Development of compatibilized butyl rubber nanocomposites ...

8
nanokom p ozyty kauczuku butylowego i dwóch na p ełniaczy R Rajasekar 1 , A. Malas 1 and CK Das 1 * Development of compatibilized butyl rubber nanocomposites containing dual filler system This study aims in analyzing the effect of compatibilizer for the dispersion of organically modified narw- clay in butyl ntbber (IIR) matrix. Chlorobutyl rubber (CIJR) - organically modified nanoclay composites (CI-C) were prepared by solution mixing. The nanoclay used i11 this study is Cloisite 20A. The obtained nanocomposites were incoorated in bul rubber (IIR) a/ong with carbon black and sulphur as a curing age11t. ivforpholo, curing characteristics, mechanical and gas barrier properties of the nanocomposites were analysed and compared to conol. The morphological studies provcd the partia[ exfoliation along with agglomeration of nanoclay pl atelets in CIIR, and further incorporation of CJ-C in IIR matrix e11- hances the eoliation of the nanoclay platelets. Curing study demo11strated fas ter scorch time, cure time a11d increase in maximum torque for the compatibilized IIR nanocomposites containing dual filler sys- tem compared to control. Col!siderables improvement i1 1 mechallical and gas barrier properties we,·e achieved for the same system. The tensile fractured surface of the rubber compowids observed through scanlłing electron microscopy shows highly rough and tortuous path for the filler containing IIR com- poull(ls. Key words: butyl nzbbe1; compatibilize1; chlorolnztyl rubbe lłanocomposites, nanocla� carbon black Kompatybilizowane nanokompozyty kauczuku butylowego zawie- rające zespół dwóch napełniaczy Praca ma 11a celu analizę wpływu kompatybilizatora 11a dyspersję orga11icz11ie modyfikowanego nanoglinokrzemia11u w matcy kauczuku butylowego. Kompozyty kauczuku chlorobutylowego i modyfikowanego nanoglinohzemianu wykonywano metodą mieszania w roztworze. Do badań użyto na11oglinokrzemianu Cloisite 20A. Uzyskane nanokompozyty wprowadzano do kauczuku butylowego (IIR) razem z sadzą i siarką jako środkiem wulkanizującym. Badano m01jologię, cha- rakterystykę wulkanizacji, właściwości mechaniczne i przepuszczalność gazu nanokompozytów, porównując uzyskane wyniki z aściwościami próbki kontrolnej. Badania mo,jologiczne dowiod- ły częściowej eksfoliacji oraz aglomeracji płytek nanoglinokrzemianu w JR, a następnie, że do- danie CJ-C do matrycy IJR poprawia eksfoliację płytek nanoglinokrzemianu. Badanie wulkanizacji wykazało krótszy czas podwulkanizacji i wullwnizacji oraz wzrost maksymalnego momentu obro- towego kompozytów kompatybilizowanego IIR zawierającego zespół dwóch napełniaczy w porów- naniu z próbką lwntrolną. Osiągnięto znaczną poprawę właściwości mechanicznych i bariero- wych. Obserwacja za pomocą skaningowego mikroskopu elekt ronowego powierzchni mieszanki gumowej ze spękaniami powstałymi na skutek naprężenia pokazuje bardzo ostrą i zmiennokienm- kową drogę spęka,i w przypadku napełnionych mieszanek IIR. Słowa kluczowe: kauczuk butylowy, kompabilizator, kauczuk chlorobutylowy, nanokompozyty, nanoglinokrzemian, sadza 15 I. I ntroduction The chief aim of preparing polymer-nanoclay composites is to achieve a very high dcgrcc of disper- sion of nanoclay aggrcgatcs in the polymer matrix, which can yield to very large surface arcas. The achievement in bettcr dispersion of nanoclay in the polymer matrix lcads to substantial improvcmcnt in the overall propcrtics of the polymcr. Vast works havc bccn reportcd on the clay fillcd nanocompositcs bascd on thcrmoplastics and thcrmosctting polymers, but the studies on rubbcr-day nanocomposites con- stitute in less er dimension (1-3]. 1 fatcrials Science Centre, Indian Institute of Technology. Kharagpur- 721 302, India • Corresponding Author. Tel: +91-3222-283978; Fax: + 9 l-3222-282700/255303 E-mail addrcss: chapal12@yahoo.co.in (Chapał Kumar D.ts) Butyl ruhber (IIR) is made by copolyme1izing isobu- tylenc and isoprene. IIR possesses excellcnt resistance to gas permeation that can be applicd r inncr tubes in tires and air conditioner hoses, cming bags and blad- ders. But IIR-clay nanocompositcs arc not preparcd ESTOMERY nr 6 listopad - grudzie11 201 O TOM14

