Phy 1 (10)

download Phy 1 (10)

of 12

Transcript of Phy 1 (10)

  • 8/18/2019 Phy 1 (10)

    1/12

    http://www.rpmauryascienceblog.com 

    GRAVITATIONAL

    Q.1.  Total energy = - 0E

    r 2

    GMm  

    P.E. = - 0E2r 

    GMm  

    Q.2.  Work done is independent of path traversed (by conservative force)  WPOQ  : WPLQ = 1 : 1

    Q.3.  g / 4

    Q.4.  The maximum height attained by the particle is

    h =

    Rvg2

    v2

    2

     

    h =

    6

    23

    23

    104.6

    )100.4(8.92

    )100.4(

     = 935 km.

    Q.5.  from COE.

    - 0R

    GMm  =

    R

    GMm

    2

    3mv

    2

    1 2  

     R2

    GMmmv

    2

    1 2  

    v =R

    GM.

    Q.6.  Potential energy midway between 2M and M.

    = -10

    M

    R5

    )GM(

    )10(R5

    GMM2    

    Potential energy at infinity = 0For minimum speed K.E. at infinity should be zero.

    By COE, - 22

    v10

    M

    2

    1

    R50

    GM3

     

      

       = 0

    v =R5

    GM6.

    Q.7.  A/c to Kepler’s III law

    3

    2

    1

    2

    2

    1

    R

    R

    T

    T

     

      

     

     

      

      

      RB = 443/2

    104)10(1

    8

     

      

     km

    v A = h/km1021

    102

    T

    R2 44

     A

     A

     

    http://www.rpmauryascienceblog.com/http://www.rpmauryascienceblog.com/

  • 8/18/2019 Phy 1 (10)

    2/12

    http://www.rpmauryascienceblog.com 

    vB = h/km108

    1042

    T

    R2 44

    B

    B

     

      relative velocity of ‘B’ w.r.t. A is [vB – v A ] = -   104 km/h.

      relative angular speed of ‘B’ w.r.t. A is =  AB

     AB

    RR

    vv

     

    =3101104

    1044

    4

     rad/hour

    Q.8.  As ‘m’ is a point mass, consider an element on the rod at distance r from m,

    dF =2r 

    )dm().m(G =

    2r 

    dr L

    M)m(G  

     

      

     

     r  

    dr  

    dm 

    or, F =

    dL

    d2 dr r 

    1.L

    GMm 

    F = dL

    d2

    dr r 

    1.

    L

    GMm =

    )dL(d

    GMm

     

    Q.9.  From conservation of mechanical energy

    hR

    GMmmv

    2

    1

    R

    GMmmv

    2

    1 21

    20

      . . . (i)

     Also from conservation of angular momentum

    mv0R sin 600

     = mv1 (R + h) . . . (ii) 

    Solving (i) and (ii) and putting v0 =R4

    GM3,

    we geth   0.25 R (Approx.)

    R

    v1

    600

    h

     

    Q.10.  By conservation of ME

    0 +  

      

     

     

      

     

    R

    GMmmv

    2

    1

    GMm 2  

    or v2 = 2GM

    R2

    1

    R

    1  [as r = R + h = R + R = 2R]

    or v = s/km8106410gRR

    GM 5  

    Q.11.  OEOB EE

     

    ODOA FF

     

    2OC a

    GMF  

     

    http://www.rpmauryascienceblog.com/http://www.rpmauryascienceblog.com/

  • 8/18/2019 Phy 1 (10)

    3/12

    http://www.rpmauryascienceblog.com 

    Q.12.  vr  = -r 

    GM 

     du = - dr  m

    GM

     

      

     

     

    u = -

    R

    Rr 

    dr GMm 

    u = -  

      

     

    R1ln

    GMm  

     

    Q.13.  Let r 0  is the distance between centres of two stars.Consider star of mass M,for this star

    21

    210

    MvGM(M/ 2)

    r r    where r 1 = 0

    Mr 

    2(M M /2) = 0

     21

    200

    vGM

    r / 32r  P = M

    0

    GM

    6r    r 0 =

    3

    2

    GM

    6P 

    Since  = 1

    1

    v

    r  

    r 1

    v1

    M/2 

    v2

    C  F F 

     T =3 2

    1

    1

    2 r  2 GM / 6P

    v 3 P /M

         T =

    4

    3

    GM

    9P

     

