202 Lec 16

27
 FREQUENCY RESPONSE OF SIMPLE CIRCUITS Ray DeCarlo School of ECE Purdue University West Lafayette, IN 47907- 1285 [email protected]  

Transcript of 202 Lec 16

Page 1: 202 Lec 16

8/7/2019 202 Lec 16

http://slidepdf.com/reader/full/202-lec-16 1/27

 

FREQUENCY RESPONSE OF

SIMPLE CIRCUITS

Ray DeCarlo School of ECE

Purdue University

West Lafayette, IN [email protected] 

Page 2: 202 Lec 16

8/7/2019 202 Lec 16

http://slidepdf.com/reader/full/202-lec-16 2/27

EE-202, Frequency Response p 2 © R. A. DeCarlo

I. MEANING OF FREQUENCY RESPONSE

1. Recall Sinusoidal Steady State Analysis

(a)  M (! ) = K " H ( j ! )  

(b) ! (" ) = # H ( j " )+ $  

CONCLUSION: the magnitude or gain,  H ( j ! ) , and angle or phase,

! H ( j " ) , specify the effect of the circuit/system has on input

sinusoids, K cos(! t +" ) .

Page 3: 202 Lec 16

8/7/2019 202 Lec 16

http://slidepdf.com/reader/full/202-lec-16 3/27

EE-202, Frequency Response p 3 © R. A. DeCarlo

2. DEFINITION: the frequency response of a circuit/system

is the transfer function evaluated along the imaginary axis, i.e.,

 H ( j ! ) = H (s)]s= j ! . For single-input single-output circuits/systems,

for each ω,  H ( j ! ) is a complex number:

Output(s)

Input(s)

!

"#

s=

j $ 

= H ( j $ )% H ( j $ ) & H ( j $ )  

(a) ! H ( j " ) is the phase response , and

(b)  H ( j ! ) is the magnitude response /GAIN.

Page 4: 202 Lec 16

8/7/2019 202 Lec 16

http://slidepdf.com/reader/full/202-lec-16 4/27

EE-202, Frequency Response p 4 © R. A. DeCarlo

EXAMPLE 1.  A band pass (BP) transfer function is one that

passes frequencies in a band and eliminates those outside the band.

Two such BP transfer functions are:

 H 1(s) =0.25s

s2+ 0.25s +1

=0.25s

(s + 0.125)2+ (0.992)

and

 H 2(s) =0.0625s

2

s4+ 0.35355s

3+ 2.0625s

2+ 0.35355s +1

 

=0.0625s

(s + 0.0962)2+ (1.0884)

2!

0.0625s

(s + 0.08058)2+ (0.91164)

Remark:  s =!  = 0 and s =!  = " are the two most importantfrequencies:

(a)  H 1(0) = H 1(!) = 0  

(b)  H 2 (0) = H 2 (!) = 0  

Page 5: 202 Lec 16

8/7/2019 202 Lec 16

http://slidepdf.com/reader/full/202-lec-16 5/27

EE-202, Frequency Response p 5 © R. A. DeCarlo

(a) Plot  H ( j ! ) using the following MATLAB code:

»n1 = 0.25*[1 0];

»d1 = [1 0.25 1];

»n2 = 0.0625*[1 0 0];

»d2 = [1 3.5355e-01 2.0625 3.5355e-01 1];

»w=0.2:0.005:2;

»h1 = freqs(n1,d1,w);

»h2 = freqs(n2,d2,w);

»plot(w,abs(h1),w,abs(h2))

»grid

»xlabel('Frequency r/s')

»ylabel('Magnitude response')

»gtext('2nd Order BP')»gtext('4th Order BP')

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency r/s

   M  a  g  n   i   t  u   d  e  r  e  s  p  o  n  s  e

TextEnd

2nd Order BP

4th Order BP

 

Page 6: 202 Lec 16

8/7/2019 202 Lec 16

http://slidepdf.com/reader/full/202-lec-16 6/27

EE-202, Frequency Response p 6 © R. A. DeCarlo

(b) Qualitative Analysis Using Pole-zero plot.

Page 7: 202 Lec 16

8/7/2019 202 Lec 16

http://slidepdf.com/reader/full/202-lec-16 7/27

EE-202, Frequency Response p 7 © R. A. DeCarlo

(c) The Idea of Frequency Scaling:

»Kf = 1000;

»n1 = 0.25*[1/Kf 0];

»d1 = [1/Kf^2 0.25/Kf 1];

»n2 = 0.0625*[1/Kf^2 0 0];»d2 = [1/Kf^4 3.5355e-01/Kf^3 2.0625/Kf^2 3.5355e-01/Kf 1];

»w=0.2*Kf:1:2*Kf;

»h1 = freqs(n1,d1,w);

»h2 = freqs(n2,d2,w);

»plot(w,abs(h1),w,abs(h2))

»grid

»xlabel('Frequency r/s')

»ylabel('Magnitude response')

»gtext('2nd Order BP')»gtext('4th Order BP')