Transcript of Development of compatibilized butyl rubber nanocomposites ...

nanokompozyty kauczuku butylowego i dwóch napełniaczy

R Rajasekar1, A. Malas1 and CK Das1 *

Development of compatibilized butyl rubber nanocomposites containing dual filler system This study aims in analyzing the effect of compatibilizer for the dispersion of organically modified narw­clay in butyl ntbber (IIR) matrix. Chlorobutyl rubber (CIJR) - organically modified nanoclay composites (CI-C) were prepared by solution mixing. The nanoclay used i11 this study is Cloisite 20A. The obtained

nanocomposites were incorporated in butyl rubber (IIR) a/ongwith carbon black and sulphur as a curing age11t. ivforphology, curing characteristics, mechanical and gas barrier properties of the nanocomposites were analysed and compared to control. The morphological studies provcd the partia[ exfoliation along with agglomeration of nanoclay platelets in CIIR, and further incorporation of CJ-C in IIR matrix e11-

hances the exfoliation of the nanoclay platelets. Curing study demo11strated fas ter scorch time, cure time a11d increase in maximum torque for the compatibilized IIR nanocomposites containing dual filler sys­tem compared to control. Col!siderables improvement i11 mechallical and gas barrier properties we,·e

achieved for the same system. The tensile fractured surface of the rubber compowids observed through scanlłing electron microscopy shows highly rough and tortuous path for the filler containing IIR com­poull(ls.

Key words: butyl nzbbe1; compatibilize1; chlorolnztyl rubber, lłanocomposites, nanocla:>� carbon black

Kompatybilizowane nanokompozyty kauczuku butylowego zawie­rające zespół dwóch napełniaczy Praca ma 11a celu analizę wpływu kompatybilizatora 11a dyspersję orga11icz11ie modyfikowanego

nanoglinokrzemia11u w matrycy kauczuku butylowego. Kompozyty kauczuku chlorobutylowego i modyfikowanego nanoglinohzemianu wykonywano metodą mieszania w roztworze. Do badań

użyto na11oglinokrzemianu Cloisite 20A. Uzyskane nanokompozyty wprowadzano do kauczuku butylowego (IIR) razem z sadzą i siarką jako środkiem wulkanizującym. Badano m01jologię, cha­rakterystykę wulkanizacji, właściwości mechaniczne i przepuszczalność gazu nanokompozytów, porównując uzyskane wyniki z właściwościami próbki kontrolnej. Badania mo,jologiczne dowiod­

ły częściowej eksfoliacji oraz aglomeracji płytek nanoglinokrzemianu w CIJR, a następnie, że do­danie CJ-C do matrycy IJR poprawia eksfoliację płytek nanoglinokrzemianu. Badanie wulkanizacji wykazało krótszy czas podwulkanizacji i wullwnizacji oraz wzrost maksymalnego momentu obro­

towego kompozytów kompatybilizowanego IIR zawierającego zespół dwóch napełniaczy w porów­naniu z próbką lwntrolną. Osiągnięto znaczną poprawę właściwości mechanicznych i bariero­wych. Obserwacja za pomocą skaningowego mikroskopu elektronowego powierzchni mieszanki gumowej ze spękaniami powstałymi na skutek naprężenia pokazuje bardzo ostrą i zmiennokienm­

kową drogę spęka,i w przypadku napełnionych mieszanek IIR.

Słowa kluczowe: kauczuk butylowy, kompatybilizator, kauczuk chlorobutylowy, nanokompozyty, nanoglinokrzemian, sadza

15

I. I ntroduction

The chief aim of preparing polymer-nanoclay composites is to achieve a very high dcgrcc of disper­sion of nanoclay aggrcgatcs in the polymer matrix,

which can yield to very large surface arcas. The achievement in bettcr dispersion of nanoclay in the polymer matrix lcads to substantial improvcmcnt in the overall propcrtics of the polymcr. Vast works havc bccn reportcd on the clay fillcd nanocompositcs bascd on thcrmoplastics and thcrmosctting polymers, but the studies on rubbcr-day nanocomposites con­stitute in less er dimension (1-3].

