PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka ›...

101
Data ostatniej aktualizacji: piątek, 2 grudnia 2011, godzina 16:39 Marek Cieciura, Janusz Zacharski PODSTAWY PROBABILISTYKI Z PRZYKLADAMI ZASTOSOWAŃ W INFORMATYCE CZĘŚĆ IV STATYSTYKA MATEMATYCZNA Na prawach rękopisu Warszawa, wrzesień 2011

Transcript of PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka ›...

Page 1: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

Data ostatniej aktualizacji: piątek, 2 grudnia 2011, godzina 16:39

Marek Cieciura, Janusz Zacharski

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ

W INFORMATYCE

CZĘŚĆ IV

STATYSTYKA MATEMATYCZNA

Na prawach rękopisu

Warszawa, wrzesień 2011

Page 2: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

2

Statystyka jest bardziej sposobem myślenia lub wnioskowania niŜ pęczkiem recept

na młócenie danych w celu odsłonięcia odpowiedzi - Calyampudi Radhakrishna Rao

Podręcznik:

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

publikowany jest w częściach podanych poniŜej

Nr Tytuł

I. Wprowadzenie

II. Statystyka opisowa

III. Rachunek prawdopodobieństwa

IV. Statystyka matematyczna

V. Przykłady zastosowań w informatyce

VI. Dowody wybranych twierdzeń

VII. Tablice statystyczne

Autorzy proszą o przesyłanie wszelkich uwagi i propozycji dotyczących zawartości podręcznika z wykorzystaniem formularza kontaktowego zamieszczonego w portalu http://cieciura.net/mp/

Publikowane części będą na bieŜąco poprawiane, w kaŜdej będzie podawana data ostatniej aktualizacji.

Podręcznik udostępnia się na warunku licencji Creative Commons (CC): Uznanie Autorstwa – UŜycie Niekomercyjne – Bez Utworów ZaleŜnych (CC-BY-NC-ND),co oznacza:

• Uznanie Autorstwa (ang. Attribution - BY): zezwala się na kopiowanie, dystrybucję, wyświetlanie i uŜytkowanie dzieła i wszelkich jego pochodnych pod warunkiem umieszczenia informacji o twórcy.

• UŜycie Niekomercyjne (ang. Noncommercial - NC): zezwala się na kopiowanie, dystrybucję, wyświetlanie i uŜytkowanie dzieła i wszelkich jego pochodnych tylko w celach niekomercyjnych..

• Bez Utworów ZaleŜnych (ang. No Derivative Works - ND): zezwala się na kopiowanie, dystrybucję, wyświetlanie tylko dokładnych (dosłownych) kopii dzieła, niedozwolone jest jego zmienianie i tworzenie na jego bazie pochodnych.

Podręcznik i skorelowany z nim portal, są w pełni i powszechnie dostępne, stanowią więc Otwarte Zasoby Edukacyjne - OZE (ang. Open Educational Resources – OER).

Page 3: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

3

SPIS TREŚCI

14. STATYSTYKI I ICH ROZKŁADY....................................................................................... 5 14.1. PRÓBA JAKO ZMIENNA LOSOWA WIELOWYMIAROWA ............................................................ 5 14.2. PODSTAWOWE STATYSTYKI I ICH ROZKŁADY ........................................................................ 6

14.2.1. Wykazy statystyk .......................................................................................................... 6 14.2.2. Rozkład średniej z próby .............................................................................................. 7 14.2.3. Rozkład statystyk związanych z wariancją z próby ....................................................... 8

15. ESTYMACJA PARAMETRÓW.......................................................................................... 12 15.1. WPROWADZENIE ............................................................................................................... 12 15.2. ESTYMACJA PUNKTOWA .................................................................................................... 12

15.2.1. Klasyfikacja estymatorów i nierówność Rao-Cramera ............................................... 13 15.2.2. Estymacja wartości oczekiwanej rozkładu normalnego .............................................. 14 15.2.3. Estymatory wariancji rozkładu normalnego............................................................... 15 15.2.4. Metoda największej wiarygodności otrzymywania estymatorów................................. 17 15.2.5. Zestawienie estymatorów parametrów rozkładu zmiennej losowej i ich własności...... 19

15.3. ESTYMACJA PRZEDZIAŁOWA .............................................................................................. 20 15.3.1. Uwagi wstępne........................................................................................................... 20 15.3.2. Wyznaczenie przedziału ufności dla wartości oczekiwanej rozkładu normalnego ....... 21 15.3.3. Tabela przedziałów ufności........................................................................................ 24 15.3.4. Wyznaczanie wielkości próby..................................................................................... 28 15.3.5. Wykorzystanie arkusza Excel ..................................................................................... 30

16. WERYFIKACJA HIPOTEZ ................................................................................................ 31 16.1 WPROWADZENIE ................................................................................................................ 31

16.1.1. Uwagi wstępne........................................................................................................... 31 16.1.2. Pzykład konstrukcji testu parametrycznego do weryfikacji hipotezy o wartości

oczekiwanej........................................................................................................................... 34 16.1.3. Pzykład konstrukcji testu parametrycznego do weryfikacji hipotezy o równości wartości

oczekiwanych ........................................................................................................................ 35 16.1.4. Uwagi o weryfikacji hipotez parametrycznych ........................................................... 37

16.2. TESTY PARAMETRYCZNE DLA JEDNEJ PRÓBY ...................................................................... 38 16.2.1. Testy do weryfikacji hipotezy o wartości oczekiwanej................................................. 38 16.2.2. Testy do weryfikacji hipotezy o wariancji i odchyleniu standardowym ....................... 43 16.2.3. Testy do weryfikacji hipotezy o wskaźniku struktury................................................... 44

16.3. TESTY PARAMETRYCZNE DLA DWÓCH PRÓB........................................................................ 45 16.3.1. Testy do porównywania wartości oczekiwanych dla prób niezaleŜnych ...................... 45 16.3.2. Testy do porównywania wartości oczekiwanych – próby zaleŜne................................ 53 16.3.3. Testy do porównywania wariancji.............................................................................. 57 16.3.4. Testy do porównywania wskaźników struktury ........................................................... 59

16.4. TESTY NIEPARAMETRYCZNE DLA JEDNEJ PRÓBY ................................................................. 61 16.4.1. Ocena losowości próby .............................................................................................. 61 16.4.2. Test zgodności chi kwadrat ........................................................................................ 62 16.4.3. Ocena normalności rozkładu ..................................................................................... 65 16.4.4. Test niezaleŜności chi kwadrat ................................................................................... 68

16.5. TESTY NIEPARAMETRYCZNE DLA DWÓCH PRÓB................................................................... 73 16.5.1. Test zgodności rozkładów dla prób niepowiązanych (test Wilcoxona) ........................ 73 16.5.2. Test zgodności rozkładów dla prób powiązanych (test rangowanych znaków) ............ 75

16.6. ALGORYTMIZACJA OBLICZEŃ ............................................................................................. 77 16.6.1. Wykorzystanie arkusza Excel ..................................................................................... 77 16.6.2.Zasady wyboru testu przy dwóch próbach................................................................... 78

Page 4: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

4

17. ANALIZA KORELACJI I REGRESJI DWÓCH ZMIENNYCH...................................... 79 17.1. WPROWADZENIE ............................................................................................................... 79 17.2. ANALIZA KORELACJI.......................................................................................................... 80

17.2.1. Uwagi wstępne........................................................................................................... 80 17.2.2. Estymacja współczynnika korelacji cech populacji..................................................... 80 17.2.3. Weryfikacja hipotez o współczynniku korelacji........................................................... 82 17.2.4. Współczynnik korelacji Spearmana............................................................................ 84 17.2.5. Współczynnik korelacji Cramera................................................................................ 87

17.3. ANALIZA REGRESJI ............................................................................................................ 88 17.3.1. Uwagi wstępne........................................................................................................... 88 17.3.2. Estymatory współczynników regresji.......................................................................... 88 17.3.3. Rozkłady estymatorów współczynników regresji......................................................... 92 17.3.4. Estymacja przedziałowa współczynników regresji...................................................... 92 17.3.5. Weryfikacja hipotez o współczynnikach regresji......................................................... 94

18. WPROWADZENIE DO ZAAWANSOWANYCH METOD STATYSTYCZNYCH......... 96 18.1. CHARAKTERYSTYKA ZAAWANSOWANYCH METOD STATYSTYCZNYCH ................................. 96 18.2. ALGORYTMIZACJA WYBORU METOD STATYSTYCZNYCH .................................................... 100

Page 5: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

5

14. STATYSTYKI I ICH ROZKŁADY Począwszy od tego rozdziału będziemy przedstawiali teorię i zastosowania statystyki matematycznej. RozwaŜymy najpierw sytuacje, w których badana jest jedna cecha populacji lub dwie cechy róŜnych populacji tak, Ŝe moŜna je traktować jako zmienne losowe niezaleŜne. Wówczas o próbach pobranych z tych populacji mówimy, Ŝe są niepowiązane.

14.1. Próba jako zmienna losowa wielowymiarowa W dalszych rozwaŜaniach będzie potrzebna nowa definicja próby umoŜliwiająca korzystanie w statystyce z rachunku prawdopodobieństwa.

Badana jest cecha X populacji. Niech X1, X2, ... Xn będą zmiennymi losowymi niezaleŜnymi o jednakowym rozkładzie, takim jak rozkład cechy X. Próba losowa n-elementowa ze względu na

cechę X (próba n elementowa) jest to zmienna losowa n-wymiarowa

(X1, X2, ..., Xn) (14.1)

Interpretacja Zmienna losowa X1 jest modelem wartości cechy X pierwszego elementu wylosowanego z populacji do próby, X2 modelem drugiego elementu itd. PoniewaŜ do próby losujemy elementy metodą ze zwracaniem, więc kaŜdy element populacji ma te same szanse być wylosowany, dlatego przyjmuje się, Ŝe zmienne losowe są niezaleŜne.

KaŜdą wartość (x1, x2, ..., xn) (14.2)

próby (14.1) nazywamy realizacją próby lub takŜe próbą.

Przykład 14.1

RozwaŜamy populację gospodarstw domowych na terenie Warszawy. Populację tę badamy ze względu na cechę X – liczba osób w gospodarstwie. Z populacji pobieramy próbę pięcioelementową. Losujemy ze zwracaniem pięć gospodarstw domowych. Przypuśćmy, Ŝe otrzymaliśmy wartości cechy X: 2, 3, 1, 3, 4. Zatem zmienna losowa X1 oznaczająca liczbę osób w wylosowanym pierwszym gospodarstwie przyjęła wartość 2, zmienna losowa X2 oznaczająca liczbę osób w wylosowanym drugim gospodarstwie przyjęła wartość 3 itd.

Próba

(X1, X2, X3, X4, X5) (14.3)

przyjęła wartość (2, 3, 1, 3, 4) (14.4)

Przypuśćmy, Ŝe badanie powtórzono i otrzymano teraz następujące wartości cechy X: 3,1,1,2,2. Otrzymaliśmy inną wartość próby (14.3), mianowicie

(3, 1 ,1, 2, 2) (14.5)

Ciągi (14.4) i (14.5) są realizacjami próby (14.3).

Statystyki Aby moŜna było przeprowadzić analizę statystyczną naleŜy przekształcić próbę, czyli rozpatrywać funkcje próby. Funkcje próby (14.1) nazywamy statystykami

Un = g(X1, X2, ..., Xn) (14.6) Przykład 14.2 Jeśli interesujemy się średnią liczbą osób w gospodarstwach domowych wybranych do próby, to naleŜy rozwaŜyć zmienną losową

1 2 3 4 55

X +X +X +X +XU =

5 średnia arytmetyczna z próby (14.7)

Page 6: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

6

Zmienna ta jest funkcją próby (14.3), jest zatem statystyką. Wartościami (realizacjami) tej statystyki, dla realizacji próby (14.4) i (14.5) są liczby

5

2+3+1+3+4u = =2,6

5 i 5

3+1+1+2+2u = =1,8

5

14.2. Podstawowe statystyki i ich rozkłady

14.2.1. Wykazy statystyk

Przedstawimy teraz dwa wykazy najczęściej stosowanych statystyk. • Wykaz statystyk klasycznych, tj. statystyk, których wartości zaleŜą od wszystkich zmiennych

losowych wchodzących w skład próby. • Wykaz statystyk pozycyjnych, tj. statystyk, których wartości zaleŜą tylko od niektórych

zmiennych losowych wchodzących w skład próby, głównie od tych, które zajmują odpowiednią pozycję w próbie.

Tabela 14.1 Wykaz statystyk klasycznych

Lp Postać Nazwa / Komentarz

1 n

n ii 1

1X X

n =

= ∑ Średnia z próby

2 n

2 2n i n

i 1

1S (X X )

n =

= −∑ Wariancja z próby (obciąŜona1)

3 n

2n i n

i 1

1S (X X )

n =

= −∑ Odchylenie standardowe z próby

4 n

2 2n i n

i 1

1S (X X )

n 1 =

= −−∑ Wariancja z próby (nieobciąŜona2)

5 n

o2 2n i

i 1

1S (X m)

n =

= −∑ m=EX

6 2o2 n

n in 2

i 1

nS X mU

=

− = =

σσ ∑ m=EX, σ=DX

7 22 n

n i nn 2

i 1

nS X XU

=

−= =

σσ ∑

8 n

kn i

i 1

1U X

n =

= ∑ Moment z próby rzędu k

9 n

kn i n

i 1

1U (X X )

n =

= −∑ Moment centralny z próby rzędu k

10 nn

n

X mU n 1

S

−= −

11

nYW( ) =

Yn- liczba jedynek w próbie - patrz poniŜsza uwaga

Wskaźnik struktury wariantu ω.

1 Wyjaśnienie nazwy w podpukcie 15.2.1. 2 Jak wyŜej

Page 7: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

7

Tabela 14.2. Wykaz statystyk pozycyjnych

Podobnie definiuje się inne statystyki pozycyjne np. decyle z próby i centyle z próby.

Uwaga: KaŜdemu elementowi próby przyporządkowujemy 1, gdy element ma wartość cechy X równą wariantowi ω lub 0 w przeciwnym przypadku. Wtedy próba (X1, X2, ..., Xn) jest ciągiem zmiennych losowych o rozkładach zerojedynkowych, a kaŜda realizacja próby jest ciągiem n- elementowym zer lub jedynek.

14.2.2. Rozkład średniej z próby

Średnia z próby n-elementowej jest to statystyka n

n ii=1

1X = X

n∑

Parametry średniej

Jeśli cecha X populacji ma wartość oczekiwaną m i wariancję 2σ , to

nEX =m , 2

2n

σD X =

n, n

σDX =

n

Rozkład średniej

Jeśli cecha X populacji ma rozkład normalny N(m, σ), to średnia arytmetyczna nX ma rozkład

normalny N σ

m,n

. Twierdzenie to wynika z własności rozkładu normalnego3.

Rozkład asymptotyczny średniej

Jeśli cecha X populacji ma wartość oczekiwaną m i wariancję 2σ >0 , to dla duŜych n średnia

arytmetyczna nX ma rozkład asymptotycznie normalny N σ

m,n

.

Twierdzenie to wynika z faktów:

a) na podstawie tw. Lindeberga-Levy’ego4 suma n

ii=1

X∑ ma rozkład asymptotycznie normalny,

b) funkcja liniowa zmiennej losowej o rozkładzie normalnym ma rozkład normalny.

Oba rozkłady średniej (dokładny i asymptotyczny) potwierdzają znany nam fakt, wynikający z prawa wielkich liczb Chinczyna, Ŝe średnia arytmetyczna duŜej liczby zmiennych losowych ma rozkład skupiony przy wartości oczekiwanej. Teraz ten fakt został ujęty ilościowo.

3 Patrz podpunkt 21.1.1. części VII Wybrane twierdzenia z dowodami 4 Patrz podpunkt 9.2.2 części III Rachunek prawdopodobieństwa

Nazwa statystyki Symbol

Definicja statystyki

Mediana z próby Me

Statystyka przyjmująca dla kaŜdej realizacji próby medianę w tej realizacji

Kwantyl rzędu p z próby Kp

Statystyka przyjmująca dla kaŜdej realizacji próby kwantyl rzędu p w tej realizacji

Kwartyl pierwszy, drugi i trzeci z próby Q1, Q2, Q3

Statystyka przyjmująca dla kaŜdej realizacji próby odpowiedni kwartyl w tej realizacji

Rozstęp z próby Ro

Statystyka przyjmująca dla kaŜdej realizacji próby rozstęp w tej realizacji

Page 8: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

8

Przykład 14.1 Cecha X populacji ma rozkład normalny N(3,1). Obliczymy prawdopodobieństwa

16 400P( X-3 <0,1), P( X -3 <0,1), P( X -3 <0,1) .

Rozwiązanie

( ) ( )P X-3 <0,1 =2Φ 0,1 -1=2 0,5398-1=0,08⋅

Statystyka 16X ma rozkład 1

N 3,16

, czyli rozkład 1

N 3,4

. Zatem

16 16

1 1P( X -3 <0,1)=P X -3 : <0,1: =2Φ(0,4)-1= 2 0,4556-1=0,30

4 4

Statystyka 400X ma rozkład 1

N 3,400

czyli rozkład 1

N 3, .20

Zatem

400 400

1 1P( X -3 <0,1)=P X -3 : <0,1: =2Φ(2)-1=2 0,97725-1=0,955

20 20

Obliczyliśmy prawdopodobieństwa, Ŝe zmienne losowe X, 16X , 400X przyjmą wartości

z otoczenia o promieniu 0,1 swoich wartości oczekiwanych. Widać, Ŝe to prawdopodobieństwo dla zmiennej losowej X jest małe, umiarkowanej wartości dla średniej 16X i bardzo duŜe dla średniej

400X . Potwierdza to wcześniej sformułowaną właściwość średniej z próby, o przyjmowaniu przez

nią wartości z prawdopodobieństwem bliskim jedności mało róŜniących się od jej wartości oczekiwanej (a takŜe cechy populacji), gdy próba jest liczna. Wynika stąd, Ŝe wartości statystyki

nX mogą słuŜyć do oceny wartości oczekiwanej, gdy wartość ta nie jest znana, a próba ma duŜo elementów.

14.2.3. Rozkład statystyk związanych z wariancją z próby

Wariancja z próby n-elementowej jest to statystyka n

2 2n i n

i 1

1S (X X )

n =

= −∑

Odchylenie standardowe z próby n-elementowej jest to statystyka

n2

n i ni 1

1S (X X )

n =

= −∑

Interpretacja

ZauwaŜmy, Ŝe dla realizacji próby, której elementy mało róŜnią się od siebie realizacja 2ns

statystyki 2nS jest liczbą bliską zeru, natomiast dla realizacji próby, której elementy róŜnią się

znacznie od siebie, ta realizacja jest duŜą liczbą. Podobne uwagi dotyczą odchylenia standardowego z próby. Zatem statystyki 2

nS i Sn są miarami zróŜnicowania elementów próby względem średniej

z próby.

Z wariancją z próby związane są statystyki

( )n

22nn i n

i=1

1S = X -X

n-1∑ oraz ( )

n2o2

n ii=1

1S = X -m

n∑

gdzie m jest wartością oczekiwaną cechy X populacji.

Page 9: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

9

ZauwaŜmy, Ŝe między statystykami 2 o2n nS i S występują związki

2 2n n

nS = S

n-1 oraz 2

nnS =(n-1) ( )n

22nn i n

i=1

S = X -X∑

Rozkłady statystyk 2 o2n n

2 2

nS nSi

σ σ

Zakładamy, Ŝe cecha X populacji ma rozkład normalny N(m, σ). Wtedy statystyka 2o2 n

n i2

i=1

nS X -m=

σ σ

jest sumą kwadratów n niezaleŜnych zmiennych losowych o rozkładzie normalnym N(0, 1), zatem ma rozkład 2χ z n stopniami swobody5.

Natomiast statystyka 22 n

n i n2

i=1

nS X -X=

σ σ

róŜni się tym od statystyki o2n2

nS

σ, Ŝe zamiast róŜnicy Xi - m występuje róŜnica i nX - X . MoŜna

udowodnić, Ŝe ma ona takŜe rozkład 2χ , tyle, Ŝe z n-1 stopniami swobody. Zatem prawdziwe jest twierdzenie:.

Jeśli cecha X populacji ma rozkład normalny N(m, σ), to statystyka o2n2

nS

σ ma rozkład 2χ

z n stopniami swobody. Statystyka 2n

2

nS

σ ma rozkład 2χ z n-1 stopniami swobody.

ZbieŜność statystyk 2 2 o2n n n

ˆS ,S ,S

Jeśli cecha populacji X ma wariancję 2σ , to ciągi ( ) ( ) ( )2 2 o2n n n

ˆS , S , S są zbieŜne według

prawdopodobieństwa do wariancji 2σ , natomiast ciągi ( ) ( ) ( )on n n

ˆS , S , S są zbieŜne według

prawdopodobieństwa do odchylenia standardowego σ .

Wynika stąd, Ŝe dla licznej próby wartości statystyk 2 2 o2n n n

ˆS , S , S mogą słuŜyć do oceny wariancji 2σ , natomiast wartości statystyk o

n n nˆS ,S ,S do oceny odchylenia standardowego σ .

Wartość oczekiwana statystyk 2 2 o2n n n

ˆS , S , S

2 2 2 2 o2 2n n n

n-1 ˆES = σ , ES =σ , ES =σ .n

5 Patrz ppkt 6.2.5 - definicja rozkładu chi kwadrat.

Page 10: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

10

W tabelach 14.2. i 14.3. podano zestawienie wybranych statystyk wraz z ich rozkładami6.

Tabela 14.2. Rozkłady statystyk dla jednej cechy populacji

Rozkład cechy populacji Statystyka Rozkład statystyki

nX Normalny σ

N m,n

2n2

nS

σ 2χ z n-1 stopniami swobody

o2n2

nS

σ 2χ z n stopniami swobody

Normalny N(m,σ)

n

n

X -mn-1

S Studenta z n-1 stopniami swobody

Dowolny z wartością oczekiwaną m i wariancją

02 >σ nX

Asymptotycznie normalny σ

N(m, )n

dla duŜych n

Zerojedynkowy

p1)0X(P

p)1X(P

−==

==

p- prawdopodobieństwo

sukcesu

Wskaźnik struktury (częstość sukcesu)

nY

n

Yn- liczba jedynek w próbie

Asymptotycznie normalny

p(1-p)N p,

n

,

Dla przypadku, gdy X: N(m, σ), podane w tabeli 14.3. rozkłady statystyk moŜna zilustrować w sposób następujący.

Rys. 14.1. Rozkłady wybranych statystyk

6 Patrz punkt 21.1. części VII Wybrane twierdzenia z dowodami

Page 11: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

11

Tabela 14.4. Rozkłady statystyk dla dwóch niezaleŜnych cech populacji

Rozkład cechy X Rozkład cechy Y Statystyka Rozkład statystyki

Normalny N(m, σ1)

Normalny N(m, σ2)

1 2n n

2 21 2

1 2

X -Y

σ σ+

n n

Normalny N(0,1)

Normalny N(m, σ)

Normalny N(m, σ)

1 2

1 2

n n 1 21 22 2

1 21 n 2 n

X -Y nn(n +n -2)

n +nnS +n S Studenta z n1 + n2 -2

stopniami swobody

Normalny N(m1, σ )

Normalny N(m2, σ )

1

2

2nn

2n

S

S

Snedecora z parą (n1-1, n2-1) stopni

swobody

Dowolny z wartością

oczekiwaną m1 i z wariacją 2

Dowolny z wartością

oczekiwaną m2 i z wariacją 2

1 2

1 2

n n

2 2n n

1 2

X -Y

S S+

n n

Asymptotycznie normalny N(0,1)

Page 12: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

12

15. ESTYMACJA PARAMETRÓW

15.1. Wprowadzenie

W teorii estymacji wyróŜnia się: estymację parametryczną i estymację nieparametryczną.

Estymacja parametryczna dotyczy szacowania nieznanych parametrów rozkładu. Problem estymacji parametrycznej, odnoszący się do jednej cechy jest następujący:

Populacja badana jest ze względu na cechę X o rozkładzie zaleŜnym od parametru Q, tzn. dystrybuanta tej cechy jest postaci FQ (x), przy czym dla kaŜdego Q naleŜącego do pewnego zbioru Ω – przestrzeni parametru Q, dystrybuanta ta jest znana. Przy tych załoŜeniach wnioskowanie o rozkładzie cechy X sprowadza się do oszacowania (estymacji) na podstawie próby wartości parametru Q.

WyróŜnia się dwa sposoby szacowania parametru Q: oszacowanie punktowe i oszacowanie

przedziałowe.

Estymacja nieparametryczna dotyczy szacowania postaci funkcyjnej rozkładu, np. w postaci dystrybuanty. MoŜna w tym celu stosować, analogicznie jak przy estymacji parametrycznej, oszacowanie punktowe lub przedziałowe. Przy szacowaniu przedziałowym wyznacza się obszar

(pas) ufności.

15.2. Estymacja punktowa Estymacja punktowa parametru Q polega na: Wybraniu pewnej statystyki Un o rozkładzie zaleŜnym od parametru Q. Obliczeniu na podstawie próby wartości un statystyki Un Przyjęciu, Ŝe un jest oszacowaniem parametru Q, co zapisujemy

nQ = u i czytamy: oceną parametru Q jest un.

Statystyka Un nazywa się wówczas estymatorem parametru Q.

Znanych jest szereg metod wyznaczania estymatorów. NajwaŜniejsze z nich to: metoda momentów, metoda największej wiarygodności, metoda najmniejszych kwadratów – autor Carl Gauss, metoda estymacji bayesowskiej i metoda estymacji minimaksowej.

PoniŜej podano istotę pierwszej z wymienionych metod, druga zostanie scharakteryzowana w punkcie 15.2.4, a trzecia w punkcie 17.3.2.(łacznie z nawiązaniem do poprzednich)

Metoda momentów została opracowana pod koniec XIX wieku przez angielskiego statystyka K. Pearsona. Zgodnie z tą metodą przyjmuje się, Ŝe estymatorem momentu cechy populacji jest odpowiadający mu moment z próby, zaś estymatorem funkcji momentów populacji jest ta sama funkcja momentów z próby.

Przykład 15.1

Badana jest cecha X populacji. Zgodnie z metodą momentów przyjmujemy, Ŝe estymatorem

wartości oczekiwanej m jest średnia z próby n

n ii 1

1X X

n == ∑ , natomiast estymatorem wariancji σ2

jest wariancja z próby ( )n

22n i n

i=1

1S = X -X

n∑ .

NaleŜy podkreślić, Ŝe charakterystyki liczbowe opisane w ramach statystyki opisowej pokrywają się z estymatorami wyznaczonymi metodą momentów.

Page 13: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

13

15.2.1. Klasyfikacja estymatorów i nierówność Rao-Cramera

Estymator zgodny parametru Q jest to estymator Un zbieŜny wg prawdopodobieństwa do Q, tzn.

nnlim P( U -Q <ε)=1

→∞dla dowolnego ε >0

Estymator nieobciąŜony parametru Q jest to estymator Un o wartości oczekiwanej równej parametrowi Q

EUn = Q

Estymator najefektywniejszy parametru Q jest to estymator nieobciąŜony tego parametru o najmniejszej wariancji spośród wszystkich estymatorów nieobciąŜonych parametru Q.

Estymator obciąŜony parametru Q jest to estymator Un taki, Ŝe

EUn ≠ Q Estymator asymptotycznie nieobciąŜony parametru Q jest to estymator Un o granicy wartości oczekiwanej równej parametrowi Q

nnlim EU =Q

→∞

Estymator asymptotycznie najefektywniejszy parametru Q jest to estymator nieobciąŜony lub asymptotycznie nieobciąŜony taki, Ŝe

2n

2nn

D Ulim =1

D U→∞

(

gdzie nU(

jest estymatorem najefektywniejszym parametru Q.

Interpretacja

Jeśli estymator jest estymatorem zgodnym parametru Q, to dla duŜej próby z prawdopodobieństwem bliskim 1 ocena parametru i parametr mało róŜnią się.

Jeśli estymator parametru Q jest nieobciąŜony, to otrzymujmy oceny bez błędu systematycznego. Jeśli bowiem byłoby nEU <Q , to otrzymywalibyśmy oceny średnio zaniŜone. Natomiast, gdyby

nEU >Q , to otrzymywalibyśmy oceny średnio zawyŜone.

Jeśli estymator jest estymatorem najefektywniejszym parametru Q, to jego rozkład jest najbardziej skupiony przy parametrze Q, zatem otrzymujemy oceny bliŜsze parametrowi Q, niŜ przy innych estymatorach.

Estymator asymptotycznie nieobciąŜony jest praktycznie estymatorem nieobciąŜonym, gdy próba jest liczna, takŜe estymator asymptotycznie najefektywniejszy jest praktycznie, dla duŜej próby, estymatorem najefektywniejszym.

Zgodność, a nieobciąŜoność estymatora

PoniŜsze twierdzenie jest uŜyteczne przy badaniu zgodności estymatora.

Jeśli Un jest estymatorem nieobciąŜonym lub asymptotycznie nieobciąŜonym parametru Q oraz 2

nnlim D U =0

→∞

to Un jest estymatorem zgodnym tego parametru.

Nierówność Rao-Cramera

Jeśli cecha populacji X jest zmienną losową skokową o funkcji prawdopodobieństwa zaleŜnej od parametru Q

k kP(X=x )=p (Q) i Un jest estymatorem nieobciąŜonym parametru Q oraz spełnione są warunki regularności7, to wariancja estymatora Un spełnia tzw. nierówność Rao-Cramera

7 Leitner Roman, Zacharski Janusz: Zarys matematyki wyŜszej dla studentów, część III, WNT, Warszawa 1998 - str. 298

Page 14: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

14

2n 2

k kk

1D U

dn lnp (Q) p (Q)

dQ

przy czym dla estymatora najefektywniejszego zachodzi równość w powyŜszej nierówności.

Jeśli cecha populacji X jest zmienną losową ciągłą o gęstości fQ(x) zaleŜnej od parametru Q i Un jest estymatorem nieobciąŜonym parametru Q oraz spełnione są warunki regularności8, to wariancja estymatora Un spełnia nierówność Rao-Cramera w poniŜszej postaci

2n 2

Q Q

-

1D U

n ln f (x) f (x)dxQ

≥∂

∂ ∫

przy czym dla estymatora najefektywniejszego zachodzi równość w powyŜszej nierówności.