    Q.14.  2r  =nr 

    GM 

      =1nr 

    GM

     

    T =GM

    r 2

    2 1n

     

      T  

        

    21n

    r   

    Q.15.  F =2r 

    GMm 

    all the forces will cancel each other. So it will be inequilibrium for any value of it. m

    F

    F F

    M

    MM

     

    Q.16.  Let v be the escapes velocity of particle then

    Total energy E = 21

    mv2

     -2

    2

    3

    GMm R3R 0

    22R

     

     v2   11GM

    4R 

     vmin =11GM

    4R.

    v

    C

    http://www.rpmauryascienceblog.com/http://www.rpmauryascienceblog.com/

  • 8/18/2019 Phy 1 (10)

    4/12

    http://www.rpmauryascienceblog.com 

    Q.17.   Mr = 5M (L - r)

      r =

    6

    L5 

    now2L

    GM5M =

     

      

      

      

     6

    L5

    T

    22

     

    M

      T = 2 GM6

    L 2/3.

    M

    5M

    C

     

    Q.18. 1

    2

    2

    1

    g

    g

    T

    T   but g =

    2)hR(

    GM

     

    2

    2

    1

    R

    hR

    g

    g

     

     

     

           R/h1

    T

    T

    1

    2  

    h =360024

    640030R

    T

    TT

    1

    12

     = 2.2 km.

    Q.19.  xcm =5

    d

    m5

    )d(m)0(m4

     

      R1 = d/5R2 = 4d/5

    (a) mr 2 =2

    B A

    d

    mGm 

       = 20

    B Ardm mGm   = 10

    20

    2

    1)r m( )r m(

     

     5/d)m4(

    )5/d4(m

    2

    1

     = 1 : 1

      T1 : T2 = 2 : 1 = 1 : 1

    4n

    (0, 0)

     Ad

    B

    (d, 0)

    12

    (b))I(2/1

    )I(2/1

    KE

    KE222

    211

    2

    1

     =

    21

    2

    22

    2

    )T()5/d4)(m)(2/1(

    )T()5/d)(m4)(2/1( =

    )1(16

    )1(4 2 = 1 : 4

    (c)

    1)5/d4(

    )1)(5/d(

    Tr 

    Tr 

    v

    v

    11

    21

    22

    11

    2

    1  1 : 4

    Q.20.  V(r) = -GM  

      

        3

    22

    R2

    r R3 for 0  r  R

    Thus V(0) =R2

    GM3 

    V(R) = -R

    GM 

    Thus ratio =2

    http://www.rpmauryascienceblog.com/http://www.rpmauryascienceblog.com/

  • 8/18/2019 Phy 1 (10)

    5/12

    http://www.rpmauryascienceblog.com 

    I(r) =3R

    GMr  for 0  r  R

      RI0I

     = 0

    Q.21.  (a) at r = a

    |E|r = a = Edue to M1  + Edue to M2) = )MM(a

    G

    a

    GM

    a

    GM2122

    2

    2

    1  

    (b) at r = b

    |E| = 0 +22 b

    GM

    b

    GM  

    (c) at r = c ; E = 0

    Q.22.  If we consider that a sphere of radius R is placed with centre at C1 of density 1  the force on themass at P is

    F1 = G 213

    )yR(mR)3/4(

    towards the sphere.

    If we consider that a sphere of radius R/2 is placed with centre at C2 of density 1 the force on themass at P is

    F2 = 21

    3

    )yR2/R(

    m)2/R()3/4(G

      towards the sphere.If we consider that a sphere of radius R/2 is

    placed with centre at C2 of density 2 the force on the mass in at P

    F3 = 22

    3

    )yR2/R(

    m)2/R()3/4(G

     

    By the principle of superposition

    F = F1 - F2 + F3  =34 R3 Gm

    212

    21

    )y)2/R3((

    8/) _(

    )yR(.

