FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów … · 2015-02-23 · FIZJOLOGIA ROŚLIN...

29
FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów niestacjonarnych ĆWICZENIA, KTÓRYCH NIE WYKONANO W SOBOTĘ NALEŻY DOKOŃCZYĆ W NIEDZIELĘ TERMIN ĆWICZEŃ* NR ĆWICZENIA: zjazd nr 1 - 15.03.2014 r. - 1, 2, 3, 4, 5, 6 zjazd nr 1 - 16.03.2014 r. - 7, 8, 9, 10, 11, 12 BIOCHEMIA zjazd nr 2 29.03.2014 r. - 13, 14, 15, 16 zjazd nr 2 - 30.03.2014 r. - 17, 18, 19, 20 zjazd nr 3 - 13.04.2014 r. - 21, 22 omówienie gospodarki mineralnej zjazd nr 4 26.04.2014 r. - 23, 24, 24' j.w. zjazd nr 4 27.04.2014 r. - 25, 26, 27, 28 zjazd nr 5 17.05.2014 r. - 29, 30, 31, 32 zjazd nr 6 - 30.06.2014 r. - 35, 36, 37 zjazd nr 6 - 31.06.2014 r. - kolokwium zaliczeniowe – termin I * terminy ćwiczeń ulegają zmianom w kolejnych latach akademickich FIZJOLOGIA

Transcript of FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów … · 2015-02-23 · FIZJOLOGIA ROŚLIN...

Page 1: FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów … · 2015-02-23 · FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów niestacjonarnych ĆWICZENIA, KTÓRYCH NIE WYKONANO

FIZJOLOGIA ROŚLIN DRZEWIASTYCH

dla studentów studiów niestacjonarnych

ĆWICZENIA, KTÓRYCH NIE WYKONANO W

SOBOTĘ NALEŻY DOKOŃCZYĆ W NIEDZIELĘ

TERMIN ĆWICZEŃ* NR ĆWICZENIA:

zjazd nr 1 - 15.03.2014 r. - 1, 2, 3, 4, 5, 6

zjazd nr 1 - 16.03.2014 r. - 7, 8, 9, 10, 11, 12

BIO

CH

EMIA

zjazd nr 2 – 29.03.2014 r. - 13, 14, 15, 16

zjazd nr 2 - 30.03.2014 r. - 17, 18, 19, 20

zjazd nr 3 - 13.04.2014 r. - 21, 22 omówienie gospodarki mineralnej

zjazd nr 4 – 26.04.2014 r. - 23, 24, 24' j.w.

zjazd nr 4 – 27.04.2014 r. - 25, 26, 27, 28

zjazd nr 5 – 17.05.2014 r. - 29, 30, 31, 32

zjazd nr 6 - 30.06.2014 r. - 35, 36, 37

zjazd nr 6 - 31.06.2014 r. - kolokwium zaliczeniowe – termin I

* terminy ćwiczeń ulegają zmianom w kolejnych latach akademickich

FIZJ

OLO

GIA

Page 2: FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów … · 2015-02-23 · FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów niestacjonarnych ĆWICZENIA, KTÓRYCH NIE WYKONANO

ĆWICZENIA Z ZAKRESU BIOCHEMII

Białka 1. Reakcja biuretowa (Piotrowskiego) - wykrywanie wiązań peptydowych

Do probówki wlać 2 ml roztworu białka z jaja kurzego, 2 ml 10% NaOH i parę kropel 0,5% CuSO4. Pojawia się fioletowa barwa. UWAGA!!!! Nie stosować zbyt dużej objętości CuSO4, ponieważ jego niebieska barwa może maskować pozytywny wynik reakcji biuretowej.

2. Reakcja Hellera

Na 1 ml stężonego HNO3 nawarstwić ostrożnie 1 ml roztworu białka tak, aby płyny nie zmieszały się. W miejscu zetknięcia się roztworów tworzy się biały lub żółty pierścień zdenaturowanego i wytrąconego białka nierozpuszczalnego w nadmiarze kwasu.

3. Reakcja z NaOH

Do 1 ml dowolnego roztworu białka dodać 15 kropli roztworu 10% NaOH, wymieszać i następnie dodawać kroplami rozcieńczony CH3COOH aż do momentu utworzenia kłaczkowatego osadu.

4. Strącanie białek za pomocą kationów (soli metali ciężkich)

Do 3 probówek zawierających po 2 ml roztworu dowolnego białka o pH zasadowym dodać po 15 kropli: 1% roztworu FeCl3 (do pierwszej probówki), 2% roztworu Pb(CH3COO)2 (do drugiej probówki), 2% roztworu CuSO4 (do trzeciej probówki). Obserwować strącający się osad.

5. Denaturacja cieplna

Do 1 ml roztworu białka dodać 1 kroplę 1% roztworu kwasu octowego tj. CH3COOH i ogrzewać do wrzenia w łaźni wodnej.

Tworzy się biały kłaczkowaty osad, który staje się wyraźny po dodaniu niewielkiej ilości (około 6 kropli) roztworu NaCl lub MgS04

6. Działanie alkoholu -

Do dwóch probówek nalać po 1 ml roztworu białka i dodać po 2 ml 95% etanolu. Sprawdzić rozpuszczalność w wodzie* osadu otrzymanego w pierwszej probówce. Po około 40 min. sprawdzić rozpuszczalność osadu tylko w drugiej probówce*. *przez dodanie ok. 5 ml wody i wstrząśnięcie probówki

ZJAZD NR 1, ĆWICZENIA NR 1 - data .................................

Page 3: FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów … · 2015-02-23 · FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów niestacjonarnych ĆWICZENIA, KTÓRYCH NIE WYKONANO

ZJAZD NR 1, ĆWICZENIA NR 2 - data ...................

Enzymy

7. Wykrywanie obecności katalazy w ziemniaku Potrzebne odczynniki na jeden zespół (czyli na 3 studentów) 2 ml 3% nadtlenku wodoru H2O2 (czyli wody utlenionej) 3 ml wyciśniętego ekstraktu (soku) z ziemniaka Szkło: 2x szklanych probówek 2x pipetki plastikowe 1x ziemniak 1x zlewka na 100 ml sokowirówka wrząca łaźnia wodna - 100ºC 2x stojak: na probówki (1x) i odczynniki (1x) nóż Wykonanie Przygotować dwie probówki. Do pierwszej nalać 1 ml 3% roztworu H2O2, a następnie dodać kilka kropli wyciśniętego soku z ziemniaka. Katalaza ziemniaka powoduje szybki rozkład H2O2 do H2O i O2, co uwidacznia się gwałtownym wydzielaniem pęcherzyków tlenu. Do drugiej probówki nalać 2 ml surowego soku z ziemniaka i gotować go na wrzącej łaźni wodnej przez 5 min Po schłodzeniu probówki dodać kilka kropli H2O2. Brak pęcherzyków tlenu świadczy o inaktywacji katalazy.

Page 4: FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów … · 2015-02-23 · FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów niestacjonarnych ĆWICZENIA, KTÓRYCH NIE WYKONANO

8. Aktywność peroksydazy Potrzebne odczynniki na jeden zespół (czyli na 3 studentów) 3 ml 0,3% nadtlenku wodoru = H2O2 3 ml 0,5% pirogalolu 2 ml wyciśniętego soku z korzenia imbiru (lub soku z korzenia chrzanu) 1 ml wody destylowanej Szkło: 3x szklanych probówek 4x pipetki plastikowe 1x korzeń chrzanu 1x zlewka na 100 ml sokowirówka wrząca łaźnia wodna – 100ºC nóż Wykonanie Przygotować 3 probówki. Do pierwszej nalać 1 ml soku z korzenia imbiru (lub chrzanu), do drugiej probówki 1 ml soku z imbiru, który należy 3-5 minut gotować w łaźni wodnej. Natomiast do trzeciej probówki wlewamy 1 ml wody destylowanej. Następnie do każdej probówki dodać 1 ml 0,3% H2O2 i 1 ml 0,5% pirogalolu. Zaobserwować zmiany zachodzące w kolejnych probówkach.