Efektywność estymatora

Efektywność estymatora nieobciąŜonego Un parametru Q jest to liczba 2

nn 2

n

D Ue =

D U

(

gdzie 2nD U

(jest wariancją estymatora najefektywniejszego parametru Q.

Oczywiście 1e0 n ≤<

Estymator Un jest estymatorem najefektywniejszym wtedy i tylko wtedy, gdy en = 1.

15.2.2. Estymacja wartości oczekiwanej rozkładu normalnego

Cecha X populacji ma rozkład normalny N(m,σ), przy czym σ jest znane. Przyjmiemy, Ŝe estymatorem wartości oczekiwanej jest średnia z próby

n

n ii 1

1X X

n =

= ∑

Zgodność

Cecha X ma rozkład z wartością oczekiwana m. Średnia z próby nX jest estymatorem zgodnym wartości oczekiwanej m, gdyŜ na podstawie prawa wielkich liczb Chinczyna9

nnlim P( X - m <ε)=1

→∞dla dowolnego ε >0

NieobciąŜoność

PoniewaŜ n n n

n k kk=1 k=1 k=1

1 1 1 1EX =E X = EX = m= nm=m

n n n n ∑ ∑ ∑

więc średnia z próby jest estymatorem nieobciąŜonym wartości oczekiwanej.

Efektywność

Obliczymy najpierw wariancję estymatora najefektywniejszego wartości oczekiwanej rozkładu normalnego, a następnie wariancję średniej z próby i porównamy otrzymane wielkości.

8 Patrz jw 9 Patrz ppkt 9.4.3. części III Rachunek prawdopodobieństwa

Page 15: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

15

Jeśli nU% jest estymatorem najefektywniejszym, to jego wariancja jest równa prawej stronie

nierówności Rao-Cramera

2n 2

m m

-

1 1D U = = ozn.

Mn lnf (x) f (x)dx

m

=∂

∂ ∫

%

gdzie: 2 2-(x-m) /(2σ )

m

1f (x)= e

σ 2π

Zatem 2

m 2

1 (x-m)lnf (x)=ln -

2σσ 2π i m 2

(x-m)lnf (x)=

m σ

2 2 2m4 4 4 2

-

n n n nM= (x-m) f (x)dx= D X= σ =

σ σ σ σ

Czyli 2

2n

2

1 σD U = =

1 nnσ

( wariancja estymatora najefektywniejszego wartości oczekiwanej rozkładu normalnego

2n n n2 2 2 2 2

n k k2 2 2k=1 k=1 k=1

1 1 1 1 σD X =D X = D X = σ = nσ =

n n n n n

∑ ∑ ∑

Zatem 2nD X = 2

nD U(

, więc średnia z próby jest estymatorem najefektywniejszym wartości oczekiwanej rozkładu normalnego.

Z powyŜszego wynika, Ŝe średnia z próby nX jest estymatorem zgodnym, nieobciąŜonym

i najefektywniejszym wartości oczekiwanej rozkładu normalnego.

15.2.3. Estymatory wariancji rozkładu normalnego

Estymatorami wariancji są statystyki

( )n

22n i n

i=1

1S = X -X

n∑ ( )

n2o2

n ii=1

1S = X -m

n∑ ( )

n22

n i ni=1

1S = X -X

n-1∑

Zbadamy własności tych estymatorów przy załoŜeniu, iŜ rozkład cechy jest normalny.

W ppkt 14.2.3. stwierdziliśmy, Ŝe statystyki 2 o2

n n2 2

nS nSi

σ σ mają rozkłady chi kwadrat z n-1

i n stopniami swobody oraz, Ŝe rozkład chi kwadrat z n stopniami swobody ma wartość oczekiwaną równą n i wariancję 2n.

NieobciąŜoność10

2n

2

nSE =n-1σ

oraz 2

2nn2 2

nS nE = ESσ σ

zatem 2 2n

n-1ES = σ

n

o2n2

nSE =nσ

oraz o2

o2nn2 2

nS nE = ESσ σ

zatem o2 2nES =σ

2 2 2 2 2n n n

n n n n-1ˆES =E S = ES = σ =σn-1 n-1 n-1 n

10 W 21.2 części VI Wybrane twierdzenia wraz z dowodami oceniono obciąŜoność wariancji bez załoŜenia o

normalności rozkładu

Page 16: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

16

Wnioski

Statystyki o2nS i 2

nS są estymatorami nieobciąŜonymi wariancji 2σ .

Statystyka 2nS jest estymatorem obciąŜonym wariancji 2σ ale

2 2 2nn n

n-1lim ES = lim σ =σ

n→∞ →∞

czyli jest estymatorem asymptotycznie nieobciąŜonym wariancji 2σ .

Zgodność

Przy badaniu zgodności estymatorów wariancji 2σ wykorzystamy twierdzenie podane w punkcie 15.2.1. PoniewaŜ rozwaŜane estymatory wariancji są nieobciąŜone lub asymptotycznie nieobciąŜone, to zgodnie z tym twierdzeniem będą estymatorami zgodnymi, gdy ich wariancje zbieŜne są do zera. Obliczymy te wariancje

22 n

2

nSD =2(n-1)

σ oraz

2 22 2 2n

n2 4

nS nD = D S ,

σ σ zatem

( )2 2 4n 2

2 n-1D S = σ 0

n→

o22 n

2

nSD =2n

σ oraz

o2 22 o2n

n2 4

nS nD = ES ,

σ σ zatem

42 o2

n

2σD S = 0

n→

( ) ( )

( )2 2 42 2 2 2 2 2 4

n n n2 2 2

2 n-1n n n 2σˆD S =D S = D S = σ = 0n-1 n n-1n-1 n-1

Wniosek. Statystyki 2nS , 2o

nS , 2nS są estymatorami zgodnymi wariancji 2σ

Efektywność

Jeśli nU(

jest estymatorem najefektywniejszym wariancji 2σ , to jego wariancja jest równa prawej stronie nierówności Rao-Cramera, czyli

2 2

2n 2

2 σ σ-

1 1D U = = ozn.

Mn lnf (x) f (x)dx

σ

=∂

∂ ∫

%

gdzie: 2 2

2

-(x-m) /(2σ )

σ

1f (x)= e

σ 2π

Zatem

2

22

1 1 (x-m)lnf (x)=- lnσ -ln -

2 2σ2π

2

2 2 2

2 2 4 4σ

1 (x-m) (x-m) -σlnf (x)=- + =

σ 2σ 2σ 2σ

2 2

2

2 σ σ-

M = n lnf (x) f (x)dxσ

∂ ∂ ∫ = 2

22 2

4 σ-

(x-m) -σn f (x)dx

∫ =

2 2 2

4 2 2 48 σ σ σ

- - -

44 4 4 4 4

48 8 8 4

n= (x-m) f (x)dx-2σ (x-m) f (x)dx+σ f (x)dx =

n 1 2σ n= µ -2σ +σ = 3σ -2σ +σ = =

4σ 2σ 4σ 2σ

∞ ∞ ∞

∞ ∞ ∞

∫ ∫ ∫

42

n

4

1 2σD U = =

1 nn2σ

(

Page 17: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

17

Porównując otrzymany wynik z wcześniej obliczonymi wariancjami estymatorów stwierdzamy, Ŝe 4

2 o2 2n n

2σD S =D U =

n

(

n

2 4 4n

n 2 2

D U 2σ 2σ n-1e = = : =

ˆ n n-1 nD S

(

n

2 4 4n

2 2 2

D U 2σ 2(n-1)σ n= : =

D S n n n-1

(

Wnioski z powyŜszych równości

Statystyka ( )n

2o2n i

i=1

1S = X -m

n∑jest estymatorem najefektywniejszym wariancji σ2 rozkładu

normalnego.

Statystyka ( )n

22n i n

i=1

1S = X -X

n-1∑nie jest estymatorem najefektywniejszym wariancji σ2 rozkładu

normalnego, ma efektywność (n-1)/n, jest więc estymatorem asymptotycznie najefektywniejszym.

Statystyka ( )n

22n i n

i=1

1S = X -X

n∑jest estymatorem asymptotycznie najefektywniejszym wariancji σ2

rozkładu normalnego.

PoniewaŜ statystyka ta nie jest estymatorem nieobciąŜonym, więc nie moŜe być estymatorem najefektywniejszym i nie moŜna mówić o efektywności tego estymatora.

Estymatory odchylenia standardowego

Estymatory odchylenia standardowego przedstawione są w tabeli 15.2.

ZauwaŜmy, Ŝe pierwiastek kwadratowy estymatora nieobciąŜonego wariancji σ2 nie musi być estymatorem nieobciąŜonym odchylenia standardowego σ.

15.2.4. Metoda największej wiarygodności otrzymywania estymatorów

Cecha X populacji ma rozkład zaleŜny od s parametrów Q1, ... , Qs

(X1, ... , Xn) – próba (x1, ... , xn) – realizacja próby.

Funkcja wiarygodności jest to funkcja s zmiennych Q1, ... , Qs

• w przypadku cechy populacji X skokowej przyporządkowuje kaŜdemu moŜliwemu punktowi (Q1, ... , Qs) prawdopodobieństwo otrzymania realizacji próby (x1, ... , xn)

L(Q1, ... , Qs) = P(X1 = x1, … , Xn = xn) = P(X1 = x1) … P(Xn = xn)

• w przypadku cechy populacji X ciągłej przyporządkowuje kaŜdemu moŜliwemu punktowi (Q1, ... , Qm) gęstość próby w punkcie będącym realizacją próby (x1, ... , xn)

L(Q1, ... , Qs) = f (x1, ... , xn) = f1(x1) … fn(xn)

Metoda największej wiarygodności (MNW) otrzymywania estymatorów polega na wyznaczeniu,

dla danej realizacji próby, takich ocen 1 sˆ ˆQ , ...,Q , parametrów Q1, ... , Qs, by funkcja wiarygodności

w punkcie ( 1 sˆ ˆQ , ...,Q ) osiągała wartość największą.

Estymatory, których wartościami są oceny parametrów Q1, ... ,Qs uzyskiwanymi metodą największej wiarygodności nazywamy estymatorami największej wiarygodności (ENW).

Page 18: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

18

Interpretacja

MNW opiera się na następującej intuicji: skoro otrzymano realizację próby (x1, ... , xn), to musiała ona być bardziej wiarygodna od innych realizacji, tzn. w przypadku cechy skokowej prawdopodobieństwo uzyskania takiej realizacji powinno być największe, natomiast w przypadku cechy ciągłej gęstość próby dla otrzymanej realizacji powinna być największa.

ENW mają rozkłady asymptotycznie normalne i są estymatorami zgodnymi oraz asymptotycznie nieobciąŜonymi i asymptotycznie najefektywniejszymi ( przy dość ogólnych załoŜeniach).

Przykład 15.2

Wyznaczymy metodą największej wiarogodności na podstawie próby 1 2 n(x , x ,..., x ) estymator

wartości oczekiwanej cechy X o rozkładzie N(m,σ)

Uwzględniając, Ŝe gęstość rozkładu normalnego ma postać 2

2

(x m)

21f (x) e

2

−−

σ=σ π

otrzymuje się funkcję wiarogodności w postaci n2 2 21 n i22 2

i 1

1n(x m) (x m) (x m)22 21 1 1

L(m) e ... e e2 2 2

=

− − − −− −σσ σ∑

= = σ π σ π σ π

Przy poszukiwaniu maksimum funkcji L(m) wygodniej posługiwać się logarytmem tej funkcji, gdyŜ łatwiej jest znaleźć maksimum lnL(m), aniŜeli maksimum L(m), a obie funkcja L(m) i ln L(m) przyjmują maksimum w tym samym punkcie, co funkcja, a na ogół.

Logarytm funkcji L(m) jest równy

n2

i2i 1

1 1 1ln L(m) n ln n ln (x m)

22 =

= + − −σ σπ

Po zróŜniczkowaniu względem parametru m otrzymujemy

n n

i i2 2 2i 1 i 1

d ln L(m) 1 1 1(x m) x n m

dm = =

= − − = − ⋅σ σ σ∑ ∑

Po przyrównaniu pochodnej do zera otrzymujemy

n

i2 2i 1

1 1ˆx n m 0

=

− ⋅ =σ σ∑

skąd

n

ii 1

1m x

n =

= ∑

Zatem estymator wartości oczekiwanej cechy X o rozkładzie N(m,σ) jest równy średniej arytmetycznej elementów próby.

Druga pochodna jest równa

2 n

i2 2 2 2i 1

d d d ln L(m) d 1 1 1ln L(m) x n m n 0

dm dt dm dt =

= = − ⋅ = − < σ σ σ

czyli m zapewnia maksimum funkcji L(m)

Kolejne przykłady wyznaczania estymatorów metoda największej wiarogogodności zamieszczono w punkcie 21.3. części VI Wybrane twierdzenia wraz z dowodami:

• Estymator parametru p rozkładu zero-jedynkowego. • Estymator parametru Θ rozkładu wykładniczego. • Estymator parametru λ rozkładu Poissona.

Page 19: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

19

15.2.5. Zestawienie estymatorów parametrów rozkładu zmiennej losowej i ich własności Tabela 15.2. Zestawienie estymatorów

Własności estymatora Parametr Estymator

Zgodny NieobciąŜony Najefektywniejszy

Wartość oczekiwana m

rozkładu normalnego

n

n kk=1

1X = X

n∑ TAK TAK TAK

( )n

22n i n

i=1

1S = X -X

n∑ TAK

Asymptotycznie nieobciąŜony

Brak oceny11

( )n

202n i

i=1

1S = X -m

n∑ TAK TAK TAK

Wariancja σ2 rozkładu

normalnego

( )n

22n i n

i=1

1S = X -X

n-1∑ TAK TAK

Asymptotycznie najefektywniejszy

0nS , nS , nS

TAK

Asymptotycznie nieobciąŜone

Asymptotycznie najefektywniejsze

( )n max min nU = X -X d

Xmax – największy element w próbie

Xmin – najmniejszy element w próbie dn – współczynnik

liczbowy, tak dobrany, by estymator

był nieobciąŜony

TAK TAK DuŜa efektywność dla małych prób

Odchylenie standardowe

n

n kk=1

1U = π/2 X -m

n∑ TAK TAK

Efektywność 1/(π-2)

Parametr λ rozkładu Poissona

n

n kk=1

1X = X

n∑ TAK TAK TAK

Parametr p rozkładu zero-jedynkowego

Yn/n, gdzie Yn oznacza liczbę

jedynek w próbie

TAK TAK TAK

11 Statystyka jest estymatorem asymptotycznie najefektywniejszym wariancji rozkładu normalnego, ale poniewaŜ

statystyka ta nie jest estymatorem nieobciąŜonym, więc nie moŜe być estymatorem najefektywniejszym i nie moŜna mówić o efektywności tego estymatora.

Page 20: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

20

15.3. Estymacja przedziałowa

15.3.1. Uwagi wstępne

Oszacowanie przedziałowe nieznanego parametru polega na wyznaczeniu przedziału ufności.

X – cecha populacji, Q – parametr rozkładu cechy X, 1 - α - poziom ufności ( 0< α <1).

Jeśli istnieją dwie statystyki * **n nU , U takie, Ŝe * **

n nP(U Q U )=1-≤ ≤ α to przedział losowy

* **n n<U ; U > 12 (15.1)

nazywamy przedziałem ufności parametru Q na poziomie ufności 1 - α.

Jeśli na podstawie próby obliczymy wartości * **n nu ,u statystyk * **

n nU , U , to otrzymujemy liczbowy

przedział

* **n nu ; u< > (15.2)

będący wartością (realizacją) przedziału (15.1). Parametr Q moŜe naleŜeć do przedziału (15.2) lub nie naleŜeć. Jeśli jednak poziom ufności 1 - α jest bliski jedności, to bardzo rzadko będziemy otrzymywać liczbowe przedziały ufności (15.2) do których parametr Q nie naleŜy.

Granice przedziału ufności są zmiennymi losowymi. Zatem dla róŜnych realizacji próby otrzymujemy na ogół róŜne realizacje przedziałów ufności. Gdybyśmy oszacowanie przedziałowe powtórzyli wiele razy, to częstość realizacji, do których szacowany parametr naleŜy byłaby bliska poziomowi ufności i tak np. jeśli próbę powtórzono 100 razy i poziom ufności przyjęto 0,99, to częstość tych realizacji, do których parametr naleŜy byłaby bliska 0,99, a więc średnio tylko do jednej ze 100 realizacji szacowany parametr nie będzie naleŜał.

Błąd bezwzględny. Błąd względny

Jeśli realizacja (15.2) ma postać n n<u - ε; u + ε> , to liczbę ε nazywamy błędem bezwzględnym, zaś

liczbę n

εδ=

u błędem względnym oszacowania parametru na poziomie istotności 1 - α.

Na poniŜszym rysunku przedstawiono kilka z moŜliwych realizacji przedziałów ufności dla wartości oczekiwanej.

Rys. 15.4. Ilustracja szacowania m za pomocą przedziałów ufności

Niektóre z nich pokrywają prawdziwą wartość parametru m, a niektóre nie. Sumarycznie, tzn. odnosząc się do wszystkich realizacji przedziałów ufności otrzymywanych tą metodą naleŜy stwierdzić, Ŝe z częstością bliską 1-α pokrywają prawdziwą wartość parametru.

12 RozwaŜa się takŜe jednostronne przedziały ufności postaci (-∞; Un> lub <Un;-∞).

m

Page 21: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

21

15.3.2. Wyznaczenie przedziału ufności dla wartości oczekiwanej rozkładu normalnego

Dla zilustrowania sposobu postępowania przy określeniu przedziału ufności wyznaczymy go dla wartości oczekiwanej rozkładu normalnego w dwóch przypadkach: przy znanej i nieznanej wariancji.

Znana wariancja.

Cecha X ma rozkład normalny N(m,σ), σ jest znane.

Do budowy przedziału ufności na poziomie 1 – α wybieramy statystykę do oszacowania wartości oczekiwanej w postaci średniej arytmetycznej próby nX , która jak wiadomo (21-3.1) jest

estymatorem najefektywniejszym. Jak wiadomo13, średnia arytmetyczna ma rozkład nX : N(m, )n

σ

zaleŜny od wartości oczekiwanej m.

Standaryzujemy nX , tzn. przekształcamy ją w statystykę nU

nn

X mU

n

−=

σ

Statystyka Un ma rozkład N(0,1)14 .

Wyznaczamy przedział liczbowy u ,uα α< − > tak aby

nX mP[ u u ] 1

n

α α

−− ≤ ≤ = − α

σ (15-3.2)

gdzie uα zaleŜy od poziomu ufności 1 - α. Rozwiązujemy nierówność pod znakiem prawdopodobieństwa względem m

nu X m un n

α α

σ σ− ≤ − ≤

n nX u m X un n

α α

σ σ− − ≤ − ≤ − +

n nX u m X un n

α α

σ σ+ ≥ ≥ −

n nX u m X un n

α α

σ σ− ≤ ≤ + (15-3.3)

ZaleŜność (15-3.3 ) określa szukany przedział ufności, spełnia on warunek

n nP(X u m X u ) 1n n

α α

σ σ− ≤ ≤ + = − α (15-3.4)

Dla jego określenia naleŜy jeszcze wyznaczyć uα. Uwzględniając (3.6-2) i rozkład normalny Un

n n nP( u U u ) P(U u ) P(U u ) (u ) ( u )α α α α α α− ≤ ≤ = ≤ − ≤ − = φ − φ −

qdzie Φ jest dystrybuantą rozkładu normalnego N(0,1).

PoniewaŜ ( u ) 1 (u )α αΦ − = − Φ - patrz poniŜszy rysunek

13 Podpunkt 19.1.1 części VI Wybrane twierdzenia z dowodami 14 Podpunkt 20.5.5 części VI Wybrane twierdzenia z dowodami

Page 22: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

22

Rysunek 15.14a. Wyznaczanie granicy przedziału ufności

to

nP( u U u ) (u ) 1 (u ) 2 (u ) 1α α α α α− ≤ ≤ = φ − + φ = φ −

Uwzględniając (15-3.2) mamy równanie do wyznaczenia uα

2 (u ) 1αφ − =1-α

Zatem uα wyznacza się z zaleŜności

(u ) 12α

αφ = − (15-3.5)

Uwagi dotyczące przedziału ufności (15.3)

1. PołoŜenie końców przedziału jest losowe (bo średnia z próby ma wartość zaleŜną od realizacji próby).

2. Długość przedziału jest stała.

3. Długość przedziału zaleŜy od poziomu ufności 1–α (bo αu zaleŜy od α), im większy poziom

ufności, tym dłuŜszy przedział ufności – patrz rys. 15.3.

4. Długość przedziału jest odwrotnie proporcjonalna do pierwiastka liczebności próby, zatem ze wzrostem liczebności próby zwiększa się dokładność oszacowania, jednak nadmierne powiększanie próby nie jest korzystne, bowiem powoduje małe zwiększanie się dokładności.

5. Długość przedziału ufności zaleŜy od odchylenia standardowego σ cechy X. Jeśli X oznacza wynik pomiaru, to σ oznacza dokładność pomiaru, a więc zwiększanie dokładności pomiarów powoduje zmniejszenie błędu oszacowania.

Z powyŜszych uwag wynika, Ŝe potrzebny jest kompromis między zaufaniem do oszacowania (poziomem ufności), a błędem oszacowania, bowiem zwiększenie ufności powoduje zwiększenie błędu, zmniejszenie błędu powoduje zmniejszenie ufności oszacowania.

Stosowanie przedziału ufności (15.3) wymaga spełnienia załoŜenia, Ŝe odchylenie standardowe σ jest znane. ZałoŜenie to w zagadnieniach praktycznych jest niezmiernie rzadko spełnione.

Nieznana wariancja

Cecha X ma rozkład normalny N(m,σ), σ jest znane..

Konstrukcja przedziału ufności dla wartości oczekiwanej rozkładu normalnego, gdy σ nie jest znane wymaga innego, niŜ poprzednio przekształcenia średniej z próby, mianowicie wykorzystujemy twierdzenie, Ŝe statystyka

nn

n

X -mU = n-1

S

ma rozkład Studenta z n-1 stopniami swobody15. Dalej postępujemy podobnie jak poprzednio.

15 Podpunkt 21.1.2 części VI Wybrane twierdzenia z dowodami

Page 23: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

23

Wyznaczamy liczbę αu tak, by

α n αP(-u U u )=1- α≤ ≤ co jest równowaŜne wyraŜeniu

n αP( U u )=α≥

Liczbę αu spełniającą powyŜszy związek odczytujemy z tablic rozkładu Studenta z n-1 stopniami swobody i poziomu prawdopodobieństwa α (pkt 6 części VII „Tablice statystyczne”) lub znajdujemy ją przy pomocy programu komputerowego. Mamy

nα α

n

X -mP(-u n-1 u )=1-α

S≤ ≤

Rozwiązując względem m występującą w powyŜszym związku nierówność otrzymujemy przedział ufności

α n α nn n

u S u S<X - ;X +

n-1 n-1> przedział ufności dla wartości oczekiwanej rozkładu normalnego

α nu Sε=

n-1 błąd bezwzględny (połowa długości przedziału ufności)

Tym razem nie tylko końce przedziału ufności są losowe, takŜe losowa jest długość przedziału ufności.

Próba o duŜej liczności RozwaŜymy jeszcze jedną sytuację. Nie mamy informacji, Ŝe rozkład cechy jest normalny, za to wiemy, Ŝe próba jest liczna. Wówczas statystyka nX ma rozkład w przybliŜeniu normalny,

σN m,

n

). Postępując, jak przy konstrukcji przedziału (15.3) i zastępując σ odchyleniem

standardowym z próby ( o ile σ nie jest znane) otrzymujemy przedział ufności

α n α nn n

u S u S<X - ;X +

n n> - przedział ufności dla wartości oczekiwanej dowolnego rozkładu.

Podsumowanie Znalezione powyŜej trzy przedziały ufności dla wartości oczekiwanej oraz przedziały ufności dla innych parametrów są przedstawione w tabeli 15.3. Uogólniając powyŜszej przedstawione postępowanie naleŜy stwierdzić, Ŝe konstrukcja przedziału ufności dla parametru Q polega na:

1. Wybraniu statystyki o rozkładzie zaleŜnym od Q, najlepiej by statystyka ta była estymatorem najefektywniejszym tego parametru lub estymatorem o wysokiej efektywności.

2. Przekształceniu wybranej statystyki w statystykę nU wyraŜoną wzorem, w którym występuje

Q. Rozkład nU powinien być znany i zaleŜeć tylko od Q.

3. Wyznaczeniu przedziału liczbowego 1 2<u ;u > , tak by 1 n 2P(u U u )=1-α≤ ≤ .

4. Rozwiązaniu względem Q nierówności 1 n 2u U u≤ ≤ .

Page 24: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

24

15.3.3. Tabela przedziałów ufności Tabela 15.3. Zestawienie przedziałów ufności

Parametr Rozkład cechy Przedział ufności Wyznaczanie liczby uα Nr

Wartość oczekiwana

m

Normalny N(m,σ),

σ - jest znane

u uX ; X

n nα ασ σ

< − + >

2

α1)u( −=Φ α

Φ -dystrybuanta rozkładu N(0,1) PU-1

Wartość oczekiwana

m

Normalny N(m,σ),

σ - nie jest znane

Su SuX ; X

n 1 n 1α α< − + >− −

α)u|T(|P 1n =≥ α−

Tn-1 zmienna losowa o rozkładzie Studenta z n-1 stopniami swobody

PU-2

Wartość oczekiwana

m

Dowolny Liczna próba

n ≥ 100

Su SuX ; X

n nα α< − + > 2

α1)u( −=Φ α

Φ -dystrybuanta N(0,1) PU-3

Wariancja σ2 Normalny N(m,σ) 2 2

1 2

nS nS;

u u

21)uY(P

2)uY(P

21n

11n

α−=≥

α=≥

Yn-1 ma rozkład χ2 z n – 1 stopniami swobody

PU-4

Odchylenie standardowe

σ

Normalny N(m,σ),

2 2

1 2

nS nS;

u u

21)uY(P

2)uY(P

21n

11n

α−=≥

α=≥

Yn-1 ma rozkład χ2 z n – 1 stopniami swobody

PU-5

Wskaźnik struktury p

Rozkład zero- jedynkowy

p1)0X(P

,p)1X(P

−==

==

liczna próba

n ≥ 100

W(1 W) W(1 W)W u ; W u

n nα α− −

− +

W - wskaźnik struktury w próbie W=Yn/n Yn – licznba jedynek w próbie

2

α1)u( −=Φ α

Φ -dystrybuanta rozkładu normalnego N(0,1) PU-6

Page 25: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

25

Przykład 15.3

Badano ceny drukarek Canon BC250 w 40 wylosowanych punktach sprzedaŜy. Otrzymano, Ŝe średnia cena drukarki wynosi 358,37. Zakładając, Ŝe cena drukarki w całej populacji ma rozkład normalny N(m, σ) na poziomie ufności 1-α = 0,95 wyznaczymy na podstawie 40 elementowej próby przedział ufności dla średniej ceny drukarki przyjmując, Ŝe odchylenie standardowe populacji jest równe 20.

Rozwiązanie.

Zastosujemy przedział ufności PU-1: α ασ u σu<X- ; X+

n n> . PoniewaŜ 1-α = 0,95, czyli α = 0.05

i α

2 = 0.025. Równanie do wyznaczenia uα ma postać α

αΦ(u )=1-

2= 0,975, stąd uα=1,96, więc błąd

bezwzględny, czyli połowa długości przedziału ufności ασuε=

n

20 1,96

40

⋅= = 6,198.

Średnia arytmetyczna ceny jest równa x = 358,37.

Zatem szukanym przedziałem ufności jest przedział <358,37–6,2;358,37+6,2 = <352,17;364,57>

Błąd względny δ= ε 6,2

100%= 100%x 358,37

= 1,55%.

Długość połowy przedziału ufności równą ασu

nε = zwraca funkcja UFNOŚĆ arkusza Excel na

podstawie odchylenia standardowego σ i liczebności próby.

Zwracamy uwagę, Ŝe otrzymany wynik jest identyczny jak obliczony powyŜej.

Page 26: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

26

Przykład 15.4

Dla danych z przykładu 15.3 obliczymy błędy bezwzględny i względny oszacowania parametru m na poziomie ufności 1 - α = 0,99.

Rozwiązanie

Mamy α

αΦ(u )=1-

2= 0,995, stąd αu =2,576 , więc błąd bezwzględny, czyli połowa długości

przedziału ufności ασ uε =

n 40

576,220 ⋅= =8,15, błąd względny δ =

ε 8,15= =2,27%

x 358,37

Widzimy, Ŝe powiększanie poziomu ufności (zaufania do otrzymanego oszacowania) powoduje powiększenie obu błędów bezwzględnego i względnego. Dlatego w praktyce nie moŜna przyjmować zbyt duŜych poziomów ufności, gdyŜ prowadzi to do duŜych błędów oszacowania (przedziały ufności mają wtedy duŜą długość).

Niektórzy praktycy przyjmują, Ŝe oszacowanie jest: • Bardzo dobre, gdy błąd względny jest równy najwyŜej 2%; • Dobre, gdy błąd względny jest zawarty między 2% i 5%; • Dostateczne, gdy błąd względny jest zawarty między 5% i 10%; • Niedostateczne, gdy błąd względny jest większy od 10%.

Przykład 15.5

Na poziomie 0,95 obliczmy przedział ufności dla średniej ceny monitorów 17 calowych na podstawie 12 elementowej próby: 733, 685, 761, 812, 708, 735, 639, 730, 703, 694, 714, 664 zakładając, Ŝe cena ma rozkład normalny.

