Q2 2 Second_order

30
AE 230 - Modeling and Simulation Laboratory

Transcript of Q2 2 Second_order

Page 1: Q2 2 Second_order

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 1/30

AE 230 - Modeling and

Simulation Laboratory

Page 2: Q2 2 Second_order

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 2/30

Second order systems

iqb

dt

idq

bdt

iqd

bo

qoa

dt

odq

adt

oqd

a012

2

212

2

2++=++

iqboqoadt o

dq

adt 

o

qd 

a 012

2

2 =++ iq

a

b

oq

dt 

odq

a

a

dt 

oqd 

a

a

0

0

0

1

2

2

0

2 =++

iKq

oq

n

D

n

D=

 

 

 

  ++ 12

2

2

ω

ζ

ω

ty)(sensitivigainstatesteadysystem

essdimensionlratiodamping

timerad frequencynaturalundamped

where

Δ

0a

0b

ΔK

Δ

0a

2a

1a

Δζ

Δ

2a0

a

Δn

ω

Most general form of second order system

Special case and most practical in nature

Page 3: Q2 2 Second_order

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 3/30

Cascaded Second order systems

Page 4: Q2 2 Second_order

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 4/30

Cascaded Second order systems

( )

( )1

1

122222

1

1 iioq

 D

K K qK q D

+

==+

τ 

τ 

Output of one system going to input of other;

Page 5: Q2 2 Second_order

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 5/30

Cascaded Second order systems

( )

( )1

1

122222

1

1 iioq

 D

K K qK q D

+

==+

τ 

τ 

1212]1)12(21[2)12)(11(

2

iqK K oq D Doq D D=+++=++

τ τ τ τ τ τ 

Output of one system going to input of other; second ordersystem but not as a single system

Page 6: Q2 2 Second_order

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 6/30

Second order systems

022s02012

0110111i

xK)x-x(B

xMxB-f 

=

=

Bottom damper and spring canbe assumed to be a velocitysensor. Interested in finding X

02

Page 7: Q2 2 Second_order

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 7/30

Second order systems

1

) /()(

12

21212

12

21

212

1

02

++

+=

 D BK 

 B BK  M  D

 BK 

 B M 

K  B B D

 f 

 x

s

s

s

s

i

21

1

02 x)( TF TF  D f 

 x

i=

1

 / 1

1

1

1

1+

= D

 B

 M 

 BTF 

1

 / 

2

2

22

2+

= D

 B

K  BTF 

s

s

Page 8: Q2 2 Second_order

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 8/30

Second order systems

02202012

011020120111

)(

)(

 xK  x x B

 x M  x x B x B f 

s

i

=−

=−−−

02

2

221

02

2

2220222

2

11 1)(

 x D BK  D B M 

 x D B

K  D B B xK  D B

 B

 B f 

s

ssi

 

  

 +=

 

  

 −

+−+−

1)()(

))( /()(

212

21212

212

21

2122

1

02

++

+

++

+=

 D B BK 

 B BK  M 

 D B BK 

 B M 

 B BK  B D

 f 

 x

s

s

s

s

i

Page 9: Q2 2 Second_order

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 9/30

Second order systems

1)()(

))( /()(

212

21212

212

21

2122

1

02

+++++

+=

 D B BK  B BK  M  D

 B BK  B M 

 B BK  B D

 f 

 x

s

s

s

s

i

1

) /()(

12

21212

12

21

212

1

02

++

+=

 D BK 

 B BK  M  D

 BK 

 B M K  B B D

 f  x

s

s

s

s

i

Approximate (no interaction/no loading effect)

Exact (with interaction/loading effect)

Page 10: Q2 2 Second_order

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 10/30

Second order systems

1)()(

))( /()(

212

21212

212

21

2122

1

02

++++

+

+=

 D B BK  B BK  M  D

 B BK  B M 

 B BK  B D

 f 

 x

s

s

s

s

i

If B2 is small compared to B1 then individual transferfunction will be a good approximation. System 2 is notsignificantly loading system1. Assuming all parameter areequal to 1, except B2 = 0.05

105.105.0

05.0)(

21

02

++=

 D D D

 f 

 x

i

10.10476.0

0476.0)(

2

1

02

++=

 D D D

 f 

 x

i

No Loading

Exact

Page 11: Q2 2 Second_order

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 11/30

Second order systems

Two isolated first order system when joined togetherdraws power from one of the system, if it is significant,system equation cannot be developed using just two firstorder system

Page 12: Q2 2 Second_order

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 12/30

Second order systems

o x M  x B

o xs

K W W i f  =−+−+

0)(

i f 

o xs

K  x Bo

 x M  =++0

iKf 

oq

n

 D

n

 D=

 

 

 

 

++ 12

2

2

ω 

ζ 

ω 

Force balance

Newton

meter

sK

KMs

K

B

M

sK

n

1,

2,

time

rad  ∆∆∆ ζ

Page 13: Q2 2 Second_order

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 13/30

Second order systems

iKf oqn

 D

n

 D

=

 

 

 

 