Page 5: FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów … · 2015-02-23 · FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów niestacjonarnych ĆWICZENIA, KTÓRYCH NIE WYKONANO

Cukry – mono i disacharydy 9. Reakcja ogólna na węglowodany (Molischa)

Do probówek zawierających 1 ml różnych cukrów prostych i złożonych (glukoza, fruktoza, sacharoza, skrobia) dodać 1-2 krople odczynnika Molischa, czyli świeżo przygotowanego 10% alkoholowego roztworu α-naftolu. Zawartość probówki wymieszać, po czym lekko przechylić i po ściance nalać 1 ml stężonego kwasu siarkowego (OSTROŻNIE), tak by obydwie ciecze nie zmieszały się. Na granicy faz pojawia się czerwony lub czerwono-fioletowy pierścień.

10. Wykrywanie cukrów redukujących – reakcja Fehlinga W jednej probówce zmieszać 1 ml roztworu Fehlinga I i 1 ml Fehlinga II. Do drugiej probówki nalać 2 ml roztworu cukru – glukozy lub fruktozy i zawartość obu probówek ogrzewać do wrzenia. Oba roztwory zlać razem. W przypadku cukru redukującego występuje zabarwienie ceglaste lub brunatnopomarańczowy osad wydzielonego Cu2O.

11. Wykrywanie cukrów redukujących – reakcja z błękitem metylenowym Do 2 ml H2O dodać 4 krople błękitu metylenowego i 2 krople 10% NaOH. Ogrzać probówkę we wrzącej łaźni wodnej około 1 min., a następnie dodać około 1 ml roztworu cukru i ogrzewać. W obecności cukrów redukujących znika niebieska barwa roztworu. Ponowne zabarwienie można uzyskać wytrząsając probówkę z odbarwionym płynem. 12. Kwaśna hydroliza sacharozy Do 1 ml roztworu sacharozy dodać 6 kropli 2M HCl. Po wymieszaniu ogrzewać we wrzącej łaźni wodnej około 3 min. Po schłodzeniu zobojętnić probówkę 3 kroplami 2M NaOH. Wykonać reakcję na cukry redukujące dla otrzymanego roztworu i dla sacharozy niezhydrolizowanej.

Page 6: FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów … · 2015-02-23 · FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów niestacjonarnych ĆWICZENIA, KTÓRYCH NIE WYKONANO

ZJAZD NR 2, ĆWICZENIA NR 3 - data ...................

ĆWICZENIA Z ZAKRESU FIZJOLOGII ĆWICZENIA Z GOSPODARKI WODNEJ

ĆWICZENIE 13

DYFUZJA SIARCZANU MIEDZI W WODZIE - DOŚWIADCZENIE MODELOWE

I. Pytania

Co to jest dyfuzja i czym różni się od zjawiska osmozy?

II. Materiał

a / odczynniki: kryształki siarczanu miedzi, woda destylowana

b / inny sprzęt: cylinder miarowy, szklany lejek z długą rurką, szkiełko zegarowe

III Metoda: W szklanym cylindrze umieścić szklany lejek z długą rurką aby sięgała dwa cylindra, a do lejka

włożyć mały krążek ze szkła porowatego. Cylinder napełnić wodą destylowaną, tak aby dotykała

ona porowatej płytki. Następnie dość dużo kryształków siarczanu miedziowego położyć w lejku na

powierzchni porowatej płytki. Lejek można przykryć szkiełkiem zegarkowym (niekoniecznie), a

cylinder ustawić w miejscu, w którym nie byłby on narażony na wstrząsy.

Kryształ siarczanu miedzi rozpuszcza się wodzie i barwny płyn opada na dno cylindra. Cząsteczki

siarczanu miedzi stopniowo dyfundują w górę. Przeprowadzić kilka obserwacji co pół godziny, na

jaką wysokość przedyfundowały cząsteczki siarczanu miedziowego

IV Wyniki i ich omówienie:

Page 7: FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów … · 2015-02-23 · FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów niestacjonarnych ĆWICZENIA, KTÓRYCH NIE WYKONANO

ĆWICZENIE 14

SZYBKOŚĆ DYFUZJI BARWNIKÓW ORGANICZNYCH W ŻELATYNIE

/. Pytania Co to jest dyfuzja? Od czego zależy szybkość dyfuzji? Czym charakteryzują się koloidy i roztwory rzeczywiste?

II. Materiał:

a/ odczynniki: 20 % roztwór żelatyny, tusz, 1 lub 2 milimolarne roztwory czerwieni Kongo, eozyny i siarczanu miedziowego

b/ inny sprzęt: łaźnia wodna, zlewka, probówki, korki, linijki

///. Metoda:

Do probówek o jednakowej średnicy wlać na gorąco równą objętość 20 % roztworu żelatyny. Po ostygnięciu żelatyny zaznaczyć położenie menisków i opisać probówki. Wlać po 5 cm3 odpowiednich roztworów barwników: do pierwszej czarny tusz, a do następnych I lub 2 milimolarne roztwory eozyny żółtej, oranżu metylowego i błękitu metylenowego. Probówki ustawić w ciemnym pomieszczeniu.

WYŻEJ OPISANA CZĘŚĆ DOŚWIADCZENIA JEST PRZYGOTOWANA DLA STUDENTÓW

Po upływie 48 godzin roztwory barwników wylać z probówek, powierzchnię żelatyny przepłukać lekko wodą destylowaną, w miarę możliwości przetrzeć ścianki probówek dla lepszej widoczności i zmierzyć na jaką głębokość przedyfundowały cząsteczki poszczególnych barwników. Wyniki zestawić w tabeli. Uzupełnij tabelę:

RODZAJ BARWNIKA

TUSZ CZARNY

EOZYNA ŻÓŁTAWA

BŁĘKIT METYLENOWY

ORANŻ METYLENOWY

głębokość na jaką przedyfundował barwnik [mm]

ĆWICZENIE 15

SZYBKOŚĆ DYFUZJI W ZALEŻNOŚCI OD GĘSTOŚCI OŚRODKA

/. Pytania:

Dlaczego szybkość dyfuzji zależy od gęstości ośrodka, w którym przebiega? Jakie to ma znaczenie praktyczne w procesach życiowych komórki?

//. Materiał:

a) odczynniki: 30 %. 10 % i 2.5 % roztwory żelatyny, 0.1 % roztwór błękitu metylenowego

b) inny sprzęt: łaźnia wodna, zlewka, probówki, pipeta, linijki

///. Metoda:

Przygotować na gorąco 30 %, 10 % i 2,5 % roztwory żelatyny. Napełnić nimi ( do tej samej wysokości trzy probówki o jednakowej średnicy. Po ostudzeniu żelatyny do każdej probówki wlać pipetą po 5 cm3 0,1 % roztworu błękitu metylenowego. Probówki ustawić w ciemnym pomieszczeniu.

WYŻEJ OPISANA CZĘŚĆ DOŚWIADCZENIA JEST PRZYGOTOWANA DLA STUDENTÓW

Po 48 godzinach wylać z probówek błękit metylenowy, powierzchnię żelatyny przepłukać lekko wodą destylowaną, a następnie zmierzyć na jaką głęboko przedyfundowały cząsteczki barwnika w poszczególnych probówkach. Wyniki zestawić w tabeli.

IV. Wyniki i ich omówienie: Uzupełnij tabelę:

STĘŻENIE ŻELATYNY:

30 % 10 % 2.5 %

głębokość na jaką przedyfundował barwnik [mm] po ..... godz.

Page 8: FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów … · 2015-02-23 · FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów niestacjonarnych ĆWICZENIA, KTÓRYCH NIE WYKONANO

ĆWICZENIE 16

PRZEPUSZCZALNOŚĆ ŻYWEJ I MARTWEJ CYTOPLAZMY KOMÓREK ROŚLINNYCH

/. Pytania Jakie struktury komórki są szczególnie wrażliwe na działanie wyższych temperatur i różnych odczynników chemicznych i dlaczego? Jaki barwnik występuje w wakuoli komórek korzenia buraka ćwikłowego i dlaczego jest dobrym wskaźnikiem stanu przepuszczalności błon?

