materialny. W rozważanym przypadku na punkt działa tylko jedna siła o kierunku równoległym do kierunku osi y, w związku z czym równania Newtona przyjmą postać:

    022

    =dt

    xdm , Gdt

    ydm =22

    Rozwiązania tych równań celem znalezienia miejsca upadku punktu na podłoże przeprowadza się równolegle wg schematu:

    022

    =dt

    xd

    1Ddtdx

    =

    gdt

    yd=2

    2

    2Dgtdtdy

    +=

  • 47

    Stałe wyznacza się z warunków początkowych, które dotyczą chwili czasu t = 0, kiedy punkt znajdując się w położeniu D miał prędkość początkową VD.

    Przy t = 0, Vx = grVdtdx

    D 32

    32cos == α , Vy = grVdt

    dyD 3

    235sin == α , z czego

    wynika, że grD32

    32

    1 = , natomiast grD 32

    35

    2 = .

    Ostatecznie otrzymuje się równania składowych prędkości w postaci

    grdtdx

    32

    32

    = grgtdtdy

    32

    35

    +=

    Składowa prędkości wzdłuż osi x jest niezależna od czasu, składowa prędkości wzdłuż osi y jest wyrażana przez funkcję zależną liniowo od czasu. Po kolejnym całkowaniu otrzymuje się

    332

    32 Dtgrx += 4

    2

    32

    35

    21 Dtgrgty ++=

    Przy czasu t = 0 punkt znajduje się w położeniu D, dla którego x(0) = y(0) = 0, z czego wynika, że stałe D3 = D4 = 0 i ostatecznie

    tgrx32

    32

    = tgrgty32

    35

    21 2 +=

    Otrzymane parametryczne równania toru umożliwiają określenie położenia punktu względem przyjętego układu współrzędnych dla dowolnej chwili czasu t. Równanie toru punktu otrzyma się po zdefiniowaniu zmiennej t na podstawie równania pierwszego i podstawieniu do równania drugiego:

    xgr

    t2

    323

    =

    xxr

    xgr

    grxgr

    gy25

    1627

    23

    23

    32

    35

    23

    23

    21 2

    2

    +=⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+⎟⎟

    ⎞⎜⎜⎝

    ⎛=

    Równanie toru jest równaniem paraboli. Z analizy rysunku wynika, że punkt znajdzie się na podłożu jeśli współrzędna y przyjmie

    wartość hD = r cosα = r32 .

    By znaleźć współrzędną x odpowiadającą zmiennej zależnej y = hD = r32 należy rozwiązać

    następujące równanie kwadratowe:

    032

    25

    1627 2 =−+ rxx

    r

    Po obliczeniu wyróżnika wybieramy jeden - dodatni pierwiastek rozwiązania, który jest drugą współrzędną punktu E - miejsca geometrycznego przecięcia krzywej toru z podłożem.

  • 48

    Pierwiastek ten jest równy ( )rx

    275234

    1−

    =

    Poszukiwana współrzędna b jest równa

    ( ) ( ) rrrrxrb 1.12458 55234271

    275234

    35sin 1 ≈+=

    −+=+= α

    Prawo zachowania i zmienności pędu Na podstawie drugiego prawa dynamiki Newtona w postaci

    F = ma

    po uwzględnieniu, że przyspieszenie można wyrazić jako pochodną wektora prędkości względem czasu

    dtdVa =

    otrzymuje się

    FV =dtdm

    Masa punktu materialnego jest niezależna od czasu więc może być włączona pod znak różniczki

    ( ) FV =dtmd

    Iloczyn masy i wektora prędkości jest nazywany pędem (ilością ruchu) punktu i oznaczany przez p. Ostatecznie otrzymuje się

    Fp =dtd

    Z równania tego wynika, że pochodna wektora pędu względem czasu równa jest sile wypadkowej F działającej na dany punkt.

    Jeżeli siła wypadkowa F jest równa zeru, to 0=dtdp i wektor pędu jest stały p = const.

    Stąd prawo zachowania pędu mówi:

    Jeżeli na punkt materialny pozostający w ruchu nie działa żadna siła lub działający układ sił daje wypadkową równą zeru, to pęd takiego układu pozostaje niezmieniony

    Jeżeli siła wypadkowa F nie jest równa zeru, to po obustronnym scałkowaniu równania

    ( ) dtmd FV = otrzymuje się

  • 49

    ( ) ∫∫ =2

    1

    2

    1

    t

    t

    V

    V

    dtmd FV

    ∫=−2

    1

    12

    t

    t

    dtmm FVV

    Ostatnie równanie opisuje prawo zmienności pędu o brzmieniu:

    Przyrost pędu punktu materialnego w skończonym przedziale czasu jest równy impulsowi siły (popędowi siły) działającej na ten punkt w tym samym czasie