++ 12

2

2

ω 

ζ 

ω 12 and12 −−−−+− ζ ω ω ζ ζ ω ω ζ  nnnn

)(

 roots,0,0:Undamped

φ

ω

+=

±===

tn

CSinocx

niB

)21(

21roots ,0.10,20:dUnderdampe

φω

ζ

+−−

=

−±−=<<<<

tn

Sint

nCeocx

nin

Ms

KB

Two roots of the characteristic equation

Page 14: Q2 2 Second_order

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 14/30

Second order systems

Mass M = 1 kg; K = 1 N/m and B = 0.2 N/(m/sec)

sec / 1time

rad  rad 

 M 

sK 

n=∆ω  1.0

2=∆

 M s

 Bζ 

The system is subjected to

i) Initial displacement (1m)

ii) Initial velocity (1 m/sec)iii) Step force (1 N)

Page 15: Q2 2 Second_order

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 15/30

Second order systems - underdamped

Response for initial displacement, initial velocity, step force input

Page 16: Q2 2 Second_order

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 16/30

Second order systems – Step input

Step response of undamped second order system ζ =0

)cos1( t nisKf o x ω −=

Page 17: Q2 2 Second_order

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 17/30

Second order systems – Step input

Step response of critically second order system ζ =1

))1(1(t n

et nisKf o xω 

ω −

+−=

Page 18: Q2 2 Second_order

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 18/30

Second order systems - Overdamped

21

21

2

 / 

2

 / 

1

1,11roots ,0.1,2:dampedOver

τ

τζ

teC

teC

ocx

nMs

KB

−+

−=

=−±−=>>

Mass M = 1 kg; K = 1 N/m and B = 20 N/(m/sec)

0.102

=∆ M s

 Bζ sec / 1

time

rad  rad 

 M 

sK 

n=∆ω 

 

 

 

  −

−++

−+−= 2

2

2

1

2

2 / 

12

1 / 

12

11

τ 

ζ 

ζ ζ τ 

ζ 

ζ ζ  t e

t eKf 

o x is

Page 19: Q2 2 Second_order

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 19/30

Second order systems

Mass M = 1 kg; K = 1 N/m and B = 20 N/(m/sec)

0.102

=∆ M s

 Bζ sec / 1

time

rad  rad 

 M 

sK 

n=∆ω 

  

   −+−−=

t e

t eKf 

o x nn

is

ω ω  95.19002.0

05.0002.11

 

 

 

  −

−−+

−+−= 2

2

2

1

2

2 / 

12

1 / 

12

11

τ 

ζ 

ζ ζ τ 

ζ 

ζ ζ  t e

t eKf 

o x is

Page 20: Q2 2 Second_order

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 20/30

Second order systems

Mass M = 1 kg; K = 1 N/m and B = 20 N/(m/sec)

0.102

=∆ M s

 Bζ sec / 1

time

rad  rad 

 M 

sK 

n=∆ω 

 

 

 

  −−≈

  

   −+−−=

t eKf 

t e

t eKf 

o x

nis

nnis

ω 

ω ω 

05.0002.11

95.19002.0

05.0002.11

 

 

 

  −

−−+

−+−= 2

2

2

1

2

2 / 

12

1 / 

12

11

τ 

ζ 

ζ ζ τ 

ζ 

ζ ζ  t e

t eKf 

o x is

Page 21: Q2 2 Second_order

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 21/30

Second order systems – Step input

Non-dimensional step response of second order system

Page 22: Q2 2 Second_order

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 22/30

Second order systems – Step input

Effect of damping on overshoot

Page 23: Q2 2 Second_order

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 23/30

Significance of K, ζ, ωn

Steady state gain is only dependent of K

ωn largely governs the speed of response due to product (ωnt).Doubling the natural frequency will half the response time. Tospeed up by a factor n, natural frequency has to be increased by

a factor of n (when ζ is constant).

For step response, when ζ < 1.0 overshooting. To control theovershoot ζ should be adjusted. when ζ = 1.0, least time toreach steady state without overshoot. when ζ > 1.0, no

overshoot, time to reach steady state is more than when ζ = 1.0

Page 24: Q2 2 Second_order

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 24/30

Lab testing of second order systems – Step inputs

Page 25: Q2 2 Second_order

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 25/30

Lab testing of second order systems – Step inputs

etcd nd nd n ,,,

6,

4,

2,0

ω π 

ω π 

ω π 

d n,

2

ω 

π 

Peaks occur at

Time period

Amplitude ratio of two successive peak is constant for anunder damped system, this can be used for finding thedamping ratio.

21

2

,

1, ζ 

πζ 

+= e

 x

 x

n p

n p

Page 26: Q2 2 Second_order

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 26/30

Assignment

Write system equation and transfer function for any twomechanical and two electrical systems given insubsequent slides

Page 27: Q2 2 Second_order

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 27/30

Second order systems

Page 28: Q2 2 Second_order

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 28/30

Second order systems

Page 29: Q2 2 Second_order

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 29/30

Second order – Electrical systems

Page 30: Q2 2 Second_order

8/2/2019 Q2 2 Second_order

http://slidepdf.com/reader/full/q2-2-secondorder 30/30

Second order – Electrical systems