//. Materiał

a/ rośliny: korzeń buraka ćwikłowego b/ odczynniki: 20 % kwas solny, 70 % etanol, aceton, woda destylowana c/ inny sprzęt: probówki, łaźnia wodna, sitko, nóż

///. Metoda:

Z korzenia buraka ćwikłowego wyciąć 5 równych prostopadłościennych kostek i wypłukać je bardzo dokładnie na sitku pod bieżącą wodą. Po jednym kawałku włożyć do pięciu oznaczonych probówek. Do dwóch pierwszych wlać po 5 cm3

wody destylowanej, do następnych odpowiednio: 20 % kwas solny, 70 % etanol i aceton. Jedną probówkę z wodą wsławić na 5 minut do wrzącej łaźni wodnej. Po upływie I godziny zawartość probówek wymieszać i przeprowadzić obserwację zabarwienia płynów.

IV. Wyniki i ich omówienie: Uzupełnij tabelę

OBIEKT ZABARWIENIE UZASADNIENIE KONTROLA – woda 20° C

woda – 100 ° C 20 % HCl

70 % etanol aceton

Page 9: FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów … · 2015-02-23 · FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów niestacjonarnych ĆWICZENIA, KTÓRYCH NIE WYKONANO

ĆWICZENIE – nie wykonujemy OZNACZANIE ROZWARTOŚCI APARATÓW SZPARKOWYCH

METODĄ ODCISKU NA BŁONACH

/. Pytania: Jak są zbudowane i w jaki sposób rozmieszczone aparaty szparkowe u roślin jednoliściennych i dwuliściennych, co wpływa na stopień otwarcia aparatów szparkowych ?

//. Materiał: a/ rośliny: liście roślin dwuliściennych (trzykrotki, begonii) oraz liście traw i drzew leśnych b/ odczynniki: collodium c/ inny sprzęt pręcik szklany, pęseta, szkiełka mikroskopowe, mikroskop

// Metoda: Na dolną i górną stronę liści wybranych roślin nanosimy szklanym pręcikiem bardzo cienką warstwę collodium ( nitroceluloza: aceton: eter w stosunku 40 g : 600 cm3 : 400 cm3 ) Aceton i eter szybko odparowują, a na liściu pozostaje bardzo cienka błona koloidalna, na której odbijają się szczegóły budowy komórek szparkowych. Błonę koloidalną należy delikatnie zdjąć pęsetą z powierzchni liścia, położyć na szkiełku podstawowym i obserwować pod mikroskopem. W wynikach zaznaczyć orientacyjną ilość i wygląd oraz rozmieszczenie aparatów szparkowych

IV. Wyniki i ich omówienia Uzupełnij tabelę

CIECZ CZAS [sek. lub min.] STOPIEŃ OTWARCIA APARATÓW SZPARKOWYCH

Woda Etanol

Benzen

Page 10: FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów … · 2015-02-23 · FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów niestacjonarnych ĆWICZENIA, KTÓRYCH NIE WYKONANO

ĆWICZENIE 17

GUTACJA

/. Pytania:

Co to jest gutacja ? Jaka siła wywołuje gutację ? Jakie warunki muszą być spełnione, aby został uruchomiony ten proces? Czy wydobywająca się ciecz jest czystą wodą ? U jakich roślin występuje gutacja ?

//. Materiał:

a/ rośliny: tygodniowe siewki pszenicy

b/ inny sprzęt: szalki Petri’ego, eksykator lub szklany pojemnik

///. Metoda:

Tydzień przed doświadczeniem wysiać na bibułę do szalek Petri'ego, uprzednio moczone przez kilka godzin nasiona pszenicy. Kiełkować je w termostacie w temperaturze 22°C. Liście siewek wykorzystanych do doświadczenia powinny wydobyć się juz z pochewek liściowych. Tak przygotowany materiał roślinny należy przenieść do szklanego naczynia ( na przykład do eksykatora ). Siewki obficie podlać wodą. Do szybkiego wysycenia powietrza parą wodną należy do naczynia wstawić pojemnik z wodą. Po około godzinie czasu można już obserwować wykrapianie wody przez liście. Z doświadczenia wyciągnąć wnioski.

IV. Wyniki i ich omówienie:

ĆWICZENIE 18

ROLA OCHRONNA SKÓRKI

/. Pytania

Jakie funkcje pełni tkanka okrywająca ? Jak może być zmodyfikowana ?

//. Materiał:

a / rośliny: bulwy ziemniaka, jabłka lub owoce kasztanowca

b/ inny sprzęt: nóż lub skalpel, eksykator, waga

///. Metoda:

Wybrać dwie bulwy ziemniaczane i dwa jabłka o jednakowej wielkości. Jedną bulwę i jedno jabłko obrać cienko ze skórki. Zważyć dokładnie wszystkie obiekty i włożyć je do eksykatora z CaCI2. Po upływie jednej godziny zważyć bulwy i jabłka ponownie. Następnego pomiaru dokonać po ustalonym czasie (2,. 4 godziny, 1 dzień). Obliczyć w % ubytek świeżej masy dla wszystkich | obiektów. Wyciągnąć wnioski.

IV. Wyniki i ich omówienie:

GUTACJA EKSYKATOR

Ciężar Bulwa ziemniaka Jabłko Kasztan nie obrana obrana nie obrane obrane nie obrany obrany Początkowy po 1 h ubytek w % po

ubytek w % p o ............. ubytek w %

Page 11: FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów … · 2015-02-23 · FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów niestacjonarnych ĆWICZENIA, KTÓRYCH NIE WYKONANO

ĆWICZENIE 19

OZNACZANIE WIELKOŚCI SIŁY SSĄCEJ TKANKI BULWY

ZIEMNIAKA

/. Pytania: Co to jest potencjał wody ? Jakie czynniki mają wpływ na wielkość potencjału wody ? Jak zachowuje się komórka w roztworze hipertonicznym, izotonicznym i hipotonicznym? Co decyduje o możliwości pobierania wody przez komórkę ?

///. Metoda: III Metoda Do pięciu zlewek oznaczonych kolejnymi numerami wlać odpowiednio: 0.2, 0.3, 0 4, 0.5 i 0.6 molarne roztwory sacharozy. Z bulwy ziemniaka wyciąć sześć prostopadłościennych kawałków o jednakowej długości np. 40 mm. Długość każdego kawałka zmierzyć dokładnie przy pomocy suwaka z noniuszem i kolejno wrzucać je do odpowiednich roztworów , całkowicie zanurzając. Po godzinie wyjmować kolejno fragmenty tkanki i ponownie dokładnie zmierzyć ich długość. Uzyskane wyniki zestawić w tabeli.

II Materiał: a/ rośliny: bulwy ziemniaka b/ odczynniki: H2O, 0.2, 0.3, 0.4, 0.5, 1.0 M roztwory sacharozy c/ inny sprzęt, szalki Pełnego, skalpel, suwak z noniuszem

DŁUGOŚĆ [ mm ]

STĘŻENIE SACHAROZY:

uwagi:

0.2 M 0.3 M 0.4 0.5 0.6 pomiar początkowy

pomiar końcowy

różnica

(Aby obliczyć różnicę należy od pomiaru końcowego odjąć początkowy.)

Page 12: FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów … · 2015-02-23 · FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów niestacjonarnych ĆWICZENIA, KTÓRYCH NIE WYKONANO

ĆWICZENIE 20

OZNACZANIE INTENSYWNOŚCI TRANSPIRACJI METODĄ WAGOWĄ / Materiał:

a/ ulistniona gałązka trzykrotki lub wybranego drzewa b/ olej, woda destylowana c/ 5 erlenmajerek

// Metoda Do 5 - ciu erlenmajerek z wodą włożyć po jednej ulistnionej gałązce np. trzykrotki. Powierzchnię wody w erlenmajerkach pokryć warstwą oleju. Kolbki z roślinami dokładnie zważyć(nie wyłączać wagi ! ) po czym, umieścić je w następujących warunkach: a/ na świetle, w temp. pokojowej (20 stopni), w atmosferze normalnej wilgotności - kontrola b/ na świetle, w temp. pokojowej, w atmosferze o obniżonej wilgotności ( eksykator z chlorkiem wapnia) c/ na świetle, w temp. pokojowej, w atmosferze o podwyższonej wilgotności ( eksykator z wodą) d/ w ciemności, w temp. pokojowej, w atm. normalnej wilgotności (ciemna szafka) e/ w ciemności, w temp. 0 stopni, w atm. podwyższonej wilgotności (lodówka) Po godzinie zważyć kolbki ponownie. Na podstawie różnicy ciężarów obliczyć intensywność transpiracji dla każdego układu warunków. Wyniki zebrać w tabeli.