1 :Vfatcrials Science Centre, Indian Institute of Technology. Kharagpur-

721 302, India

• Corresponding Author. Tel: +91-3222-283978; Fax:

+ 9 l-3222-282700/255303

E-mail addrcss: [email protected] (Chapał Kumar D.ts)

Butyl ruhber (IIR) is made by copolyme1izing isobu­tylenc and isoprene. IIR possesses excellcnt resistance to gas permeation that can be applicd for inncr tubes in tires and air conditioner hoses, cming bags and blad­ders. But IIR-clay nanocompositcs arc not preparcd

ELASTOMERY nr 6 listopad - grudzie11 201 O TOM14

16 nanokornpozyty kauczuku butylowego i dwóch napełniaczy

easily due to the hydrophobicity of IIR and its poor mis­cibility with clay silicatc layers. Thus, IIR-clay nano­composites have not reccivcd much attention. Few works have been reported by Liang et al [4,5) and Kato et al (6] on the preparation of IIR-clay nanocomposites by solu­tion and melt intercalation methods.

The achievement of better dispersion of nanoclay in the polymer matlix involves two main factors. The pri­ma1y one involves the compatibility between the poły­mer and nanoclay. The fonnulas of organoclay/poly­meric systems usually contain a polymeric compatibi­lizer [7, 8 J. Since the organically modified nanoclay is po­lar, the utilization of polar compatibilizer may lead to better dispersion of nanoclay upon incorporation in bulk non-polar llR rnatlix. As IIR is not compatible with most of othcr rubbers, polar ehlorobutyl rubber (CIIR) was used as a compatibilizer in order to achieve better dis­persion of nanoclay in the bulk IIR matrix. The secon­daiy aspect is the metl10d uscd for the preparation of nanocompositcs. In this present study, incorporation of nanoclay in CIIR was dane by solution mixing. The ob­tained CIIR-nanoclay composites (CI-C) were further in­corporated in the IIR matri'\: in presence of carbon black with sulphur as a curing agent. The changes obtained in the morphology, curing characteristics, mechanical and gas barrier propertics have becn analyzed and comparcd to control.

2. Materials

Butyl rubber used was Lanxess Butyl 301 havingIviooney viscosity MLn+s> at 125°C = 51±5 were pur­chased from Lanxess.

Bayer Chlorobutyl 1240 with 1.25% chlorine content and Mooney viscosity ML1+8at 125°C = 38±4 were pur­chased from Bayer.

Cloisite 20A, a natura! montm01illonite modified with a quaternaiy ammonium salt with cation exchange capacity of 95 mequiv./100 g clay (Sou them Clay; Inc, USA), was used as a nanofil1er in the preparation of the nanocomposites.

Carbon black used was fast extrusion furnace black ([,'EF) type N550.

Other compounding ingredients such as sulphur, zinc oxide, steaiic acid, N-cyclohexyl-2-benzothiazyl sulphenamidc (CBS), Tetramethylthiuram disulphidc (TMTD) were purchased from Bayer (M) Sdn Bhd Ma­laysia.

3. Methods

3.1. Solution mixing

Initially CIIR was dissolved in toluene. The rubber to solvent ratio was 1 :3, weight/volume. Continous stirring was dane at room temperature, until the mbber dis­solved completely in the solvent. 50 phr of Nanoclay (Cloisite 20A) was separatcly diluted in toluene and

ultrasonicated for 1 O minutes. The solution containing nanoclay was then mixed up w:ith the rubber solution and the whole mixture was ultrasonicatcd for 1 O mi­nutes followed by stirring. The obtained solution was then cast over in a plane glass plate and kept at room temperature for solvent evaporation. The resultant film was appeared to be transparent.

3.2. Compounding

The compounding formulation was portrayed in Table 1. The compounds are prepared in interna] mixer mili and further takcn as sheet form in open two-roll mixing mill operated at room tempcraturc. The speed ratio of the rotors was 1: 1.4. Vulcanization of the mbber compounds was done in the compression molding ma­chine at 150 °C, as per the optimum cure time obtained from Monsanto Rheometer study.