    Q.23.  The distance X, where gravitationalpull of each stars becomes equal andopposite can be obtained

    G2X

    Mm = G

    2)xa10(

    m)M16(

     

     x = 2a

    P

    O

    so the body will reach the smaller star due to stars gravitational pull is body just crosses point P byusing COE, energy at O = Energy at P

    -a2

    m,M16.G - 2minmv

    2

    1

    a8

    GMm  = -

    a8

    m)M16(G -

    a2

    GMm 

      vmin =2

    a

    GM5.

    http://www.rpmauryascienceblog.com/http://www.rpmauryascienceblog.com/

  • 8/18/2019 Phy 1 (10)

    6/12

    http://www.rpmauryascienceblog.com Q.24.  At nearest point P and farthest point

    Q. velocities are perpendicular totheir r 1 and r 2 conservation of angularmomentum, gives

    mv1r 1  = mv2r 2 

    r 2 s r 1

    v1

    PQ

    v2  

    Conservation of energy

    2

    22

    1

    21

    GMmmv

    2

    1

    GMmmv

    2

    1   . . . (2)

    solving (1) and (2)we getr 2 = 3r 1 so maximum distance of satellite from the centre of earth is 3R(since r 1  R) Maximum distance of satellite from surface of earth will be 3R - R = 2R.

    Q.25.    T

    o

    dtadr 

    o

      r = r 0 – aT

     At any moment I = ttanconsmr 5

    2 2  

     r 2 = constantat t = 0, r = r o ,  = o at t = T, r = r 0 - at (r o - aT)

    2 = or 2 

       = o  2o

    2o

    )aTr (

     

    Q.26.  P.E. of the system = -r 

    GMm 

    self energy of the shell = - M

    0

    dmr 

    Gm 

    =-r 2

    GM2 

    mr

    M

    Now total initial energy (Ui) = -1

    2

    1 r 2

    GM

    GmM  

    Total final energy (Uf ) = -2

    2

    2 r 2

    GM

    GMm  

     Work done by external agent = Uf  – Ui 

    = GMm

    21 r 

    1

    1 +

    21

    2

    1

    1

    2

    GM 

    = GM

    2

    Mm

    1

    1

    21

     

    Q.27.  Potential energy midway between M1 and M2 

    http://www.rpmauryascienceblog.com/http://www.rpmauryascienceblog.com/

  • 8/18/2019 Phy 1 (10)

    7/12

    http://www.rpmauryascienceblog.com 

    = – 2121 MM

    d

    G2

    2d

    GM

    2d

    GM  

    Potential energy at infinity = 0For minimum speed K.E. at infinity should be zero.

    Conserving energy

     –2   0MV2

    1MM

    d

    GM 221    

      v = 2   dMMG 21   

    Q.28.  The centre of mass C will be at a distance d/3 and2d/3 from the masses 2m and m respectively.

    Both the stars rotate with same angular velocity ''around C in their individual orbits.

    Ratio of angular momentum = 1

    2

    )3/d(m2

    )3/d2(m2

    2

     

    Ratio of kinetic energies =22

    22

    )3/d(m22

    1

    )3/d2(m2

    1

     =

    1

    C

    d/3 2d/3

     

    Q.29.  Ei = -d

    GMM3 

    Ef  = - 3    

      

      2Mv

    2

    13

    R2

    GMM 

    initial energy = final energy2v

    2

    1

    d

    1

    R2

    1GM  

     

    d

     

    v =

      dR2

    R2dGM2 .

    Q.30.  Potential at C = Potential due to whole sphere – potential due to cutt off sphere + potential duecutt off sphere at B

    vc =R4

    MG

    2/R

    MG

    R

    GM  

     

      

       

     

    vc = -

    32

    1

    4

    11

    R

    GM

    R32

    GM

    R4

    MG

    R

    GM 

    vc =

     

    32

    25

    R

    GM

    32

    1832

    R

    GM 

    vc = -R32

    GM25 

    for escape velocity2

    1  2emv  =

    R32

    GMm25 = m

    R32

    GM25mv

    2

    1 2e    

    http://www.rpmauryascienceblog.com/http://www.rpmauryascienceblog.com/

  • 8/18/2019 Phy 1 (10)

    8/12

    http://www.rpmauryascienceblog.com 

    ve =R

    GM

    4

    5.