IV Wyniki i ich omówienie: Uzupełnij tabelę:

WARUNKI: masa początkowa [g]

masa końcowa [g]

różnica Intensywność transpiracji

a/ kontrola b/ c/ d/ e/

Page 13: FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów … · 2015-02-23 · FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów niestacjonarnych ĆWICZENIA, KTÓRYCH NIE WYKONANO

ĆWICZEN 21 IV. Wyniki i ich omówienie: OZNACZANIE TRANSPIRACJI WZGLĘDNEJ METODĄ STAHLA

/. Pytania Co to jest transpiracja względna? Co to jest i o czym informuje współczynnik transpiracji względnej ?

//. Materiał:

a/ rośliny: liście begonii, trzykrotki lub inne

b/ odczynniki: 5% roztwór chlorku kobaltu c/ inny sprzęt: eksykator, bibuła, szkiełka mikroskopowe, kwadraciki z metalowej siatki, ściskacze, stoper

///. Metoda:

Wycięte z bibuły filtracyjnej małe kwadraciki (0.5 x 0.5 cm) umieścić w 5 % roztworze chlorku kobaltu. Po równomiernym wysyceniu wyjąć je z roztworu i przenieść do suszarki. Gdy uzyskają niebieskie zabarwienie przenieść do eksykatora. (TA CZĘŚĆ ĆWICZENIA JEST JUŻ WYKONANA)

Przed przystąpieniem do doświadczenia przeprowadzić standaryzację papierków kobaltowych. W tym celu należy umieścić kwadracik bibuły wysyconej CoCl2 nad wolną powierzchnią parującą ( może to być kawałek bibuły nasyconej wodą). Na siateczkę metalową należy położyć papierek kobaltowy, przykryć szkiełkiem, całość objąć ściskaczem. Przy pomocy stopera mierzyć czas, po którym następuje zmiana zabarwienia papierka kobaltowego z niebieskiego na różowe.

Porównanie transpiracji względnej między dolną i górną stroną liścia: kwadraciki wysuszonej bibuły nasyconej chlorkiem kobaltu umieścić nad dolną i górną stroną liścia. Przykryć szkiełkami przytrzymywanymi przez ściskacz. Zmierzyć dokładnie czas potrzebny do zmiany zabarwienia papierków na górnej i dolnej stronie liścia Obliczyć współczynnik transpiracji względnej dla obu stron liścia. Obliczenie współczynnika transpiracji względnej.

dla dolnej strony liścia Tw1 = t : t1

dla górnej strony liścia Tw2 = t : t2

gdzie: czas potrzebny do zmian zabarwienia papierków kobaltowych t - umieszczonych nad wolną powierzchnią parującą (czas kontrolny) t1 - nad dolną powierzchnią liścia t2 - nad górna powierzchnia liścia uzupełnij tabele

Gatunek: 1. 2. 3.

strona liścia: DOLNA GÓRNA DOLNA GÓRNA DOLNA GÓRNA

Czas pomiarowy

Czas kontrolny

WSPÓŁCZYNNIK TRANSPIRACJI

Page 14: FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów … · 2015-02-23 · FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów niestacjonarnych ĆWICZENIA, KTÓRYCH NIE WYKONANO

ĆWICZENIE 22 OZNACZANIE ROZWARTOŚCI APARATÓW SZPARKOWYCH METODĄ INFILTRACJI /. Pytania

Jak są zbudowane aparaty szparkowe? Jakie czynniki wpływają na stopień ich

otwarcia ?

//. Materiał:

a/ rośliny: liście trzykrotki

b/ odczynniki: benzen, etanol, woda destylowana c/ inny sprzęt: zakraplacze, szalki

///. Metoda:

Stopień otwarcia aparatów szparkowych można oznaczyć na podstawie, szybkości

wnikania przez cieczy o różnym napięciu powierzchniowym. Na dolną stronę liścia

nanieść po kropli benzenu, alkoholu etylowego i wody. Obserwować, która ciecz i jak

szybko wniknie. Jeżeli szparki są szeroko otwarte wniknie woda, przez półotwarte

przechodzi etanol. Natomiast benzen wnika najłatwiej, nawet przy niewielkim stopniu

otwarcia szparek. Wniknięcie ujawnia się jako tłusta plama na powierzchni liścia w

miejscu, gdzie znajdowała się naniesiona ciecz. Wypierając powietrze przedostała się

ona do przestworów międzykomórkowych Zaobserwować, która z naniesionych cieczy

wniknęła i określić na lej podstawie stopień otwarcia aparatów szparkowych.

IV. Wyniki i ich omówienie Uzupełnij tabelę:

CIECZ CZAS: STOPIEŃ OTWARCIA

1. WODA

2. ETANOL

3. BENZEN

Page 15: FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów … · 2015-02-23 · FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów niestacjonarnych ĆWICZENIA, KTÓRYCH NIE WYKONANO

ĆWICZENIA Z GOSPODARKI MINERALNEJ

OMÓWIENIE GOSPODARKI MINERALNEJ

ĆWICZENIE 23

WPŁYW ODCZYNU PODŁOŻA NA WZROST ROŚLIN

Siedem szalek Petriego wyłożyć bibułą, wysiać po 20 ziarniaków pszenicy.

Przygotować pożywkę MSG (Becwar 1990) przez rozcieńczenie makroelementów

10 razy, a mikroelementów 100 razy. Następnie zakwaszając (HCl) lub alkalizując

(NaOH) doprowadzić pożywkę do następujących wartości pH: 3, 4, 5, 6, 7, 8 i 9.

Bibułę w szalkach z pszenicą podlać pożywką o odpowiednim pH i umieścić w

świetle w temp. pokojowej. Następnie zwilżać (codziennie) roztworami pożywki.

Po 2-3 tygodniach określić wysokość roślin oraz liczbę liści. Wyniki zanotować i

przeliczyć na jedną roślinę oraz zestawić według wzoru podanego w tabeli 1.

Komentarz: Większość gatunków roślin uprawnych rośnie dobrze na podłożu o

odczynie zbliżonym do obojętnego lub lekko kwaśnym. Natomiast w przypadku wartości

pH podłoża wyższej od 8 obserwuje się zahamowanie wzrostu u niemal wszystkich

gatunków roślin.

Skład pożywki MSG (makroelementy) [mg/l]:

CaCl2 x 2H20 440

KN03 100

MgS04 x 7 H20 375

KH2P04 170

KCl 745

Skład pożywki MSG (mikroelementy) [mg/l]

KJ 0,83

H3BO3 6,20

MnSO4 x H2O 16,90

ZnSO4 x 7 H2O 8,60

Na2MoO4 x 2 H2O 0,25

CuSO4 x 5 H2O 0,03

CoCl2 x 6 H2O 0,03

FeSO4 x 7 H2O 27,80

Na2EDTA 37,30

pH pożywki Cecha rośliny wysokość [cm] liczba liści

3

4

5

6

7

8

9

Page 16: FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów … · 2015-02-23 · FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów niestacjonarnych ĆWICZENIA, KTÓRYCH NIE WYKONANO

ĆWICZENIE - nie wykonujemy

WPŁYW JONÓW POTASU I WAPNIA NA UWODNIENIE CYTOPLAZMY

/. Pytania: Co to jest i kiedy zachodzi plazmoliza ? Jakie istnieją formy plazmolizy ? Jakie właściwości fizyczne posiadają jony potasu i wapnia ?

// Materiał: a/rośliny: cebula jadalna b/odczynniki: stężone Ca(NO3)2

c/inny sprzęt: mikroskop i przybory mikroskopowe, pęsety, szalki

///. Metoda: Do dwóch oznaczonych szalek wlać stężone roztwory azotanu potasu i azotanu wapnia. Z wewnętrznej strony liścia cebuli zdjąć ostrożnie odpowiednimi pęsetami dwa fragmenty skórki i natychmiast umieścić je w przygotowanych roztworach. Po 30 minutach obserwować formy plazmolizy pod mikroskopem. Sporządzić rysunki obserwowanych obrazów.