Table 1. Fonnulation of the rubber compounds Tabela 1. Skład mieszanek gumowych

Ingredients I IB

Dcsignation

frrn -I TCCB

Contcnts (phr)"

Butyl rubbcr 100 100 I 100 94 --·-- --

Nanoclay - - 2.0 --

CT-C [CIIR- 6.0 -nanoclay - - - [CIIR+Nanoclay) composites)

Carbon black 40 I 40 FEFb [N550] -

Stcaric acid 2.0 2.0 ! 2.0!

CBS' I 1.0 1.0 I 1.0

TivITDJ 1.0 1.0 ! 1.0

Zinc m.:ide 3.0 3.0 '

I 3.0

Sulphur 1.5 1.5 I 1.5 ;

"phr - Parts per hundred of ruhher by wcight

h EF - Fast cxtrusion fu mace

'CI3S - N-cyclohci..yl-2-bcnzothiazyl sulphenamide

'1TMTD - Tetrarncthylthiuram disulphide

[4.0 + 2.0)

40

2.0

1.0

1.0

3.0

1.5

4. Characterization techniques

4.1. X-ray diffraction

The clay galle1y height ·was analyzed using a Philips PANalytical X'pert PRO X-ray diffractometer instlument with Cu-Ka radiation. The generator voltage and wave­length was 40 kV and 0.154 nm at room temperature respectively. The ciystallographic spacing (d) of the nanoclays was calculated from the Bragg's law: The range of 28 scanning of X-ray intensity employed was 2-10° at a scanning rate of 2° min-1.

TOM 14 listopad - grudzień 2010 ELASTOMERY nr 6

nanokompoz.yty kauczuku butylowego i dwóch napełniaczy 17

4.2. High resolution transmission electron microscopy (HR-TEM)

The morphology of nanoday dispcrsion in CIIR (i.c., CI-C) and IIR matriccs in prescnce of carbon black (i.c.,IB, ICB and ICCB) wcre obscrvcd through high-rcsolu­tion tr,insmission clcctron microscopc (HR-TEM, JEOL 210 0). Sample preparation was done in Leica Ultra cut L'CT ultramicrotome eąuippcd with a diamond knifc. The thickness of the ultra thin specimens was approxi­matcly 80 nm and the tcmpcraturc of the samples was maintaincd at -70 °C with the help of liquid nitrogen. Thcsc samples were then placed on the copper grid.

4.3. Cure characteristics

The curc charactcristics of the compounds were studicd in the Monsanto Rheometer R-100 testing in­strument operated at 150 "C with 3° arc at a period of 60 minutes.

4.4. Mechanical testing

Dumbbell and crescent shaped spccimens were cut down for tensile and tcar tcsts from the molded slabs. The tcsting was carricd out from Universal tcnsilc test­ing mac hinc, Hounsfield HS 1 O KS model operated at room tcmperaturc at an cxtcnsion speed of 500 mm/min with an initial gaugc lcngth of 25 mm. The values of arc recordcd dircctly from the digital display at the end of cach test.

4.5. Permeability measurements

The gas transport properties of the pure, single and dual filler f'illcd IIR compounds wcrc analysed. Nitrogen gas XL gradc gas purchased from BOC Gases, India was used for the measurcment. The gas was applied at a con­stant prcssurc of 3.5 bar at 35 "C with a time period of 30 minutcs using the automatcd Diffusion Penncametcr (DP-100-A) manufacturcd by Pornus Matcrials, Inc., C'SA. The pcrmcation cquipmcnt was placed in a thcr­mostatically controlled housing for isothcrmal measure­mcnt conditions. The cffcctive pcrmeation area (A) was 5.069 cm2

. TI1c nitrogen gas was supplied from the up­stream sidc of the film with a gas pressurc of3.5 bar (p) and in the downstrcam side a rcscrvoir of constant volumc (119 cm:i) ,vas connccted with a pressure trans­duccr in order to monitor the total amount of gas that gcts passed through the polymcr film. The time lag method was uscd to calculatc the gas transport mea­surements. This tcchnique allows the detcnnination of the mcan permeability cocfficicnt (P) from the steady state gas prcssure incrcmcnt (dp/dt)s in the calibratcd volume V of the product side of the cell. The penne­ability coefficicnts wcrc calculatcd from Eq. (1), whcrc T