    Q.31.  Applying energy conservation principle at

     A and at P.

    0 +

    220 mv

    2

    1

    GMmmv

    2

    1

      …(1) Where M = mass of the sun

    m = mass of the bodyand r = distance of closest approach.

    v = velocity at P

    v0

     A

    l

    M

    Sun

    P

     

    Since the angular momentum of the body about the sun will remain conserved, therefore

    (mv0) = (mv)r

      v0 = vr …(2)

     2

    020

    vm

    2

    1

    GMmmv

    2

    1

     

      

       l

        0vGMr 2r v 2022

    0     2

    l  

      r =20

    40

    22

    v2

    v4MG4GM2   2l =

     

      

     

    220

    20 GM

    v11

    v

    GM   l.

    Q.32.  (a) g(h) =

    9

    4

    R

    GM

    )2/3(R

    GM

    )2/RR(

    GM2222

     

     = g

    9

    (b) g(d) = 23 R

    GM

    2

    1

    2

    R

    R

    GM

     

      

      =

    2

    (c) Required ratio =9

    82x

    9

    4

    )d(g

    )h(g

    .

    (acceleration in part (a) will be more)

    Q.33.  (a) Gravitational field at B is due to larger sphere and sphere A

    IB =16

    MG

    32

    GM0    

    = GM16

    31

    16

    GM

    32

    M64G

     

    (b) The point y2 + z2 = 36 lies at6 m from the centre. 40  m from the smaller sphere.

      Gravitational potential at the point is

    v = - 240

    GM

    6

    GM0  = 240

    GM

    6

    )M64(G

     

    = - 10.98 GM.(c) Similarly at y2 + z2 = 4

    v = - 222

    GM)r R3(

    R2

    GM 223

    0  = -22 GM +2

    GM = - 21.29 GM

    http://www.rpmauryascienceblog.com/http://www.rpmauryascienceblog.com/

  • 8/18/2019 Phy 1 (10)

    9/12

    http://www.rpmauryascienceblog.com 

    Q.34.   From conservation of angular momentummv0r 0 sin = mvr sin 90

    0 (when the planet is at the maximum or minimum distance from planet,  = 900 )  v0r 0 sin  = vr . . . (i) From conservation of mechanical energy,

    2

    1m 20v  -

    0r 

    GMm =

    2

    1mv2 -

    GMm 

     Solving the equations (i) and (ii)

    r =

    20 sin)2(112

    r  

    where  =GM

    vr  200  

    therefore r max = 20 sin2(11

    2r   

    r min =

    20 sin2(112

    r  

    Q.35. M = mass of the sunr = distance between the two stars

    r 1 = r 3

    2r .

    mm

    m

    21

    2

     

    r 2 =3

    r r 

    mm

    m

    21

    1

     

    Centripetal force on m2 

    =

    2

    2

    221

    M9/2G

    mGm  

    r

    r1   r2

    C.M

    m1=M/3 m2=2M/3  

    Now 22222

    2

    3

    r M

    3

    2r m

    GM

    9

    2

     

      

     

     

      

       

      2 =3r 

    GM  T = Time period of revolutions.

    or3

    2

    GM

    T

    2

     

      

         ; T2 =

    GM

    r 4 32 

    Since time period of earth around sun

    T2 =GM

    R4 32  comparing r = R 

    http://www.rpmauryascienceblog.com/http://www.rpmauryascienceblog.com/

  • 8/18/2019 Phy 1 (10)

    10/12

    http://www.rpmauryascienceblog.com Q.36.  (a) Particle will travel in straight line AP

    parallel to CO with constant acceleration

    23

    RG4g

     

     AP = 2R cos 30

    t =g

     AP2

     =g

    30cosR4

     

    O

    300

    C

     A

    300P

    mg

    300

    (b) It will heat at point P and distance is AP which parallel to OC and AP = 2R cos 300.