IV. Wyniki i ich omówienia: Sporządź rysunki: potas wapń

ĆWICZENIE 24

TOKSYCZNE DZIAŁANIE JEDNOSKŁADNIKOWEJ POŻYWKI CZYLI

ANTAGONIZM JONÓW

/. Pytania: Jaki wpływ na stopień uwodnienia cytoplazmy mają jony potasu i wapnia ? Z jaką ich właściwością fizyczną jest to związane ? Jakie cechy powinna mieć prawidłowo sporządzona pożywka ? Co to jest antagonizm jonów ?

//. Materiał: a/ rośliny: 4 - 5-cio dniowe siewki pszenicy b/odczynniki: 0.12 N KCI i 0.12 N CaCI2

c/ inny sprzęt: słoiki z ciemnego szkła, parafinowana gaza, gumki, linijki

///. Metoda: 4-5 dni przed założeniem ćwiczenia wysiać ziarniaki pszenicy w kiełkowniku lub na szalkach Petri’ego, na zwilżonej wodą destylowaną bibule. Podpisać trzy słoiki i napełnić je odpowiednio następującymi roztworami.

1. 0.12 N KCI 2. 0.12 N CaCl2 3. 0.12 N KCI + 0.12 N CaCI2 (w stosunku 1:1)

Wyjąć z kiełkownika delikatnie 15 siewek pszenicy i usunąć endosperm. Pięć siewek umieścić na parafinowanej gazie, przebijając ją ostrożnie koleoptylem od spodu. Następnie przy pomocy gumki przymocować gazę z siewkami do słoika, zwracając uwagę na to, by korzenie były zanurzone w roztworze. W taki sam sposób postąpić w pozostałych dwóch przypadkach. Po tygodniu przeprowadzić obserwację: ocenić wygląd roślin, zmierzyć długość liści i korzeni. Sporządzić rysunek każdego obiektu.

IV. Wyniki i ich omówienie:

0.12 N KCI 0.12 N CaCl2 0.12 N KCI + 0,12 N CaCI2

Page 17: FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów … · 2015-02-23 · FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów niestacjonarnych ĆWICZENIA, KTÓRYCH NIE WYKONANO

ĆWICZENIE 24' - tylko obserwacja

WPŁYW ZASOLENIA ROZTWORU GLEBOWEGO

NA KIEŁKOWANIE I WZROST SIEWEK PSZENICY

/ Pytania:

Jaki wpływ na pobieranie wody przez roślinę ma stężenie roztworu glebowego? Co to jest potencjał osmotyczny ? Co to jest susza fizjologiczna i kiedy występuje ? Dlaczego najbardziej narażone na suszę fizjologiczno są siewki lub rośliny wchodzące w okres wegetacji ?

//. Materiał:

a/ rośliny: nasiona pszenicy

b/ odczynniki: woda destylowana, NaCI

c/ inny sprzęt: kolby miarowe, doniczki, piasek, waga, cylindry, linijki

///. Metoda: Oznaczyć numerami pięć doniczek. Każdą doniczkę napełnić równą ilością piasku i doprowadzić do jednakowej wagi Do każdej doniczki należy dodać 100 cm3 wody destylowanej na 1 kilogram piasku. Następnie wykorzystać sporządzone wcześniej cztery roztwory NaCI wykonane według przepisu nr 1. Do doniczki oznaczonej numerem I dodać wodę destylowaną (kontrola). Do następnych kolejno roztwory NaCI . Wodę i roztwory dodawać w ilości 50 cm3 na I kilogram piasku. Do tak przygotowanych doniczek posadzić po 10 suchych nasion pszenicy. Co kilka dni doniczki podlewać do stałej wagi. Po tygodniu przeprowadzić obserwację: oznaczyć liczbę skiełkowanych ziarniaków i średnią wysokość roślin. Można także oznaczyć długość korzeni oraz świeżą lub suchą masę liści i korzeni. IV. Wyniki i ich omówienie

Przepis nr 1.

Nr doniczki:

1 - KONTROLA woda destylowana g NaCl/1000 ml

2 16.8 3 33.6 4 67.2 5 134.4

Nr doniczki

Potencjał osmotyczny

podłoża (MPa)

Liczba skiełkowanych

ziarniaków pszenicy

Średnia wysokość siewek (cm)

1 0

-0.4

3 -0.8

4 -1.6

5 -3.2

Page 18: FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów … · 2015-02-23 · FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów niestacjonarnych ĆWICZENIA, KTÓRYCH NIE WYKONANO

ĆWICZENIA Z ZAKRESU PROCESU FOTOSYNTEZY ĆWICZENIE 25

EKSTRAKCJA BARWNIKÓW ASYMILACYJNYCII

/. Pytania: Jak jest zbudowana cząsteczka chlorofilu i które elementy budowy decydują o jej hydrofilowym lub hydrofobowym charakterze? W jaki sposób cząsteczki chlorofilu są osadzone na błonach granum ? Co to są rozpuszczalniki polarne i niepolarne ?

//. Materiał: al rośliny: świeże, zielone liście trzykrotki lub wybranego gatunku drzewa liściastego b/ odczynniki: etanol 96 % (ewentualnie igły drzewa) c/inny sprzęt: łaźnia wodna, probówki

///. Metoda:

Kilka świeżych, zielonych liści trzykrotki wrzucić do zlewki, zalać niewielką ilością wody i zagotować. Następnie wodę odlać do probówki, a liście po ostudzeniu probówki zalać etanolem Ponownie zagotować zawartość probówki na łaźni wodnej, obserwując zmiany zabarwienia etanolu. Uzyskany, ciemnozielony ekstrakt rozlać do trzech probówek i pozostawić do dalszych doświadczeń.

IV. Wyniki i ich omówienie:

ĆWICZENIE 26

ROZPUSZCZALNOŚĆ CHLOROFILU

/. Pytania:

Jak są zbudowane karoteny i ksantofile ? Jakie cechy ich budowy chemicznej decydują o powinowactwie do rozpuszczalników ?

//. Materiał:

a/ rośliny: ekstrakt chlorofilu z doświadczenia 25 b/odczynniki: benzyna ekstrakcyjna

c/ inny sprzęt: probówki

///. Metoda:

Do jednej z probówek z ekstraktem uzyskanym w doświadczeniu 25 dolać około 1,5 razy więcej benzyny, przez chwilę mocno wytrząsać a następnie probówkę odstawić do statywu do ponownego rozdzielenia się mieszaniny. Zanotować zabarwienie górnej i dolnej warstwy cieczy.

IV. Wyniki i ich omówienie:

Warstwa Rozpuszczalnik Zabarwienie Barwniki il j górna

dolna

Rozpuszczalnik H20 Etanol 96% Zabarwienie

Page 19: FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów … · 2015-02-23 · FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów niestacjonarnych ĆWICZENIA, KTÓRYCH NIE WYKONANO

ĆWICZENIE 27

REAKCJA CHLOROFILU Z ZASADAMI

/. Pytania:

Na czym polega reakcja zmydlania 7 (gdzie w cząsteczce chlorofilu występują wiązania estrowe ?

II. Materiał:

a/ rośliny: ekstrakt chlorofilu z doświadczenia 25 b/odczynniki: 10% KOH lub NaOH, benzyna ekstrakcyjna Sprzęt i odczynniki: łaźnia wodna, probówki

III Metoda:

Do ekstraktu uzyskanego w ćwiczeniu 25 dodać 1/4 objętości roztworu zasady sodowej, wymieszać i wstawić na chwilę do wrzącej łaźni wodnej. Po ochłodzeniu roztworu dodać równą objętość benzyny,, wstrząsnąć i odstawić probówkę do rozdzielenia się warstw cieczy. Zanotować zabarwienie górnej i dolnej warstwy cieczy.

IV Wyniki i ich omówienie:

ĆWICZENIE 28

REAKCJA CHLOROFILU Z KWASAMI

II. Pytania:

Jaka jest rola atomu magnezu w środku pierścienia porfirynowego chlorofilu?

//. Materiał:

a/ rośliny: ekstrakt chlorofilu z ćwiczenia 25 b/odczynniki: HCl (10%), krystaliczny octan miedzi

c/ inny sprzęt : łaźnia wodna, probówki

///. Metoda:

Do probówki z ekstraktem z ćwiczenia 25 dodać 5-6 kropel 10% kwasu solnego i dokładnie wymieszać. Zanotować zabarwienie ekstraktu. Część roztworu odlać do czystej probówki i pozostawić dla kontroli, a do pozostałej ilości wrzucić kilka kryształów octanu miedzi i ogrzać na łaźni wodnej. Porównać zabarwienia roztworów.