Rozwiązanie

Stosujemy przedział ufności PU-2 α αSu Su<X- ; X+

n-1 n-1>

Obliczamy: x = 714,83 oraz s 10 2

ii 1

1(x 714,83)

12 =

−∑ =43,19

Liczba αu spełnia związek n-1 αP(|T | u )=α≥ , który dla danych zadania przybiera postać

11 αP(|T | u ) = 0,01.≥ Z tablicy rozkładu Studenta dla 11 stopni swobody i poziomu prawdopodo-

bieństwa 0,05 (pkt 6 części VII „Tablice statystyczne”) odczytujemy, Ŝe αu = 2,201, więc

αSu 43,19 2,201 95,064ε= = = =28,66

3,317n-1 11

⋅. Zatem przedział ufności jest równy

8,6 0,23 ; 8,6 0,23 8,37 ; 8,63< − + > = < >

Długość połowy przedziału ufności równą αs u 45,11 2,201 99,287'

3,464n 12

⋅ε = = = = 28,66 zwraca

narzędzie Statystyka opisowa modułu Analiza danych pakietu Excel

Kolumna1

Średnia 714,8333333 Błąd standardowy 13,02261048 Mediana 711 Tryb #N/D! Odchylenie standardowe 45,11164601 Wariancja próbki 2035,060606 Poziom ufności (95,0%) 28,6625724

Zwraca się uwagę, Ŝe otrzymany wynik jest identyczny jak obliczony powyŜej.

Page 27: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

27

Przykład 15.6

Jako miarę dokładności przyrządu przyjęto odchylenie standardowe pomiarów dokonanych tym przyrządem. Zakładamy, Ŝe pomiary pochodzą z populacji normalnej N(m,σ). Dokonano 20 pomiarów i otrzymano wariancję z próby 6,5. Na poziomie ufności 0,9 oszacuj przedziałem ufności wariancję i odchylenie standardowe wszystkich moŜliwych pomiarów. Rozwiązanie

Dane n = 20, s2 =6,5, 1- α = 0, 9, rozkład cechy populacji N(m, σ). Stosujemy przedziały ufności PU-4 i PU-5

2 2

1 2

nS nS;

u u ,

2 2

1 2

nS nS;

u u

Liczby u1 i u2 spełniają związki

n-1 1

n-1 2

αP(Y u )=

P(Y u )=1-2

w których Yn-1 oznacza zmienną losową o rozkładzie χ2 z n-1 stopniami swobody.

19 1

19 2

0,1P(Y u )= =0,05

20,1

P(Y u )=1- =0,952

Z tablicy rozkładu χ2 (pkt 5 części VII „Tablice statystyczne”) odczytujemy, Ŝe u1 = 30,1 u2 = 10,1

Przedział ufności dla wariancji 20 6,5 20 6,5

; 4,3;12,930,1 10,1

⋅ ⋅=< >

Przedział ufności dla odchylenia standardowego 4,3 ; 12,9 2,1 ; 3,6< > =< >

Przykład 15.7

Na 400 obrotów anteny radarowej obiekt znajdujący się w obszarze obserwacji radaru został wykryty 350 razy. Literą p oznaczamy prawdopodobieństwo wykrycia obiektu przy jednym obrocie anteny (niezawodność radaru). Znajdziemy przedział ufności dla p na poziomie ufności 0,95.

Rozwiązanie

Niech X będzie zmienną losową przyjmującą wartość 1, gdy w jednym obrocie anteny obiekt został wykryty, zaś wartość 0, gdy nie został wykryty. Zmienna losowa X ma rozkład zerojedynkowy z parametrem p. Prawdopodobieństwo p oszacujemy przedziałem ufności PU-6

α α

W(1-W) W(1-W)W-u ; W+u

n n

gdzie w jest wskaźnikiem struktury w próbie (oszacowaniem wskaźnika struktury p w populacji) k

w =n

, k - liczba jedynek w próbie.

Dla danych w zadaniu mamy

%5,87875,0400

350

n

kw ====

Page 28: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

28

α α

α 0,05Φ(u )=1- =1- =0,975 u =1,96

2 2⇒

α

w(1-w) 0,875 0,125ε = u =1,96 =3,2%

n 400<87,5%-3,2% ; 87,5%+3,2%>= <84,2% ; 90,7%>

Odp. Niezawodność radaru z ufnością 0,95 jest zawarta między 84,2% a 90,7%.

15.3.4. Wyznaczanie wielkości próby

Zagadnienie Wyznaczyć liczebność próby n tak by błąd bezwzględny oszacowania parametru przedziałem ufności wynosił ε , przy poziomie ufności 1 - α .

Zasady wyznaczania wielkości próby podano w poniŜej tabeli.

Tabela 15.4. Wyznaczanie liczebności próby n przy poziomie ufności 1 - α

ZałoŜenia Etapy wyznaczania liczebności próby Nr

Cecha X ma rozkład

normalny N(m, σ), σ jest

znana16

1) Wyznaczamy liczbę uα : α

αΦ(u )=1-

2

2) Obliczamy 2

un α

σ=

ε

LP-1

Cecha X ma rozkład

normalny N(m, σ), σ nie

jest znana

Rozkład cechy X nie jest znany. Próba jest liczna

1) Pobieramy próbę o małej liczebności n0 (wstępną próbę) i szacujemy odchylenie standardowe σ za pomocą odchylenia standardowego s0

z tej próby

2) Obliczamy 2

0 αs un = 1

ε

+

3) Jeśli n-n0 > 0, to naleŜy powiększyć próbę o n-n0 elementów. Jeśli n – n0 ≤ 0, to poprzestajemy na pobraniu wstępnej próby.

LP-2

Cecha X ma rozkład

zerojedynkowy. Próba jest

liczna. Dokładność oszacowania

dokładnością ε 17

1) Wyznaczamy liczbę uα : α

αΦ(u )=1-

2

2) Obliczamy 2α2

un = k

ε gdzie

w oszacowanie wskaźnika na podstawie wstępnej próby, w(1 w)

w 0,5

k 0, 25 nie mamy Ŝadnych informacji o w

0, 21 jesli wiemy,Ŝe wadliwośćnie moŜe przekroczyć30%

−− ≤

=

LP-3

Uwaga: Przy obliczaniu n zawsze przyjmujemy zaokrąglenie w górę

16 Patrz przedział ufności PU-1 17 Patrz przedział ufności PU-6

Page 29: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

29

Przykład 15.8

W doświadczeniu chemicznym bada się czas trwania reakcji chemicznej. Czas ten modelujemy zmienną losową X o rozkładzie normalnym N(m, 5 sek).

Ile razy naleŜy powtórzyć to doświadczenie, by oszacować przedziałem ufności średni czas m trwania tej reakcji na poziomie ufności 0,95 tak, by błąd bezwzględny wynosił 2 s?

Rozwiązanie

Korzystamy z zasady LP-1 podanej w tabeli 15.3

2

ασ un =

ε

α

0,05(u ) 1 1 0,975

2 2

αΦ = − = − = ⇒ uα=1,96,

242

596,1n

2

⋅=

Odp. NaleŜy doświadczenie powtórzyć 24 razy.

Przykład 15.9

Cecha X populacji ma rozkład normalny o nieznanych parametrach. W celu oszacowania wartości oczekiwanej przedziałem ufności o długości 1, na poziomie ufności 0,96, pobrano wstępną 5- elementową próbę i otrzymano odchylenie standardowe s0=0,8. Jak wielką próbę naleŜy pobrać?

Rozwiązanie

Korzystamy z zasady LP-2 podanej w tabeli 15.3

0,04(u ) 1 1 0,98 u 2,05

2 2α α

αΦ = − = − = ⇒ =

2

0s un 1α

= + ε

=

20,8 2,05

1 120,5

⋅ + ≈

Odp. NaleŜy pobrać próbę 12 elementową, czyli naleŜy dobrać jeszcze 7 elementów.

Przykład 15.10

Cecha X populacji ma rozkład normalny N(m, σ), σ nie jest znana. Jak wielką próbę naleŜy pobrać, by na poziomie ufności 0, 98 oszacować wartość oczekiwaną m z błędem, co najwyŜej równym 0,5, gdy na podstawie wstępnej próby 50 elementowej otrzymano odchylenie standardowe 3,0?

Rozwiązanie

Korzystamy z zasady LP-2 podanej w tabeli 15.3

1 – α = 0, 98 ε = 0,5 0n 50= 0s 3,0=

α

0,04(u ) 1 1 0,98

2 2

αΦ = − = − = ⇒ uα = 2,05

2

0s un 1α

= + ε

2

3,0 2,051 153

0,5

⋅ = + ≈

Odp. NaleŜy wziąć próbę 153 elementową, naleŜy więc jeszcze dobrać 103 elementy.

Page 30: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

30

Przykład 15.11

Mamy oszacować przedziałem ufności wadliwość p partii towaru na poziomie ufności 1- α = 0,96, z dokładnością ε = 0,05. Jak wielka powinna być próba?

Rozwiązanie

α

α 0,04Φ(u )=1- =1- =0,98

2 2 ⇒ uα = 2,05

2α 2

w(1-w)n = u

ε

Jeśli nie mamy Ŝadnych informacji o wadliwości w, to w miejsce iloczynu w(1-w) podstawiamy ¼ (największą wartość iloczynu).

22

1/4n = 2,05 421

0,05≈

Jeśli natomiast wiemy, Ŝe wadliwość nie moŜe przekroczyć 30%, to iloczyn w (1-w) nie moŜe

przekroczyć liczby 0,3 ⋅ 0,7 = 0,21, zatem 22

0,21n=2,05 353

0,05≈

15.3.5. Wykorzystanie arkusza Excel

Lp Zakres analizy statystycznej Funkcje

statystyczne Narzędzia statystyczne

1. Estymacja długości połowy przedziału ufności dla wartości oczekiwanej przy znanej wariancji

UFNOŚĆ

2. Estymacja długości połowy przedziału ufności dla wartości oczekiwanej przy nieznanej wariancji

STATYSTYKA

OPISOWA

Page 31: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

31

16. WERYFIKACJA HIPOTEZ

16.1 Wprowadzenie

16.1.1. Uwagi wstępne

Teoria weryfikacji hipotez zajmuje się metodami sprawdzania hipotez statystycznych.

Hipoteza statystyczna to kaŜde przypuszczenie dotyczące nieznanego rozkładu badanej cechy (cech). Hipoteza dotycząca jedynie wartości parametrów cechy nazywa się hipotezą parametryczną, natomiast hipoteza precyzująca, do jakiego typu rozkładów naleŜy rozkład cechy populacji, nosi nazwę hipotezy nieparametrycznej.

Przykład 16.1

Wiemy, Ŝe cecha X populacji ma rozkład N(m, 3). Przypuszczenie, Ŝe „wartość oczekiwana cechy X jest równa 5” jest hipotezą parametryczną.

ZałóŜmy teraz, Ŝe nie mamy Ŝadnej informacji o rozkładzie cechy X populacji. Przypuszczenie „rozkład cechy X jest normalny” jest hipotezą nieparametryczną.

Test statystyczny jest to metoda weryfikacji (sprawdzania) hipotez statystycznych, przy czym • Test parametryczny jest to test do weryfikacji hipotez parametrycznych. • Test nieparametryczny jest to test do weryfikacji hipotez nieparametrycznych.

Zajmiemy się najpierw hipotezami i testami parametrycznymi dla jednej i dwóch prób.

Rozpatrzmy cechę X populacji, o rozkładzie zaleŜnym od parametru Q ∈ Ω, gdzie Ω jest podzbiorem zbioru liczb rzeczywistych, zwanym przestrzenią parametru.

O parametrze Q wysuwamy dwie hipotezy: • Hipotezę zerową, (główną, sprawdzaną), Ŝe parametr Q ma wartość równą Q0∈ Ω, co

zapisujemy H0 (Q = Q0) i czytamy: hipoteza H zero, Ŝe parametr Q jest równy Q zero. • Hipotezę alternatywną, Ŝe parametr Q przyjmuje dowolną wartość z przestrzeni parametru róŜną

od Q0, co zapisujemy H1 ( Q∈ Ω- Q0)

W zagadnieniach tu rozwaŜanych hipoteza alternatywna będzie miała jedną z czterech poniŜszych postaci

H1 (Q ≠ Q0), H1 (Q > Q0), H1 (Q < Q0), H1 (Q = Q1). (16.1)

Przy weryfikacji hipotez podejmujemy jedną z dwu decyzji • Odrzucić hipotezę zerową i przyjąć alternatywną. • Przyjąć hipotezę zerową i odrzucić alternatywną. PoniewaŜ decyzje przy weryfikacji hipotez podejmujemy na podstawie próby, więc decyzja moŜe być błędna mimo iŜ test został wykonany poprawnie.

Hipoteza zerowa odzwierciedla z reguły pytanie, na które naleŜy uzyskać odpowiedź. Występują równieŜ przypadki, Ŝe taką rolę spełnia hipoteza alternatywna, ale łatwiej jest weryfikować hipotezę zerową. Hipotezę alternatywną ustala się na podstawie przesłanek, jakimi dysponuje się przed pobraniem próby, tzn. postać hipotezy alternatywnej określona jest wiedzą o problemie badawczym nie opierającą się o wnioski z analizy prób. Tak więc hipoteza alternatywna wyraŜa skrystalizowane a priori przypuszczenie o treści róŜnej od treści hipotezy sprawdzanej.

Opis testu parametrycznego

X - cecha populacji, Q – parametr rozkładu cechy X. Wysuwamy hipotezy: zerową H0 (Q = Q0) i alternatywną H1, która ma jedną z postaci (16.1).

Page 32: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

32

Postępowanie przy weryfikacji powyŜszych hipotez jest następujące

1. Wybieramy pewną statystykę nU o rozkładzie zaleŜnym od parametru Q oraz pewną liczbę α z przedziału (0,1) i wyznaczamy podzbiór K zbioru liczb rzeczywistych tak by spełniony był warunek

n 0P(U K/Q=Q ) = α∈ (16.2)

czyli by prawdopodobieństwo, iŜ statystyka Un przyjmie wartość ze zbioru K, przy załoŜeniu, Ŝe prawdziwa jest hipoteza zerowa było równe α.

2. Pobieramy próbę18 i obliczamy wartość un statystyki Un 3. Podejmujemy decyzje

odrzucamy H0 , gdy un∈K (16.3) przyjmujemy H0, gdy Ku n ∉ (16.4)

Wykorzystywaną statystykę Un nazywamy sprawdzianem, zbiór K – zbiorem krytycznym, a liczbę α poziomem istotności.

Przy weryfikacji hipotez przyjmuje się mały poziom istotności (bliski 0, ale dodatni).

Uzasadnienie podejmowanych decyzji: • Decyzja (16.3): Jeśli hipoteza H0 (Q = Q0) jest prawdziwa, to prawdopodobieństwo zdarzenia

Un∈K jest zgodnie z (16.2) równe α, a więc tak małe, Ŝe uwaŜamy, iŜ zajście tego zdarzenia jest w praktyce niemoŜliwe. PoniewaŜ jednak to zdarzenie dla pobranej próby zaszło, więc wnioskujmy, Ŝe załoŜenie, przy którym prawdopodobieństwo tego zdarzenia zostało obliczone jest nieprawdziwe. Stąd teŜ odrzucamy H0.

• Decyzja (16.4): Jeśli zdarzenie Un∈K, przy załoŜeniu, Ŝe hipoteza H0 (Q = Q0) jest prawdziwa, nie zaszło, to nie ma powodu, by twierdzić, Ŝe H0 nie jest prawdziwa, bowiem nie ma nic nadzwyczajnego w fakcie, Ŝe nie zaszło zdarzenie o małym prawdopodobieństwie. Dlatego hipotezę H0 przyjmujemy lub ostroŜniej: mówimy, Ŝe nie ma podstaw do odrzucenia tej hipotezy.

Przy podejmowaniu decyzji moŜna zawsze popełnić jeden z dwu błędów

• Błąd I rodzaju - błąd polegający na odrzuceniu hipotezy zerowej H0, gdy ta hipoteza jest prawdziwa. Odrzucenie H0, gdy jest ona prawdziwa moŜna jako zdarzenie losowe zapisać Un∈K/Q=Q0. Prawdopodobieństwo tego zdarzenia, zgodnie ze wzorem (16.2) jest równe poziomowi istotności α, zatem prawdopodobieństwo błędu I rodzaju n 0P(U K/Q = Q )=α∈ .

• Błąd II rodzaju - błąd polegający na przyjęciu hipotezy zerowej H0, gdy ta hipoteza jest fałszywa. Przypuśćmy, Ŝe hipoteza alternatywna jest postaci H1(Q = Q1). Wtedy błąd II rodzaju: przyjęcie H0, gdy ta hipoteza jest fałszywa, jako zdarzenie losowe moŜna zapisać n 1U K/Q=Q∉ ,

a prawdopodobieństwo tego zdarzenia oznaczmy β, zatem prawdopodobieństwo błędu II rodzaju n 1P(U K/Q=Q )=β∉ .

Jak widzimy prawdopodobieństwo błędu I rodzaju jest równe poziomowi istotności α, a więc jest znane na podstawie metody weryfikacji, natomiast prawdopodobieństwo błędu II rodzaju wymaga obliczenia, co wcale nie musi być łatwe, dlatego często rezygnujemy z jego wyznaczania.

18 WyróŜnia się dwa rodzaje prób: niepowiązane i powiązane. JeŜeli wartości określonej cechy mierzone są u róŜnych elementów to otrzymywane próby nazywamy niepowiązanymi. Z kolei jeŜeli wartości cechy mierzone sa u tych samych elementów np. w róŜnych momentach czasu to otrzymywane próby nazywamy powiązanymi.

Page 33: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

33

W zaleŜności od postaci hipotezy alternatywnej przyjmuje się róŜną postać zbioru krytycznego.

I tak:

Zbiór krytyczny prawostronny jest to zbiór postaci 2K k ; )=< ∞ . Wzór (16.2)

przybiera teraz postać

n 2 0P(U k /Q=Q )=α≥

Rys. 16.1. Prawostronny zbiór krytyczny

Zbiór krytyczny lewostronny jest to zbiór postaci 1K ( ;k= −∞ > . Wzór

(16.2) przybiera teraz postać

n 1 0P(U k /Q=Q )=α≤

Jeśli gęstość statystyki Un / Q=Q0 ma wykres symetryczny względem osi Oy

(rozkład normalny, rozkład Studenta), to zbiór krytyczny lewostronny moŜna zapisać w postaci >−−∞= k;(K . Wzór (16.2) przybiera teraz postać

α==≥ )QQ|kU(P 0n identyczną jak dla zbioru krytycznego prawostronnego.

Rys. 16.2. Lewostronny zbiór krytyczny

Zbiór krytyczny dwustronny jest to zbiór postaci 1 2K ( ;k k ; )= −∞ > ∪ < ∞ . Zbiór ten w przypadku symetrycznego względem osi Oy rozkładu statystyki Un / Q=Q0 przyjmuje postać K=(- ;-k> <k; )∞ ∪ ∞

W pierwszym przypadku liczby k1 i k2 wyznaczamy z relacji

n 1 0P(U k /Q=Q )=α/2≤

n 2 0P(U k /Q = Q )=α/2≥

W drugim przypadku liczba k spełnia relację nP(|U | k)=α≥

Rys. 16.3. Dwustronny zbiór krytyczny

Zbiór krytyczny naleŜy wybrać tak, by przy ustalonym prawdopodobieństwie błędu I rodzaju (poziomie istotności), prawdopodobieństwo błędu II rodzaju było najmniejsze. • Jeśli hipoteza alternatywna ma postać H1 (Q > Q0), to przyjmujemy zbiór krytyczny

prawostronny. • Jeśli hipoteza alternatywna ma postać H1 (Q < Q0), to przyjmujemy zbiór krytyczny

lewostronny. • Jeśli hipoteza alternatywna ma postać H1 (Q ≠ Q0), to przyjmujemy zbiór krytyczny

dwustronny.

Page 34: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

34

16.1.2. Pzykład konstrukcji testu parametrycznego do weryfikacji hipotezy o wartości oczekiwanej Badana jest cecha X populacji generalnej ma rozkład normalny N(m,σ), przy czym σ jest znane.

O wartości oczekiwanej wysuwamy hipotezy: • zerową H0 (m=m0) • alternatywną H1 (m>m0)

a) ZałóŜmy, Ŝe hipoteza zerowa jest prawdziwa i Ŝe przyjęto hipotezę alternatywną postaci H1 (m>m0). Hipotezy weryfikujemy na podstawie o próbę

11 2 n(x , x ,..., x ) przy poziomie

istotności α. Wtedy róŜnica 0n mX − obliczona na podstawie próby powinna przyjąć wartość

bliską zeru, bowiem statystyka nX jest estymatorem najefektywniejszym parametru m. Natomiast, gdy róŜnica ta jest duŜa (ze względu na kształt hipotezy alternatywnej powinna być dodatnia), to moŜna sądzić, Ŝe hipoteza zerowa jest fałszywa. Wygodniej jest posługiwać się postacią standaryzowaną statystyki 0n mX − , czyli statystyką

n/

mXU 0n

−=

Statystyka Un/m = m0 ma rozkład normalny N(0,1). Mała wartość tej statystyki przemawia za przyjęciem hipotezy zerowej, natomiast duŜa wartość za przyjęciem hipotezy alternatywnej. Dlatego zbiór krytyczny przyjmujemy prawostronny (potwierdza się zasada wyboru zbioru krytycznego K = <k ; ∞)) na danym poziomie istotności α. Liczba k spełnia związek P(Un ≥ k/m = m0). Stąd α=Φ− )k(1 , czyli Φ(k)=1-α . Liczba k jest liczbą graniczną w tym sensie, Ŝe przyjmujemy, iŜ wartości un statystyki Un, obliczone na podstawie próby są duŜe, gdy un ≥ k, natomiast są małe w przeciwnym przypadku. Zatem

Jeśli un ≥ k, czyli Ku n ∈ , to H0 odrzucamy i przyjmujemy H1

Jeśli un < k, czyli Ku n ∉ , to H0 przyjmujmy i odrzucamy H1

b) ZałóŜmy teraz, Ŝe hipoteza alternatywna ma postać H1 (m< m0). TakŜe w tym przypadku mała wartość statystyki Un przemawia za przyjęciem hipotezy zerowej, natomiast duŜa wartość bezwzględna, ale ujemna za przyjęciem hipotezy alternatywnej. Dlatego zbiór krytyczny przyjmujemy lewostronny K = (-∞ ; -k> na danym poziomie istotności α. Liczba k spełnia związek 0P(Un -k/m = m )=α≤ . Stąd Φ(-k) = α 1-Φ(k) = α⇒ , czyli Φ(k)=1-α .

c) ZałóŜmy wreszcie, Ŝe hipoteza alternatywna ma postać H1 (m≠m0). W tym jak i w poprzednich przypadkach mała wartość statystyki Un przemawia za przyjęciem hipotezy zerowej, natomiast wartości o duŜym module (dodatnie lub ujemne) za przyjęciem hipotezy alternatywnej. Dlatego zbiór krytyczny przyjmujemy dwustronny K=(- ; -k> < k; )∞ ∪ ∞ na danym poziomie istotności α. Liczba k spełnia związek

n 0P( U k/m=m ) = α≥ . Stąd [ ]2 1-Φ(k) = α , czyli α

Φ(k)=1-2

Przykład 16.2 Czas wykonania detalu modelowany jest zmienną losową o rozkładzie normalnym N(m, 2 min.). W celu weryfikacji hipotez: zerowej, Ŝe średni czas wykonania detalu wynosi 3 min i alternatywnej, Ŝe wynosi 4,6 min., pobrano próbę 9 elementową, której średnia wyniosła 3,4 min. Zweryfikujemy powyŜsze hipotezy na poziomie istotności 0,015.

Rozwiązanie X - zmienna losowa oznaczająca czas wykonania detalu, Rozkład zmiennej losowej X: N(m, 2 min.) Hipotezy: H0 (m =3), H1 (m =4,6) Poziom istotności: α = 0,015

Page 35: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

35

Liczebność próby n = 9 Średnia z próby 9x = 3,4

Sprawdzian Un = 0X-m

σ/ n. Wartość sprawdzianu 9

3, 4 3,0u 0,6

2 / 9

−= =

Zbiór krytyczny prawostronny K = <k; ∞) Liczba k spełnia związek Φ(k) =1- α = 1- 0,015 =0,985⇒ k = 2,17 (na podstawie tablicy – pkt 4 części VII „Tablice statystyczne”). . K = <2,17 ; ∞) u9 = 0,6 PoniewaŜ Ku 9 ∉ , więc hipotezę H0 przyjmujemy.

Przy podjęciu tej decyzji moŜna popełnić błąd drugiego rodzaju. Obliczymy prawdopodobieństwo tego błędu.

9n 1 9

9

X -3,0β=P(U K/Q=Q )=P(U <2,17/m=4,6)=P <2,17/m=4,6 =

2/ 9

X -4,6 1,6=P <2,17- /m=4,6 =Φ(-0,23)=1-Φ(0,23)=0,4

2/ 9 2/ 9

Odp. Hipotezę, Ŝe średni czas wykonania detalu wynosi 3 min. naleŜy przyjąć. Prawdo-podobieństwo, Ŝe powyŜsza decyzja jest błędna wynosi 0,4, a więc jest wysokie, dlatego moŜna polecić podjęcie ostroŜniejszej decyzji: nie ma podstaw do odrzucenia powyŜszej hipotezy.

16.1.3. Pzykład konstrukcji testu parametrycznego do weryfikacji hipotezy o równości wartości oczekiwanych

Zakładamy, Ŝe badane cechy X i Y populacji generalnej są niezaleŜne i mają rozkłady normalne

1 1X : N(m , )σ oraz 2 2Y : N(m , )σ , przy czym σ1 i σ2 są znane.

O wartościach oczekiwanych wysuwamy hipotezy: • zerową H0 (m1=my2 • alternatywną H1 (m1≠m2)

Hipotezy weryfikujemy na podstawie niezaleŜnych prób 11 2 n(x , x ,..., x ) i

21 2 n(y , y ,..., y ) na

poziomie istotności α.

Do weryfikacji hipotezy wykorzystujemy średnie arytmetyczne z prób

1

1

n

n ii 11

1X X

n =

= ∑ 2

2

n

n ii 12

1Y Y

n =

= ∑ (16.5)

które są estymatorami nieobciąŜonymi i najefektywniejszymi wartości oczekiwanych – patrz tabela 15.2.

Gdyby hipoteza H0 była prawdziwa, wówczas róŜnica pomiędzy średnimi arytmetycznymi 1nX i

2nY nie powinna być zbyt duŜa.

Jak wiadomo, średnie arytmetyczne 1nX i

2nY mają rozkłady

1

1n 1

1

X : N(m , )n

σ

2

2n 2

2

Y : N(m , )n

σ

Page 36: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

36

Zatem zmienna losowa 1 2n nX Y− ma rozkład:

2 21 2

1 21 2

N(m m , )n n

σ σ− +

czyli zmienna

1 2n n 1 2

2 21 2

1 2

(X Y ) (m m )

n n

− − −

σ σ+

ma rozkład N(0,1).

JeŜeli załoŜymy, Ŝe hipoteza o 1 2H : m m= jest prawdziwa, to 1 2m m 0− = i wobec tego zmienna

1 2

1 2

n nn ,n 2 2

1 2

1 2

X YU

n n

−=

σ σ+

będzie miała rozkład normalny N(0,1).

Znajdziemy taką liczbę kα, aby przy ustalonym α był spełniony warunek

( )1 2n ,nP U kα> = α (16-3.4)

Jest on równowaŜny warunkowi

1 2n ,nP k U k 1α α− ≤ ≤ = − α (16-3.5)

Ale

1 2 1 2 1 2n ,n n ,n n ,nP k U k P(U k ) P((U k ) (k ) ( k )α α α α α α− ≤ ≤ = ≤ − ≤ − = φ − φ −

qdzie Φ jest dystrybuantą rozkładu normalnego N(0,1).

PoniewaŜ ( u ) 1 uα αΦ − = − to

1 2n ,nP k U k (k ) 1 (k ) 2 (k ) 1α α α α α− ≤ ≤ = φ − + φ = φ −

Równanie do wyznaczenia kα ma postać 2 (k ) 1αφ − =1-α

Zatem uα wyznacza się z zaleŜności

(u ) 12α

αφ = −

Na podstawie uα wyznacza się zbiór krytyczny ( ; k ) (k ; )α α−∞ − ∪ ∞ .

Page 37: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

37

16.1.4. Uwagi o weryfikacji hipotez parametrycznych Uwaga 1. O związku poziomu istotności z decyzjami JeŜeli odrzuci się hipotezę zerową na danym poziomie istotności, to odrzuci się ją takŜe na kaŜdym poziomie istotności większym od danego.

JeŜeli przyjmie się hipotezę zerową na danym poziomie istotności, to przyjmie się ją takŜe na kaŜdym poziomie istotności mniejszym od danego.

Czytelnik jest proszony o wykonanie ilustracji graficznej powyŜszych twierdzeń.

Uwaga 2. O granicznym poziomie istotności

Graniczny poziom istotności (oznaczenie α ) to liczba taka, Ŝe dla wszystkich poziomów istotności ˆα α≥ hipotezę zerową odrzucamy natomiast dla wszystkich poziomów istotności ˆα < α hipotezę zerową przyjmujemy. α wyznacza się na podstawie rozkładu sprawdzianu Un , przykładowo dla prawostronnego zbioru

krytycznego α= n 0ˆP(U k/Q=Q )≥ , gdzie k jest otrzymaną wartością sprawdzianu.

Uwaga 3. O odrzucaniu hipotezy zerowej

Jeśli w wyniku testowania hipotez otrzymaliśmy decyzję o odrzuceniu hipotezy zerowej na danym poziomie istotności i poziom graniczny jest mniejszy od danego, to moŜna ją takŜe odrzucić na poziomie równym poziomowi granicznemu, więc moŜna zmniejszyć prawdopodobieństwo popełnienia błędu II rodzaju, zatem utwierdzić się bardziej w przekonaniu, Ŝe podjęliśmy właściwą decyzję.

Przykład 16.3 Cecha X populacji ma rozkład normalny N(m,2). O parametrze m wysunięto hipotezy H0(m = 3) i H1(m = 1), które postanowiono zweryfikować na poziomie istotności 0,025. W tym celu pobrano próbę 16 elementową i otrzymano średnią z próby równą 1,5. Zweryfikujemy te hipotezy i obliczymy poziom graniczny. Rozwiązanie

Sprawdzian Un=n/

mX 0

σ

−. Wartość sprawdzianu u16 =

1,5 3,03

2 / 16

−= −

Zbiór krytyczny prawostronny K =( -∞; -k>

Liczba k spełnia związek Φ(k) =1- α = 1- 0,025 =0,975⇒ k =1,96. K = (- ∞; -1,96>

PoniewaŜ Ku16 ∈ , więc hipotezę H0 odrzucamy, na poziomie istotności 0,025.