Page 8: 202 Lec 16

8/7/2019 202 Lec 16

http://slidepdf.com/reader/full/202-lec-16 8/27

EE-202, Frequency Response p 8 © R. A. DeCarlo

EXAMPLE 2. Magnitude response  H ( j ! ) of three normalized low

pass Butterworth filter transfer functions:

(a) First Order Normalized Butterworth

 H (s) =1

s +1 

(b) 2nd Order Normalized Butterworth

 H (s) =

1

 LC 

s2+ Rs

 Ls +

1

 LC 

=1

s2+ 2 s +1

 

Page 9: 202 Lec 16

8/7/2019 202 Lec 16

http://slidepdf.com/reader/full/202-lec-16 9/27

EE-202, Frequency Response p 9 © R. A. DeCarlo

(c) 3rd Order Normalized Butterworth

 H (s) =1

s3+ 2s

2+ 2s +1

 

(d) MATLAB Code:

»w = logspace(-2,2,800);

»n1 = 1; d1 = [1 1];

»n2 = 1; d2 = [1 sqrt(2) 1];

»n3 = 1; d3 = [1 2 2 1];

»h1 = freqs(n1,d1,w);

»h2 = freqs(n2,d2,w);

»h3 = freqs(n3,d3,w);

»semilogx(w,abs(h1),w,abs(h2),w,abs(h3))

»grid

»xlabel('Normalized rad frequency')

»ylabel('Magnitude Response')

Page 10: 202 Lec 16

8/7/2019 202 Lec 16

http://slidepdf.com/reader/full/202-lec-16 10/27

EE-202, Frequency Response p 10 © R. A. DeCarlo

(e) Magnitude Response Plots 

10-2

10-1

100

101

102

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized rad frequency

   M  a  g  n   i   t  u   d  e   R  e  s  p  o  n  s  e

TextEnd

 

Page 11: 202 Lec 16

8/7/2019 202 Lec 16

http://slidepdf.com/reader/full/202-lec-16 11/27

EE-202, Frequency Response p 11 © R. A. DeCarlo

(f) Pole-Zero Plot of 2nd and 3rd Order Filters 

Page 12: 202 Lec 16

8/7/2019 202 Lec 16

http://slidepdf.com/reader/full/202-lec-16 12/27

EE-202, Frequency Response p 12 © R. A. DeCarlo

EXAMPLE 3.  Plot of   H ( j ! ) of three low pass Butterworth

transfer functions of frequency scaled by K  f  = 1000 :

 H new(s) = H old  sK  f 

" #$ 

% & =

1

s

1000

! " #

$ % & +1

 

 H new(s) = H old s

K  f 

" #

% & =

1

s

1000

! " #

$ % & 

2

+ 2

s

1000

! " #

$ % & +1

 

 H new(s) = H old s

K  f 

" #

% & =

1

s

1000

! " #

$ % & 3

+ 2s

1000

! " #

$ % & 2

+ 2s

1000

! " #

$ % & +1

 

Page 13: 202 Lec 16

8/7/2019 202 Lec 16

http://slidepdf.com/reader/full/202-lec-16 13/27

EE-202, Frequency Response p 13 © R. A. DeCarlo

100

101

102

103

104

105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized rad frequency

   M  a  g  n   i   t  u   d  e   R  e  s  p  o  n  s  e

TextEnd

 

Page 14: 202 Lec 16

8/7/2019 202 Lec 16

http://slidepdf.com/reader/full/202-lec-16 14/27

EE-202, Frequency Response p 14 © R. A. DeCarlo

EXAMPLE 4.  Frequency response of the (High Pass) RC circuit; by

V-division  H (s) =s

s +1

=s

s +100 

STEP 1: IMPORTANT FREQUENCIES:

ω H(jω)

0 H(j0) = 0∠90o 

∞  H(j∞) = 1∠0o 

100 H(j100) = 0.707 ∠ 45o 

Page 15: 202 Lec 16

8/7/2019 202 Lec 16

http://slidepdf.com/reader/full/202-lec-16 15/27

EE-202, Frequency Response p 15 © R. A. DeCarlo

STEP 2. ASYMPTOTIC BEHAVIOR.

 H ( j ! ) = R

 R +1

 j ! C 

= j ! CR

 j ! CR +1=

 j ! 

100

 j 

100 +1

 

|H(jω)| --> 1 as ω--> ∞ 

|H(jω)| --> 0 as ω --> 0

∠H(jω) --> 0 as ω-->∞

 

∠H(jω) --> 90o

as ω --> 0

Page 16: 202 Lec 16

8/7/2019 202 Lec 16

http://slidepdf.com/reader/full/202-lec-16 16/27

EE-202, Frequency Response p 16 © R. A. DeCarlo

STEP 3. PLOTS FROM MATLAB:

»z = 0;

»p = -100;

»zplane(z,p)»grid

-100 -80 -60 -40 -20 0

-40

-30

-20

-10

0

10

20

30

40

Real part

   I  m  a  g   i  n  a  r  y  p  a  r   t

TextEnd

 

Page 17: 202 Lec 16

8/7/2019 202 Lec 16

http://slidepdf.com/reader/full/202-lec-16 17/27

EE-202, Frequency Response p 17 © R. A. DeCarlo

»w = logspace(0,4,500);