0 and p

0 arc the standard tcmperaturc and prcssure

(1:, = 273.15 K, p0

= 1.013 bar), Tis the tempcraturc of measuremcnt, dis the thickncss of the film and (dp/dt)

5

was obtained from the slopc of the incrcmcnts of down­stream prcssure vs. time plot. The mean pcrmeability (P)

(9] was calculated from Eq. (1)

p = A;c

;l::T [�: l (l)

TI1c cffcctivc diffusion coefficient (DJ [9] was calcu­latcd from the time-lag according to the following Eą. (2):

d2 D=-

68

4.6. Scanning electron microscopy

(2)

The morphology of tcnsile fractured surface was vicwcd through scanning clectron microscopc (SEM, VEGA TESCAN). Gold coating was clone under vacuum condition to prcvcnt elcctrostatic chargc ,vhilc exa­mining.

5. Results and discussions

5. I. X-ray diff raction

The XRD pattcrns of the nanocompositcs wercshown in Figure 1. The nanoclay (Cloisite 20A) depictcd an intcnse peak around 28 = 3.144°, corresponding to the basal spacing 2.82 nm (d001). 50 phr incorporation of nanoclay in CIIR (CI-C) by solution phasc mixing

2.82 nm

4

1.37 nm

6

211

· ��-�Cloisitc 20A

Ci,C

10

Figurc 1. XRI) pattern of the nanocomposites

Rysunek 1. Widmo XRD próbek nanokompozytów

showcd the disappearance of the main peak of the nano­clar Although a sccondary peak arisc at 6.48° c01Tcs­ponding to the hasał spacing of 1.37 11111. This provcd that the nanoclay platelets arc pmiially cxfoliated as well

ELASTOMERY nr 6 listopad - grudzie11 2010 TOM 14

18 nanokompozyty kauczuku butylowego i dwóch napełniaczy

- l

2(a) IB

2(c) CI-C

Figurc 2. TEM images of (a) IB, (b) ICB, (c) CI-C, (d) ICCB

Rysunek 2. Obraz TEM (a) IB, (/J) ICB, (c) CI-C, (d) ICCB

as agglomerated in the CIIR matiix, which may be due to

higher nanoclay loading in CIIR Furt.her incorporation of CI-C in IIR mat.J.ix (ICCB) along with carbon black showed complete absence of peaks. As the loading of

CI-C in IIR matlix is low, the exfoliation ofnanoclay may

be more enhanced in the bulk IIR manix. The com­pound ICB containing nanoclay incorporation in IIR

containing carbon black without compatibilizer does not

show any peak. This also provcd that the nanoclay may

be partially exfoliated in the IIR matrix.

/' .

. JOO um .-1- .. -� •• ..dl;....:..;....;..,.. __ ........ __ ---'"

2(b) ICB

o

L .· ·,o I O.

IOOim-___,a:;....a......��--:-._..: __ .:.:.... .......................... ot..,;...-1

2(d) ICCB

Since the organically modifled nanoclay is polar, the utilization of polar compatibilizer CIIR may form a better dispersion of nanoclay u pon incorporation in the

non-polar IIR matiix, than direct incorporation of polar nanoclay in the non-polar matrix polymer.

5.2. HR-TEM analysis

HR-TEM images of the nanocomposites were shown

in Figurcs 2 (a) II3, (b) ICB, (c) CI-C (d) ICCB respectively.

TOM 14 listopad - grudzień 2010 ELASTOMERY nr 6

nanokompozyty kauczuku butylowego i dwóch napełniaczy 19

figure IB shows the cluster of carbon black disperscd throughout the IIR matrix. ICB shows the presence of dual fillers (i.e., nanoclay and carbon black) in the IIR in which the nanoclay platelets wcre partly exfoliated and also agglomeratcd. CI-C shows numerous nanoclay platelets scattered in CIIR matrix. Since the content of nanoclay is 50 phr in CIIR same platelcts wcrc stackcd and fcw are exfoliated. Figure ICCB shows enhanccd dispcrsion of nanoclay forming partially exfoliated platelets in comparison with ICB. The circular spots de­note the prcscnce ofnanoclay platclets. This may be due to the utilization of polar compatibilizer (CIIR) for dis­pcrsing nanoclay in the TIR matrix.