Poziom graniczny α spełnia zaleŜność ˆΦ(-3)=1-α =0,99865 α ≈ 0,00135

Wniosek. Hipotezę H0 naleŜy odrzucić na poziomie istotności równym 0,00135 (a więc bardzo małym), co utwierdza nas w podjętej wcześniej decyzji - decyzja na podstawie poziomu istotności α oraz poziomu granicznego α , poniewaŜ α ≈ 0,00135<.0,025=α.

Uwaga 4. O hipotezie alternatywnej NaleŜy podkreślić, Ŝe decyzja o wysunięciu hipotezy alternatywnej w postaci H1(Q>Q0) lub w postaci H1(Q<Q0) nie moŜe być podjęta na podstawie wyników próby, powinna natomiast wynikać z analizy rozwaŜanego zjawiska i stosowanych testów. Jeśli więc nie mamy dostatecznie mocnych argumentów za przyjęciem hipotezy alternatywnej w jednej z dwu powyŜszych postaci, to zaleca się przyjąć postać H1(Q≠Q0). Konsekwencją tego faktu jest stosowanie zbioru krytycznego dwustronnego, natomiast przy poprzednich hipotezach alternatywnych stosuje się zbiory krytyczne jednostronne. NaleŜy jeszcze podkreślić, Ŝe przy stosowaniu testów opartych na zbiorach krytycznych dwustronnych (testów dwustronnych) otrzymuje się większe prawdopodobieństwo błędu II rodzaju, niŜ przy stosowaniu testów jednostronnych.

Page 38: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

38

Uwaga 5. O analogii przedziału ufności oraz zbioru krytycznego W tym miejscu zwraca się uwagę na analogię przedziału ufności budowanego w ramach estymacji parametrycznej oraz zbioru krytycznego określanego przy konstrukcji testu parametrycznego do weryfikacji hipotez o parametrach rozkładu. PokaŜemy to na przykładzie cechy X o nieznanej wartości oczekiwanej, która ma rozkład N(m, σ) ze znanym σ.

Rys. 16.4. Związek pomiędzy przedziałem ufności a zbiorem krytycznym

16.2. Testy parametryczne dla jednej próby

16.2.1. Testy do weryfikacji hipotezy o wartości oczekiwanej

ZałoŜymy, Ŝe badana cecha X populacji generalnej ma rozkład normalny N(m, σ), przy czym σ jest znane. W podpunkcie 16.1.3. pokazaliśmy w jaki sposób konstruuje się test do weryfikacji hipotez:

• zerowej H0 (m=m0) • alternatywnej H1 (m>m0)

Tak samo postępuje się przy konstrukcji testu dla innych hipotez alternatywnych: H1 (m< m0) lub H1 (m≠m0).

W analogiczny sposób konstruuje się testy w dwóch innych przypadkach: • σ nieznane • σ nieznane, próba liczna

Zostały one przedstawione w tabeli 16.1.

Page 39: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

39

Tabela 16.1. Zestawienie testów do weryfikacji hipotezy o wartości oczekiwanej na podstawie próby o liczności n

Nr testu TP-1 TP-2 TP-3

Rozkład cechy N(m,σ) N(m,σ) Dowolny

Warunki stosowania σ znane σ nieznane

σ nieznane, próba liczna

Hipoteza zerowa 0 0H (m=m ) 0 0H (m=m ) 0 0H (m=m )

Sprawdzian 0X m

/ n

σ 0X m

S / n 1

− 0X-m

S/ n

Rozkład sprawdzianu pod warunkiem m=m0

N(0,1) Studenta z n-1

stopniami swobody N(0,1)

Wariant testu Hipoteza

alternatywna Zbiór krytyczny TP-1 TP-2 TP-3

A 1 0H (m>m ) k ; )< ∞ α−=Φ 1)k( α=≥− 2)k|T(|P 1n

B 1 0H (m<m ) ( ; k−∞ − > α−=Φ 1)k( α=≥− 2)k|T(|P 1n α−=Φ 1)k(

C 1 0H (m m )≠ ( ; k k ; )−∞ − > ∪ < ∞ (k) 12

αΦ = − α=≥− )k|T(|P 1n (k) 1

2

αΦ = −

Page 40: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

40

Przykład 16.4

Czasy wykonania pewnego złoŜonego zestawienia (w sekundach) w zaleŜności od danych były następujące:

123 146 151 149 162 133 142 156 155 137

Zweryfikować na poziomie α = 0,05 hipoezę H0 (m=140) względem H1 (m>140) przy załoŜeniu, Ŝe rozpatrywany czas ma rozkład N(m, σ), w dwóch przypadkach: a) σ = 12 b) σ nieznane

Rozwiązanie

a) σ = 12

Wykorzystujemy test TP-1. Na podstawie próby obliczamy średni czas wykonania zestawienia x =145,4.

Wartość sprawdzianu 0n

X mU

/ 10

−=

σ jest równa 10

145,4 140 5, 4 5,4u 1,423

12 / 3,163 3,79412 / 10

−= = = =

Z tablic rozkładu normalnego wyznaczamy wartość k dla której (k) 1Φ = − α = 0,95 otrzymując k=1,64. Zatem zbiór krytyczny ma postaćK= );64,1 ∞< . Wartość sprawdzianu nie naleŜy do zbioru krytycznego, czyli hipotezę zerową przyjmujemy.

Wysunięte hipotezy moŜna zweryfikować korzystając z funkcji statystycznej TEST.Z arkusza kalkulacyjnego Excel, podając wartość oczekiwaną 140 z H0 w polu X oraz odchylenie standardowe 12 w polu Sigma.

Wynik formuły to krytyczny poziom istotności α ≈ 0,0774 przy weryfikacji hipotezy dla prawostronnego zbioru krytycznego. PoniewaŜ α≈ 0,0774 > 0.05 = α więc H0 przyjmujemy19.

MoŜemy na zakończenie przekonać się, Ŝe rzeczywiście α ≈ 0,0774 jest krytycznym poziomem istotności. Wstawiając wartość sprawdzianu u10=1,423 do funkcji ROZKLAD.NORMALNY.S otrzymujemy 0,9226 .

19 Patrz uwaga 2 w punkcie 16.1.4.

Page 41: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

41

Otrzymany wynik 0,9226 = 1 - α = 1 - 0,0774.

b) σ nieznane.

Zamiast testu TP-1 wykorzystamy test TP-2, a uwzględniając postać hipotezy alternatywnej jego wersję TP-2C.

Na podstawie próby obliczamy: • średni czas wykonania zestawienia x =145,4.

• wariancję z próby 10

2 2i

i 1

1s (x x)

10 =

= −∑ = 126,24, czyli 2s s 126,24 11,24= = =

Zatem wartość sprawdzianu 0n

X mU

S / n 1

−=

− 10

145,4 140 145,4 140u 1,44

3,7511,24 / 9

− −= = =

Z tablic rozkładu Studenta 9P(| T | k) 0,1≥ = otrzymujemy k=1,833. Uwzględniając postać H1 zbiór

krytyczny jest następujący K= k ; )< ∞ = );833,1 ∞< . Wartość sprawdzianu nie naleŜy do zbioru krytycznego, czyli nie ma podstaw do odrzucenia hipotezy zerowej.

Wysunięte hipotezy moŜna zweryfikować korzystając z funkcji statystycznej TEST.Z arkusza kalkulacyjnego Excel, podając wartość oczekiwaną 140 z H0 w pole X oraz nie wypełniając pola Sigma.

Page 42: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

42

Wynik formuły jest równy krytycznemu poziomowi istotności α = 0,0747 dla prawostronnego zbioru krytycznego krytycznego. PoniewaŜ α≈ 0,0747 > 0.05 = α więc H0 przyjmujemy.

MoŜemy na zakończenie sprawdzić, czy rzeczywiście α ≈ 0,07467 jest krytycznym poziomem istotności. Wstawiając wartość sprawdzianu u10=1,44 do funkcji ROZKLAD.T otrzymujemy 0,0918.

Otrzymany wynik 0,0918 jest róŜny od α = 0,0747. Spowodowane jest to tym, Ŝe w arkuszu Excel wykorzystano rozkład normalny, co oznacza, Ŝe zastosowany został test dla prób o duŜych licznościach, mimo Ŝe liczność próby wynosiła zaledwie 10.

Dowodem tego jest wstawienie wartości sprawdzianu u10=1,44 do funkcji ROZKLAD.NORMALNY.S

Page 43: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

43

Otrzymany wynik 0,925 jest równy w przybliŜeniu 1 - α = 1 – 0,0747

16.2.2. Testy do weryfikacji hipotezy o wariancji i odchyleniu standardowym Cecha X populacji ma rozkład normalny N(m, σ), parametr m moŜe być znany lub nieznany. Hipoteza zerowa H0 (σ = σ0)

Tabela 16.2. Testy do weryfikacji hipotezy o wariancji i odchyleniu standardowym

Hipoteza alternatywna

Sprawdzian Un Rozkład sprawdzianu

Zbiór krytyczny K Wyznaczanie

liczby k Nr testu

1 0H (σ>σ ) 2k ;< ∞ ) n-1 2P(Y k )=α≥ TP-4A

1 0H (σ<σ ) 10 ; k< > n-1 1P(Y k )=1-α≥ TP-4B

1 0H (σ σ )≠

2o

2nnS

σ

Rozkład χ2 z n-1 stopniami swobody

1

2

<0 ;k >

k ; )

∪ < ∞ n-1 1P(Y k )=α/2≥

n-1 2P(Y k )=1-α/2≥ TP-4C

Yn-1 zmienna losowa o rozkładzie χ2 z n-1 stopniami swobody

Uwaga Hipoteza H0 (σ = σ0), jest równowaŜna hipotezie H0 (σ

2 = 20σ ), hipoteza 1 0H (σ>σ ) jest równowaŜna

hipotezie H1 (σ2 > 20σ ), itd., zatem hipoteza o odchyleniu standardowym jest równowaŜna

odpowiedniej hipotezie o wariancji, co wykorzystuje się przy weryfikacji hipotez o tym parametrze.

Przykład 16.4

Popyt na pewien towar modelujemy zmienną losową X o rozkładzie normalnym. W próbie 10 elementowej otrzymaliśmy średnią 1250 kg i odchylenie standardowe 50 kg. a) Na poziomie istotności 0,02 sprawdzimy hipotezy H0(m = 1350 kg) i H1(m ≠1350 kg) b) Na poziomie istotności 0,05 sprawdzimy hipotezy H0(σ =45) i H1(σ >45)

Rozwiązanie

Cecha populacji X - popyt na towar. Rozkład cechy X: normalny N(m, σ), parametry m i σ nie są znane. Liczebność próby n = 10. Charakterystyki próby 10 10x =1250 kg, s =50 kg

a) Stosujemy test TP – 2C. Sprawdzian 1n/S

mXU 0

n−

−= jego wartość 10

1250 1350u 6

50 / 9

−= = −

Zbiór krytyczny K= ( ; k k ; )−∞ − > ∪ < ∞

Page 44: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

44

Wyznaczanie liczby k α=≥− )k|T(|P 1n . 9P(|T | k) 0,02 k 2,821≥ = ⇒ = (na podstawie tablicy rozkładu Studenta – pkt 6 części VII „Tablice statystyczne”)

10 010

K ( ; 2,821 2,821, ; )u K H odrzucamy

u 6

= −∞ − > ∪ < ∞ ⇒ ∈ ⇒

= −

b) Stosujemy test TP – 4A. Sprawdzian 2n

n 2o

nSU =

σ, jego wartość

2

10 2

10 50u 12,34

45

⋅= =

Zbiór krytyczny K = (k; ∞). Wyznaczanie liczbę k n-1P(Y k)≥ = α

9P(Y k) 0,05 k 16,919≥ = ⇒ = (na podstawie tablicy rozkładu χ2 – pkt 5 części VII „Tablice statystyczne”).

10 010

K (16,919; )u K H przyjmujemy

u 12,34

= ∞ ⇒ ∉ ⇒

=

Przykład 16.5

Dokonano 10 pomiarów natęŜenia prądu. Otrzymano z tej próby wariancję 2,3. Zakładamy, Ŝe natęŜenie to jest zmienną losową o rozkładzie normalnym.

Na poziomie istotności 0,04 sprawdź hipotezy: zerową, Ŝe natęŜenie prądu ma wariancję równą 2 i alternatywną, Ŝe natęŜenie prądu ma wariancję róŜną od 2.

Rozwiązanie

X – natęŜenie prądu

Rozkład cechy X: normalny N(m, σ). Liczebność próby n =10. Wariancja z próby 210s =2,3

Hipotezy H0 (σ2 = 2,0) H1 (σ

2 ≠ 2,0) Poziom istotności α =0,04

Stosujemy test TP-4C. Sprawdzian Un=2n

2o

nS

σ, jego wartość u10 =

10 2,311,5

2,0

⋅=

Zbiór krytyczny K= 1 20 ;k k ; )< > ∪ < ∞

n-1 2P(Y k ) / 2≥ = α ⇒ 9 2P(Y k ) 0,02≥ = ⇒ k2 = 19,679

n-1 1P(Y k ) 1 / 2≥ = − α ⇒ 9 1P(Y k ) 0,98≥ = ⇒ k1 =2,532

K = );679,19532,2;0 ∞<∪>< u10 =11,5 PoniewaŜ 10u K,∉ więc hipotezę H0 przyjmujemy.

16.2.3. Testy do weryfikacji hipotezy o wskaźniku struktury

Cecha X populacji ma rozkład zerojedynkowy P(X=1)=p, P(X=0)=1-p, p (0;1)∈

Hipoteza zerowa )pp(H 00 = . Próba liczna n ≥100 Tabela 16.3. Test do weryfikacji hipotezy o wskaźniku struktury

Hipoteza alternatywna

Sprawdzian nU Rozkład sprawdzianu

Zbiór krytyczny K Wyznaczanie

liczby k Nr

testu

1 0H (p p )> k ; )< ∞ ) α−=Φ 1)k( TP-5A

1 0H (p p )< ( ;k−∞ > ( ;k)−∞ α−=Φ 1)k( TP-5B

1 0H (p p )≠

0

0 0

W-pn

p (1-p )

Asymptotycznie normalny N(0,1)

( ; k k ; )−∞ − > ∪ < ∞ (k) 12

αΦ = − TP-5C

W – wskaźnik struktury w próbie, w= r/n, r – liczba jedynek w próbie.

Φ – dystrybuanta rozkładu normalnego N(0,1)

Page 45: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

45

Przykład 16.6

W próbie 1000 osób uprawnionych do głosowania, 320 osób oświadczyło, Ŝe będzie głosować w wyborach na pewną partię. Czy otrzymany wynik jest sprzeczny z przypuszczeniem, Ŝe na tą partię moŜe głosować 35% wyborców? Sprawdzimy odpowiednie hipotezy na poziomie istotności 0,02.

Rozwiązanie

X – zmienna losowa przyjmująca wartość 1, gdy wyborca będzie głosował na daną partię, wartość 0, gdy nie będzie głosował na tą partię.

Zmienna losowa X na rozkład zerojedynkowy p1)0X(P,p)1X(P −==== Liczebność próby n =1000. Liczba jedynek w próbie r = 320

Wskaźnik struktury w próbie 32,01000

320

n

rw ===

Poziom istotności α = 0,02 Hipotezy 0 1H (p=0,35), H (p 0,35)< Stosujemy test TP-5B

Sprawdzian Un = n)p1(p

pW

00

0

−. Wartość sprawdzianu 21000

65,035,0

35,032,0u n −=

−=

Zbiór krytyczny K = >−−∞ k;( α−=Φ 1)k( = 0,98 k 2,05⇒ = >−−∞= 05,2;(K

un = -2

PoniewaŜ ,Ku10 ∉ więc hipotezę H0 przyjmujemy. Otrzymany wynik nie przeczy przypuszczeniu,

Ŝe na partię moŜe głosować 35% wyborców.

16.3. Testy parametryczne dla dwóch prób

16.3.1. Testy do porównywania wartości oczekiwanych dla prób niezaleŜnych

ZałoŜymy, Ŝe badana cecha X populacji generalnej ma rozkład normalny N(m, σ), przy czym σ jest znane. W podpunkcie 16.1.3. pokazaliśmy w jaki sposób konstruuje się test do weryfikacji hipotez:

• zerowej H0 (m1=m2) • alternatywnej H1 (m1≠m2)

Tak samo postępuje się przy konstrukcji testu dla innych hipotez alternatywnych: H1 (m1>m2) lub H1 (m1< m2)

W analogiczny sposób konstruuje się testy w trzech innych przypadkach: • σ1 σ2 są równe i nieznane • σ1 σ2 nie są równe i nieznane • próby są liczne, n1, n2 ≥ 100

Wszystkie rozpatrzone dotąd testy zostały przedstawione w tabeli 16.4.

Page 46: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

46

Tabela 16.4 . Zestawienie testów do porównywania dwóch wartości oczekiwanych na podstawie niezaleŜnych prób o licznościach n1, n2

Nr testu TP-6 TP-7 TP-8 TP-9

Nazwa testu test Studenta test Studenta dla

nieznanych wariancji

Rozkłady cech 1 1 2 2N(m ,σ ), N(m ,σ ) N(m1,σ), N(m2,σ) Dowolny Dowolny

Warunki stosowania 1σ i 2σ są znane σ nieznane σ1 σ2 są nieznane

próby są liczne n1, n2 ≥ 100

Hipoteza zerowa )mm(H 210 = )mm(H 210 = )mm(H 210 = )mm(H 210 =

Sprawdzian 2 21 2

1 2

X-Y

σ σ+

n n

2 2

1 1 2 2 1 2

1 2 1 2

X-Y

n S +n S n +nn +n -2 n n

⋅ 2 21 2

1 2

X Y

S S

n 1 n 1

+− −

2 2

1 2

1 2

X Y

S S

n n

+

Rozkład sprawdzianu N(0,1)

Studenta z n1+n2-2 stopniami swobody

Studenta - patrz poniŜej

asymptotycznie N(0,1)

Nr testu

Hipoteza alternatywna

Zbiór krytyczny TP-6 TP-7 TP-8 TP-9

A 1 1 2H (m >m ) k ; )< ∞

B 1 1 2H (m <m ) ( ; k−∞ − >

α−=Φ 1)k( 1 2n n 2P( T k) 2+ − ≥ = α

defP( T k) 2≥ = α

2

2 2

1 2

(a b)df

a b

n 1 n 1

+=

+− −

gdzie: 21

1

sa

n 1=

22

2

sb

n 1=

α−=Φ 1)k(

C 1 1 2H (m m )≠ ( ; k k ; )−∞ − > ∪ < ∞ (k) 12

αΦ = − n n 21 2

P(| T | k)+ − ≥ = α defP( T k)≥ = α

def jak powyŜej (k) 1

2

αΦ = −

Page 47: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

47

Przykład 16.7

W celu określenia struktury zatrudnienia w pewnej firmie obliczono liczbę zatrudnionych kobiet i męŜczyzn w kolejnych 8 miesiącach otrzymując następujące wyniki:

MęŜczyźni 195 187 175 146 194 191 194 206

Kobiety 219 233 190 210 214 247 225 197

Chcemy sprawdzić hipotezę o równości wartości oczekiwanych ilości zatrudnionych kobiet i męŜczyzn, względem hipotezy alternatywnej bedącej jej zaprzeczeniem, przy załoŜeniu, Ŝe liczby zatrudnionych mają rozkłady normalny o takich samych wariancjach20 oraz przyjmując poziom istotności 0,05.

Rozwiązanie

Na podstawie prób obliczamy średnie i wariancje z próby

MęŜczyŜni Kobiety

Średnia z próby n

ii 1

1x x

n =

= ∑ 186, 0 216,875

Wariancja z próby n

2 2i

i 1

1s (x x)

n =

= −∑ 294,5 301,3594

Zatem wartość sprawdzianu dla testu TP-7

1 2n ,n 2 21 1 2 2 1 2

1 2 1 2

X-YU

n S +n S n +nn +n -2 n n

=

jest równa

8,8 2 2 2 21 2 1 2

x-y x-y 30,875 30,875 30,875u 3,3464

9,2262294,5+301,36 85,12278s +8s s +s16714 64 7

− − −= = = = = = −

Granice zbioru krytycznego wyznaczamy z zalezności α=≥−+ )|(| 221kTP nn , która po uwzględnieniu

danych ma postać 05,0)|(| 14 =≥ kTP , zatem k=2,145.

Zbiór krytyczny jest więc równy K= );kk;( ∞<∪>−−∞ = );2,1452,145;( ∞<∪>−−∞

Wartość sprawdzianu naleŜy więc do zbioru krytycznego, więc odrzucamy hipotezę H0 na korzyść statystyki H1. Oznacza to, Ŝe średnie liczby zatrudnionych kobiet i męŜczyzn nie są równe.

Wysunięte hipotezy moŜna zweryfikować korzystając z arkusza kalkulacyjnego Excel na dwa sposoby, co zilustrowano poniŜej. 1. Wykorzystujemy funkcję statystyczną TEST.T Po wpisaniu danych w komórki a1:p1 i a2:p2 oraz

ustalając parametry testu: Typ = 2 - test dla równych wariancji i Ślady = 2 - test dwustronny.

20 Równość wariancji w populacji naleŜy sprawdzić testem do porównywania wariancji, otrzymany wynik potwierdzi lub

nie słuszność przyjętego załoŜenia – test opisano w punkcie 16.3.3.

Page 48: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

48

Wynik formuły ≈ 0,0048 jest równy jest równy granicznemu poziomowi istotności α , wyznaczonemu na podstawie wartości wskaźnika obliczonego bez wykorzystania programu komputerowego, co zilustrowano poniŜej.

PoniewaŜ α ≈0,0048 < 0,05 = α hipotezę zerową naleŜy odrzucić21.

21 Patrz uwaga 2 w punkcie 16.1.4.

Page 49: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

49

2. Wykorzystujemy narzędzie pakietu Analiza danych: Test t: z dwiema próbami zakładający równe

wariancje wpisując wcześniej dane w komórki a1:p1 i a2:p2.

Test t: z dwiema próbami zakładający równe wariancje Komentarz

Zmienna 1 Zmienna 2

Średnia 186 216,875

Wariancja 336,571429 344,410714

Obserwacje 8 8

Wariancja sumaryczna 340,491071

RóŜnica średnich wg hipotezy 0

df 14

t Stat -3,3464481 Sprawdzian

P(T<=t) jednostronny 0,00239888 Graniczny poziom istotności

Test T jednostronny 1,76131012 Granica zbioru krytycznego

P(T<=t) dwustronny 0,00479775 Graniczny poziom istotności

Test t dwustronny 2,14478668 Granica zbioru krytycznego

Za pomocą otrzymanej tabelki weryfikujemy wysunięte hipotezy na dwa sposoby, pamiętając, Ŝe hipoteza alternatywna jest zaprzeczeniem hipotezy zerowej:

• W oparciu o zbiór krytyczny. PoniewaŜ t Stat=-3,3464481 ∈ K = );2,1452,145;( ∞<∪>−−∞ więc odrzucamy hipotezę H0 na korzyść hipotezy H1.

• W oparciu o graniczny poziom istotności PoniewaŜ α=0,00479775 < 0,05 = α hipotezę zerową naleŜy odrzucić na korzyść hipotezy Ho.

Na zakończenie zwracamy uwagę, Ŝe otrzymaliśmy taką samą wartość sprawdzianu t Stat ≈ -3,346 i granicę zbioru krytycznego ≈ 2,14 jakie otrzymano wcześniej bez programu komputerowego oraz taką samą wartość krytycznego poziomu istotności P(T<=t) dwustronny ≈0,0048, jaką otrzymano z wykorzystaniem funkcji statystycznej TEST.T.

Page 50: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

50

Przykład 16.8

Porównywano czas rozwiązywania pewnego testu przez członków dwóch zespołów analityków (w minutach).

Z1 188 192 187 178 179 175 177 178 185 190

Z2 190 179 185 186 183 184 179 180 190

Chcemy sprawdzić hipotezę o równości średniego czasu rozwiązywaniu testu w obu zespołach, względem hipotezy alternatywnej bedącej jej zaprzeczeniem, przy załoŜeniu, Ŝe czasy rozwiązywania testu mają rozkłady normalne z róŜnymi wariancjami22 oraz przyjmując poziom istotności 0,05.

Rozwiązanie Na podstawie prób obliczamy:

X Y

Średnia z próby n

ii 1

1x x

n =

= ∑ x 182,9= y 184,0=

Wariancja z próby n

2 2i

i 1

1s (x x)

n =

= −∑ 21s 34,09= 2

2s 16,0=

Zgodnie z załoŜeniem o nierówności wariancji stosujemy TP-8

Wartość sprawdzianu

n ,n1 2 2 21 2

1 2

X YU

S S

n 1 n 1

−=

+− −

jest równa

n n1 2

182,9 184,0 1,1 1,1 1,1u 0,457

2, 40634,09 16 3.788 2 5,788

9 8

−= = − = − = − = −

++

Sprawdzian ma rozkład Studenta z liczbą stopni swobody równą

2

2 2

1 2

(a b)df

a b

n 1 n 1

+=

+− −

gdzie: 21

1

sa

n 1=

− i

22

2

sb

n 1=

Dla danych z przykładu 21

1

s 34,09a 3,79

n 1 9= = =

− i

22

2

s 16b 2,0

n 1 8= = =

Zatem liczba stopni swobody 2 2

2 2

(3,79 2,0) 5,79 33,52df 15,96

1,6 0,5 2,13,79 2,0

9 8

+= = = =

++

czyli przyjmujemy liczbę stopni swobody równą 16.

Z tablic rozkładu Studenta wyznaczamy liczbę k dla której dfP( T k)≥ = α otrzymując k=2,12.

22 Co moŜna sprawdzić testem do porównywania wariancji – patrz przykład 16.10

Page 51: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

51

Czyli zbiór krytyczny ma postać: K=(-∞ ; -1,746>∪<1,746 ; ∞). PoniewaŜ n n1 2

u ∉ K ⇒ H0 przyjmujemy.

Wysunięte hipotezy moŜna zweryfikować korzystając z arkusza kalkulacyjnego Excel na dwa sposoby, co ilustrują poniŜsze rysunki

1. Wykorzystując funkcję statystyczną TEST.T po wpisaniu danych w komórki a1:p1 i a2:p2 oraz ustalając parametry testu: Typ = 3 - test dla róŜnych wariancji i Ślady = 2 - test dwustronny.

Wynik formuły 0,653 jest równy jest równy granicznemu poziomowi istotności α , wyznaczonemu na podstawie wartości wskaźnika obliczonego bez wykorzystania programu komputerowego, co zilustrowano poniŜej.

Page 52: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

52

PoniewaŜ α=0,653 > 0,05 = α hipotezę zerową H0 przyjmujemy23.

2. Wykorzystując narzędzie pakietu Analiza danych: Test t: z dwiema próbami zakładający

nierówne wariancje wpisując wcześniej dane w komórki a1:a10 i g1:g9.

Otrzymane wyniki są następujące:

Test t: z dwiema próbami zakładający nierówne wariancje Komentarz

Zmienna 1 Zmienna 2

Średnia 182,9 184

Wariancja 37,87777778 18

Obserwacje 10 9

RóŜnica średnich wg hipotezy 0

df 16

t Stat -0,457232151 Sprawdzian

P(T<=t) jednostronny 0,326825607 Graniczny poziom istotności

Test T jednostronny 1,745883669 Granica zbioru krytycznego

P(T<=t) dwustronny 0,653651213 Graniczny poziom istotności

Test t dwustronny 2,119905285 Granica zbioru krytycznego

Za pomocą otrzymanej tabelki weryfikujemy wysunięte na dwa sposoby, pamiętając, Ŝe hipoteza alternatywna jest zaprzeczeniem hipotezy zerowej:

• W oparciu o zbiór krytyczny. PoniewaŜ t Stat=--0,457232151 ∉∈ K = );2,122,12;( ∞<∪>−−∞ więc hipotezę H0 przyjmujemy.

• W oparciu o graniczny poziom istotności PoniewaŜ α=0,653651213 > 0,05 = α hipotezę zerową Ho przyjmujemy.

Na zakończenie zwracamy uwagę, Ŝe otrzymaliśmy taką samą wartość sprawdzianu t Stat ≈ -0,457 i granice zbioru krytycznego ≈ 2,12 jakie wcześniej bez programu komputerowego oraz taką samą wartość krytycznego poziomu istotności P(T<=t) dwustronny ≈0,653, jaką otrzymano z wykorzystaniem funkcji statystycznej TEST.T.

23 Patrz uwaga 2 w punkcie 16.1.4.

Page 53: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

53

Przykład 16.9

Badano dwa typy samochodów ze względu na maksymalną prędkość. W 100 pomiarach maksymalnej prędkości I typu otrzymano średnią maksymalną prędkość 205,4 km/h i odchylenie standardowe 4,5 km/h, natomiast w 144 pomiarach maksymalnej prędkości II typu samochodów otrzymano średnią maksymalną prędkość 207,3 km/h i odchylenie standardowe 6,8 km/h.

Czy moŜna twierdzić, Ŝe średnia maksymalna prędkość dla obu typów samochodów jest jednakowa, czy teŜ naleŜy przyjąć, iŜ dla typu I jest mniejsza niŜ dla II typu? Sprawdź odpowiednie hipotezy na poziomie istotności 0,01. Rozwiązanie X – maksymalna prędkość I typu samochodów.

Y - maksymalna prędkość II typu samochodów. Rozkłady obu cech nie są znane.

X Y Liczebności prób n1 = 100 n2 = 144 Średnie z prób 4,205x = 3,207y = Odchylenia standardowe z prób s1 = 4,5 s2 = 6,8

Poziom istotności α = 0,01 Wartości oczekiwane m1 = EX m2 = EY Hipotezy: H0 (m1 = m2), H1 (m1 < m2) Z uwagi na duŜą liczebność prób stosujemy test TP-9.