    Kręt punktu materialnego względem bieguna. Prawo zachowania krętu

    m

    x

    y

    z

    O

    r

    mVα

    KO

    yx

    z

    Rozważany jest punkt materialny o masie m, który porusza się z prędkością V. Krętem (momentem pędu) KO punktu materialnego względem bieguna O nazywamy wektor otrzymywany w wyniku mnożenia wektorowego wektora położenia punktu r przez wektor jego pędu mV

    VrK m×=O

    Na podstawie definicji iloczynu wektorowego długość wektora pędu jest równa

    αsinO mVrK =

    Wyrażając wektory r i mV poprzez ich składowe i stosując definicję wyznacznikową iloczynu wektorowego otrzymuje się

    zyx

    zyx

    KKKmVmVmV

    zyxm kjikji

    VrK ++==×=O

    gdzie po rozwinięciu wyznacznika długości składowych wektora krętu są równe

    ( )yzx zVyVmK −= ( )zxy xVzVmK −= ( )xyz yVxVmK −=

  • 50

    W trakcie ruchu swobodnego wektory położenia i prędkości punktu ulegają zmianie w funkcji czasu. W związku z tym pochodna wektora krętu względem czasu musi być obliczana jako pochodna iloczynu wektorowego

    ( ) ( ) OO MFrFrVVVrVrVrK =×=×+×=×+×=×= m

    dtmdm

    dtdm

    dtd

    dtd

    Ostatecznie pochodna względem czasu wektora krętu KO względem nieruchomego bieguna O jest równa momentowi siły wypadkowej F względem tego bieguna

    OO MK =

    dtd

    Praca i moc

    α A’

    x

    y

    z

    O

    r+dr

    F

    Adr

    r

    Rozważa się punkt, który przemieszcza się z położenia A określonego przez wektor położenia r do sąsiedniego położenia A’ określonego przez wektor r+dr. Wektor między położeniami (różniczka dr) jest elementarnym przemieszczeniem. Jeśli na punkt działa siła F, to praca tej siły odpowiadająca przemieszczeniu dr jest definiowana jako następująca wielkość skalarna

    dL = F · dr Praca jest więc iloczynem skalarnym wektora siły F i wektora przemieszczenia dr.

    Znając kąt α między wektorami F i dr, na podstawie definicji iloczynu wektorowego można napisać, że

    dL = F ds cosα lub

    dL = Fx dx + Fy dy + Fz dz gdzie: ds jest różniczką drogi (⎮dr⎮= ds) oraz dr = i dx+j dy +k dz Praca jako wartość skalarna ma swoją wartość i znak. Praca siły przy ruchu punktu po torze krzywoliniowym Punkt poruszający się po torze krzywoliniowym od położenia O przebywa drogę wyrażaną w mierze łukowej. Pracę wykonywaną przez siłę F od położenia A1 do położenia A2 definiujemy jako

  • 51

    ∫ ⋅=2

    1

    A

    A

    rF dL

    A1 A t

    A2F

    dr

    ds

    O α

    Przy założeniu, że OA1 = s1 i OA2 = s2, na podstawie definicji iloczynu skalarnego pracę siły F określamy następująco

    ∫∫ ==2

    1

    2

    1

    coss

    st

    s

    s

    dsFdsFL α

    gdzie Ft jest długością składowej wektora F na kierunku stycznej.

    Ft

    ss2s1

    L

    Pracę ∫=2

    1

    s

    st dsFL interpretuje się graficznie

    jako pole powierzchni pod krzywą otrzymaną przez wykreślenie siły Ft w funkcji drogi s.

    Jednostką pracy jest 1 [J] (dżul) czyli praca wykonana przez siłę o wartości 1 [N] na drodze 1 [m]. Moc Moc definiujemy jako pracę wykonaną w określonej chwili czasu

    dtdLN =

    Po podstawieniu dL = F · dr otrzymuje się

    VFrF ⋅=⋅==dt

    ddtdLN

    Jednostką mocy jest 1[W] (wat) czyli 1[J]/[s].

  • 52

    Energia kinetyczna punktu materialnego. Prawo równości energii kinetycznej i pracy Rozpatruje się ruch punktu materialnego o masie m po torze krzywoliniowym, na który działa siła F. Droga punktu mierzona wzdłuż toru od punktu O zmienia się od wartości s1 w położeniu A1, kiedy punkt osiągnął prędkość V1, do wartości s2 w położeniu A2, gdy punkt porusza się z prędkością V2.

