Q2 2 Second_order

Post on 05-Apr-2018

222 views 0 download

Transcript of Q2 2 Second_order

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 1/30

AE 230 - Modeling and

Simulation Laboratory

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 2/30

Second order systems

iqb

dt

idq

bdt

iqd

bo

qoa

dt

odq

adt

oqd

a012

2

212

2

2++=++

iqboqoadt o

dq

adt 

o

qd 

a 012

2

2 =++ iq

a

b

oq

dt 

odq

a

a

dt 

oqd 

a

a

0

0

0

1

2

2

0

2 =++

iKq

oq

n

D

n

D=

 

 

 

  ++ 12

2

2

ω

ζ

ω

ty)(sensitivigainstatesteadysystem

essdimensionlratiodamping

timerad frequencynaturalundamped

where

Δ

0a

0b

ΔK

Δ

0a

2a

1a

Δζ

Δ

2a0

a

Δn

ω

Most general form of second order system

Special case and most practical in nature

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 3/30

Cascaded Second order systems

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 4/30

Cascaded Second order systems

( )

( )1

1

122222

1

1 iioq

 D

K K qK q D

+

==+

τ 

τ 

Output of one system going to input of other;

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 5/30

Cascaded Second order systems

( )

( )1

1

122222

1

1 iioq

 D

K K qK q D

+

==+

τ 

τ 

1212]1)12(21[2)12)(11(

2

iqK K oq D Doq D D=+++=++

τ τ τ τ τ τ 

Output of one system going to input of other; second ordersystem but not as a single system

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 6/30

Second order systems

022s02012

0110111i

xK)x-x(B

xMxB-f 

=

=

Bottom damper and spring canbe assumed to be a velocitysensor. Interested in finding X

02

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 7/30

Second order systems

1

) /()(

12

21212

12

21

212

1

02

++

+=

 D BK 

 B BK  M  D

 BK 

 B M 

K  B B D

 f 

 x

s

s

s

s

i

21

1

02 x)( TF TF  D f 

 x

i=

1

 / 1

1

1

1

1+

= D

 B

 M 

 BTF 

1

 / 

2

2

22

2+

= D

 B

K  BTF 

s

s

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 8/30

Second order systems

02202012

011020120111

)(

)(

 xK  x x B

 x M  x x B x B f 

s

i

=−

=−−−

02

2

221

02

2

2220222

2

11 1)(

 x D BK  D B M 

 x D B

K  D B B xK  D B

 B

 B f 

s

ssi

 

  

 +=

 

  

 −

+−+−

1)()(

))( /()(

212

21212

212

21

2122

1

02

++

+

++

+=

 D B BK 

 B BK  M 

 D B BK 

 B M 

 B BK  B D

 f 

 x

s

s

s

s

i

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 9/30

Second order systems

1)()(

))( /()(

212

21212

212

21

2122

1

02

+++++

+=

 D B BK  B BK  M  D

 B BK  B M 

 B BK  B D

 f 

 x

s

s

s

s

i

1

) /()(

12

21212

12

21

212

1

02

++

+=

 D BK 

 B BK  M  D

 BK 

 B M K  B B D

 f  x

s

s

s

s

i

Approximate (no interaction/no loading effect)

Exact (with interaction/loading effect)

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 10/30

Second order systems

1)()(

))( /()(

212

21212

212

21

2122

1

02

++++

+

+=

 D B BK  B BK  M  D

 B BK  B M 

 B BK  B D

 f 

 x

s

s

s

s

i

If B2 is small compared to B1 then individual transferfunction will be a good approximation. System 2 is notsignificantly loading system1. Assuming all parameter areequal to 1, except B2 = 0.05

105.105.0

05.0)(

21

02

++=

 D D D

 f 

 x

i

10.10476.0

0476.0)(

2

1

02

++=

 D D D

 f 

 x

i

No Loading

Exact

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 11/30

Second order systems

Two isolated first order system when joined togetherdraws power from one of the system, if it is significant,system equation cannot be developed using just two firstorder system

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 12/30

Second order systems

o x M  x B

o xs

K W W i f  =−+−+

0)(

i f 

o xs

K  x Bo

 x M  =++0

iKf 

oq

n

 D

n

 D=

 

 

 

 

++ 12

2

2

ω 

ζ 

ω 

Force balance

Newton

meter

sK

KMs

K

B

M

sK

n

1,

2,

time

rad  ∆∆∆ ζ

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 13/30

Second order systems

iKf oqn

 D

n

 D

=

 