Sprawdzian U=2 2

1 2

1 2

X Y

S S

n n

+

. Wartość sprawdzianu 63,2

144

8,6

100

5,4

3,2074,205u

22−=

+

−=

Zbiór krytyczny K = >−−∞ k;( , gdzie α−=Φ 1)k( =0,99 ⇒ k = 2,33 K = >−−∞ 33,2;( u = -2,63 PoniewaŜ Ku ∈ , więc hipotezę H0 odrzucamy i przyjmujemy hipotezę alternatywną, Ŝe średnia maksymalna prędkość jest mniejsza dla samochodów typu I. Przy podjęciu takiej decyzji zagraŜa popełnienie błędu I rodzaju, którego prawdopodobieństwo α =0,01 jest jak widać małe. Graniczny poziom istotności α = (u) ( 2,63) 1 (2,63) 0,004Φ = Φ − = − Φ = i jest znacznie mniejszy od α, co utwierdza nas jeszcze bardziej o słuszności podjętej decyzji.

16.3.2. Testy do porównywania wartości oczekiwanych – próby zaleŜne

Z populacji losujmy n elementów i mierzymy wartości cechy X w dwóch momentach (np. wartość ciśnienia tętniczego przed podaniem leku i w godzinę po podaniu leku). Otrzymujemy dwie próby n elementowe dla dwóch cech: cechy X1 – wartość badanej cechy w momencie początkowym i cechy X2 – wartość badanej cechy w momencie końcowym. Cechy te nie muszą być niezaleŜne, zatem próby są powiązane. Aby sprawdzić hipotezę, Ŝe wartości oczekiwane obu cech są równe, naleŜy sprawdzić hipotezę, Ŝe wartość oczekiwana zmiennej losowej Y = X1 - X2 jest równa zeru na podstawie próby, której wartościami są róŜnice wartości prób dla obu cech.

Zakładamy, Ŝe cecha Y ma rozkład normalny, co moŜna sprawdzić przy pomocy odpowiedniego testu (patrz rozdział o testach nieparametrycznych). Wtedy rozwaŜane poniŜej testy są szczególnym przypadkiem testów TP - 4, 5, 6 0(dla m =0).

Hipoteza zerowa )mm(H 210 = .

Page 54: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

54

Tabela 16..6 Testy do porównywania wartości oczekiwanych prób powiązanych, rozkład normalny

Hipoteza alternatywna

Sprawdzian Un Rozkład sprawdzianu

Zbiór krytyczny K Wyznaczanie liczby k Nr

testu

1 1 2H (m >m ) ∞;(k ) n 1P( T k) 2− ≥ = α TP-10A

1 1 2H (m <m ) );( k−−∞ n 1P( T k) 2− ≥ = α TP-10B

1 1 2H (m m )≠

Y

Yn-1

S.

Rozkład Studenta z n – 1 stopniami swobody );(

);(

∞∪

∪−−∞

k

k n 1P(| T | k)− ≥ = α TP-10C

Tn-1- zmienna losowa o rozkładzie Studenta z n-1 stopniami swobody.

Opisany powyŜej test nosi nazwę test Studenta dla prób powiązanych.

Przykład 16.10

W pewnej firmie informatycznej przed wprowadzeniem nowej technologii projektowania oprogramowania sprawdzono jej skuteczność przez porównanie czasów projektowania róŜnorodnych modułow z wykorzystaniem dotychczasowej i nowej technologii. Sprawdzenia tego dokonano na podstawie próby 16-elementowej. Elementy tej próby określone w minutach podano poniŜej. X1 – czas projektowania modułu z wykorzystaniem dotychczasowej technologii, a X2 – czas projektowania modułu z wykorzystaniem nowej tetechnologii.

X1 405 125 540 100 200 30 1200 265 90 206 18 489 590 310 995 75

X2 334 150 520 95 212 30 1055 200 85 129 14 440 610 208 880 25

Rozwiązanie

Przyjmując załoŜenie, Ŝe czasy projektowania modułów podelgaja rozkładom normalnym będziemy weryfikować hipotezę zerową, Ŝe nowa technologia nie zmienia czasu projektowania wobec hipotezy alternatywnej, Ŝe go skraca.

Wysuwamy hipotezy H0(m1 = m2), H1(m1 > m2), które zweryfikujemy na poziomie istotności 0,05. Zastosujemy test Studenta dla prób powiązanych TP-10B.

Sprawdzian: nY

YU n 1

S= − , gdzie Y jest średnią Y = X2 – X1, rozkład sprawdzianu n 1 2U / m m=

jest rozkładem Studenta z n-1 stopniami swobody

Na podstawie próby otrzymujemy, Ŝe 2yy= 40,69 s =2493,59− . PoniewaŜ n=16 zatem

162y

y 40,6875u n 1 16 1 0,8147 3,87 3,15

49,94s

−= − = − = − ⋅ = −

Dla określenia zbioru krytycznego K= >−−∞ k;( wyznaczamy liczbę k: n-1P(| T | k) 2α≥ =

15P(| T | k) 0,1 k 1,753≥ = ⇒ = wykorzystano tablice rozkładu Studenta dla 15 stopni swobody i prawdopodobieństwa 0.1 (funkcja dotyczy rozkładu dwustronnego, a nam potrzebny jest zbiór jednostronny). Zatem zbiór krytyczny K= >−−∞ 753,1;(

PoniewaŜ 16u K∈ , więc hipotezę zerową odrzucamy, co oznacza, Ŝe nowa technologia skraca czas projektowania modułów. Wysunięte hipotezy moŜna zweryfikować korzystając z arkusza kalkulacyjnego Excel na dwa sposoby.

1. Wykorzystując funkcję statystyczną TEST.T po wpisaniu danych w komórki a1:p1 i a2:p2 oraz ustalając parametry testu: Typ = 1 - test dla prób powiązanych (test sparowany) i Ślady = 1 - test jednostronny.

Page 55: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

55

Wynik formuły 0,0033 jest równy jest równy granicznemu poziomowi istotności α , wyznaczonemu na podstawie wartości wskaźnika obliczonego bez wykorzystania programu komputerowego, co zilustrowano poniŜej.

PoniewaŜ α=0,0033 < 0,05 = α hipotezę zerową H0 odrzucamy24.

24 Patrz uwaga 2 w punkcie 16.1.4.

Page 56: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

56

2. Wykorzystując narzędzie pakietu Analiza danych: Test t: par skojarzonych z dwiema próbami

dla średniej wpisując wcześniej dane w komórki a1:a16 i b1:b16.

Otrzymane wyniki były następujące:

Zmienna 1 Zmienna 2 Komentarz

Średnia 352,375 311,6875

Wariancja 118367,7167 97734,3625

Obserwacje 16 16

Korelacja Pearsona 0,992224891

RóŜnica średnich wg hipotezy 0

df 15

t Stat -3,155688486 Sprawdzian

P(T<=t) jednostronny 0,00326497 Graniczny poziom istotności

Test T jednostronny 1,753050325 Granica zbioru krytycznego

P(T<=t) dwustronny 0,006529939 Graniczny poziom istotności

Test T dwustronny 2,131449536 Granica zbioru krytycznego

Za pomocą otrzymanej tabelki weryfikujemy wysunięte hipotezy na dwa sposoby, pamiętając, Ŝe hipoteza alternatywna jest jest jednostronna:

• W oparciu o zbiór krytyczny. PoniewaŜ t Stat=- 3,155688486∉∈ K = ( ; 1,175>−∞ − więc hipotezę H0 odrzucamy.

• W oparciu o graniczny poziom istotności PoniewaŜ α=0,00326497 < 0,05 = α hipotezę zerową Ho odrzucamy.

Na zakończenie zwracamy uwagę, Ŝe otrzymaliśmy taką samą wartość sprawdzianu t Stat ≈ 3,15 i granicę zbioru krytycznego ≈ 1,75 jakie otrzymano wcześniej bez programu komputerowego oraz taką samą wartość krytycznego poziomu istotności P(T<=t) jednostronny ≈0,003, jaką otrzymano z wykorzystaniem funkcji statystycznej TEST.T

Page 57: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

57

16.3.3. Testy do porównywania wariancji

Badane są dwie populacje: pierwsza ze względu na cechę X, druga ze względu na cechę Y. Zakładamy, Ŝe cechy te są niezaleŜne o rozkładach normalnych odpowiednio N(m1,σ1), N(m2,σ2).

Hipoteza zerowa H0 ( )2 21 2σ = σ

Tabela 16.7. Testy do porównywania wariancji, N(m1,σσσσ1) N(m2,σσσσ2)

Hipoteza alternatywna

Sprawdzian 1 2n nU

Rozkład sprawdzianu Zbiór krytyczny K

Wyznaczanie liczby k1 i k2

Nr testu

2 21 1 2H (σ >σ ) 2k ;< ∞ ) 2P(F k )≥ = α TP-11A

2 21 1 2H (σ <σ ) 1(0 ; k > 1P(F k ) 1≥ = − α TP-11B

2 21 1 2H (σ σ )≠

1

1 2

2

2n

n ,n 2n

SU

S=

Rozkład Snedecora z parą (n1-1, n2 –1) stopni

swobody. 1 2(0 ; k k ; )> ∪ < ∞ 2P(F k ) / 2≥ = α

1P(F k ) 1 / 2≥ = − α TP-11C

F - zmienna losowa o rozkładzie Snedecora z parą (n1-1, n2 –1) stopni swobody.

Przykład 16.11

Porównywano czas rozwiązywania pewnego testu przez członków dwóch zespołów analityków (w minutach).

Z1 188 192 187 178 179 175 177 178 185 190

Z2 190 179 185 186 183 184 179 180 190

Chcemy sprawdzić hipotezę o równości wariancji przy załoŜeniu, Ŝe czasy rozwiązywania testu mają rozkłady normalne i przyjmując poziom istotności 0,05.

Rozwiązanie

Z1 Z2

Średnie z prób 7,182=x 0,184=y

Wariancje z prób 21s 34,09= 2

2s 16,0=

Sprawdzimy hipotezy

a) ( )2 20 1 2H σ = σ ( )2 2

1 1 2H σ > σ

Do weryfikacji hipotez stosujemy test TP-11A., wartość sprawdzianu 11,1034,09

u 2,130616,0

= =

Zbiór krytyczny K = 2k ; )< ∞ , przy czym 2P(F k )≥ = α , gdzie F to zmienna losowa o rozkładzie Snedecora z parą (n1-1, n2-1) stopni swobody, w rozwiązywanym przykładzie z parą (9, 8) stopni swobody. Zatem 2 2P(F k ) 0,05 k 3,39≥ = ⇒ = , czyli );39,3 ∞=<K .

PoniewaŜ ),;13,31306,210,11 ∞=<∉= Ku więc hipotezę H0, Ŝe wariancje (a takŜe odchylenia

standardowe) są sobie równe przyjmujemy.

Wysunięte hipotezy moŜna zweryfikować korzystając z arkusza kalkulacyjnego Excel na dwa sposoby, co ilustrują poniŜsze rysunki 1. Wykorzystując funkcję statystyczną TEST.F po wpisaniu danych w komórki a22:j22 i a23:i23.

Page 58: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

58

Wynik formuły 0,30816 jest równy jest równy granicznemu poziomowi istotności α , wyznaczonemu na podstawie wartości wskaźnika obliczonego bez wykorzystania programu komputerowego, co zilustrowano poniŜej.

Otrzymano dwa razy mniejszy wynik, poniewaŜ w funkcji TEST.F przyjęty jest dwustronny zbiór krytyczny.

W przypadku testu jednostronnego α=0,150 > 0,05 = α więc hipotezę zerową H0 przyjmujemy. 2. Wykorzystując narzędzie pakietu Analiza danych: Test F: z dwiema próbami dla wariancji

wpisując wcześniej dane w komórki a1:p1 i a2:p2.

Page 59: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

59

Otrzymane wyniki są następujące:

Test F: z dwiema próbami dla wariancji Komentarz

Zmienna 1 Zmienna 2

Średnia 182,9 184

Wariancja 37,877778 18

Obserwacje 10 9

df 9 8

F 2,104321 Sprawdzian

P(F<=f) jednostronny 0,154081 Graniczny poziom istotności

Test F jednostronny 3,3881302 Granica zbioru krytycznego

Za pomocą otrzymanej tabelki weryfikujemy wysunięte hipotezy na dwa sposoby, pamiętając, Ŝe hipoteza alternatywna jest jest jednostronna:

• W oparciu o zbiór krytyczny. PoniewaŜ t Stat=2,104321∈∉K = 3,39; )< ∞ więc hipotezę H0 przyjmujemy.

• W oparciu o graniczny poziom istotności PoniewaŜ α=0,154081 > 0,05 = α hipotezę zerową Ho przyjmujemy.

Na zakończenie zwraca się uwagę, Ŝe otrzymaliśmy taką samą wartość sprawdzianu F ≈ 2,1, taką samą wartość krytycznego poziomu istotności P(T<=t) jednostronny ≈0,15 oraz granicę zbioru krytycznego Test F jednostronny ≈ 3,39 jakie otrzymano wcześniej bez programu komputerowego.

16.3.4. Testy do porównywania wskaźników struktury

Badane są dwie cechy X i Y róŜnych populacji o rozkładach zerojedynkowych, ,p1)0X(P,p)1X(P 11 −==== ,p1)0Y(P,p)1Y(P 22 −====

Cechy X i Y są zmiennymi losowymi niezaleŜnymi. Z populacji, której badana jest cecha X pobrano próbę 1n elementową, natomiast

z drugiej populacji pobrano próbę 2n elementową. Obie próby są liczne n1, n2 ≥100.

Hipoteza zerowa: )pp(H 210 =

Page 60: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

60

Tabela 16.8. Testy do porównywania wskaźników struktury, próby liczne

Hipoteza alternatywna

Sprawdzian n n1 2U

Rozkład sprawdzianu Zbiór krytyczny K

Wyznaczanie liczby k

Nr testu

1 1 2H (p >p ) ∞< ;k ) α−=Φ 1)k( TP-12A

1 1 2H (p <p ) >−−∞ k;( α−=Φ 1)k( TP-12B

1 1 2H (p p )≠ 21

21

21

nn

nn)W1(W

WW

+⋅−

Rozkład asymptotycznie

normalny N(0,1)

( ; k

k; )

−∞ − > ∪

∪ < ∞ (k) 1

2

αΦ = − TP-12C

W1, W2 wskaźniki struktury z obu prób, 21222111 r,r,n/rw,n/rw == - liczby jedynek w próbach o liczebnościach n1 i n2

21

21

nn

rrw

+

+=

Φ – dystrybuanta rozkładu normalnego N(0,1).

Przykład 16.12

Porównywano wadliwość dwu partii towaru. Z pierwszej partii pobrano próbę 200 elementową i zanotowano w niej 10 sztuk wadliwych. Z drugiej partii pobrano próbę 150 elementową. Było w niej 12 sztuk wadliwych. Czy wadliwości obu partii są takie same, czy teŜ naleŜy przyjąć, Ŝe wadliwość pierwszej partii jest mniejsza niŜ drugiej? Sprawdź odpowiednie hipotezy na poziomie istotności 0,06.

Rozwiązanie

X – zmienna losowa przyjmująca wartość 1, gdy z pierwszej partii wybrano sztukę wadliwą lub wartość 0, gdy wybrano sztukę dobrą. Y – zmienna losowa przyjmująca wartość 1, gdy z drugiej partii wybrano sztukę wadliwą lub wartość 0, gdy wybrano sztukę dobrą.

Zmienne losowe X i Y są niezaleŜne i mają rozkłady zerojedynkowe z parametrami odpowiednio p1 , p2 Wskaźniki struktury p1 i p2 są wadliwościami partii pierwszej i drugiej.

,p1)0X(P,p)1X(P 11 −==== 2 2P(Y=1)=p , P(Y=0)=1-p .

Liczebności prób n1=200 n2=150. Liczby sztuk wadliwych w próbach r1=10 r2=12.

Hipotezy H0 (p1 = p2), H1 (p1 < p2). Poziom istotności α = 0,06

Stosujmy test TP-35. Wadliwości w próbach (wskaźniki struktury)

05,0200

10

n

rw

1

11 === , 08,0

150

12

n

rw

2

22 === 063,0

350

22

150200

1210

nn

rrw

21

21 ==+

+=

+

+=

Sprawdzian

21

21

21

nn

nn)W1(W

WWU

+⋅−

−=

Wartość sprawdzianu

14,1

150200

150200932,0063,0

08,005,0

nn

nn)w1(w

wwu

21

21

21 −=

+⋅⋅

−=

+⋅−

−=

Zbiór krytyczny K = >−−∞ k;( =α−=Φ 1)k( 0,94 55,1k =⇒ K = (-∞; -1,55>

PoniewaŜ ,Ku10 ∉ więc hipotezę H0 przyjmujemy. MoŜna twierdzić, Ŝe wadliwości obu partii są

sobie równe.

Page 61: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

61

Uwagi: W przypadku konieczności zweryfikowania hipotez dotyczących wskaźników struktury • przy próbach niepowiązanych o małych liczebnosciach naleŜy zastosować test dokładny

Fishera25 • przy próbach powiązanych naleŜy zastosować test Mc Nemary26.

16.4. Testy nieparametryczne dla jednej próby

16.4.1. Ocena losowości próby Istotne znaczenie ma sprawdzenie, czy próba jest losowa, bowiem losowość jest podstawowym załoŜeniem zdecydowanej większości metod estymacji i testów statystycznych. Wysuwamy hipotezy H0 ( Pobrana próba jest losowa) H1 (Pobrana próba nie jest losowa) Hipotezy te weryfikujemy przy pomocy testu serii.

1. Wyznaczamy medianę z próby i transformujemy próbę wg zasady: - jeśli element próby ma wartość mniejszą od mediany, to przyporządkowujemy mu liczbę 0, - jeśli element próby ma wartość większą od mediany, to przyporządkowujemy mu liczbę 1, - jeśli element próby ma wartość równą medianie, to odrzucamy go z próby.

2. Sprawdzian: statystyka Un oznaczająca liczbę serii w transformowanej próbie. 3. Rozkład sprawdzianu zaleŜy od liczebności n0 oraz n1 zer lub jedynek w transformowanej

próbie i jest stablicowany (pkt 8 części VII „Tablice statystyczne”). Z tablic tych moŜna odczytać liczbę uα taką, Ŝe

P(Un ≤ uα) = α. 4. Zbiór krytyczny dwustronny K = (0; k1> ∪ (k2 ; ∞) Liczby k1 i k2 wyznaczamy z tablicy rozkładu ilości serii

P(Un ≤ k1) = α/2 P(Un > k2) = α/2 5. Obliczamy na podstawie próby wartość un statystyki Un, czyli obliczamy liczbę serii

w próbie transformowanej. 6. Podejmujemy decyzje - jeśli un ∈ K, to H0 przyjmujemy, - jeśli un ∉ K, to H0 nie przyjmujemy.

Uzasadnienie Jeśli hipoteza zerowa jest prawdziwa, to w transformowanej próbie powinna być umiarkowana liczba serii. Gdyby bowiem serii było mało np. byłyby tylko dwie serie, to oznaczałoby, Ŝe w próbie najpierw kolejno występują elementy o wartościach mniejszych od mediany, a następnie kolejno elementy większe od mediany ( lub na odwrót). Próba taka z oczywistego powodu nie byłaby losowa. Gdyby serii było duŜo np. tyle ile jest elementów próby, to oznaczałoby, Ŝe na przemian w próbie występują elementy większe i mniejsze od mediany. Taką próbę teŜ byłoby trudno uznać za losową. Zatem duŜa i mała liczba serii w próbie transformowanej przemawia za odrzuceniem hipotezy zerowej, natomiast umiarkowana liczba serii przemawia za przyjęciem tej hipotezy. Dlatego zbiór krytyczny przyjmujemy dwustronny.

Przykład 17.1 W celu zbadania struktury wieku pracowników duŜej firmy pobrano próbę 16 pracowników i zbadano ich wiek (liczbę lat ukończonych). Otrzymano następującą próbę.

38 34 30 42 27 38 41 20 21 23 18 42 28 40 31 43

Czy próba ta jest losowa?

25 Zostanie opisany w II części podręcznika 26 Zostanie opisany w II części podręcznika

Page 62: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

62

Rozwiązanie

1. Sortujemy dane niemalejąco 18 20 21 23 27 28 30 31 34 38 38 40 41 42 42 43

Mediana wieku jest równa

e

31 34m 32,5

2

+= =

PoniŜej przedstawiono poszczególne elementy próby przed i po transformacji

38 34 30 42 27 38 41 20 21 23 18 42 28 40 31 43

1 1 0 1 0 1 1 0 0 0 0 1 0 1 0 1

2. Sprawdzian: statystyka Un oznaczająca liczbę serii w transformowanej próbie. 3. Poziom istotności α = 0,05

4. Zbiór krytyczny dwustronny K = (0; k1> ∪ (k2 ; ∞) Liczby k1 i k2 wyznaczmy z tablicy rozkładu ilości serii (pkt 8 części VII „Tablice statystyczne”)

n 1 n 2P(U k )=0,05/2=0,025 P(U >k )=1-α/2=0,975≤

dla n0 = n1 = 8 (liczby zer i jedynek w próbie transponowanej) mamy k1 = 4, k2 =13 Zatem K = (0; 4> ∪ <13 ; ∞) 5. Liczba serii w próbie transponowanej un =11

6. PoniewaŜ un ∉ K, to hipotezę zerową H0, Ŝe próba jest losowa przyjmujemy. Uwaga Jeśli próba jest liczna, to statystka Un – liczna serii w transponowanej próbie ma rozkład asymptotycznie normalny o parametrach

0 1 0 1 0 12

2n n 2n n (2n n -n)m= +1, σ=

n n (n-1)

16.4.2. Test zgodności chi kwadrat

Dana jest dystrybuanta F(x).

Hipoteza zerowa H0 (Cecha X populacji ma rozkład określony dystrybuantą F(x)) Hipoteza alternatywna H1 (Cecha X populacji nie ma rozkładu określonego dystrybuantą F(x)).

Weryfikacja powyŜszych hipotez za pomocą tzw. testu χ2 przebiega następująco: 1. Pobieramy liczną próbę (n ≥80). Prezentujemy ją w szeregu rozdzielczym przedziałowym

w r klasach, przy czym: • Pierwsza i ostatnia klasa szeregu rozdzielczego powinny mieć postać A1 = (-∞; a1),

Ar = <ar; ∞) i do kaŜdej z nich powinno naleŜeć co najmniej 5 elementów próby. • Do pozostałych klas powinno naleŜeć co najmniej 10 elementów próby. • Klas nie moŜe być mniej niŜ 4.

2. Obliczamy na podstawie próby oceny parametrów wchodzących w skład dystrybuanty F(x) uzyskane metodą największej wiarygodności.

3. Przyjmujemy, Ŝe hipoteza H0 jest prawdziwa tzn., Ŝe rozkład cechy X jest określony dystrybuantą F(x), przy czym parametry dystrybuanty są równe ocenom uzyskanym w punkcie 2.

4. Dla kaŜdego przedziału klasowego Ai = <ai; ai+1) obliczamy prawdopodobieństwa

i i i i+1 i+1 ip =P(X A )=P(a X<a )=F(a )-F(a )∈ ≤ dla i =1, ... , r

Page 63: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

63

5. Obliczamy 2r

i in

i=1 i

(n -np )u =

np∑

gdzie ni jest liczebnością klasy Ai.

6. Wyznaczamy zbiór krytyczny prawostronny K = <k; ∞), k wyznaczamy z tablicy rozkładu χ2 z r-s-1stopniami swobody i dla prawdopodobieństwa α równemu poziomowi istotności – pkt 5 części VII „Tablice statystyczne”, s jest liczbą parametrów szacowanych na podstawie próby metodą największej wiarygodności.

7. Podejmujemy decyzję: • odrzucamy hipotezę H0, gdy un ∈K • przyjmujemy hipotezę H0, gdy un∉K

Test χ2 opiera się na twierdzeniu: Statystyka

2ri i

ni=1 i

(N -np )U =

np∑

gdzie: Ni - zmienna losowa oznaczająca liczebność klasy Ai, której wartością jest liczbą un określona w punkcie 5

ma dla licznej próby rozkład w przybliŜeniu χ2 z r-s-1 stopniami swobody, gdzie s jest liczbą parametrów szacowanych na podstawie próby metodą największej wiarygodności.

Uzasadnienie postępowania

ni - liczba elementów próby naleŜących do klasy Ai (liczebność empiryczna klasy Ai)

npi - oczekiwana liczba elementów naleŜących do klasy Ai, przy załoŜeniu prawdziwości hipotezy zerowej (liczebność teoretyczna klasy Ai). Jeśli hipoteza H0 jest prawdziwa, to róŜnica ni - npi powinna być mała dla i = 1, ... , r, zatem liczba un powinna być takŜe mała. Dlatego zbiór krytyczny przyjmujemy prawostronny K = <k; ∞). Jeśli un ∈ K tzn. un ≥ k, to uznajemy, Ŝe un jest duŜe i H0 odrzucamy, w przeciwnym przypadku H0 przyjmujemy.

Przykład 17.3 Za pomocą arkusza kalkulacyjnego Exel wygenerowano 120 liczb losowych z rozkładu jednostajnego z przedziału (0 ; 1). Otrzymano następujące liczby, po uporządkowaniu ich niemalejąco (kolumnami).

0,002 0,090 0,188 0,297 0,385 0,472 0,587 0,702 0,829 0,922 0,003 0,090 0,189 0,301 0,387 0,473 0,600 0,721 0,830 0,927 0,006 0,095 0,217 0,317 0,393 0,480 0,605 0,724 0,851 0,927 0,017 0,115 0,227 0,323 0,395 0,483 0,610 0,726 0,855 0,944 0,022 0,136 0,236 0,332 0,403 0,489 0,610 0,747 0,864 0,946 0,036 0,141 0,251 0,333 0,407 0,490 0,611 0,759 0,867 0,962 0,046 0,148 0,253 0,341 0,411 0,496 0,633 0,770 0,870 0,967 0,053 0,154 0,254 0,349 0,422 0,511 0,638 0,776 0,885 0,983 0,055 0,157 0,256 0,356 0,425 0,516 0,655 0,807 0,899 0,989 0,061 0,163 0,261 0,360 0,426 0,537 0,661 0,810 0,910 0,996 0,064 0,166 0,265 0,369 0,459 0,540 0,663 0,825 0,918 0,998 0,079 0,176 0,286 0,381 0,472 0,542 0,667 0,827 0,921 0,998

Sprawdzimy, przy pomocy testu chi kwadrat, na poziomie istotności 0,05, czy rzeczywiście pochodzą z tego rozkładu.

Page 64: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

64

Rozwiązanie

Cecha X – liczba losowa Wysuwamy hipotezy H0 (Cecha X ma rozkład jednostajny w przedziale ( 0;1))27 H1 (Cecha X nie ma rozkładu jednostajnego)

1. Prezentujemy dane w szeregu rozdzielczym przedziałowym w 10 klasach

Ai ni (-∞ ; 0,1) 15 <0,1 ; 0,2) 11 <0,2 ; 0,3) 11 <0,3 ; 0,4) 15 <0,4 ; 0,5) 15 <0,5 ; 0,6) 6 <0,6 ; 0,7) 11 <0,7 ; 0,8) 8 <0,8 ; 0,9) 13 <0,9 ; ∞) 15 Razem 120

2. Nie ma parametrów wchodzących w skład dystrybuanty rozkładu jednostajnego w przedziale (0;1) (patrz gęstość (17.1)).

3. Przyjmujemy, Ŝe hipoteza H0 jest prawdziwa. 4. PoniewaŜ gęstość jest stała więc ip const 0,1= = oraz npi = 12 5.

Ai ni pi n pi i i

i

(n np )2

np

(-∞ ; 0,1) 15 0,1 12 0,75 <0,1 ; 0,2) 11 0,1 12 0,08 <0,2 ; 0,3) 11 0,1 12 0,08 <0,3 ; 0,4) 15 0,1 12 0,75 <0,4 ; 0,5) 15 0,1 12 0,75 <0,5 ; 0,6) 6 0,1 12 3,00 <0,6 ; 0,7) 11 0,1 12 0,08 <0,7 ; 0,8) 8 0,1 12 1,33 <0,8 ; 0,9) 13 0,1 12 0,08 <0,9 ; ∞) 15 0,1 12 0,75 Razem 120 1,0 120 un =7,95

6. Wyznaczamy zbiór krytyczny prawostronny K = <k; ∞). Liczbę k wyznaczamy z tablicy rozkładu chi kwadrat z r – s – 1 = 10 – 0 – 1 = 9 stopniami swobody i poziomu istotności 0,05. Otrzymujemy k =16,916, zatem K =<16,016; ∞).

7. n 0u K H∉ ⇒ przyjmujemy.

27 tzn. jej gęstość wyraŜa się wzorem ( )

1 dla x (0,1)f (x)

0 dla x 0,1

∈=

∉ (17.1)

Page 65: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

65

16.4.3. Ocena normalności rozkładu Posiadanie informacji, Ŝe rozkład cechy populacji jest normalny ma podstawowe znaczenie w statystyce, bowiem przy tym załoŜeniu prawdziwa jest przewaŜająca liczba twierdzeń, teoria statystyki jest najprostsza i do zastosowań praktycznych nie potrzeba zwykle pobierać licznych prób.

Podamy wersję testu zgodności χ2 dostosowaną do sprawdzania hipotezy, Ŝe cecha populacji ma rozkład normalny. Stosujemy go, gdy próba jest liczna (n ≥ 80)28,

Hipoteza zerowa H0 (Cecha X populacji ma rozkład normalny). Hipoteza alternatywna H1 (Cecha X populacji nie ma rozkładu normalnego).

Weryfikacja powyŜszych hipotez za pomocą testu χ2 przebiega następująco: 1. Pobieramy liczną próbę (n ≥80). Prezentujemy ją w szeregu rozdzielczym klasowym w r klasach. 2. Obliczamy: x - średnią z próby i s - odchylenie standardowe z próby według wzorów

r r2

i i i ii=1 i=1

1 1x= n x , s= n (x -x)

n n∑ ∑% % ix~ - środek klasy Ai

3. Przyjmujemy, Ŝe cecha X ma rozkład normalny N( x , s).

4. Dla kaŜdego przedziału klasowego i i i 1A a ;a )+=< obliczamy prawdopodobieństwo

i i+1 i+1 ii i i i+1

a -x a -x a -x a -xX-xp =P(X A )=P(a X<a )=P( < )=Φ( )-Φ( )

s s s s s∈ ≤ ≤

5. Obliczamy 2r

i in

i=1 i

(n -np )u =

np∑ , gdzie ni jest liczebnością klasy Ai.