»H = freqs([1 0],[1 100],w);»semilogx(w,abs(H))

»grid

»xlabel('Frequency in rad/sec')»ylabel('Magnitude') »

Page 18: 202 Lec 16

8/7/2019 202 Lec 16

http://slidepdf.com/reader/full/202-lec-16 18/27

EE-202, Frequency Response p 18 © R. A. DeCarlo

»semilogx(w,180*angle(H)/pi)

»grid

»xlabel('Frequency rad/sec')

»ylabel('Angle in degrees') 

Page 19: 202 Lec 16

8/7/2019 202 Lec 16

http://slidepdf.com/reader/full/202-lec-16 19/27

EE-202, Frequency Response p 19 © R. A. DeCarlo

101

102

103

104

105

-200

-150

-100

-50

0

Frequency in rad/sec

   A  n  g   l  e   i  n   d  e  g  r  e  e  s

2nd Order LP Frequency Response

 

Page 20: 202 Lec 16

8/7/2019 202 Lec 16

http://slidepdf.com/reader/full/202-lec-16 20/27

EE-202, Frequency Response p 20 © R. A. DeCarlo

EXAMPLE 5.  Frequency response of the (Band Pass) RLC circuit

STEP 1: CALCULATION OF TRANSFER FUNCTION: By V-division,

 H (s) =Vout (s)

Vin(s)=

 R

 R +  Ls +1

Cs

=

 R

 Ls

s2+ R

 Ls +

1

 LC 

 

Page 21: 202 Lec 16

8/7/2019 202 Lec 16

http://slidepdf.com/reader/full/202-lec-16 21/27

EE-202, Frequency Response p 21 © R. A. DeCarlo

STEP 2: IMPORTANT FREQUENCIES 

 H ( j ! ) =

 j ! 

 L1

 LC "! 

2+ j 

 L

=  j 10! 

104"! 

2+ j 10! 

 

ω H(jω)

0 H(j0) = 0∠90o 

∞  H(j∞) = 0∠0o 

100 1

?? 0.707 ∠±45o 

?? 0.707 ∠±45o 

Page 22: 202 Lec 16

8/7/2019 202 Lec 16

http://slidepdf.com/reader/full/202-lec-16 22/27

EE-202, Frequency Response p 22 © R. A. DeCarlo

STEP 4. PLOTS FROM MATLAB:

»w = logspace(0,4,1000);

»R = 10; L = 0.1; C = 1e-3;

»n = [R/L 0];»d = [1 R/L 1/(L*C)];

»h = freqs(n,d,w);

»semilogx(w,abs(h))»grid

»xlabel('Frequency in rad/s')

»ylabel('Magnitude Response')

100

101

102

103

104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency in rad/s

   M  a  g  n   i   t  u   d  e   R  e  s  p

  o  n  s  e

TextEnd

 

Page 23: 202 Lec 16

8/7/2019 202 Lec 16

http://slidepdf.com/reader/full/202-lec-16 23/27

EE-202, Frequency Response p 23 © R. A. DeCarlo

»semilogx(w,angle(h)*180/pi)

»grid

»xlabel('Frequency in rad/s')

»ylabel('Phase Response')

»

100

101

102

103

104

-100

-80

-60

-40

-20

0

20

40

60

80

100

Frequency in rad/s

   P   h  a  s  e

   R  e  s  p  o  n  s  e

TextEnd

 

Page 24: 202 Lec 16

8/7/2019 202 Lec 16

http://slidepdf.com/reader/full/202-lec-16 24/27

EE-202, Frequency Response p 24 © R. A. DeCarlo

EXAMPLE 6.  Frequency response of the (Band Reject) RLCcircuit

STEP 1: CALCULATION OF TRAMSFER FUNCTION:  By V-division,

 H (s) = R

 R +1

Cs +1

 Ls

=

s2+

1

 LC 

s2+

1

 RC s +

1

 LC 

 

Page 25: 202 Lec 16

8/7/2019 202 Lec 16

http://slidepdf.com/reader/full/202-lec-16 25/27

EE-202, Frequency Response p 25 © R. A. DeCarlo

STEP 4. PLOTS FROM MATLAB:

101

102

103

0

0.2

0.4

0.6

0.8

1

Frequency in rad/sec

     M    a    g    n     i     t    u     d    e

Band Reject Response

Page 26: 202 Lec 16

8/7/2019 202 Lec 16

http://slidepdf.com/reader/full/202-lec-16 26/27

EE-202, Frequency Response p 26 © R. A. DeCarlo

85 90 95 100 105 110 1150

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency in rad/sec

     M    a    g    n     i     t    u     d    e

Close-up Band Reject Response

 

Page 27: 202 Lec 16

8/7/2019 202 Lec 16

http://slidepdf.com/reader/full/202-lec-16 27/27

EE-202, Frequency Response p 27 © R. A. DeCarlo

»

101

102

103

-100

-50

0

50

100

Frequency in rad/sec

   P   h  a  s  e

   i  n

   d  e  g  r  e  e  s

Band Reject Response