IV. Wyniki i ich omówienie:

Warstwa Rozpuszczalnik Zabarwienie Barwniki il j górna

dolna

Roztwór Barwa roztworu ekstrakt alkoholowy chlorofilu ekstrakt + kwas feofityna + octan miedzi

Page 20: FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów … · 2015-02-23 · FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów niestacjonarnych ĆWICZENIA, KTÓRYCH NIE WYKONANO

ĆWICZENIE 29

WPŁYW NATĘŻENIA ŚWIATŁA NA INTENSYWNOŚĆ FOTOSYNTEZY

/. Pytania:

Jakie czynniki wpływają na intensywność fotosyntezy? Czy liść wykorzystuje całe padające na niego światło fotosyntetycznie czynne? Czy natężenie światła i długość jego fali mają znaczenie dla intensywności fotosyntezy?

//. Materiał:

a/ rośliny: gałązki moczarki kanadyjskiej lub kabomby

b/ odczynniki: woda sodowa

c/ inny sprzęt: probówki, bagietki szklane, nitka

III. Metoda:

Gałązkę moczarki kanadyjskiej lub kabomby zanurzyć w probówce z wodą wzbogaconą w CO2 (dodać 1/3 objętości wody sodowej). Ustalić trzy położenia probówki z rośliną względem źródła światła (żarówka 200 - 500 W) w odległościach 30, 100, 200 cm. W każdym położeniu policzyć pęcherzyki gazu odrywające się od przekroju pędu w ciągu minuty. Między pomiarami robić 3 - 4 minutowe przerwy dla ustabilizowania się warunków doświadczenia. IV.Wyniki:

Uzupełnij tabelę i sporządź wykres

Odległość od źródła światła [cm] Intensywność fotosyntezy

[liczba pęcherzyków O2 / minutę]

50

100

200

Page 21: FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów … · 2015-02-23 · FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów niestacjonarnych ĆWICZENIA, KTÓRYCH NIE WYKONANO

ĆWICZENIE 30

WPŁYW STĘŻENIA CO2 NA INTENSYWNOŚĆ FOTOSYNTEZY

/. Pytania:

Czy stężenie atmosferyczne CO2 jest dla roślin optymalne? Jaki zakres stężeń CO2 roślina jest w stanie wykorzystać i dlaczego?

//. Materiał:

a/ rośliny: gałązki moczarki kanadyjskiej lub kabomby

b/ odczynniki: woda sodowa

c/ inny sprzęt: probówki, bagietki szklane, nitka

///. Metoda:

Gałązkę moczarki kanadyjskiej lub kabomby przywiązać wierzchołkiem w górę do bagietki szklanej i zanurzyć w probówce z dobrze przegotowaną wodą Policzyć pęcherzyki gazu odrywające się od przekroju pędu w ciągu minuty Następnie przenieść tę samą roślinę do probówki z wodą wzbogaconą w CO2 (dodać 1/3 objętości wody sodowej) i po 2 -3 minutach powtórzyć pomiar. ///. Wyniki:

Uzupełnij tabelę:

ĆWICZENIE 31

WPŁYW TEMPERATURY NA NATĘŻENIE FOTOSYNTEZY

I i II Materiał i Metoda:

Przygotować do pomiaru gałązki moczarki, jak w ćwiczeniu 29 i 30. Probówki z 0,5 %\roztworem KHC03 wstawić do łaźni wodnych o temperaturach 5, 20, 35 ͦ C. Przenosić gałązkę moczarki do kolejnych roztworów i po kilku minutach obliczać liczbę wydzielających się w czasie dwóch minut baniek tlenu. Zanotować obliczyć współczynnik Q10dla fotosyntezy, według wzoru:

Komentarze: Szybkość reakcji fotochemicznych słabo zależy od temperatury, w przeciwieństwie do reakcji enzymatycznej redukcji C02. Przy niskiej intensywności PAR przebieg reakcji fotochemicznej ogranicza fotosyntezę. W takich warunkach można w szerokim zakresie zmieniać temperaturę bez powodowania znaczniejszych zmian temperaturowego współczynnika szybkości reakcji (QI0). Oznacza to, że szybkość absorpcji i przenoszenia energii przez barwniki fotosyntetyczne nie wzrasta wraz z temperaturą. Kiedy gęstość strumienia kwantów jest duża i wytwarza się wysoka pula NADPH + H+ i ATP, wówczas wzrost temperatury wpływa na zwiększenie natężenia fotosyntezy. W tym przypadku proces fotosyntezy może być ograniczany szybkością przebiegu reakcji enzymatycznych. Podwyższenie temperatury przyspiesza przebieg reakcji chemicznych. Pra-widłowość ta, w zakresie temperatur nie powodujących uszkodzeń komórek, dotyczy także reakcji przebiegających w żywych organizmach. Wpływ temperatury na procesy fizjologiczne jest określany na podstawie współczynnika Q10. Jego wartość jest uzyskiwana przez podzielenie szybkości reakcji mierzonej w danej temperaturze przez szybkość reakcji w temperaturze niższej o 10°C. Podczas osmotycznego pobierania wody rośliny nie wydatkują energii metabolicznej. Dlatego wartości Q10 dla pobierania wody, w układzie opisanym wyżej, winny być podobne jak dla procesów biernych, czyli niemetabolicznych (QI0 mniejsze od 2).

Traktowanie: Intensywność fotosyntezy [liczba pęcherzyków O2 / minutę]

Woda pozbawiona CO2

Woda wzbogacona w CO2

Page 22: FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów … · 2015-02-23 · FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów niestacjonarnych ĆWICZENIA, KTÓRYCH NIE WYKONANO

ĆWICZENIA Z ZAKRESU PROCESU ODDYCHANIA Uwaga: założyć niniejsze ćwiczenie jako pierwsze (tzn. na początku ćwiczeń) !!!

ĆWICZENIE 32

POMIAR INTENSYWNOŚCI ODDYCHANIA METODĄ MIARECZKOWĄ

/. Pytania

Jakie są metody pomiaru intensywności oddychania?

//. Materiał

a l rośliny: nasiona grochu b /odczynniki: 10 % KOH; 0,2 N KOH; 0.2 N HCI; fenoloftaleina

c/ inny sprzęt: płuczki, rurki szklane, gumowe węże, pompa wodna

///. Metoda:

50 g kiełkujących nasion grochu umieścić w kolbie ssawkowej. Kolbę połączyć z

jednej strony .z płuczką wypełniona 10% KOH, z drugiej strony z płuczka zawierającą 0,2 N KOH. Zestaw podłączyć do pompy wodnej tak aby powietrze przepływało najpierw przez płuczkę z 10% KOH, potem przez płuczkę z nasionami, a następnie przez płuczkę pomiarową z 0,2 N KOH. Po godzinie roztwór z płuczki pomiarowej miareczkować 0,2 N HCI w obecności fenoloftaleiny. Obliczyć ilość mg CO2 wydzielanego przez I g nasion wg wzoru

mg CO2 / h / g św. m. = ( 50 – v ) x n x 22 : t x w

gdzie: V - ilość HCl (cm3) zużytego do miareczkowania zawartości płuczki pomiarowej, n - normalność użytego kwasu i ługu h - czas trwania pomiaru w godzinach w - naważka nasion

IV Wyniki i ich omówienie

Normalność użytych

roztworów

Czas trwania doświadczenia [h]

Ilość zużytego HCl [cm3]

Intensywność oddychania [mg CO2 /h/g św.m.]

Page 23: FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów … · 2015-02-23 · FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów niestacjonarnych ĆWICZENIA, KTÓRYCH NIE WYKONANO

ĆWICZENIE 33 WYZNACZANIE ENERGII CIEPLNEJ W PROCESIE ODDYCHANIA

/. Pytania: Jak przebiegu łańcuch oddechowy? Co dzieje się z energią emitowaną przez elektron w czasie przeskoków pomiędzy kolejnymi enzymami łańcucha ?