6. Wyznaczamy zbiór krytyczny prawostronny K k; )=< ∞ , gdzie k wyznaczamy z tablicy rozkładu χ2 dla r – 3 stopniami swobody i dla prawdopodobieństwa α (równemu poziomowi istotności) – pkt 5 części VII „Tablice statystyczne”.

7. Podejmujemy decyzję: • odrzucamy hipotezę H0, gdy un ∈ K • przyjmujemy hipotezę H0, gdy un ∉K

Przykład 17.4 Badano wynagrodzenie (w zł) pracowników pewnego przedsiębiorstwa (cecha X populacji). Z grupy pracowników pobrano próbę 200 elementową. Otrzymane wyniki prezentowane są w poniŜszym szeregu rozdzielczym przedziałowym

Nr klasy i

Wynagrodzenie <ai, ai+1)

Liczebność ni

1 <600 ; 800) 2 2 <800 ; 1000) 10 3 <1000 ; 1200) 20 4 <1200 ; 1400) 30 5 <1400 ; 1600) 56 6 <1600 ; 1800) 42 7 <1800 ; 2000) 21 8 <2000 ; 2200) 13 9 <2200 ; 2400) 5

10 <2400 ;2600) 1 Suma 200

28 W przypadku konieczności zweryfikowania hipotez o podleganiu cechy rozkładowi normalnemu w oparciu o próbę

o małej liczebnosci naleŜy zastosować test Shapiro-Wilka. Zostanie on opisany w drugiej części podręcznika

Page 66: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

66

Na poziomie istotności α = 0,05 sprawdzimy hipotezy: H0 (Cecha X populacji ma rozkład normalny) i H1 (Cecha X populacji nie ma rozkładu normalnego).

Obliczenia x i s

Nr klasy

i

Wynagrodzenie <ai; ai+1)

Liczebność ni

Środek klasy

ix~ iinx~ 2

ii )xx~(n −

1 <600 ; 800) 2 700 1400 1411200 2 <800 ; 1000) 10 900 9000 4096000 3 <1000 ; 1200) 20 1100 22000 3872000 4 <1200 ; 1400) 30 1300 39000 1728000 5 <1400 ; 1600) 56 1500 84000 89600 6 <1600 ; 1800) 42 1700 71400 1075200 7 <1800 ; 2000) 21 1900 39900 2721600 8 <2000 ; 2200) 13 2100 27300 4076800 9 <2200 ; 2400) 5 2300 11500 2888000 10 <2400 ;2600) 1 2500 2500 921600 Suma 200 308000 22880000

1540200

308000x == [zł], 2 22880000

s 114400200

= = [zł], s 114400 338,2= = [zł]

Obliczenia u200

PoniewaŜ do kaŜdej ze skrajnych klas powinno naleŜeć co najmniej 5 elementów łączymy w jedną klasę klasy pierwszą i drugą danego szeregu rozdzielczego - otrzymujemy pierwszą klasę nowego szeregu, którą ze względu na wymagania, jaką postać ma mieć ta klasa zapisujemy (-∞;1000). Z tych samych powodów łączymy klasy 8, 9 i 10 w jedną klasę i zapisujmy ją w postaci <2000; ∞ ).

i <ai; ai+1)

ni ai ai+1 ia -x

s i+1a -x

s Φ ia -x

s

Φ i+1a -x

s

pi npi 2

i 1

i

(n -np )

np

1 ( ∞− ; 1000) 12 ∞− 1000 ∞− -1,60 0 0,0552 0,05517 11,03 0,084659 2 <1000 ; 1200) 20 1000 1200 -1,60 -1,01 0,05517 0,1574 0,10220 20,44 0,009499 3 <1200 ; 1400) 30 1200 1400 -1,01 -0,41 0,15737 0,3395 0,18208 36,42 1,130557 4 <1400 ; 1600) 56 1400 1600 -0,41 0,18 0,33945 0,5704 0,23095 46,19 2,083142 5 <1600 ; 1800) 42 1600 1800 0,18 0,77 0,57041 0,779 0,20858 41,72 0,001933 6 <1800 ; 2000) 21 1800 2000 0,77 1,36 0,77899 0,9131 0,13412 26,82 1,264544 7 <2000 ; ∞ ) 19 2000 ∞ 1,36 ∞ 0,91311 1 0,08689 17,38 0,151291 Suma 1,00000 200,00 4,73

u200= 4,73. Wyznaczamy zbiór krytyczny prawostronny K = <k; ∞). Liczbę k odczytujemy z tablicy

rozkładu 2χ dla r – 3 = 7 – 3 = 4 stopni swobody i prawdopodobieństwa α = 0,05. (pkt 5 części VII „Tablice statystyczne”). Mamy k = 9,488, więc K = <9,488; ∞). PoniewaŜ u200= 4,73 ∉ K , więc hipotezę, Ŝe cecha ma rozkład normalny przyjmujemy. Hipotezę tę moŜna dopiero odrzucić na poziomie istotności 0,32, gdyŜ zbiór krytyczny K = <4,73; ∞) otrzymujemy właśnie na tym poziomie.

W powyŜszym przykładzie dane statystyczne były pogrupowane w przedziałach o jednakowej długości (z wyjątkiem pierwszego i ostatniego). Test chi kwadrat moŜna stosować takŜe przy innych sposobach grupowania danych, na przykład przy grupowaniu w przedziały o jednakowych prawdopodobieństwach teoretycznych pi przyjęcia wartości z tych przedziałów. Prawdopodobieństwa te są obliczane, przy załoŜeniu, iŜ prawdziwa jest hipoteza, Ŝe rozkład cechy jest normalny. Przy tej metodzie grupowania liczebności npi są jednakowe dla kaŜdego przedziału.

Page 67: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

67

Przykład 17. 5

Padano zuŜycie surowca na jednostkę produkcji (Cecha X populacji). Pobrano próbę 100 elementową i otrzymano wyniki:

35 72 91 23 49 12 69 52 41 23 32 74 91 12 58 68 34 16 50 38 43 96 35 67 73 28 38 62 17 30 81 46 51 63 43 54 50 24 18 34 25 51 40 63 89 45 66 25 63 84 15 34 82 49 60 74 29 34 45 67 65 48 76 84 21 38 49 60 48 32 69 54 38 68 41 32 55 41 63 47 28 80 80 20 31 90 57 40 77 56 51 49 53 48 63 51 69 31 40 24

Sprawdzimy hipotezy H0 (X ma rozkład normalny), H1 (X nie ma rozkładu normalnego), stosując test chi-kwadrat, dla danych pogrupowanych w przedziały o równych liczebnościach teoretycznych. Rozwiązanie

Pogrupujemy dane w r = 10 klasach, a więc teoretyczna liczebność klasy wynosi takŜe 10, gdyŜ próba liczy 100 elementów, prawdopodobieństwo przyjęcia wartości przez X z danej klasy wynosi p = 0,1.

Na podstawie próby wyznaczamy x = 50 i s =20,5. Zakładamy, Ŝe cecha X ma rozkład normalny

N(50;20,5), czyli zmienna losowa 5,20

50XY

−= ma rozkład normalny N(0, 1).

Przedziały (klasy) wyznaczamy następująco: Ai = <ai-1 ;ai)

Prawy koniec ai klasy o numerze i spełnia związek P(X < ai) = ip = 0,1i, zatem

i ii

a -50 a -50X-50P(X<a )=P < =Φ =0,1i

20,5 20,5 20,5

Z tablicy dystrybuanty rozkładu normalnego (pkt 4 części VII „Tablice statystyczne”) wyznaczamy

liczbę ki, taką, Ŝe ii

a -50=k

20,5

a stąd ai =50 + 20,5ki dla i = 1, 2, ..., 9

Prawe końce klas zostały wyznaczone, a to wystarcza do wyznaczenia klas, gdyŜ lewy koniec klasy jest równy prawemu poprzedniej klasy, zaś koniec lewy pierwszej klasy jest równy -∞. Sortujemy próbę niemalejącą i wyznaczamy liczebności klas.

12 12 15 16 17 18 20 21 23 23 24 24 25 25 28 28 29 30 31 31 32 32 32 34 34 34 34 35 35 38 38 38 38 40 40 40 41 41 41 43 43 45 45 46 47 48 48 48 49 49 49 49 50 50 51 51 51 51 52 53 54 54 55 56 57 58 60 60 62 63 63 63 63 63 65 66 67 67 68 68 69 69 69 72 73 74 74 76 77 80 80 81 82 84 84 89 90 91 91 96

Dalej postępujemy jak w poprzednim przykładzie: obliczmy wartość sprawdzianu, który dla danych

w tym przykładzie przyjmuje postać r

2n i

i=1

1u = (n -10)

10∑ .

Page 68: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

68

Otrzymane wyniki przedstawia poniŜsza tabela.

i 0,1i ki ai=20,5ki+50 KlasyAi Liczebności

ni (ni -10)2

1 0, 1 -1,28 23,7 (- ∞ ; 23,7) 10 0 2 0,2 -0,84 32,7 <23,7 ; 32,7) 13 9 3 0,3 -0,52 39,2 <32,7 ; 39,2) 10 0 4 0,4 -0,25 44,8 <39,2 ; 44,8) 8 4 5 0,5 0,00 50,0 <44,8 ; 50,0) 11 1 6 0,6 0,25 55,2 <50,0 ; 55,2) 11 1 7 0,7 0,52 60,8 <55,2 ; 60,8) 5 25 8 0,8 0,84 67,5 <60,8 ; 67,5) 10 0 9 0,9 1,28 76,3 <67,5 ; 76,3) 10 0 10 1,0 ∞ ∞ <76,3 ; ∞) 12 4 Suma 100 44

Zatem wartość sprawdzianu n

44u 4,4

10= = . Zbiór krytyczny prawostronny K = <k ; ∞). Liczbę k

wyznaczmy z tablicy rozkładu chi kwadrat dla r-3 = 10 -3 = 7 stopni swobody i poziomu istotności 0,05. Otrzymujemy k = 14,067, zatem K = <14,067 ; ∞). PoniewaŜ un ∉ K więc przyjmujemy hipotezę, cecha X ma rozkład normalny. Wyznaczymy jeszcze graniczny poziom istotności, )4,4Y(Pˆ 7 ≥=α , gdzie Y7 ma rozkład chi kwadrat z 7 stopniami swobody. Na podstawie

programu komputerowego otrzymujemy 73,0ˆ =α (tablice są za mało dokładne), co świadczy o bardzo dobrej zgodności rozkładu w próbie z rozkładem hipotetycznym.

16.4.4. Test niezaleŜności chi kwadrat

Populację badamy ze względu na dwie cechy X i Y , czyli ze względu na zmienną losową dwuwymiarową (X, Y). Ze względu na cechę X populację dzielimy na r grup, zaś ze względu na cechę Y na s grup, zatem ze względu na obie cechy na r ⋅ s grup. Cechy X i Y wyraŜone są więc w skali nominalnej. Zmienna losowa dwuwymiarowa jest skokowa o funkcji prawdopodobieństwa P(X = i, Y = j) = pij dla i = 1, 2, … , r; j = 1, 2, … , s. Podamy teraz test, oparty na teście chi kwadrat, do weryfikacji hipotez o niezaleŜności cech X i Y populacji.

Jak wiemy z rachunku prawdopodobieństwa zmienne losowe skokowe są niezaleŜne wtedy i tylko wtedy, gdy P(X = i, Y = j) = P(X = i) P(Y = j) lub w innym zapisie pij = pi.p.j dla i = 1, 2, … , r; j = 1, 2, … , s.

Zatem hipoteza H0 (Cechy X i Y są niezaleŜne) moŜe być zastąpiona hipotezą: H0 (Rozkład zmiennej losowej dwuwymiarowej (X, Y) jest skokowy o funkcji prawdopodobieństwa

P(X = i, Y = j) = pi. p.j dla i = 1, 2, … , r; j = 1, 2, … , s). Pobieramy z populacji próbę i klasyfikujemy ją ze względu na obie cechy.

Oznaczenia: nij - liczba elementów próby naleŜących do grupy o numerze i ze względu na cechę X oraz do grupy o

numerze j ze względu na cechę Y, ni. – liczba elementów próby naleŜących do grupy o numerze i ze względu na cechę X, n.j - liczba elementów próby naleŜących do grupy o numerze j ze względu na cechę Y, ni., n.j - liczebności brzegowe.

i. i1 i2 isn =n +n +…+n ′ .j 1j 2j rjn =n +n +…+n ′

s.2.1..r.2.1 nnnnnnn +++=+++= KK .

Page 69: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

69

Liczebności te moŜna przedstawić w postaci podanej poniŜej tabeli korelacyjnej

Y X

1 2 … s ni.

1 n11 n12 … n1s n1. 2 n21 n22 n2s n2. . … … … … … r nr1 nr2 … nrs nr.

n.j n.1 n.2 … n.s n.

Oszacowaniem metodą największej wiarygodności parametru pi. jest n

n i⋅ , zaś parametru p.j jest n

.n j.

Wzór na wartość sprawdzianu w teście chi kwadrat 2r

i in

i=1 i

(n -np )u =

np∑ przybiera teraz postać

2r sij ij

ni=1 j=1 ij

ˆ(n -n )u =

n∑∑ , gdzie i. .jij

n nn =

n.

Wielkość un jest wartością statystyki Un o rozkładzie w przybliŜeniu chi kwadrat z liczbą stopni swobody równą liczbie wszystkich grup ze względu na obie cechy minus liczba parametrów szacowanych metodą największej wiarygodności minus jeden. Wszystkich grup jest r·s. Parametrów pi jest r, ale naleŜy oszacować tylko r -1 parametrów, gdyŜ

r

i.i-1

p =1∑ i z tej równości wyznaczmy r-ty parametr, z tego samego powodu szacujemy tylko s-1

parametrów p.j. Zatem statystyka Un ma rozkład w przybliŜeniu chi kwadrat o (r-1)(s-1) stopniach swobody, gdyŜ

r s (r 1) (s 1) 1 rs r s 1 r(s 1) (s 1) (r 1)(s 1)⋅ − − − − − = − − − = − − − = − −

Przyjmujemy zbiór krytyczny prawostronny K = < k; ∞). Liczbę k odczytujemy z rozkładu chi kwadrat dla (r-1)(s-1) stopni swobody. Jeśli wartość sprawdzianu un ∈ K, to odrzucamy hipotezę zerową H0, Ŝe cechy są niezaleŜne, w przeciwnym przypadku przyjmujemy H0.

Przykład 17. 7

W trzech grupach A, B i C pewnej uczelni przeprowadzono egzamin ze statystyki. Postanowiono zbadać, czy istnieje zaleŜność między przynaleŜnością studenta do danego wydziału, a wynikiem egzaminu?

Wprowadzamy zmienną losową X przyjmującą wartość 1, gdy student jest z grupy A, liczbę 2, gdy z grupy B oraz liczbę 3, gdy jest z grupy C oraz zmienną losową Y przyjmującą wartość 1, gdy student zdał egzamin lub wartość 0, gdy nie zdał egzaminu.

Wysuwamy hipotezy H0 (Cechy X i Y są niezaleŜne) H1 (Cechy X i Y są zaleŜne)

Wyniki badania przedstawione są w 6 klasach. Liczebności tych klas oraz liczebności brzegowe zawiera poniŜsza tabela.

Y X

1 0 ni.

1 35 5 40 2 45 15 60 3 20 10 30 n.j 100 30 130

Page 70: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

70

Obliczamy: - tabelę wartości ijn

j i 1 0

1 30,77 9,23 2 46,15 13,85 3 23,08 6,92

- tabelę wartości 2

ij ij

ij

ˆ(n -n )

n

j i 1 0

1 0,58 1,94 2 0,03 0,10 3 0,41 1,37

Wartość sprawdzianu to suma zawartości komórek powyŜszej tabeli, jest ona równa un = 4,43.

Przyjmujemy poziom istotności α = 0,01.

Zbiór krytyczny dla tego testu jest prawostronny K = < k ; ∞) . Liczbę k odczytujemy z tablicy rozkładu chi kwadrat dla (r-1)(s-1) = (3-1)(2-1) = 2 i poziomu prawdopodobieństwa α = 0,01. Mamy k = 9,210, zatem K = < 9,210 ; ∞). PoniewaŜ un∉K, więc brak jest podstaw do odrzucenia hipotezy zerowej, co oznacza Ŝe wynik egzaminu nie zaleŜy od grupy, do której student jest zapisany.

Hipotezy moŜna zweryfikować bezpośrednio wykorzystując funkcję statystyczną TEST.CHI arkusza Excel. Dane dotyczą liczebności klas nij oraz wartości ijn , które naleŜy wcześniej obliczyć.

Wynik formuły 0,10937 jest równy jest równy granicznemu poziomowi istotności α , wyznaczonemu na podstawie wartości wskaźnika un = 4,43 obliczonego bez wykorzystania programu komputerowego, co zilustrowano poniŜej.

PoniewaŜ α=0,109 > 0,05 = α więc hipotezę zerową H0 przyjmujemy.

Page 71: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

71

Na zakończenie zweryfikujemy wysunięte hipotezy korzystając z pakietu IBM SPSS Statistics wybierając po wpisaniu danych do 2 kolumn (do pierwszej oznaczenie wydziałow , a do drugiej oznaczenie wyniku egzaminu – dane sa zapisane w 2 kolumnach i 130 wierszach) w kolejności: Analiza → Opis statystyczny → Tabele krzyŜowe i wybierając statystykę Chi-kwadrat:

Page 72: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

72

Otrzymane wyniki są następujące:

Otrzymaliśmy taką samą wartość statystyki chi-kwadrat = 4,424 jak obliczoną bez wykorzystania programu komputerowego i taką samą graniczną wartość poziomu istotności 0,110 jaką obliczono z wykorzystaniem arkusza Excel.

Uwaga

KaŜda teoretyczna liczebność ijn powinna wynosić co najmniej 5. Jeśli tak nie jest, to naleŜy dodać

do siebie dwa sąsiednie wiersze lub kolumny.

Sprawdzian moŜna łatwo obliczyć w przypadku r = s = 2. Wtedy dane zapisane są w tzw. tabeli czteropolowej

Y X

1 2

1 A B A+B 2 C D C+D

A+C B+D n

Wtedy sprawdzian przyjmuje postać 2

n

n(AD-BC)U =

(A+B)(A+C)(B+D)(C+D)

i ma rozkład (przy załoŜeniu prawdziwości hipotezy zerowej) asymptotycznie chi kwadrat z jednym stopniem swobody.

Uwaga W częśći II podręcznika opisano kolejny test do badania niezaleŜności cech populacji oparty na teorii serii.

Page 73: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

73

Przykład 17.8

Badano wyniki egzaminu końcowego wśród absolwentów gimnazjów duŜych miast (powyŜej 100 tys. mieszkańców) i małych miast (do 100 tys. mieszkańców). Wprowadzamy cechy X i Y, X = 1, gdy absolwent zdawał egzamin w duŜym mieście, X=0, gdy zdawał w małym mieście, natomiast Y =1, gdy absolwent zdał egzamin, Y = 0, gdy nie zdał egzaminu.

Wysuwamy hipotezy H0 (Cechy X i Y są niezaleŜne), H1 (Cechy X i Y są zaleŜne).Wyniki próby przedstawione są w tabeli

Y X

1 0 ni.

1 360 40 400 0 280 20 300 n.j 640 60 700

Obliczamy wartość sprawdzianu

2

n

700 (360 20 40 260)u 2,43

400 640 60 300

⋅ ⋅ − ⋅= =

⋅ ⋅ ⋅

Zbiór krytyczny K = <k ; ∞). Przyjmujemy poziom istotności 0,05. Liczbę k wyznaczamy z tablicy rozkładu chi kwadrat dla jednego stopnia swobody i poziomu istotności 0,05, otrzymujemy k = 3,841, zatem K = <3,841 ; ∞). PoniewaŜ un∉K, więc hipotezę zerową, Ŝe wynik egzaminu nie zaleŜy od tego, czy absolwent zdawał egzamin w duŜym czy w małym mieście naleŜy przyjąć.

16.5. Testy nieparametryczne dla dwóch prób

16.5.1. Test zgodności rozkładów dla prób niepowiązanych (test Wilcoxona)

RozwaŜamy cechy X i Y dwóch populacji. Z kaŜdej populacji pobierany próbę o liczebności odpowiednio równej n1 i n2 (liczebność mniejszej próby oznaczamy n1). Wysuwamy hipotezę zerową, Ŝe rozkłady obu cech są jednakowe. PoniewaŜ rozkład zmiennej losowej określa jej dystrybuanta więc hipotezę zerową moŜna zapisać w postaci

H0( FX = FY)29 gdzie: FX i FY są dystrybuantami zmiennych losowych X oraz Y, FX(u) = P(X < u), FY(u) = P(Y < u).

Równość FX =FY oznacza, Ŝe dla kaŜdej liczby rzeczywistej u mamy FX(u) = FY(u).

Hipotezę alternatywną przyjmujemy w jednej z trzech postaci:

H1( FX >FY) lub H1( FX <FY) lub H1( FX ≠FY)

Nierówność FX >FY oznacza, Ŝe dla kaŜdej liczby rzeczywistej u mamy FX(u) > FY(u), podobnie rozumiemy nierówność FX <FY. Natomiast wyraŜenie FX ≠ FY oznacza, Ŝe istnieje liczba rzeczywista u taka, Ŝe FX (u) ≠ FY(u). Aby sprawdzić hipotezy zerową i alternatywną łączymy obie próby w jedną próbę o liczebności n = n1 + n2 i porządkujemy ją niemalejąco. Następnie rangujemy elementy uporządkowanej próby, tzn. numerujemy jej elementy kolejnymi liczbami naturalnymi, poczynając od liczby 1. Jeśli w uporządkowanej próbie występują elementy jednakowe, to kaŜdemu z nich przypisujemy tę samą rangę, równą średniej arytmetycznej rang tych elementów, gdyby były one róŜne np. gdyby elementy o numerach 10, 11 i 12 były sobie równe, to kaŜdemu z nich przypisujemy rangę 11, gdyby elementy 15 i 16 były sobie równe, to kaŜdemu z nich przypisujemy rangę 15,5.

29 Patrz pkt 28.1

Page 74: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

74

Sprawdzianem testu do weryfikacji wysuniętych hipotez (testu Wilcoxona) jest statystyka Un = suma rang elementów próby o mniejszej liczebności.

Rozkład sprawdzianu, przy załoŜeniu prawdziwości hipotezy zerowowej jest dla niewielkich liczebności prób stablicowany (pkt 11 części VII „Tablice statystyczne”. Natomiast, gdy min(n1, n2) ≥ 4 i n1 + n2 ≥ 20, to rozkład sprawdzianu jest w przybliŜeniu N(m, σ), gdzie

( )1 1 2n n +n +1m=

2,

( )1 2 1 2n n n +n +1σ=

12.

Przykład 16.10 Analizujemy czas wykonania pewnego zadania przez dwie grupy pracowników. Otrzymane wyniki były następujące:

Grupa 1 – cecha X

77,0 54,6 99,9 94,1 98,6 99,9 99,9 72,0 90,2 77,6 100,0 100,0 96,0 92,9 97,2 100,0

Grupa 2 – cecha Y

60,5 86,2 66,3 100,0

Wysunięto hipotezy

H0 (Rozkłady cech X i Y mają jednakowe rozkłady), czyli H0(FX=FY). H1 (Rozkłady cech X i Y nie mają jednakowych rozkładów), H1( FX≠FY).

Hipotezy te zweryfikujemy za pomocą testu Wilcoxona na poziomie istotności 0,05. Wyniki obu prób oraz ich łączenie i rangowanie elementów próby połączonej przedstawione są w poniŜszej tabeli.

Obliczamy rangi elementów obu prób.

I próba II próba Lp. wynik Ranga wynik ranga

1 54,6 1 2 60,5 2 3 66,3 3 4 72,0 4 5 77,0 5 6 77,6 6 7 86,2 7 8 90,2 8 9 92,2 9 10 94,1 10 11 96,0 11 12 97,2 12 13 98,6 13 14 99,9 15 15 99,9 15 16 99,9 15 17 100,0 18,5 18 100,0 18,5 19 100,0 18,5 20 100,0 18,5

Uwzględniając, Ŝe n1 = 4, n2 =16 wyznaczamy wartość sprawdzianu un = suma rang elementów próby o mniejszej liczności un = 5.305.18732 =+++

Page 75: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

75

Skorzystamy z asymptotycznej własności statystyki Un: Un ma rozkład w przybliŜeniu normalny N(m, σ), gdzie

( )1 1 2n n +n +1m= =42

2,

( )1 2 1 2n n n +n +1σ= =10,58

12.

Czyli statystyka * nn

U - 42U =

10,58 ma rozkład w przybliŜeniu normalny N(0,1), przy załoŜeniu

prawdziwości hipotezy zerowej.

Przyjmujemy zbiór krytyczny dwustronny, na poziomie istotności 0,05

K = (-∞ ; -k> ∪ <k ; ∞). Liczba k spełnia związek Φ(k) = 1 –α/2 =0,975 ⇒ k = 1,96

K= (-∞ ; -1,96> ∪ <1,96 ; ∞) * nn

u -42 30,5-42u = = =-1,09

10,58 10,58

PoniewaŜ un∉,K, więc nie ma podstaw, by twierdzić, Ŝe cechy X i Y mają róŜne rozkłady, co oznacza, Ŝe .przyjmujemy hipotezę zerową.

Obliczymy jeszcze krytyczny poziom istotności

Spełnia on związek ˆ

(1,09) 12

αΦ = − Stąd ˆ 2(1 (1,09)) 2(1 0,8621) 0,2758α = − Φ = − = .

Na zakończenie zweryfikujemy wysunięte hipotezy korzystając z pakietu IBM SPSS Statistics wybierając po wpisaniu danych do 2 kolumn (do pierwszej wyniki pomiarów , a do drugiej określenie której grupy dotyczą) w kolejności: Analiza → Testy nieparametryczne → Próby niezaleŜne30 oraz określając Testowane zmienne i Zmienną grupującą.

Otrzymany wynik Istotność = 0,275 jest taki sam jak wyznaczony bez wykorzystania programu komputerowego graniczny poziom istotności.

16.5.2. Test zgodności rozkładów dla prób powiązanych (test rangowanych znaków)

Z populacji losujemy n elementów i badamy wartości cechy X w dwóch momentach początkowym i końcowym. Niech X1 będzie cechą oznaczającą wartości cechy X w momencie początkowym, a X2 cechą oznaczającą wartości cechy X w momencie końcowym. Otrzymujemy dwie próby (powiązane) n elementowe, pierwsza próba (x11, x12, … , x1n), druga próba (x21, x22, … , x2n). Obliczamy róŜnice x1i – x2i między elementami I i II próby, sortujemy je niemalejąco i rangujemy (numerujemy) liczbami od 1 do n.

Przyjmujemy sprawdzian Un = suma rang róŜnic dodatnich

Dla liczności 3 n 20≤ ≤ rozkład dokładny statystyki Un jest stablicowany (pkt 12 części VII „Tablice statystyczne”). Dla n > 20 statystyka ta ma rozkład asymptotycznie normalny N(m, σ), gdzie

( )n n+1m =

4,

( )( )n n+1 2n+1σ =

24.

30 W pakiecie IBM SPSS Statistics test ten nosi nazwę Test U Manna-Whitney’a dla prób niezaleznych

Page 76: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

76

Przykład 16.11

Na poziomie istotności α=0,001 weryfikuje się hipotezę o równości stochastycznej czasu wykonywania pewnego zadania przed i po szkoleniu.

Uwzględnia się, Ŝe dotychczasowe badania wykazały skrócenie czasu wykonywania zadania na skutek szkolenia.

Zatem weryfikowane hipotezy mają postać:

( )1 20 X XH F = F

1 21 X XH (F > F )

X1 – czas wykonania zadania przed szkoleniem, X2 - czas wykonania zadania po szkoleniu.

Przebieg wyznaczania rang przedstawiono w poniŜszej tabeli:

i x1i x2i x1i-xi2 Uporządkowane

róŜnice Rangi róŜnic

1 0,71 0,20 0,51 -0,24 1 2 2,2 0,11 2,09 0,38 2 3 2,12 0,17 1,95 0,51 3 4 1,40 0,12 1,28 0,63 4 5 3,24 0,36 2,88 1,02 5 6 2,79 0,21 2,58 1,09 6 7 3,59 0,53 3,06 1,28 7 8 1,90 0,13 1,77 1,71 8 9 0,81 0,18 0,63 1,77 9 10 2,54 0,19 2,35 1,95 10 11 0,60 0,22 0,38 2,09 11 12 1,31 0,29 1,02 2,35 12 13 1,28 0,19 1,09 2,58 13 14 1,93 0,22 1,71 2,88 14 15 3,84 0,49 3,35 3,06 15 16 0,08 0,32 -0,24 3,35 16

Z podanej tabeli otrzymuje się sumę rang dla róŜnic dodatnich Un = 135.

Przyjmujemy zbiór krytyczny prawostronny K = <k ; ∞). Z tablicy wyznaczamy k = 122, zatem hipotezę zerową H0, Ŝe cechy mają jednakowy rozkład naleŜy odrzucić.

Na zakończenie zweryfikujemy wysunięte hipotezy korzystając z pakietu IBM SPSS Statistics wybierając po wpisaniu danych do 2 kolumn (do pierwszej wyniki pomiarów z I okresu , a do drugiej z II okresu) w kolejności: Analiza → Testy nieparametryczne → Testy tradycyjne → Dwie próby zaleŜne → Test Wilcoxona31.