    Ftm

    A1V2

    (t)V1

    Fn

    A2

    F

    at

    O

    Z drugiego prawa Newtona zapisanego dla kierunku stycznego (t) wynika, że

    tt Fma = Ponieważ przyspieszenie styczne jest równe

    dtdVat =

    to możemy zapisać

    tFdtdVm =

    i dalej

    tFdtds

    dsdVm =

    Po podstawieniu, że Vdtds

    = i obustronnym pomnożeniu równania przez różniczkę drogi ds

    celem rozdzielenia zmiennych otrzymuje się

    dsFdVmV t = Obustronne scałkowanie: lewej strony równania w granicach od V1 do wartości V2, natomiast prawej strony w granicach od s1 do s2 prowadzi do

    ∫=2

    1

    2

    1

    2

    2 s

    st

    V

    V

    dsFmV

    i ostatecznie

    LmVmV =−22

    21

    22

  • 53

    Wielkość skalarną

    2

    2mVEk =

    nazywamy energią kinetyczną punktu materialnego. Jest to połowa iloczynu masy i kwadratu prędkości punktu. Wyprowadzone równanie opisuje matematycznie prawo równości energii kinetycznej i pracy, które brzmi:

    Przyrost energii kinetycznej punktu materialnego w skończonym przedziale czasu jest równy sumie prac jakie wykonały w tym czasie wszystkie siły działające na ten punkt

    Potencjalne pole sił Potencjalne (zachowawcze) pole sił to takie pole, że w każdym jego punkcie jest określona funkcja V(x, y, z), której pochodne cząstkowe względem x, y i z są równe rzutom siły pola z przeciwnymi znakami. Funkcja V(x, y, z) to potencjał zachowawczego pola sił lub energia potencjalna tego pola.

    xFxzyxV

    −=∂

    ∂ ),,( , yFyzyxV

    −=∂

    ∂ ),,( , zFzzyxV

    −=∂

    ∂ ),,(

    Z zapisu tego wynika, że składowe siły F są funkcjami współrzędnych x, y i z. Stąd siły zachowawcze to takie siły, które zależą tylko od lokalizacji ich punktu przyłożenia. Siłę F można zapisać jako

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛∂∂

    +∂∂

    +∂∂

    −=++=zV

    yV

    xVFFF zyx kjikjiF

    lub V gradF −=

    Energia potencjalna. Prawo zachowania energii mechanicznej

    y

    x

    A1 y

    dy

    A2

    y2

    y1

    G

    Rozpatruje się ruch punktu materialnego pod działaniem siły ciężkości G po torze od krzywoliniowym od położenia A1 o współrzędnej y1 do położenia A2 o współrzędnej y2. Pracę siły ciężkości wyznacza się ze wzoru:

    ( )∫ ++=2

    1

    A

    Azyx dzGdyGdxGL

  • 54

    Siła G ma składowe o następujących długościach: Gx = 0, Gy =-G, Gz = 0, co po podstawieniu prowadzi do następującego wyrażenia na pracę:

    ( ) yGyyGdyGLy

    y

    ∆−=−−=−= ∫ 122

    1

    Praca siły ciężkości jest równa iloczynowi tej siły i przemieszczenia pionowego ∆y. Praca ta jest dodatnia gdy ∆y = y2 – y1 < 0, czyli w przypadku gdy ciało zsuwa się w dół. Pracę siły ciężkości można przedstawić jako różnicę:

    L = Gy1 - Gy2 = mg y1 – mg y2

    Praca ta nie zależy od drogi, a jedynie od początkowej i końcowej wartości funkcji mgy. Funkcję tę nazywamy energią potencjalną:

    Ep = mgh

    Praca siły ciężkości może być przedstawiona jako różnica energii potencjalnej określonej w położeniu początkowym i końcowym

    L = Ep(1) - Ep(2)

    Prawo zachowania energii mechanicznej Jeśli punkt materialny porusza się w zachowawczym polu sił, to suma jego energii kinetycznej i energii potencjalnej zwana energią mechaniczną jest stała

    Ek(1) + Ep(1) =Ek(2) + Ep(2)

    Literatura: 1. B.Skalmierski: Mechanika, Wydawnictwo Politechniki Częstochowskiej 2002 (t. 1 i 2) 2. J.Misiak: Mechanika techniczna, PWN Warszawa 1999 (t. I i II) 3. J.Nizioł: Metodyka rozwiązywania zadań z mechaniki, WNT Warszawa 2002 4. J.Leyko: Mechanika ogólna, PWN Warszawa 2006 (t. 1 i 2) 5. J.Leyko; J. Szmelter: Zbiór zadań z mechaniki ogólnej, PWN Warszawa 1976 (t. 1 i 2) 6. I.W.Mieszczerski: Zbiór zadań z mechaniki. PWN Warszawa 1969

    7. M.Niezgodziński, T.Niezgodziński: Zbiór zadań z mechaniki ogólnej, PWN Warszawa 2003

    8. T.Niezgodziński: Mechanika ogólna, PWN Warszawa 2006 9. Ryszard Buczkowski, Andrzej Banaszek: Mechanika ogólna w ujęciu wektorowym i

    tensorowym. Statyka, przykłady i zadania. WNT Warszawa, 2006 10. F.P.Beer, E. Russell Johnston: Vector Mechanics for Engineers. McGraw-Hill Publishing

    Company, 2004