3 (a)

3 (b)

ni' a.. ::E -

.r: ...

Cl

(l) ...

...

V>

� V> C:

V> ::,

16

12

8

4

o

5

4

.g 2

o ::E

[==i Tensile strength

[==i Elongation at break

� Tear strength

-

100%

c::] 300%

c-=-.1 soo%

"'

... } .J \,.

•i

ji•i, r-

18

rf" I

il .,

ji

'"I�m 1;,

I�

18

5 .3. Cure characteristics

The curc charactcristics of the rubber compounds arc shown in Table 2.

The compound IB shows improvement in minimum and maximum torquc value compared to IIR gum com­pound (I). The improvement may be due to the prcsence of carbon black in the IIR matrix (IB). The maximum torque depends on both the extent of crosslinking and reinforcement by the filler particles in the polymer ma­trix. This enhancemcnt was furthcr pronounced for the IIR compounds containing nanoclay and carbon black (ICB and ICCB). Particularly the compound ICCB

30

1200

25

1000

� 20 -

E .I<: i 800 Cll E (l) ._ ...

..c ... 15 .r:

600 Cll ...

C: Cl C:

o (l) :.;:; .!:; Cll

10 V> Cl

400 C: o

(l)

[ij I-

200 5

o o ICB ICC8

I

I

:c

rf

r=

r:'

li,;

... t�·...

Iii

f:j iit J,

f„

:.

I!', ,,

IC8 ICC8

Figure 3. (a) Tensile strength, elongation at break and tear strength of the rubber compounds, (b) 100% and 300% modulus of the rubber compounds Rysunek 3. (a} Wytrzymałość na rozciąganie, wydłużenie przy zenvaniu i wytrzymałość na rozdzieranie mieszanek gumowych, (b) M 100% i M 300% mieszanek gumowych

ELASTOMERY nr 6 listopad - grudzień 2010 TOM14

20 nanokompozyty kauczuku butylowego i dwóch napełniaczy

showed the maximum improvement in torque values than ICB. The improvement may be due to the presence of compatibilizer (CIIR) that enhanccs the dispersion of the nanoclay in the base polymer matrix. The carbon black filled IIR compound showed faster scorch and

Table 2: Cure characteristics of the mbber compounds

5.5. Gas barrier properties

The gascous permeability and diffusivity coefficient of the compounds me shown in Figure 4. The compound IB showed lower gas permeability compared to I. The

Tabela 2. Charakte1ystyka wulkanizacji mieszanek gu.mowych

Sample I

Min. Torque Max. Torque ! Torque difference I (dN·m)

Scorch time I Cure time 1 Cure rate ! codc (dN·m)

I

I ' 10.5 IB I 11.5 !CB I 12

ICCB I 12

(dN·m)

. -·---· 3642.5 ·------·

I 43.5 ·---- -----·

I 44

i 25.5

-t31

31.5

I 32

cure time compared to the unfil1ed IIR compounds. Nor­mally. the carbon black filled rubber compounds have faster scorch and cure time compared to the gum com­pounds. Carbon black facilitates the opening of the S8

rings even in the absence of accel era tors and it enhances the formation ofI-I2S, which activates most sulphur cur­ing systems. It seems that carbon black supports vulca­nization reactions without changing their nature sub­stantially [1 O]. The dual filler containing IIR compounds showed faster scorch and cure time compared to the un­filled and single filler containing IIR systems. A part from the presence of carbon black, the presence of ammo­nium groups in the organically modified nanoclay may also facilitates the process. The possible fonnation of a Zn complcx in which sulfur and ammonium modifier participate may help for the increase in rate of cure. Hence, depending upon the ammonium concentration in the nanoclay greater will be the chance of Zn-sul­fur-ammonium complex formation in the nanocompo­sitcs and consequently faster scorch time and cure time were achieved (11].

5 .4. Mechanical properties

The mechanical properties of the rubber eompounds arc shown in Figure 3 (a) & (b).

The compound IB containing single filler (carbon black) in IIRmatrix showed tremendous improvement in mechanical properties compared to the unfilled IIR compound (I). The increasc in tensile and tear strength are 600 % and 270 %. The enhancement was further pronounced for the systems (ICB and ICCB) containing dual fillers. The compound ICB showed 770 % increase in tensilc and 296 % increase in tear strength, whereas the compound ICCI3 showed an inerease of 900 % in tensile strength and 394 % increase in tear strcngth rc­spectively. This proved that the presence of compatibi­lizer may improve the dispersion of the nanofiller in the matrix polymer.