// Materiał:

a/ rośliny: nasiona grochu

b/ odczynniki,

c/ inny sprzęt: termosy, termometry, wata

/// Metoda: Odważyć dwa razy po 50 g kiełkujących nasion grochu Jedną partię nasion zabić gotując je przez ok. 10 minut, a następnie ostudzić. Obie partie nasion wsypać do termosów, wstawić termometry i szczelnie zamknąć watą. Odczytać temperaturę na termometrach po 30 minutach, a następnie powtarzać pomiary co kilka godzin.

IV Wyniki i ich omówienie

Uzupełnij tabelę:

Czas pomiaru [min. lub h]

Temperatura otoczenia

[°C]

Temperatura nasion martwych

[°C]

Temperatura nasion żywych

[°C]

Page 24: FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów … · 2015-02-23 · FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów niestacjonarnych ĆWICZENIA, KTÓRYCH NIE WYKONANO

ĆWICZENIA Z ZAKRESU HORMONÓW ROŚLINNYCH Przygotowując się do ćwiczenia należy zaznajomić się z wpływem poszczególnych grup hormonów roślinnych na procesy wzrostu i rozwoju roślin.

ĆWICZENIE 34

WPŁYW KINETYNY NA PRZYROST ŚWIEŻEJ MASY I ZAZIELENIENIE SIĘ ETIOLOWANYCH LIŚCIENI OGÓRKA

/. Pytania: Czym się charakteryzuje się epigeiczny typ kiełkowania? Wymień i scharakteryzuj grupę fitohormonów - cytokininy. // Materiał:

a/ rośliny: 4-dniowe siewki ogórka b/ odczynniki: 0,1mM roztwór kinetyny zawierający 40 mM KCl i 10 mM CaCl2 c) 2 szalki i 6 krążków bibuły na 1 stół (3 osoby)

/// Metoda:

Z 4-dniowych etiolowanych siewek ogórka czyli niefotosyntetyzujących,

pozbawionych chloroplastów (skiełkowanych w ciemności) odcinamy liścienie i 10

pojedynczych liścieni ważymy na wadze analitycznej. Wykładamy je kolejno do szalek

Petri'ego wyłożonych 3 warstwami bibuły (należy wyciąć krążki bibuły). Pierwszą szalkę

mocno zwilżamy wodą (kontrola) , a drugą szalkę podlewamy roztworem kinetyny

(grupa cytokinin) zawierającym 40 mM KCl i 10 mM CaCl2

Obecność jonów K+ i Ca++ zwiększa działanie kinetyny na powiększanie się

liścieni. Liścienie układamy brzuszną strona do bibuły. Szalki umieszczamy w

ciemności na 24 godziny. W następnym dniu - po zakończeniu inkubacji, liścienie

suszymy powierzchniowo za pomocą ręczników papierowych i ważymy.

Obliczamy względny przyrost świeżej masy liścieni X w wariancie kontrolnym i z

cytokininami.

masa końcowa [g] - masa początkowa [g] X = ---------------------------------------------------- • 100%

masa początkowa [g]

Następnie obliczamy stopień stymulacji przyrostu Y

X (cytokinina) Y = ---------------------- • 100 % X (kontrola)

Tylko grupa studentów mająca jako pierwsza ćwiczenia ,zważone liścienie

ponownie układa w tych samych szalkach, w których przebywały w ciemności.

Szalki przenosi w miejsce, gdzie materiał roślinny będzie poddany na działanie

światła (np. parapet wewnętrzny).

Po 4 -6 godzinach inkubacji (obserwują późniejsze grupy) w świetle

porównujemy stopień zazielenienia w obu wariantach. Notujemy wyniki

obserwacji.

IV Wyniki i ich omówienie

Page 25: FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów … · 2015-02-23 · FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów niestacjonarnych ĆWICZENIA, KTÓRYCH NIE WYKONANO

ĆWICZENIE 35

TEST CYLINDRYCZNY KOLEOPTYLI PSZENICY NA STĘŻENIE AUKSYN

I Pytania: Dlaczego koleoptyl traw jest dogodnym testem biologicznym do pomiaru stężeni auksyn. Jakie mogą być zależności miedzy stężeniem auksyny a reakcją wzrostową testu?

//. Materiał:

a/ rośliny: siewki owsa lub pszenicy o wysokości 3 cm

b/odczynniki: roztwory IAA – 10, 1, 0,1, 0,01 mg x dm-3, woda destylowana

c/ inny sprzęt: szalki Petriego, bibuła, sztanca, linijka, szkiełko przedmiotowe

///.Metoda:

Jako materiał roślinny bierzemy koleoptyle owsa o długości 3 cm, które wyrósł

z ziarniaków, kiełkujących na wilgotnej bibule, w ciemności, w temperaturze

pokojowej. Wybieramy 35 dobrze wykształconych, prostych koleoptyl

odcinamy je u podstawy i układamy w rzędzie, na wilgotnym szkiełku

przedmiotowym, wierzchołkami zwróconymi w jedną stronę. Wyrównujemy rząd

koleoptyli tak, aby wierzchołki leżały na linii prostej. Sztancą wykrawam

wycinki koleoptyli o długości 10 mm. Cięcie wykonujemy w odległości 3 mm o-

wierzchołków. Otrzymujemy równe odcinki koleoptyli w kształcie cylinderków

(stąd nazwa testu). Do 6 małych szalek nalewamy po 10 cm3 następujących

roztworów : woda destylowana, 100, 10 1, 0.1, 0.01 mg.dcm3 kwasu

indolilooctowego (IAA). Do siódmej nalewamy 10 cm roztworu auksyny o

nieznanym stężeniu. W szalkach umieszczamy po 5 sztuk cylinderków i

wstawiamy je do termostatu o temperaturze 25° C na 6 - 24 godzin. Po inkubacji

mierzymy długość cylinderków i obliczamy średnią dla każdego wariantu. Na

podstawie uzyskanych wyników rysujemy krzywą wzorcową, z której możemy

odczytać stężenie auksyny w nieznanej próbce.

ĆWICZENIE 36

WPŁYW AUKSYNY NA WZROST KORZENI RZEŻUCHY

I Pytania:

Jaka jest rola fizjologiczna auksyn?

II Materiał:

a/ nasiona rzeżuchy

b/odczynniki: roztwór I AA - 0,1 ;0,01; 0,001; 0,0001 mg x dm3

woda destylowana

c/ szalki, termostat,

II. Metoda:

Spośród kiełkujących nasion rzeżuchy wybrać 30 sztuk z korzonkami

o jednakowej długości i rozmieścić je po 5 sztuk równomiernie w

szalkach zawierających:

roztwór I AA o stężeniu 0,1; 0,01; 0,001 i 0,0001 mg. x dm3 , roztwór

IAA o nieznanym stężeniu „x" oraz czystą wodę.

Szalki umieścić w ciemnym termostacie na 24 godz., a następnie

zmierzyć długość korzeni.

Wyliczyć średnie długości korzeni, wyniki zestawić i porównać.

IV Wyniki i ich omówienie

Uzupełnij tabelę: KONTROLA- H2O - KORZEŃ PĘD

KWAS

INDOLILOOCTOWY

- IAA

0,1

0,01

0,001

0,0001

X

Page 26: FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów … · 2015-02-23 · FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów niestacjonarnych ĆWICZENIA, KTÓRYCH NIE WYKONANO

ĆWICZENIE 37

WPŁYW KWASU GIBERELINOWEGO NA KIEŁKOWANIE

ZIARNIAKÓW PSZENICY I WZROST SIEWEK

I Pytania:

Jaka jest rola fizjologiczna giberelin i auksyn?

// Materiały:

a/ ziarniaki pszenicy,

b/ kwas giberelinowy (GA3) - 100 mg x dm3 , etanol,

c/ doniczki z perlitem, krążki bibuły, szalki Petriego,

/// Metoda:

Ziarniaki pszenicy namoczyć przez 24 godz. w roztworze kw. giberelinowego o

stężeniu 100 mg x dm-3. Ziarniaki kontrolne namoczyć w wodzie destylowanej z

dodatkiem etanolu. Spęczniałe ziarniaki ułożyć bruzdkami w dół na krążkach

bibuły w szalkach z dodatkiem 5 ml roztworu GA3 lub wody. Szalki umieścić w

ciemności w temp.20-25 stopni C. Po 24 i 48 godzinach uzupełnić ubytki płynów

wodą i policzyć kiełkujące nasiona. Po 48 godzinach zmierzyć długość

koleoptyli, policzyć korzenie i zmierzyć ich długość Spośród spęczniałych lecz nie

skiełkowanych ziarniaków wysiać po kilka sztuk do 3 wazonów z perlitem lub

piaskiem. Wazony umieścić na świetle w temp. 20-25 stopni C . Po 1 i 2

tygodniach zmierzyć wysokość i opisać - wygląd obu grup.