31 W pakiecie IBM SPSS Statistics test ten nosi nazwę Test znaków rangowanych Wilcoxona

Page 77: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

77

Otrzymane wyniki są następujące:

Otrzymano taką samą wartość statystyki Suma rang dodatnich = 135

16.6. Algorytmizacja obliczeń

16.6.1. Wykorzystanie arkusza Excel

Lp Zakres analizy statystycznej Funkcje statystyczne

Narzędzia statystyczne

1. Weryfikacja hipotezy o wartości oczekiwanej przy znanej i nieznanej wariancji

TEST.Z -

2. Weryfikacja hipotezy o równości wartości oczekiwanych przy równych wariancjach

TEST.T Test t: z dwiema próbami

zakładający równe wariancje

3. Weryfikacja hipotezy o równości wartości oczekiwanych przy róŜnych wariancjach

TEST.T Test t: z dwiema próbami

zakładający nierówne wariancje

4. Weryfikacja hipotezy o równości wartości oczekiwanych przy próbach powiązanych

TEST.T Test t: par skojarzonych z dwiema próbami dla

średniej

5. Weryfikacja hipotezy o równości wariancji TEST.F Test F: z dwiema próbami

dla wariancji

6. Weryfikacja hipotezy o niezaleŜności cech TEST.CHI -

Page 78: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

78

16.6.2.Zasady wyboru testu przy dwóch próbach

Na poniŜszym rysunku przedstawiono schemat blokowy wyboru testów do oceny istotności róŜnic rozkładu określonej cechy w dwóch warunkach.

Rys. 18.1. Schemat blokowy wyboru testów statystycznych do oceny istotności róŜnic rozkładu cechy w dwóch róŜnych warunkach

Wszystkie te testy zostały opisane lub wspomniane32 w dotychczasowych rozwaŜaniach. 32 W zaleŜności od liczebności póby stosuje się test zgodności chi-kwadrat lub test Shapiro-Wilka.

Test McNemary i test dokładny Fishera, a takŜe test Shapiro-Wilka umoŜliwiający ocenę normalności rozkładu na podstawie prób o małych liczebnościach zostały opisane w części drugiej podręcznika.

Początek

Czy próby powiązane

NIE TAK

Skala cechy

PRZEDZ. PORZĄDK. NOMINALNA

Skala cechy

NOMINALNA PRZEDZ. PORZĄDK.

Czy cecha ma rozkład normalny18

TAK NIE

Małe liczności prób

NIE TAK

Czy cecha ma rozkład normalny18

TAK NIE

Czy wariancje cechy przy 2 warunkach równe

TAK NIE

Czy próby powiązane

TAK NIE

Test Studenta dla prób niepo-wiąza-nych

Test Cochrana

- Coxa

Test Wilco-xona

Test McNe-mara

Test chi kwadrat

Test dokładny Fishera

Test Studenta dla prób powiąza-

nych

Test rango-wanych znaków

Koniec

Page 79: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

79

17. ANALIZA KORELACJI I REGRESJI DWÓCH ZMIENNYCH

17.1. Wprowadzenie Badamy populację ze względu na dwie cechy, które modelujemy zmiennymi losowymi X i Y. Mówimy wówczas, Ŝe populacja jest badana ze względu na zmienną losową dwuwymiarową (X, Y), zaś populację nazywamy populacją dwuwymiarową.

Próba z populacji dwuwymiarowej jest to ciąg n wyrazowy zmiennych losowych dwuwymiarowych 1 1 2 2 n n(X ,Y ), (X ,Y ), ...,(X ,Y ) (17.1) niezaleŜnych (dwuwymiarowo)33 o jednakowym rozkładzie takim jak rozkład zmiennej losowej dwuwymiarowej (X, Y).

KaŜdy ciąg 1 1 2 2 n n(x ,y ), (x ,y ), ...,(x ,y ) (17.2) będący wartością próby (17.1) nazywamy realizacją próby z populacji dwuwymiarowej. Przedmiotem rozwaŜań w tym rozdziale będą następujące zagadnienia oparte o próbę z populacji dwuwymiarowej: • Analiza korelacji, tzn. wywnioskowanie o sile związku liniowego między cechami X i Y. • Analiza regresji (prowadzona, jeŜeli siła związku liniowego jest duŜa) aproksymowanie związku

między cechami zaleŜnością liniową.

Podstawą rozwaŜań będą statystyki z próby dwuwymiarowej 1 1 2 2 n n(X ,Y ),(X ,Y ), ...,(X ,Y ) n n

i ii=1 i=1

1 1X= X , Y= Y

n n∑ ∑ - średnie z próby odpowiednio cechy X i cechy Y

n n2 2 2 2

i ii=1 i=1

1 1X = X , Y = Y

n n∑ ∑ - momenty rzędu 2 z próby odpowiednio cechy X i cechy Y

n n2 2 2 2X i Y i

i=1 i=1

1 1S = (X -X) , S = (Y -Y)

n n∑ ∑ - wariancje z próby odpowiednio cechy X i Y

n

i ii=1

1(XY) = X Y

n∑ - moment rzędu 2 z próby mieszany cech X i Y

n n2 2 2 2X i Y i

i=1 i=1

1 1S = (X -X) , S = (Y -Y)

n n∑ ∑ - odchylenia standardowe z próby cechy X i Y

n

XY i ii=1

1COV = (X -X)(Y -Y)

n∑ - kowariancja z próby cech X i Y

YX

XY

SS

COVR = - współczynnik korelacji Pearsona z próby cech X i Y.

Związki między statystykami 2 2 2 2 2 2

X YS =X -(X) , S =Y -(Y)

XYCOV =(XY)-XY

2 2 2 2

(XY)-XYR=

X -(X) Y -(Y)

33 Zmienne losowe dwuwymiarowe (X1,Y1) i (X2,Y2) są niezaleŜne (dwuwymiarowo) jeśli dystrybuanta zmiennej losowej

czterowymiarowej (X1,Y1,X2,Y2) jest równa iloczynowi dystrybuant zmiennych losowych dwuwymiarowych (X1,Y1) i (X2,Y2).

Page 80: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

80

17.2. Analiza korelacji

17.2.1. Uwagi wstępne

Jak juŜ było powiedziane, w dziale statystyki zwanym analizą korelacji bada się czy istnieje zaleŜność między cechami populacji i jaka jest siła tej zaleŜności. Ograniczymy się do badania istnienia i siły związku liniowego. Jak juŜ wiemy do tego celu słuŜy współczynnik korelacji ρ badanych cech populacji. Rzecz jednak w tym, Ŝe w zagadnieniach praktycznych wartość tego współczynnika nie jest znana. NaleŜy zatem wnioskować o ρ na podstawie próby. Stąd nazwa działu statystyki, który podaje reguły wnioskowania o tym parametrze.

Analiza korelacji opiera się na poniŜszych twierdzeniach, które są prawdziwe przy załoŜeniu, Ŝe zmienna losowa dwuwymiarowa (X, Y) ze względu na którą badana jest populacja ma rozkład normalny o współczynniku korelacji ρ .

Tw.17.1. Współczynnik korelacji z próby R ma rozkład asymptotycznie normalny 21-ρ

N ρ,n

.

(Zgodność rozkładu R z rozkładem normalnym jest dobra dopiero dla wielkich prób n ≥ 500).

Tw.17.2. Statystyka n

1 1+RU = ln

2 1-R ma rozkład asymptotycznie normalny

1 1+ρ 1N ln ,

2 1-ρ n-3

.

(Zgodność rozkładu Un z rozkładem normalnym jest dobra nawet dla niewielkich prób n ≥ 20).

Tw.17.3. Jeśli cechy X i Y są nieskorelowane (ρ = 0), to statystyka n 2

RU = n-2

1-R ma rozkład

Studenta z n –2 stopniami swobody. Uwaga: PoniewaŜ załoŜono, Ŝe (X,Y) ma rozkład normalny i ρ = 0, więc cechy X i Y są niezaleŜne.

17.2.2. Estymacja współczynnika korelacji cech populacji

Przyjmujemy, Ŝe estymatorem współczynnika korelacji ρ cech X i Y populacji jest współczynnik korelacji R z próby34. Jego wartość wyznaczana na podstawie próby 1 1 n n(x , y ),..., (x , y ) wynosi

ni i

xy i 1n n 2 2 2 2x y 2 2

i ii 1 i 1

1(x x)(y y)cov x y x yn

rs s 1 1 x (x) y (y)(x x) (y y)

n n

=

= =

− −∑⋅ − ⋅

= = =

− −− −∑ ∑

Estymator R jest estymatorem zgodnym i asymptotycznie nieobciąŜonym współczynnika ρ.

Do wyznaczania oceny r estymatora R wygodnie jest korzystać ze wzoru

n n n

i i i ii=1 i=1 i=1

2 2n n n n2 2

i i i ii=1 i=1 i=1 i=1

n x y - x y

r=

n x - x n y - y

∑ ∑ ∑

∑ ∑ ∑ ∑

34 Współczynnik ten nazywany jest często współczynnikiem korelacji Pearsona. Jest on estymatorem uzyskanym metodą

momentów oraz przy załoŜeniu, Ŝe (X, Y) ma rozkład normalny - metodą największej wiarogodności.

Page 81: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

81

A. Jeśli cechy X i Y populacji mają łączny rozkład normalny o współczynniku korelacji ρ i liczebność próby n 20≥ , to przedziałem ufności dla ρ , na poziomie ufności 1− α jest przedział

2A 2B

2A 2B

e 1 e 1;

e 1 e 1

− −

+ +, gdzie

u1 1 RA ln

2 1 R n 3α+

= −− −

, u1 1 R

B ln2 1 R n 3

α+= +

− −

uα wyznaczamy z równości (u ) 12αα

Φ = −

W konstrukcji tego przedziału ufności korzystamy z tw. 17.2.

Przykład 17.1

Przy badaniu zaleŜności cech X i Y otrzymano na podstawie próby 25 elementowej współczynnik korelacji 0,63. Na poziomie ufności 0,98 oszacujemy przedziałem ufności współczynnik korelacji ρ obu cech. Zakładamy, Ŝe cechy te mają łączny rozkład normalny.

Rozwiązanie

(u ) 1 0,99 u 2,332

u1 1 r 1 1 0,63 2,33a ln ln 0,245

2 1 r 2 1 0,63n 3 25 3u1 1 r 1 1 0,63 2,33

b ln ln 1, 2382 1 r 2 1 0,63n 3 25 3

α α

α

α

αΦ = − = ⇒ =

+ += − = − =

− −− −

+ += + = + =

− −− −

2a 2a 2 0,245 21,238

2a 2a 2 0,245 21238

e 1 e 1 e 1 e 1; ; 0, 24 ; 0,83

e 1 e 1 e 1 e 1

⋅ ⋅

⋅ ⋅

− − − −= =< >

+ + + +

Odp. <0,24 ; 0,83>

B. Jeśli cechy X i Y populacji mają łączny rozkład normalny o współczynniku korelacji ρ , to przedziałem ufności dla ρ , na poziomie ufności 1 – α jest przedział

n

R1uR;

n

R1uR

22 −+

−− αα , gdzie α(u ) 1

2

αΦ = − , dla licznej próby n ≥ 500

Przy konstrukcji tego przedziału ufności korzystamy z tw. 17.1.

Przykład 17.2

Badano zaleŜność między prędkością samochodu (cecha X) a jego drogą zatrzymania (cecha Y). Na podstawie próby 900 elementowej otrzymano współczynnik korelacji 0,85. Zakładając, Ŝe (X, Y) ma rozkład normalny, oszacuj współczynnik korelacji cech X i Y na poziomie ufności 0,96.

Rozwiązanie

n = 900 r = 0,85, 1 – α = 0,96

α(u ) 12

αΦ = − = 1 – 0,04/2= 0,98 ⇒ u α =2,05

r-ε: r+ε 2 2

α

1-r 1-0,85ε = u =2,05 =

n 9000,019

<0,85 – 0,019; 0,85 + 0,019> = <0,831; 0,869>

Odp. <0,831; 0,869>

Page 82: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

82

17.2.3. Weryfikacja hipotez o współczynniku korelacji

Badana jest populacja ze względu na zmienną losową dwuwymiarową (X, Y) o rozkładzie normalnym i współczynniku korelacji ρ, którego wartość nie jest znana. O współczynniku ρ wysuwamy hipotezy: zerową 0 0H (ρ=ρ ) i alternatywną w postaci 1 1H (ρ=ρ ) lub 1 0H (ρ>ρ ) lub

1 0H (ρ < ρ ) lub 1 0H (ρ ρ )≠ . PowyŜsze hipotezy zerową i alternatywną naleŜy zweryfikować na

poziomie istotności α.

Przyjmujemy, Ŝe sprawdzianem jest statystyka

0n

0

1+ρ1 1+R 1U = ln - ln n-3

2 1-R 2 1-ρ

Rozkład statystyki n 0U /ρ dla n ≥ 20 mało róŜni się od rozkładu normalnego N(0, 1) (tw. 17.2). PowyŜsze informacje i sposób wyznaczenia zbioru krytycznego przedstawiamy w tabeli

Tabela 17.1. Testy do weryfikacji hipotezy o współczynniku korelacji

Przykład 17.3

Badano zaleŜność między ceną jednostkową towaru (cecha X) a popytem na ten towar (cecha Y). Na podstawie próby 28 elementowej otrzymano współczynnik korelacji - 0,86. Na poziomie istotności 0,03 sprawdzimy hipotezy: zerową, Ŝe współczynnik korelacji w populacji jest równy -0,90 i alternatywną, Ŝe jest większy od - 0,90. Rozwiązanie

n = 28, r = -0,86, α = 0,03, 0H (ρ = -0,90) , 1H (ρ > -0,90)

Stosujemy test nr KR-1. Obliczamy wartość sprawdzianu

un = 0

0

1+ρ1 1+r 1ln - ln n-3

2 1-r 2 1-ρ

=1 1-0,86 1 1-0,90

ln - ln 28-3=0,892 1+0,86 2 1+0,90

Wyznaczamy zbiór krytyczny K = k ;< ∞ ), (k) 1 αΦ = − = 1 – 0,03 = 0, 97 ⇒ k = 1,88 K = ∞< ;88,1 )

Podejmujemy decyzję: poniewaŜ Ku n ∉ , więc hipotezę zerową przyjmujemy.

Na zakończenie rozwaŜań zajmiemy się weryfikacją hipotez o istotności współczynnika korelacji.

Badana jest populacja ze względu na zmienną losową dwuwymiarową (X, Y) o rozkładzie normalnym, o współczynniku korelacji ρ, którego wartość nie jest znana. O współczynniku ρ wysuwamy hipotezę zerową 0H (ρ = 0)

tzn., Ŝe wartość współczynnika korelacji jest nieistotna i jedną z poniŜszych hipotez alternatywnych • )(H 11 ρ=ρ - wartość współczynnika korelacji jest istotna i równa 1ρ ,

• )0(H1 >ρ - wartość współczynnika korelacji jest istotnie dodatnia,

• )0(H1 <ρ - wartość współczynnika korelacji jest istotnie ujemna,

• )0(H1 ≠ρ - wartość współczynnika korelacji jest istotna. PowyŜsze hipotezy zerową i alternatywną naleŜy zweryfikować na poziomie istotności α. Uwaga: Hipoteza zerowa 0H (ρ = 0) oznacza, Ŝe zmienne losowe są nieskorelowane, a poniewaŜ

z załoŜenia mają dwuwymiarowy rozkład normalny, więc są niezaleŜne.

H1 Sprawdzian Un

Rozkład sprawdzianu Zbiór krytyczny K

Wyznaczanie liczby k

Nr testu

1 0H (ρ>ρ ) k ;< ∞ ) (k) 1Φ = − α KR-1

1 0H (ρ < ρ ) ( ; k−∞ − > (k) 1Φ = − α KR-2

1 0H (ρ ρ )≠

0

0

1+ρ1 1+R 1ln - ln n-3

2 1-R 2 1-ρ

W przybliŜeniu N(0,1) dla liczebności próby n > 20

( ; k−∞ − > ∪ k ;< ∞ ) (k) 1 α / 2Φ = − KR-3

Page 83: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

83

Przyjmujemy, Ŝe sprawdzianem jest statystyka

n 2

RU = n-2

1-R

Rozkład statystyki 0/Un =ρ ma rozkład Studenta z n-2 stopniami swobody (tw.17.3). PowyŜsze informacje i sposób wyznaczenia zbioru krytycznego przedstawiamy w tabeli.

Tabela17.2. Testy do weryfikacji hipotezy o istotności współczynnika korelacji

Tn-2 - zmienna losowa o rozkładzie Studenta z n – 2 stopniami swobody.

Przykład 17.4.

Z populacji dwuwymiarowej o rozkładzie normalnym pobrano próbę 11 elementową i obliczono, Ŝe współczynnik korelacji z tej próby wynosi 0,2. Na poziomie istotności 0,01 sprawdź czy współczynnik w populacji badanych cech jest istotny.

Rozwiązanie

n =11, r = 0,2, α = 0,01, 0H (ρ = 0) , 1H ( 0)ρ ≠

Stosujemy test KR-6. Wartość sprawdzianu na podstawie próby

n 2 2

r 0,2u = n-2= 11-2=0,61

1-r 1-0,2

Zbiór krytyczny K = ( ; k−∞ − > ∪ k ;< ∞ )

Wyznaczanie k: ( )9P T k 0,01≥ = ⇒ k = 3,25, K = ∪>−−∞ 25,3;( ∞< ;25,3 )

Decyzja: poniewaŜ Ku ∉α , więc hipotezę zerową 0H (ρ = 0) przyjmujemy.

Odp. Nie ma podstaw do twierdzenia, Ŝe współczynnik korelacji jest istotny.

1H Sprawdzian Un

Rozkład sprawdzianu Zbiór krytyczny K

Wyznaczanie liczby k

Nr testu

1H (ρ > 0) K = ∞< ;k ) ( )n-2P T k 2α≥ = KR-4

1H (ρ < 0) K = >−−∞ k;( ( )n-2P T k 2α≥ = KR-5

1H (ρ 0)≠

2nR1

RU

2n −

−=

Studenta z n – 2 stopniami

swobody K= ∪>−−∞ k;( ∞< ;k ) ( )n-2P T k = α≥ KR-6

Page 84: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

84

Przykład 17.4a

Na zakończenie obliczymy współczynnik korelacji dla danych z przykładu 2.24 podanego w części „Statystyka opisowa” korzystając z pakietu IBM SPSS Statistics wybierając po wpisaniu danych do 2 kolumn (do pierwszej wyniki egzaminu z matematyki, a do drugiej wyniki egzaminu ze statystyki) w kolejności: Analiza → Korelacje parami → Współczynnik korelacji Pearsona.

Otrzymane wyniki są następujące:

Otrzymaliśmy oczywiście taki sam wynik z dodatkową oceną, Ŝe współczynnik korelacji jest istotnie róŜny od zera na poziomie istotności 0,01.

17.2.4. Współczynnik korelacji Spearmana

Współczynnik korelacji Spearmana słuŜy do badania siły związku liniowego między cechami niemierzalnymi w skali porządkowej. Losujemy z populacji n elementów. Porządkujemy je wg wariantów pierwszej cechy i rangujemy, następnie porządkujemy wg wariantów drugiej cechy, takŜe rangujemy. W ten sposób otrzymujemy ciąg n wyrazowy par liczb rzeczywistych, który jest próbą z populacji dwuwymiarowej, badanej ze względu na zmienną losową dwuwymiarową (X, Y), gdzie X i Y są modelami cech.

Współczynnik korelacji Spearmana cech w skali porządkowej jest to współczynnik korelacji Pearsona rang tych cech i wyraŜa się wzorem

( )2

6sur'=1-

n n -1,

gdzie: su - suma kwadratów róŜnic pomiędzy rangami elementów próby, tzn. n

2i i

i=1

su= [k -l ]∑ , przy czym

i i(k ,l ) - rangi elementu próby o numerze i.

PoniewaŜ współczynnik Spearmana r’ jest szczególnym przypadkiem współczynnika korelacji (Pearsona), więc ma wszystkie jego własności i tak: -1 ≤ r’ ≤ 1 r 1′ = ⇔ , gdy kaŜdy element próby ma rangi obu cech jednakowe r 1′ = − ⇔ , gdy suma rang obu cech populacji jest stała

Jeśli rangi ki i si w kaŜdej parze rang i i(k ,l ) są wartościami zmiennych losowych niezaleŜnych, to

r 0′ = .

Page 85: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

85

W wypadku występowania takich samych elementów próby, czego konsekwencją jest przyporządkowanie im takich samych rang (równych średniej arytmetycznej rang przy róŜnej wartości elementów) nie moŜna obliczać współczynnika korelacji Spearmana, gdyŜ wzór na ten współczynnik został wyprowadzony przy załoŜeniu, iŜ wszystkie rangi ki są róŜne i wszystkie rangi li są róŜne. MoŜna wprawdzie w tej sytuacji wprowadzać pewne poprawki, w rezultacie czego wzór na współczynnik ulega zmianie, wydaje się jednak, Ŝe prościej jest obliczyć wówczas współczynnik korelacji Pearsona.

Współczynnik korelacji Spearmana moŜna takŜe stosować do badania siły korelacji liniowej cech w skali przedziałowej, naleŜy jednak najpierw przetransformować próbę na skalę porządkową.

Przykład 17.5

Z populacji pracowników pewnej firmy pobrano próbę 16 elementową, w celu zbadania siły korelacji liniowej między wiekiem - X, a wagą - Y.

X 28 34 30 42 27 38 41 20 21 23 18 42 28 40 31 43

Y 77 54,6 99,9 94,1 98,6 99,9 99,9 72 90,2 77,6 100 100 96.0 92,9 97,2 100

Próby posortowane wg wieku

Próby posortowane wg wagi

Wiek Waga

Rangi wieku

Wiek Waga

Rangi wieku

Rangi wagi Kwadrat

róŜnicy rang

18 100 1 34 54,6 10 1 81 20 72 2 20 72 2 2 0 21 90,2 3 28 77 6,5 3 12,25 23 77,6 4 23 77,6 4 4 0 27 98,6 5 21 90,2 3 5 4 28 77 6,5 40 92,9 12 6 36 28 96.0 6,5 42 94,1 14,5 7 56,25 30 99,9 8 28 96 6,5 8 2,25 31 97,2 9 31 97,2 9 9 0 34 54,6 10 27 98,6 5 10 25 38 99,9 11 30 99,9 8 12 16 40 92,9 12 38 99,9 11 12 1 41 99,9 13 41 99,9 13 12 1 42 94,1 14,5 18 100 1 15 196 42 100 14,5 42 100 14,5 15 0,25 43 100 16 43 100 16 15 1 Suma 432

Zatem su = 432, czyli współczynnik korelacji Spearmana

( )2

6su 6 432r'=1- 1 0,364706

26 255n n -1

⋅= − =

Współczynnik korelacji rang r1 = 0,360004, współczynnik korelacji w próbie r = 0,30568.

Na zakończenie zweryfikujemy wysunięte hipotezy korzystając z pakietu IBM SPSS Statistics wybierając po wpisaniu danych do 2 kolumn (do pierwszej wyniki pomiarów wagi , a do drugiej wyniki pomiarów wzrostu) w kolejności: Analiza → Korelacje parami → Współczynnik korelacji Spearman.

Page 86: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

86

Otrzymane wyniki są następujące:

Otrzymany wartość współczynnika = 0,36 jest taka sama jak wyznaczona wyznaczony. Dodatkowo został wyznaczony graniczny poziom istotności.

Page 87: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

87

17.2.5. Współczynnik korelacji Cramera Badamy siłę zaleŜności stochastycznej dwóch cech populacji X i Y. Cechę X dzielimy na r grup, zaś Y na s grup, zatem wszystkich grup otrzymujemy rs. Stosując oznaczenia z punktu 17.6 obliczamy wartość sprawdzianu z testu chi kwadrat zastosowanego do badania niezaleŜności cech

2r s

ij ijn

i=1 j=1 ij

ˆ(n -n )u =

n∑∑ (17.3)

gdzie: i.ij

n n.jn =

n

Współczynnik korelacji Cramera jest to parametr v określony wzorem

nuv =

w

gdzie: un - jest określone wzorem (17.3), a w = n min (r-1,s-1)⋅ ,

Współczynnik Cramera przyjmuje wartości z przedziału <0,1>.

Interpretacja

Z rozwaŜań przeprowadzonych w punkcie 17.6 wynika, Ŝe gdy un jest równe zeru, to cechy są niezaleŜne, natomiast, gdy ma wartość maksymalną, to moŜna wykazać iŜ zaleŜność między cechami jest funkcyjna. Zatem współczynnik Cramera im bliŜszy jest zeru, tym bardziej zaleŜność stochastyczna cech słabnie, im bliŜszy jest 1, tym zaleŜność ta staje się mocniejsza, aby w przypadku v =1 stać się zaleŜnością funkcyjną. Zatem: współczynnik Cramera cech X i Y jest miarą siły

zaleŜności stochastycznej cech X i Y populacji.

Przykład 17.6

Obliczymy współczynnik Cramera cechy X - skuteczność leczenia i cechy Y - płeć pacjenta, na podstawie danych przedstawionych w tabeli kontygencyjnej

Skuteczność leczenia Płeć 1 2 3

Razem

1 4 2 2 8 2 12 2 1 15

Razem 16 4 3 23 Obliczenia ijn

5,6 1,4 1,0 10,4 2,6 2,0

PoniewaŜ kolumny druga i trzecia są mało liczne, łączymy je w jedną kolumnę

j i

1 2 ni.

1 4 4 8 2 12 3 15 n.j 16 7 23

PoniewaŜ dane zgrupowane są w 4 klasach, więc stosujemy wzór ( patrz punkt 17.6) 2 2

n

n(ad-bc) 23 (4 3 4 12)u = 2, 22

(a+b)(a+c)(b+d)(c+d) 8 16 15 7

⋅ ⋅ − ⋅= =

⋅ ⋅ ⋅

2,22v 0,32

23 1= =

Page 88: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

88

17.3. Analiza regresji

17.3.1. Uwagi wstępne

Jeśli w analizie korelacji stwierdzono, Ŝe siła zaleŜności liniowej cech populacji jest duŜa (współczynnik korelacji ρ ma moduł bliski jedności), to zaleŜność stochastyczną cech moŜna aproksymować zaleŜnością liniową, czyli wyznaczyć regresję linową cechy Y względem cechy X (lub odwrotnie) i prostą regresji. Jak juŜ wiemy regresja liniowa wyraŜa się wzorem

YYXY β+α=)

regresja liniowa (teoretyczna) cechy Y względem cechy X

YY xy β+α=)

równanie prostej regresji cechy Y względem cechy X

Współczynniki regresji YY i βα są wyznaczone zgodnie z zasadą najmniejszych kwadratów, tzn. tak, by funkcja g(α,β) = E[Y – (αX + β)]2 miała w punkcie (αY , βY) wartość najmniejszą.

Na podstawie tej zasady obliczamy, Ŝe 10Y01YX

YY mm, α−=βρ

σ

σ=α (pkt 4.5)

Jednak w zagadnieniach praktycznych nie są znane wartości YY i βα współczynników regresji. Dlatego muszą być one oszacowane na postawie próby.

17.3.2. Estymatory współczynników regresji

Wyznaczymy estymatory AY oraz BY współczynników regresji YY i βα . Metoda momentów Jak juŜ wiemy metoda momentów estymacji parametrów polega na przyjęciu, Ŝe estymatorem momentu populacji jest będący jego odpowiednikiem moment z próby, natomiast estymatorem funkcji momentów w populacji jest ta sama funkcja momentów z próby. Stosując tą metodę

stwierdzamy, Ŝe estymatorem parametru Yα jest statystyka YY

X

SA R

S= , zaś estymatorem

współczynnika Yβ jest statystyka Y YB Y A X= − .

Metoda największej wiarygodności Zakładamy dodatkowo, Ŝe cecha Y ma rozkład normalny N( Y Yx , )α + β σ ), dla kaŜdego x. MoŜna

wykazać, Ŝe estymatory współczynników regresji mają postać: YY Y Y

Y

sr, y x

sα = β = − α .

Zatem są one są identyczne z estymatorami otrzymanymi metodą momentów.

Metoda najmniejszych kwadratów

Metoda najmniejszych kwadratów znajdowania estymatorów współczynników regresji Y Yiα β polega na wyznaczeniu takich ocen tych parametrów, by funkcja

n 2Y Y i Y i Y

i 1K( , ) (y x )

=

α β = − α −β∑

dla tych ocen miała wartość najmniejszą. Porównując tę funkcję z funkcją Y YS( , )α β stwierdzamy, Ŝe

funkcja K ma wartość najmniejszą w tym punkcie, w którym funkcja S ma wartość największą, a więc oceny i estymatory współczynników regresji uzyskane metodą najmniejszych kwadratów są identyczne, jak w metodzie największej wiarygodności.

Podsumowanie

Estymatorami współczynników regresji są

współczynnika Yα statystyka YY

X

SA R

S= (17.4)

współczynnika Yβ statystyka Y YB Y A X= − (17.5)

Page 89: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

89

Regresja liniowa z próby Zmienną losową

YY bXaY +=)

nazywamy regresją liniową z próby (empiryczną) cechy Y względem cechy X, zaś równanie

YY bxay +=)

równaniem prostej regresji z próby cechy Y względem cechy X,

gdzie aY i bY są wartościami (obliczonymi na podstawie próby) statystyk (17.4) i (17.5).

W poniŜszej tabeli w pierwszej kolumnie podane są wzory na współczynniki regresji liniowej oraz na niektóre parametry związane z tą regresją, druga kolumna zawiera estymatory parametrów z pierwszej kolumny, natomiast trzecia kolumna zawiera oceny tych parametrów.