(min) I

(min) index i 6.00 22.00 I 6.25

I' 4.00 19.30 6.53 '

I 3.00 18.30 6.53 3.00 18.00 6.66

]ower gas permeability may be due to the presencc of carbon black. The gas penneation was stili reduced for the compounds ICB and ICCB compared to unfilled and carbon black filled IIR compounds. This may be due to the presence of dual fillers that forms a strong barricr for the penetration of nitrogen gas through the rubber com­pound. The lowest gas pcnneability was observed for the

1.0

5 0.8 .. · -�iu

.... E �

o

0.6

"je:, 0.4

,..

E 0.2 �

o.o

= --

� lx

li '

-· -

C=:J Gas permeability coofficiont CJ Gas. Oirfosivily coefficlenl

�....., C"'

Jr

h

1;

IB ICB ICCB

16

J!. E

12 u .

o

8 :� ::;: 8 � ·;

4 -�

Figure 4. Permeability and diffusivity coefficient of thenibber compoundsRysunek 4. Przenikalność gazu i współczynnik dyfuzjikompozytów

compound ICCB. The exfoliation of nanoclay platelets fo1ming a strong interaction with the matiix polymer may be responsible for the meandering of the niti·ogen gas diffusion paths, drawing nitrogen molecules to fol­low long, complex paths through the IIR matrix, hence decreasing the permeability [6]. The diffusivity coeffi­cient also showcd the similar ti·end to that of permea­bility coefficient for the above mentioned compounds. The better dispersion of nanoclay in the compound ICCB reduces the diffusivity by increasing the tortuosity of the gas transport path [12].

TOM 14 listopad - grudzień 2010 ELASTOMERY nr 6

nanokompozyty kauczuku butylowego i dwóch napełniaczy 21

S(a) I

Dd :t:E (),11ti:h1'

Det GC: Dete�toJ

\.'ac· HIVac

1!1llwn VHJ/\\\ t ESC.AN ft „ L:1u11;11 � nnsco;iy lm:igmi; �

l,)f.j llH.:::�W

Clgltat Mer���:! �;���r

� ri su·vendu

IITKS.P

Figure 5. SEA1 images of (a) I, (b) IB, (c) !CB, (cl) ICCB

Rysunek 5. Obrazy SEM (a) I, (b) IB, (c) !CB, (d) ICCB

5.6. Scanning electron microscopy

111e SEJ'vf images of the tensile fractured surfaces were shown in Figure 5 (a) I, (b) IB, (c) ICB and (d) ICCB.

In comparison to the unfilled IIR compound (I), the compounds II3, ICB, and ICCB containing single and dual fillers in the IIR matrix showed highly rough and tortuous path of fracturc. This may be due to better in­tcraction bctwccn the filler and the rubbcr matlix. The dispersion of fil lers in the IIR matrix alters the crack path along thcir lcngth dcpcnding on thcir mientation in

s�w tA,\G f(JIJ X Ollt SF [)fl!f'Clur

r:att·('TfcJfy) u1n·11n Vh: H.Vac

Del" GL Deteno,

vae HIVac

11111 pm

5(b) IB

VEGI\.\\ 1E8CAN " lJ1y1LiJ: rJht:'tisCJpylmi:ig1qJ i

�,wcr,rlu uri<�3P

S(d) ICCB

VEGA\\ TEGCAN r,] 01011a1 1Mc•csc:,p\1 lms giro U

su·,erdu

IITKGr

the matrix. Hence, it forms mare resistancc to crack pro­pagation as a rcsult highcr tcnsile st rength.

6. Conclusion

The m011Jhological studies provcd the partia] exfolia­tion of nanoclay in CIIR and incorporation of CIIR-nano­clay in IIR mat1ix fm1hcr cnhanced the exfoliation of nanoclay platclets. The cming study showed faster scorch time, curc time and increasc in ma."Ximum torque for the compatibilized nanoday fillcd IIR compound

ELASTOMERY nr 6 listopad - grudzief1 201 O TOlvl 14

22 nanokompozyty kauczuku butylowego i dwóch napełniaczy

compared to control. Further these particular com­pounds showed superior technical and gas banier pro­perties. SEM images of the tcnsile fractured surfaces dc­picted increasc in roughness and tortuous path for the single and dual filler containing IIR compounds.