IV Wyniki i ich omówienie

ĆWICZENIE - nie wykonujemy

WPŁYW KWASU GIBERELINOWEGO (GA3) I ABSCYSYNOWEGO (ABA) NA WZROST ROŚLIN GROCHU

KARŁOWATEGO

Przygotowanie ćwiczenia (ćwiczenie złożono kilka dni wcześniej)

Ziarna grochu moczono przez 24 h w wodzie destylowanej – kontrola oraz w

roztworach: kwasu giberelinowego = GA3 (o stężeniu 100 mg/l) i kwasu

abscysynowego = ABA (o stężeniu 10 mg/l). Następnie przygotowane ziarna

grochu poddano kiełkowaniu przez 4 doby w słoikach lub zlewkach z wodą - na

gazie. Po skiełkowaniu można przenieść je do doniczek z ziemią i kontynuować

hodowlę przez następnych 9 dni.

Wykonanie ćwiczenia:

.......... i .........maja z każdego wariantu doświadczalnego pobrać losowo 3

rośliny, zmierzyć długość pędu i korzenia każdej z nich, a następnie

zwarzyć osobno liście, łodygi, korzenie i ziarniaki. Wyliczyć średnie długości i

masy poszczególnych części roślin grochu karłowatego.

IV Wyniki i ich omówienie

Page 27: FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów … · 2015-02-23 · FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów niestacjonarnych ĆWICZENIA, KTÓRYCH NIE WYKONANO

ĆWICZENIA NA TEMAT WZROSTU I ROZWOJU ROŚLIN - tylko założenie ćwiczeń (obserwacja indywidualnie po ustaleniu terminu z prowadzącym

ĆWICZENIE 38

WYZNACZANIE STREFY WZROSTU KORZENIA

I Pytania: Gdzie występuje strefa wzrostu i merystem pierwotny w korzeniu? II Materiał: a/ rośliny: 4- dniowe siewki grochu b/ inny sprzęt: szalki Petri'ego, bibuła, nożyczki, czarny pisak niezmywalny (wodoodporny), linijka III Metoda: Na korzeniach siewek grochu zrobić tuszem lub pisakiem wodoodpornym szereg

poprzecznych kresek w odstępach co 2 mm, na długości ok. 2 cm, zaznaczając

je od wierzchołka korzenia. Siewki wbić za pomocą szpilki w styropianowy

sześcian. Sześcian z siewkami włożyć do kolbki miarowej, w której znajduje się

15 ml wody destylowanej. Po tygodniu zmierzyć odstępy pomiędzy

poszczególnymi kreseczkami. Na schematycznym rysunku należy zaznaczyć

strefę wzrostu (elongacyjną) komórek.

IV Schematyczny rysunek, wyniki i ich omówienie:

Page 28: FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów … · 2015-02-23 · FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów niestacjonarnych ĆWICZENIA, KTÓRYCH NIE WYKONANO

ĆWICZENIE 39

WYZNACZANIE STREFY WZROSTU LIŚCI ROŚLIN

JEDNOLIŚCIENNYCH

/. Pytania:

Gdzie znajduje się strefa wzrostu w liściach roślin jednoliściennych a

gdzie tkanka merystematyczna ? U jakich gatunków, w okresie wegetacji

wykonujemy wielokrotne przycinanie liści bez szkody dla ich przyrostu?

//. Materiał:

a/ roślinny: cebula jadalna z młodym szczypiorkiem

b/ inny sprzęt: linijka czarny pisak

///. Metoda:

Doświadczenie to najlepiej wykonać na rosnących w doniczce roślinach cebuli

jadalnej. Na młodym liściu, od nasady do wierzchołka, narysować kreski o

jednakowych odstępach (co 2 mm). Po tygodniu przeprowadzić obserwacje

zmierzyć odstępy między kreskami i na podstawie uzyskanych wyników wskazać

na rysunku odcinek liścia gdzie komórki rosną najintensywniej

IV. Wyniki i ich omówienie:

ĆWICZENIE 40

STREFA WZROSTU LIŚCI ROŚLIN DWULIŚCIENNYCH

I. Pytania: Czy w rosnących liściach roślin dwuliściennych są aktywne merystemy? II. Materiał: a/ rośliny: 2-tygodniowe siewki fasoli b/ odczynniki c/ inny sprzęt: linijka, tusz czarny, nitka III. Metoda: Na młodym liściu fasoli, używając nitki zmoczonej tuszem, narysować siatkę z

pól o jednakowych wymiarach. W czasie rysowania uważać aby nie uszkodzić

tkanki liścia. Po tygodniu porównać wielkość pól kratek na powierzchni całego

liścia i na tej podstawie wyznaczyć miejsca na liściu, w których komórki rosną

najintensywniej. Wyniki przedstawić na rysunku.

IV. Wyniki i ich omówienie:

Page 29: FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów … · 2015-02-23 · FIZJOLOGIA ROŚLIN DRZEWIASTYCH dla studentów studiów niestacjonarnych ĆWICZENIA, KTÓRYCH NIE WYKONANO

ĆWICZENIE 41

NIEPRZEPUSZCZALNOŚĆ OKRYWY NASIENNEJ JAKO

PRZYCZYNA ZAHAMOWANIA KIEŁKOWANIA NASION

/ Pytania:

Jakie zabiegi można stosować w celu umożliwienia skiełkowania nasion „twardych"? W jaki sposób w warunkach naturalnych nasiona ”twarde" uzyskują zdolność do kiełkowania ?

//. Materiał:

a/ rośliny: nasiona łubinu żółtego

b/ inny sprzęt:: zlewka 500 cm3, bagietka, szalka Pełnego, skalpel

///. Metoda:

Nasypujemy do zlewki o pojemności 500 cm" 200 g nasion łubinu żółtego,

zalewamy je 500 cm3 wody i wstawiamy do termostatu. Po 6 godz. zawartość

zlewki mieszamy bagietką. Nasiona niespęczniałe („twarde"), o większym

ciężarze właściwym zbierają się na dnie zlewki. Usuwamy nasiona spęczniałe

Nasiona twarde dzielimy na 3 porcje. Pierwszą porcję nasion pozbawiamy

okrywy nasiennej zdejmując ją skalpelem. W nasionach drugiej porcji

uszkadzamy okrywę tylko w jednym miejscu. Nasiona porcji trzeciej

pozostawiamy nienaruszone. Tak spreparowane nasiona kładziemy na szalce

Petriego. Po 1 tygodniu obserwujemy wynik doświadczenia obliczając %

skiełkowanych nasion dla każdej grupy i piszemy odpowiednie wnioski.

IV. Wyniki i ich omówienie:

ĆWICZENIE 42

WYKAZANIE SPOCZYNKU NASION SPOWODOWANEGO

PRZEZ NIEPRZEPUSZCZALNE OKRYWY NASIENNE

I Pytania: Na czym polega zabieg skaryfikacji, a na czym zabieg stratyfikacji nasion?

// Materiał:

a/ nasiona łubinu

b/ 50% kwas siarkowy

c/4 szalki Petri'ego, bibuła filtracyjna

III Metoda:

Cztery szalki Petriego wyłożyć krążkami bibuły filtracyjnej. Naciąć okrywy

nasienne 10 - ciu nasion i umieścić je w szalce nr 1. W szalce nr 2 umieścić 10

nasion nienaruszonych. Kolejne 2 porcje po 10 nasion zanurzyć w 50 % kw.

siarkowym na: a - 5 min. b - 15 min., przemyć w bieżącej wodzie przez 30 min. i

umieścić w dwóch pozostałych szalkach. Bibułę w obu szalkach zwilżać wodą w

miarę potrzeby i obserwować kiełkowanie poszczególnych nasion w ciągu

tygodnia.

IV Wyniki i ich omówienie.

Uzupełnij tabelę:

L.p. Rodzaj skaryfikacji: % skiełkowanych nasion

1 KONTROLA

2

3

4