 

 

 

++ 12

2

2

ω 

ζ 

ω 12 and12 −−−−+− ζ ω ω ζ ζ ω ω ζ  nnnn

)(

 roots,0,0:Undamped

φ

ω

+=

±===

tn

CSinocx

niB

)21(

21roots ,0.10,20:dUnderdampe

φω

ζ

+−−

=

−±−=<<<<

tn

Sint

nCeocx

nin

Ms

KB

Two roots of the characteristic equation

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 14/30

Second order systems

Mass M = 1 kg; K = 1 N/m and B = 0.2 N/(m/sec)

sec / 1time

rad  rad 

 M 

sK 

n=∆ω  1.0

2=∆

 M s

 Bζ 

The system is subjected to

i) Initial displacement (1m)

ii) Initial velocity (1 m/sec)iii) Step force (1 N)

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 15/30

Second order systems - underdamped

Response for initial displacement, initial velocity, step force input

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 16/30

Second order systems – Step input

Step response of undamped second order system ζ =0

)cos1( t nisKf o x ω −=

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 17/30

Second order systems – Step input

Step response of critically second order system ζ =1

))1(1(t n

et nisKf o xω 

ω −

+−=

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 18/30

Second order systems - Overdamped

21

21

2

 / 

2

 / 

1

1,11roots ,0.1,2:dampedOver

τ

τζ

teC

teC

ocx

nMs

KB

−+

−=

=−±−=>>

Mass M = 1 kg; K = 1 N/m and B = 20 N/(m/sec)

0.102

=∆ M s

 Bζ sec / 1

time

rad  rad 

 M 

sK 

n=∆ω 

 

 

 

  −

−++

−+−= 2

2

2

1

2

2 / 

12

1 / 

12

11

τ 

ζ 

ζ ζ τ 

ζ 

ζ ζ  t e

t eKf 

o x is

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 19/30

Second order systems

Mass M = 1 kg; K = 1 N/m and B = 20 N/(m/sec)

0.102

=∆ M s

 Bζ sec / 1

time

rad  rad 

 M 

sK 

n=∆ω 

  

   −+−−=

t e

t eKf 

o x nn

is

ω ω  95.19002.0

05.0002.11

 

 

 

  −

−−+

−+−= 2

2

2

1

2

2 / 

12

1 / 

12

11

τ 

ζ 

ζ ζ τ 

ζ 

ζ ζ  t e

t eKf 

o x is

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 20/30

Second order systems

Mass M = 1 kg; K = 1 N/m and B = 20 N/(m/sec)

0.102

=∆ M s

 Bζ sec / 1

time

rad  rad 

 M 

sK 

n=∆ω 

 

 

 

  −−≈

  

   −+−−=

t eKf 

t e

t eKf 

o x

nis

nnis

ω 

ω ω 

05.0002.11

95.19002.0

05.0002.11

 

 

 

  −

−−+

−+−= 2

2

2

1

2

2 / 

12

1 / 

12

11

τ 

ζ 

ζ ζ τ 

ζ 

ζ ζ  t e

t eKf 

o x is

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 21/30

Second order systems – Step input

Non-dimensional step response of second order system

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 22/30

Second order systems – Step input

Effect of damping on overshoot

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 23/30

Significance of K, ζ, ωn

Steady state gain is only dependent of K

ωn largely governs the speed of response due to product (ωnt).Doubling the natural frequency will half the response time. Tospeed up by a factor n, natural frequency has to be increased by

a factor of n (when ζ is constant).

For step response, when ζ < 1.0 overshooting. To control theovershoot ζ should be adjusted. when ζ = 1.0, least time toreach steady state without overshoot. when ζ > 1.0, no

overshoot, time to reach steady state is more than when ζ = 1.0

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 24/30

Lab testing of second order systems – Step inputs

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 25/30

Lab testing of second order systems – Step inputs

etcd nd nd n ,,,

6,

4,

2,0

ω π 

ω π 

ω π 

d n,

2

ω 

π 

Peaks occur at

Time period

Amplitude ratio of two successive peak is constant for anunder damped system, this can be used for finding thedamping ratio.

21

2

,

1, ζ 

πζ 

+= e

 x

 x

n p

n p

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 26/30

Assignment

Write system equation and transfer function for any twomechanical and two electrical systems given insubsequent slides

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 27/30

Second order systems

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 28/30

Second order systems

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 29/30

Second order – Electrical systems

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 30/30

Second order – Electrical systems