    Q.37.  (i) We know that for satellite motion

    vo =

    hR

    gR

    GM

      [as g =2

    R

    GM  and r = R + h]

    In this problem vo = gR22

    1v

    2

    1e    

    So gR2

    1

    hR

    gR2

    , i.e. 2R = h + R or h = R = 6400 km

    (ii) By conservation of ME

    0 +  

      

     

     

      

     

    R

    GMmmv

    2

    1

    GMm 2  

    or v2 = 2GM

    R2

    1

    R

    1  [as r = R + h = R + R = 2R]

    or v = s/km88104.610gRR

    GM 5  

    Q.38.  The force on the ring by the sphere will be equal to the force on the sphere due to ring. The massof the sphere can be assumed to be concentrated at the centre of the sphere.

    a

    a

    a

    3 a

     

    Edue to ring = 22/322 a8

    Gm3

    )da(

    Gmd

     

    Therefore force on the ring will be equal to F = ME =2a8

    GMm3 

    http://www.rpmauryascienceblog.com/http://www.rpmauryascienceblog.com/

  • 8/18/2019 Phy 1 (10)

    11/12

    http://www.rpmauryascienceblog.com Q.39.

     

    The comet is moving along an ellipticalpath with the sun situated at one of thefoci of ellipse. Q is the farthest positionof the comet.

    211

    2

    cRMmG

    Rmv  

    P

    R1

    Q

    1.2 vc 

    R2

    1

    2c

    R

    MGv     . . . (1)

    Energy and angular momentum at P

    EP =1

    2P

    R

    MmGmv

    2

    1  

    EP =1

    2c

    R

    GMm)v2.1(m

    2

    1 =

    11

    2

    R

    GMm

    R

    GM)2.1(m

    2

    1  

    EP = - 0.28 1R

    m.GM

      . . . .(2)

    and LP = mvPR1  . . . (3)

     At Q,

    EQ =2

    2

    QR

    m.GMmv

    2

    1   . . . (4)

    LQ = mvQR2  . . . (5)

    Energy and momentum should be conservedL1 = L2 mvPR1 = mvQR2 

     vQ = vP2

    1

    RR  

    -0.28

    2

    2

    12P

    1 R

    Rmv

    2

    1

    R

    GMm

     

      

       -

    2R

    GMm=

    2

    2

    2

    1

    1

    2

    R

    GMm

    R

    R

    R

    GMm)2.1(

    2

    1

     

      

       

    -0.28 = 0.722

    1

    2

    2

    1

    R

    R

    R

    R

     

      

      

    0.72 X2 – X + 0.28 = 0 Where R1/R2 = X

    X =2

    1

    R

    R

    44.1

    44.01

     

    Taking ve sign, we get

    R2 =56.0

    44.1 = 2.57 R1

     

    Q.40.  The potential energy of the mass at the bottom of the crater is2

    2

    3

    GMm RV 3R R

    1002R

     

    where M and m are masses of the moon and the projectile respectively. If the maximum heightabove the lunar surface reached, is h, then from energy conservation,

    http://www.rpmauryascienceblog.com/http://www.rpmauryascienceblog.com/

  • 8/18/2019 Phy 1 (10)

    12/12

    http://www.rpmauryascienceblog.com 2

    2e

    GMm 99 1 GMm3 mv

    2R 100 2 R h

     

    where ev  is the escape velocity from the lunar surface. Thus2e

    2GMv

    R

    . This gives

    2GMm 99 GMm

    3 2 h 99.5R2R 100 R h

     

    Q.41.  Let v0 is the orbital velocity of satellite then20 e

    2e e

    mv GM m

    3R (3R )    v0 =

    e

    GM

    3R 

    Final momentum of satellite after the impulse I is given, is

    mv1 = mv0 – I = me e

    e e

    GM GMm

    3R 12R  

     v1 = e

    e

    GM1

    2 3R  . . . (i)

    v0 m 

    Me

    Let r be the minimum distance of satellite from centre of earth. If v2 is the velocity of satellite at thisdistance then by conservation of angular momentum

    mv2 r = mv1 (3Re) . . . (ii)By energy conservation

    2 2e1 2

    e

    GM m1 1mv mv

    2 3R 2  - e

    GM m

    r  

    using equation (ii) and (i)

    r =3

    7Re is the minimum distance of satellite from earth’s centre. 

    http://www.rpmauryascienceblog.com/http://www.rpmauryascienceblog.com/