References

1. Arroyo M., Lopez Mcmchado M.A., Herrero B. Orga­

no-montmorillonite as substitute of carbon black in natura[

rubber compounds. Polymer 2003, li, 2447-2453.

2. Chang Y., Yang Y., Ryu S., Nah C. Preparation and proper­

ties of EPDM/organomontmorillonite hybrid nanocompo­

sites. Polymer International 2002, fil, 319-324.

3. Usuki A., Tukigase A., Kato kl. Preparation and properties

of EPDM-c/ay hybrids. Polymer 2002, 13, 2185-2189.

4. Liang Y, Wang Y., Wu Y., Lu Y., Zhang H., Zhang L Prepa­

ration and properties of isobutylene-isoprene rubber

(IIR)/clay nanocomposites. Polymer Testing 2005, 2.1:.,

I 2-17.

5. Liang Y., Ma J., Lu Y., Wu Y., Zhang L., Mai Y. Effects of

lieat and prcssure on intercalation structures of isobuty­

lene-isoprene rubber/clay nanocomposites. I. Prepared by

melt blending . .Journal of Polymer Science. Part B: Polymer

Physics 2005, 13, 2653-2664.

6. Kato J\L, Tsukigase A., Tanaka H., Usuki A., Inai I. Prepa­

ration and properties of isobutylene-isoprene rubbe1�clay

nanocomposites. Journal of Polymer Science. Part A: Poty­

mer Chemist1y, 2006, li, 1182-1188.

7. Karge1�Kocsis J., Zhang Z.; In: Bałta Calleja J.F., Mich/er

G.H., (eds.); Mechanical properties of polymers based on

nanostrncture and morpholog;, New York, CRC Press,

Marcel Dekker. 2005, 547-596.

8. Reichert P., Nitz H., Klinke S., Brandsch R, Thomann R,

Miilhaupt R Poly(propylene)/organoclay nanocomposite

formation: Influence of compatibilizer functionality and

organoclay modification. Macromolecular Materials and

Engineering 2000, 275, 8-17.

9. Sen S.K, Dasgupta B., Banerjee S. Effect of introduction of

heterocyclic moieties into polymer backbone on gas trans­

port properties of fluorinated poly(ether imide) membranes .

.Journal of Membrane Science 2009, 343, 97-103.

10. Franta I. Elastomers and rubber compoimding materials.

Studies in polymer science: 1, 1989, 399.

11. Kim M.S., Kim G.H., Chowdhwy S.R Polybutadiene rub­

be1/organoclay nanocomposites: Effect of organoclay with

various modifier concentrations on the vulcanization be­

havior and mechanical properties. Polymer Engineering

and Science 2007, il, 308-313.

12. Wang Y., Zhang H., W u Y., Yang J., Zhang L Preparation,

structure, and properties of a novel rectorite/styrene-buta­

diene copolymer nanocomposite. Journal of Applied Poly­

mer Science 2005, ilii, 324-328.

„ Tribologia elastomerów i gumy z perspektywy inżynierii materiałowej"

Monografia autorstwa Dariusza Bielińskiego poświęcona tribologii elastomerów i gumy.

Adresowana do specjalistów zajmujących się zastosowaniem materiałów polimerowych w rozwiązaniach technicznych, w których istotne znaczenie mają procesy tarcia i zużycia ciernego.

Może stanowić cenną pomoc dla pracowników laboratoriów badawczo-rozwojowych związanych bezpośrednio z przemysłem gumowym lub wykorzystującym jego wyroby.

Cena jednego egzemplarza 60 zł, VAT 0% (do ceny zostaną doliczone koszty wysyłki)

Zamówienia prosimy kierować na adres:

TOM14

Instytut Inżynierii Materiałów Polimerowych i Barwników Odział Zamiejscowy Elastomerów i Technologii Gumy Zespół Informacji Naukowo-Technicznej 05-820 Piastów, ul. Harcerska 30e-mail: [email protected], [email protected]: 22 723 71 96, tel. 22 723 60 25 wew. 289 lub 250

listopad - grudzień 2010 ELASTOMERY nr 6