Tabela 17.3. Podstawowe wzory w analizie regresji liniowej

Nazwa parametru z populacji Wzór na parametr

Nazwa parametru z próby Wzór na parametr

Wzór na realizację parametru

Współczynnik regresji Yα cechy Y

względem cechy X

YY

X

σα = ρ

σ

Współczynnik regresji YA

z próby cechy Y względem cechy X

YA = Y

X

SR

S

Y XYY 2

X X

n n n

i i i ii 1 i 1 i 1

2n n2i i

i 1 i 1

s cova r

s s

n x y x y

n x x

= = =

= =

= = =

− ⋅∑ ∑ ∑=

−∑ ∑

Współczynnik regresji Yβ

cechy Y względem cechy X

Y 01 Y 10m mβ = − α

Współczynnik regresji YB

z próby cechy Y względem cechy X

Y YB Y A X= −

Y Yb y a x= −

Wariancja resztowa cechy Y względem cechy X

2 2 2r

2 2Y

D (Y Y) E(Y Y)

(1 )

σ = − = − =

= σ − ρ

) )

Wariancja resztowa z próby cechy Y względem cechy X

n2 2r i i

i 1

1S (Y Y )

n 2 =

= −∑−

)35

n2 2r i i

i 1

1s (y y )

n 2 =

= −∑−

)=

= 2 2 2 2Y Y

n(1 r )s (1 r )s

n 2− ≈ −

Odchylenie standardowe resztowe cechyY względem cechy X

2r YD(Y Y) 1σ = − = σ − ρ

)

Odchylenie standardowe resztowe z próby cechy Y

względem cechy X

n 2r i i

i 1

1S (Y Y )

n 2 =

= −∑−

)

∑=

−−

=n

i

iir yyn

s1

2)(2

1 )=

= 2 2Y Y

n(1 r )s 1 r s

n 2− ≈ −

Współczynnik determinacji 2ν cechy Y względem cechy X

22 Y

2Y

συ =

σ

)

=2

r2

Y

−σ

2r=

Współczynnik 2V determinacji z próby

cechy Y względem cechy X n 2

i2 2i 1

n 2i

i 1

ˆ(y y)v r

(y y)

=

=

−∑= =

−∑

n n2 2i i i

2 2i 1 i 1n n2 2

i ii 1 i 1

ˆ(y y) (y y )v 1 r

(y y) (y y)

= =

= =

− −∑ ∑= = − =

− −∑ ∑

)

35 Podzielenie sumy

n 2i i

i 1(Y Y )

=

−∑)

przez n-2, a nie przez n powoduje, Ŝe statystyka 2rS jest estymatorem nieobciąŜonym

wariancji resztowej 2rσ w populacji

Page 90: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

90

Przykład 17.7

Chcemy zbadać, czy zysk pewnej firmy zalezy od wielkości produkcji na podstawie danych przedstawionych w poniŜszej tabeli.

Produkcja xi 19,2 19,0 19,5 21,4 19,6 21,6 23,7 24,2 26,5 28,3

Zysk yi 73,1 86,2 104,7 121,2 161,5 142,5 172,2 196,0 207,1 227,5

Rozwiązanie

Z wykorzystaniem arkusza Excel wykonujemy obliczenia pomocnicze

Lp ix iy 2i(x ) 2

i(y ) i ix y⋅

1 19,2 73,1 368,64 5343,61 1403,52

2 19 86,2 361 7430,44 1637,8

3 19,5 104,7 380,25 10962,09 2041,65

4 21,4 121,2 457,96 14689,44 2593,68

5 19,6 161,5 384,16 26082,25 3165,4

6 21,6 142,5 466,56 20306,25 3078

7 23,7 172,2 561,69 29652,84 4081,14

8 24,2 196 585,64 38416 4743,2

9 26,5 207,1 702,25 42890,41 5488,15

10 28,3 227,5 800,89 51756,25 6438,25

Suma 223 1492 5069,04 247529,6 34670,79

Parametry próby wynosza więc

Produkcja Zysk

Średnia

10

ii 1

x223

x 22,310 10=∑

= = =

10

ii 1

y1492

y 149,210 10=∑

= = =

Wariancja

102 2 2x i

i 1

1s (x ) (x)

10 =

= − =∑

2506,904 (22,3) 506,904 497,29 9,614= − = − =

102 2 2y i

i 1

1s (y ) (y)

10 =

= − =∑

224752,96 (149, 2)

24752,96 22260,64 2492,32

= − =

= − =

Kowariancja

XY

1cov =x x y= 34670,79 22,3 149, 2 3467,079 3327,16 139,919

10⋅ − ⋅ − ⋅ = − =y

Współczynniki regresji

XYY 2

X

cov 139,919a 14,554

9,614s= = =

Y Yb y a x 149,2 14,554 22,3 149,2 324,55 175,35= − = − ⋅ = − = −

Współczynnik korelacji

Page 91: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

91

XY2 2x y

cov 139,919 139,919 139,919r 0,904

3,1 49,931 154,769,614 2492,32s s= = = = =

Wariancja resztowa cechy Y względem cechy X

2 2 2 2r Y

n 10 10s (1 r )s (1 0,904 ) 2492,32 0,183 2492,32 570,12

n 2 8 8= − = − ⋅ = ⋅ ⋅ =

Odchylenie standardowe resztowe cechyY względem cechy X 2r Y

ns (1 r )s 23,88

n 2= − =

Współczynnik determinacji 2ν cechy Y względem cechy X 2 2 2v r 0,904 0,817= = =

PowyŜsze wynki moŜna otrzymać z wykorzystaniem narzędzia Regresja pakietu Analiza danych arkusza Excel.

Wyniki składają się z kilku części. PoniŜej zamieszczono część zawierającą wyniki obliczone w niniejszym przykładzie.

Współczynniki Przecięcie -175,3468796

Zmienna X1 14,55367173

Statystyki regresji

Wielokrotność R 0,903905245 R kwadrat 0,817044693 Dopasowany R kwadrat 0,794175279 Błąd standardowy 23,87422264

Obserwacje 10

Narzędzie oblicza takŜe wartości funkcji regresji oraz róznice pomiędzy uzyskanymi i obliczonymi wartościami zmiennej zaleŜnej. Podano je poniŜej uzupełniając o wartości uzyskane oraz o sumy w/w róŜnic – patrz uzupełnienie podane na końcu części „Statystyka opisowa”. .

Page 92: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

92

iy iy iy - iy iy - iy >0 iy - iy <0

73,1 104,08 -30,98 0 -30,98 86,2 101,17 -14,97 0 -14,97

104,7 108,45 -3,75 0 -3,75 121,2 136,10 -14,90 0 -14,90 161,5 109,91 51,59 51,59 0 142,5 139,01 3,49 3,49 0 172,2 169,58 2,62 2,62 0

196 176,85 19,15 19,15 0 207,1 210,33 -3,23 0 -3,23

227,5 236,52 -9,02 0 -9,02

Razem 0,0 76,85 -76,85

17.3.3. Rozkłady estymatorów współczynników regresji

Analiza regresji opiera się na poniŜszych twierdzeniach, które są prawdziwe przy załoŜeniu, Ŝe zmienna losowa dwuwymiarowa (X,Y) ze względu na którą badana jest populacja ma rozkład normalny o współczynniku korelacji ρ.

Tw. 17.4. Estymatory Y YA i B współczynników regresji liniowej Y Yiα β mają rozkłady normalne

Y Y 1A : N( , )α σ oraz Y Y 2B : N( , )β σ , są więc estymatorami nieobciąŜonymi tych

parametrów. (MoŜna wykazać, Ŝe są takŜe estymatorami zgodnymi tych parametrów)

Tw. 17.5. Estymatorem odchylenia standardowego 1σ estymatora YA jest statystyka

r1 n

2 2i

i 1

SS

X nX=

=

−∑

(tzw. błąd standardowy oceny Yα ), zaś estymatorem odchylenia standardowego

2σ estymatora YB jest statystyka

n 2r i

i 12

n 2 2i

i 1

S XS

n X nX

=

=

=

−∑

(tzw. błąd standardowy oceny Yβ ).

Tw. 17.6. Statystyki Y Yn

1

AU

S

− α= oraz Y Y

n2

BU

S

−β= mają rozkłady Studenta z n – 2 stopniami

swobody.

17.3.4. Estymacja przedziałowa współczynników regresji

Zajmiemy się teraz wyznaczeniem przedziałów ufności dla współczynników regresji. Mamy:

yY βαˆ += xy - prosta regresji z populacji cechy Y względem cechy X

YY bxay += - prosta regresji z próby,

Ya - jest oceną na podstawie próby Yα

Yb - jest oceną na podstawie próby współczynnika Yβ

Y Yy a x b= + - prosta regresji z próby jest oceną prostej regresji populacji Y Yy a x= + β .

Page 93: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

93

Przedział ufności dla współczynnika Yα na poziomie ufności 1− α

1Y1Y SuA;SuA αα +−

Przedział ufności dla współczynnika Yβ na poziomie ufności 1− α

2Y2Y SuB;SuB αα +−

Liczba uα spełnia w obu przypadkach związek n 2P( T u )− α≥ = α

gdzie: n 2T − - zmienna losowa o rozkładzie Studenta z n –2 stopniami swobody.

PowyŜsze przedziały konstruujemy w typowy sposób na podstawie twierdzenia 17.4 – 17.6.

Przykład 17.8

Na poziomie ufności 1− α wyznaczymy przedziały ufności dla współczynników regresji obliczonych w przykładzie 17.7.

Korzystając z wyników obliczonych w przykładzie otrzymujemy wartości statystyk S1 i S2

r1 n 2

2 2i

i 1

s 23,88 23,88 23,88 23,88s 2, 44

9,85069,04 4972,9 96,145069,04 10 22,3x nx=

= = = = = =−− ⋅−∑

n 2r i

i 12

n 2 2i

i 1

s x23,88 5069,04 23,88 71,197 1700,19

s 54,8331,0110 96,14 961,4

n x nx

=

=

∑⋅

= = = = =⋅

−∑

Wyznaczamy liczbe 0,05u z warunku 8 0,05P( T u ) 0,05≥ = otrzymując 0,05u =2,306

Zatem połowy przedziałow ufności są równe

1u s 2,306 2,44 5,62α = ⋅ =

2u s 2,306 54,83 126,43α = ⋅ =

Wykorzystując powyŜsze wyniki częściowe otrzymujemy przedziały ufności w postaci:

Współczynnik Yα 11; suasua YY αα +− = 14,55 5,62;14,55 5,62 8,83;20,17< − + >=< >

Współczynnik Yβ

22 ; subsub YY αα +− = 175,35 126,43; 175,35 126,43 301,78; 48,92< − − − + >=< − − >

Korzystając z narzędzia Regresja pakietu Analiza danych arkusza Excel – patrz przykład 5.17, otrzymujemy bezpośrednio granice przedziałów ufności:

Dolne 95% Górne 95%

Przecięcie -301,76232 -48,931439

Zmienna X 1 8,93883332 20,1685101

Page 94: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

94

17.3.5. Weryfikacja hipotez o współczynnikach regresji

Wysuwamy hipotezy o współczynniku regresji Yα z populacji. Hipoteza zerowa: 0 Y 0H ( )α = α i hipoteza alternatywna w jednej z trzech postaci przedstawionej w poniŜszej tabeli.

Tabela 17.4. Testy do weryfikacji hipotezy o współczynniku regresji ααααY

n 2T − oznacza zmienną losową o rozkładzie Studenta z n-2 stopniami swobody.

Uwaga. Hipoteza 0 YH ( 0)α = jest równowaŜna hipotezie 0H ( 0)ρ = , bo YY

Y

σα = ρ

σ

Wysuwamy hipotezy o współczynniku regresji Yβ z populacji. Hipoteza zerowa: 0 Y 0H ( )β = β

i hipoteza alternatywna w jednej z trzech postaci przedstawionej w poniŜszej tabeli.

Tabela 17.5. Testy do weryfikacji hipotezy o współczynniku regresji ββββY

n 2T − oznacza zmienną losową o rozkładzie Studenta z n-2 stopniami swobody. Informacje zawarte w powyŜszych dwóch tabelach wynikają z ogólnej zasady weryfikacji hipotez i z tw. 17.6.

Przykład 17.9

Na poziomie istotności α=0,05 zweryfikujemy hipotezy dotyczące zerowej wartości współczynników regresji obliczonych w przykładzie 17.7., względem hipotez alternatywnych bedących zaprzeczeniem hipotezy zerowej.

Współczynnik regresji Yα

Hipotezy Sprawdzian Zbiór krytyczny

0 YH ( 0)α =

1 YH ( 0)α ≠ Y

101

au

s=

K= = ( ; k−∞ − > ∪ ∞< ;k )

( )8P T k 0,05≥ =

Wykorzystując wyniki z przykładów 17.7 i 17.8 otrzymujemy

Wartość sprawdzianu Y10

1

a 14,554u 5,96

s 2,44= = =

Zbiór krytyczny K= = ( ; k−∞ − > ∪ ∞< ;k ) = <-∞;-2,306> ∪ <2,306; ,306>

PoniewaŜ 10u K∈ hipotezę zerową naleŜy odrzucić co dowodzi istotności współczynnika regresji Yα

1H Sprawdzian nU

Rozkład sprawdzianu Zbiór krytyczny K

Wyznaczanie liczby k

Nr testu

1 Y 0H ( )α > α K = k ;< ∞ ) ( )n 2P T k 2− ≥ = α KR-7

1 Y 0H ( )α < α K = ( ; k−∞ − > ( )n 2P T k 2− ≥ = α KR-8

1 Y 0H ( )α ≠ α

Y 0n

1

AU

S

− α=

Studenta z n-2 stopniami swobody

K= = ( ; k−∞ − > ∪ k ;< ∞ ) ( )n 2P T k− ≥ = α KR-9

1H Sprawdzian nU

Rozkład sprawdzianu Zbiór krytyczny K

Wyznaczanie liczby k

Nr testu

1 Y 0H ( )β > β K = k ;< ∞ ) ( )n 2P T k 2− ≥ = α KR-10

1 Y 0H ( )β < β K = ( ; k−∞ − > ( )n 2P T k 2− ≥ = α KR-11

1 Y 0H ( )β ≠ β

Y 0n

2

BU

S

− β=

Studenta z n-2 stopniami swobody

K= = ( ; k−∞ − > ∪ ∞< ;k ) ( )n 2P T k− ≥ = α KR-12

Page 95: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

95

Współczynnik regresji Yβ

Hipotezy Sprawdzian Zbiór krytyczny

0 YH ( 0)α =

1 YH ( 0)α ≠ Y

102

bu

s=

K= = ( ; k−∞ − > ∪ ∞< ;k )

( )8P T k 0,05≥ =

Wykorzystując wyniki z przykładów 17.7 i 17.8 otrzymujemy

Wartość sprawdzianu Y10 10

2

b 175,35u u 3,198

s 54,83

−= = = = −

Zbiór krytyczny K= = ( ; k−∞ − > ∪ ∞< ;k ) = <-∞;-2,306> ∪ <2,306; ,306>

PoniewaŜ 10u K∉ brak jest podstaw do odrzucenia hipotezy zerowej.

Korzystając z narzędzia Regresja pakietu Analiza danych arkusza Excel – patrz przykład 5.17, otrzymujemy bezpośrednio wartości sprawdzianów:

t Stat

Przecięcie -3,198585777

Zmienna X 1 5,977167056

Page 96: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

96

18. WPROWADZENIE DO ZAAWANSOWANYCH METOD STATYSTYCZNYCH

18.1. Charakterystyka zaawansowanych metod statystycznych

Zaawansowane metody statystyczne są metodami wielowymiarowymi, tzn. analizują próby wielowymiarowe, składające się z wyników pomiaru określonej liczby zmiennych.

Pojęcie próby wielowymiarowej jest uogólnieniem pojęcia próby dwuwymiarowej.

Model I Populacja jest badana ze względu na k cech X1, X2, …,Xk, czyli ze względu na zmienną losową k-wymiarową (X1, X2, …,Xk). Taką populację nazywamy populacją k-wymiarową.

Próba z populacji k-wymiarowej jest to macierz

11 12 1k

21 22 2k

n1 n2 nk

X X . . . X

X X . . . X

. . .

. . .

. . .

X X . . . X

=

X (20.1)

gdzie zmienne losowe k-wymiarowe występujące w poszczególnych wierszach są k-wymiarowo niezaleŜne. 36

KaŜdą macierz

11 12 1k

21 22 2k

n1 n2 nk

x x . . . x

x x . . . x

. . .

. . .

. . .

x x . . . x

=

x (20.2)

będącą wartością próby (20.1) nazywa się realizacją próby z populacji k-wymiarowej albo macierzą

danych (wyników).

Wiersze macierzy (20.2) są wartością cechy (X1, X2, …,Xk) kolejnych elementów populacji wybranych do próby, natomiast kolumny są realizacjami prób jednowymiarowych ze względu na kolejne zmienne Xj, j=1,2,…,k. Element xij oznacza wartość cechy Xj elementu próby o numerze i.

Przyjmujemy oznaczenia:

1j

2j

.j

n jj

x

x

.

.

.

x

x

=

- realizacja próby jednowymiarowej ze względu na cechę Xj (20.3)

[ ]i. i1 i2 ikx , x , , x=x K - realizacja próby wielowymiarowej dla elementu próby o numerze i, (20.4)

36 Pojęcie to jest prostym uogólnieniem pojęcia niezaleŜności dwuwymiarowej – patrz odnośnik 12 z punktu 18.1.

Page 97: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

97

Wektor x.j określony wzorem (20.3) jest realizacją próby jednowymiarowej ze względu na cechę Xj.

Wektor xi. określony wzorem (20.4) nazywamy obserwacją.

Wprowadzone pojęcia obrazuje rysunek 20.1. Cechy

X1 X2 … Xj … Xk

1 Obserwacja

2

i xij

Numery elementu próby

n

P r ó b a

Rys. 18.1. Ilustracja macierzy danych

Macierz danych moŜna przedstawić jako tabelę z liczbą wierszy równą liczbie elementów oraz liczbą kolumn równą liczbie cech.

W ramach obserwacji mogą występować wszystkie badane cechy lub określony ich podzbiór. Mogą być takŜe utworzone nowe cechy jako zadane funkcje cech mierzonych.

Macierz danych moŜe zostać określona przez podanie jej obiektów składowych lub określona warunkami nałoŜonymi na wybrane cechy obserwacji. W tym wypadku liczba obiektów w grupie danych nie jest ustalona a priori.

Macierz danych moŜe być przedstawiona w postaci:

1.

2..1 .2 .

n.

[ , ,..., ]k

x

xx x x x

x

= =

M (20.5)

Przedstawiony model moŜe dotyczyć takŜe jednej cechy X rozpatrywanej w k momentach lub w k warunkach, czyli analogicznie jak poprzednio zmiennej losowej k-wymiarowej (X1, X2, …,Xk). Analizie podlegają wartości tej zmiennej uzyskane u uzyskane kolejnych elementów populacji wybranych do próby.

MoŜe występować takŜe przypadek mieszany w którym występują zarówno cechy rozpatrywane tylko w jednym momencie lub w jednym warunku, jak i te same cechy rozpatrywane w róŜnych momentach, jak i w róŜnych warunkach.

W kaŜdym z opisanych przypadków analizowane próby nazywane są próbami powiązanymi.

Page 98: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

98

Model II Model II jest rozszerzeniem modelu I. Badanych jest J populacji ze względu na k cech X1, X2, …,Xk, czyli ze względu na zmienną losową k-wymiarową (X1, X2, …,Xk). Przedmiotem analizy jest J macierzy danych, kaŜdą z których tworzą próby nj elementowe. Przykładowo przy dwóch populacjach macierze te mają postać:

11 12 1k

21 22 2k

n 1 n 2 n k1 1 1

a a . . . a

a a . . . a

. . .

. . .

. . .

a a . . . a

a

=

11 12 1k

21 22 2k

n 1 n 2 n k2 2 2

b b . . . b

b b . . . b

. . .

. . .

. . .

b b . . . b

b

=

Przykładowo a11 to wartość cechy X1 uzyskana u 1 elementu pierwszej populacji, b11 to wartość tej samej cechy X1 uzyskana u pierwszego elementu drugiej populacji.

W tym przypadku moŜna wprowadzić wszystkie analogiczne pojęcia jak w modelu I.

W modelu II analizowane próby dotyczące tej samej zmiennej losowej, pochodzące z róŜnych populacji, nazywane są próbami niepowiązanymi. Tylko przypadkowo próby te mają takie same liczebności.

PoniŜej krótko scharakteryzowano opisane w niniejszej części podręcznika zaawansowane metody statystyczne.

Ocena istotności róŜnic rozkładu w więcej niŜ dwóch warunkach. Dla rozwiązania tego problemu przeznaczonych jest szereg metod. Jedną z nich jest analiza wariancji, stanowiąca rozszerzenie testu Studenta.

Analiza regresji wykorzystywana jest do szukania związku funkcyjnego pomiędzy tzw. zmienną zaleŜną i określoną liczbą tzw. zmiennych niezaleŜnych. Najczęściej przyjmuje się związek liniowy. W przypadku małej liczby zmiennych niezaleŜnych szuka się teŜ związku w postaci wielomianu. MoŜliwe jest ustalenie a priori zmiennych niezaleŜnych, które ujmowane są w równaniu regresji lub teŜ określenie tylko ich zbioru. W tym przypadku do równania wprowadzane są tylko te zmienne, które charakteryzuje określony współczynnik korelacji cząstkowej ze zmienną zaleŜną.

Analiza czynnikowa pozwala na podział analizowanych zmiennych na określoną liczbę grup, z których kaŜda kształtowana jest samoistnie przez oddzielny czynnik.

Analiza korelacji kanonicznej wykorzystywana jest do wyznaczania związku liniowego pomiędzy dwoma grupami zmiennych. MoŜna traktować ją więc jako uogólnienie analizy regresji.

Analiza skupień wykorzystywana jest do podziału zbioru określonych elementów na grupy, których obiekty są podobne do siebie w określonym sensie. Obiektami mogą być zarówno dowolne elementy materialne, opisane wybranymi cechami, jak i cechy opisujące rozpatrywane elementy materialne.

Wielowymiarowa analiza wariancji (MANOVA) wykorzystywana jest do weryfikacji hipotez o równości kilku wektorów wartości oczekiwanych. Jest ona rozszerzeniem analizy wariancji (ANOVA) albowiem rozpatruje ona powyŜszą hipotezę dla kilku wartości oczekiwanych. MANOVA stosowana jest w powiązaniu z analizą dyskryminacji, której waŜnym krokiem jest zastąpienie wielu cech naturalnych małą liczbą zmiennych abstrakcyjnych bez zmniejszenia zróŜnicowania grup. MoŜliwe jest teŜ wybranie cech najbardziej róŜnicujących. W ramach tej analizy prowadzona jest klasyfikacja na podstawie cech abstrakcyjnych. Stopień jej zgodności z podziałem a priori świadczy poglądowo o występującym zróŜnicowaniu grup.

NaleŜy podkreślić wyjątkowo duŜe znaczenie analiz wielowymiarowych, wykorzystujących naturalne powiązania pomiędzy poszczególnymi cechami. Właśnie to stanowi o ich bardzo istotnym znaczeniu. MoŜna zilustrować ten fakt następującymi przykładami:

Page 99: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

99

− Wartości współczynników korelacji cząstkowej róŜnią się na ogół w znacznym stopniu od wartości współczynników korelacji Pearsona;

− Cechy róŜniące dwie populacje wielowymiarowe nie muszą podlegać istotnie zróŜnicowanym rozkładom przy ocenie wyizolowanej;

− Postać związku pomiędzy dwoma zbiorami cech w wielu przypadkach jest sprzeczna z wartościami współczynników korelacji pomiędzy parami cech uwzględnianych zbiorów.

W ramach tych analiz moŜna dokonywać porównania rozkładów cech, oceniać korelacje oraz budować i weryfikować modele matematyczne analizowanych zjawisk.

Poszczególne metody umoŜliwiają przeprowadzenie analiz z róŜnych punktów widzenia. W wielu przypadkach dopiero łączne ich zastosowanie powoduje otrzymanie wartościowych wniosków. Przykładowo: − Łączne zastosowanie analizy regresji i analizy korelacji kanonicznej pozwala na identyfikację

nieznanych zaleŜności pomiędzy rozpatrywanymi cechami; − W analizie dyskryminacji przedmiotem obliczeń są zbiory danych dotyczące grup określonych

elementów wyróŜnionych a priori. Analiza skupień prowadzona dla tych elementów moŜe być wykorzystana do zweryfikowania takiego podziału;

− W analizie czynnikowej uzyskuje się podział rozpatrywanych cech na podzbiory kształtowane oddzielnie przez poszczególne czynniki. Analiza skupień prowadzona dla tych cech moŜe być wykorzystana do weryfikacji otrzymanego podziału.

Dwuwymiarowe i wielowymiarowe analizy statystyczne umoŜliwiają rozwiązywanie 3 rodzajów problemów: 1. Ocena istotności zaleŜności statystycznej pomiędzy cechami; 2. Skupianie elementów (obiektów lub cech); 3. Ocena istotności róŜnic rozkładu cechy.

W pierwszej z poniŜszych tabel podano metody statystyczne i klasy testów statystycznych umoŜliwiające rozwiązywanie powyŜszych problemów.

Podane w tabeli metody oznaczone numerami 1, 9 i 10 dotyczą klas testów statystycznych.

Tabela 18.1.Metody statystyczne i klasy testów statystycznych

Ocena istotności zaleŜności statystycznej pomiędzy cechami

Skupianie elementów (obiektów i cech)

Ocena istotności róŜnic rozkładu cechy

1. Ocena istotności korelacji dwóch cech

6. Analiza skupień dla obiektów 9. Ocena istotności róŜnic rozkładu cechy w dwóch warunkach

2. Regresja wielomianowa jednej cechy

7. Analiza czynnikowa 10. Ocena istotności róŜnic rozkładu cechy w wielu warunkach

3. Regresja liniowa kilku cech 8. Analiza skupień dla cech 11. Wielowymiarowa analiza wariancji i analiza dyskryminacji

4. Regresja wielomianowa kilku cech

5. Korelacja kanoniczna

Wszystkie wskaźniki i metody statystyczne przedstawiono w kolejnej tabeli.

Page 100: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

STATYSTYKA MATEMATYCZNA

100

Tabela 18.2. Wskaźniki i metody statystyczne

Liczba cech Liczba macierzy danych 1 2 ≥≥≥≥ 2

1

ANALIZA JEDNOWYMIAROWA

Błędy grube Centyle Estymacja parametrów rozkładu Ocena normalności Ocena losowości

ANALIZA DWYWYMIAROWA

Test niezaleŜności Współczynnik Pearsona Współczynnik Spearmana Współczynnik Cramera

ANALIZA WIELOWYMIAROWA

Regresja liniowa, wielomianowa i potęgowa Analiza czynnikowa Analiza skupień dla cech i obiektów Korelacja kanoniczna

2

ANALIZA DWUWYMIAROWA

Testy Studenta Test Cochrana-Coxa Test rangowanych znaków Test Wilcoxona Test dokładny Fishera Test McNemara Test chi kwadrat

≥≥≥≥ 2

ANALIZA WIELOWYMIAROWA

Analiza wariancji Test qx Test Kruskala-Wallisa Test Friedmana Test Góralskiego Test Cochrana

ANALIZA WIELOWYMIAROWA

Wielowymiarowa analiza wariancji i analiza dyskryminacji

18.2. Algorytmizacja wyboru metod statystycznych Na poniŜszym rysunku przedstawiono algorytm wyboru metod statystycznych z zakresu określanego na podstawie charakterystyk analizowanych danych.

Page 101: PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWA Ń W …cieciura.net › mp › ksiazka › czesc4.pdf · 2017-09-29 · Twierdzenie to wynika z własno ści rozkładu normalnego

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

101

POCZĄTEK

A

B

C

D

G

I

K

L

M

N

CZY OBLICZAĆ CENTYLE

TAK NIE

LICZBA MACIERZY DANYCH K=1

TAK NIE

LICZBA CECHM=1

TAK NIE

LICZBA CECHM=1

TAK NIE

LICZBA MACIERZY DANYCH

K=2

NIE TAK

PODAJ PRZEDMIOT ANALIZY

L1 - liczba macierzy danychL2 - liczba cech

LICZBA MACIERZY DANYCH

DO ANALIZY L1=2

NIE TAK

LICZBA MACIERZY DANYCH

DO ANALIZY L1=2

TAK NIE

LICZBA CECH DANYCHDO ANALIZY L2=1

TAK NIE

LICZBA CECH DANYCHDO ANALIZY L2=1

NIE TAK

M

C

M

KONIEC OCENY ISTOTNOŚCI

TAK NIE

PODAJ ZAKRES ANALIZY1 - ocena zaleŜności2 - skupianie elementów

1 2

PODAJ PRZEDMIOT ANALIZY

L1 - liczba grup danych

LICZBA CECHM=2

TAK NIE

PODAJ PRZEDMIOT ANALIZY

L1 - liczba cech I zbioruL2 - liczba cech II zbioru

LICZBA CECH I ZBIORUL1=1

TAK NIE

LICZBA CECH II ZBIORUL2=1

TAK NIE

LICZBA CECH II ZBIORUL2=1

TAK NIE

PODAJ RODZAJ ANALIZY1 - korelacje2 - regresja potęgowa3 - koniec analizy

PODAJ RODZAJ ANALIZY1 - regresja liniowa dla poanych cech2 - regresja liniowa z wyborem cech3 - regresja wielomianowa0 - koniec analizy regresji

1 2 0 0 1 2 3

E

F

H

J

KONIEC OCENYZALEśNOŚCI

NIE TAK

LICZBA CECH M 3

NIE TAK

LICZEBNOŚĆ PRÓBN 3

NIE TAK

≥LICZEBNOŚĆ PRÓB

N 3

TAK NIE

PODAJ PRZEDMIOT ANALIZY

1 - obiekty2 - cechy

1 2

PODAJ RODZAJ ANALIZY1 - analiza skupień2 - analiza czynnikowa

1 2

KONIEC SKUPIANIACECH

TAK NIE

KONIEC SKUPIANIAELEMENTÓW

TAK NIE

KONIEC ANALIZYSTATYSTYCZNEJ

NIE TAK

KONIEC

ZAUTOMATYZOWANY WYBÓR ZAKRESU, PRZEDMIOTU I RODZAJU ANALIZY STATYSTYCZNEJ

OZNACZENIA:

Metody statystyczne, oznaczone zgodnie

z poniŜszym wykazem:

A - Wyznaczanie parametrów rozkładu

B - Wyznaczanie centyli

C - Ocena istotności róŜnic rozkładu w 2 warunkach

D - Ocena istotoności korelacji dwóch cech

E - Regresja liniowa dla podanych cech

A

F - Regresja liniowa z wyborem cech

G - Regresja potęgowa

H - Regresja wielomianowa

I - Analiza czynnikowa

J - Analiza korelacji kanonicznej

K - Analiza skupień dla cech

L - Analiza skupień dla obiektów

M - Ocena istotności róŜnic rozkładu w wielu warunkach

N - Manova i analiza dyskryminacji

Rysunek 20.2. Algorytm wyboru zakresu, przedmiotu i rodzaju analizy statystycznej