Matematyczne Metody Fizyki Ihome.agh.edu.pl/~mariuszp/wfiis_mmf/wyklad_mmf1_1_0809.pdf · M....

25

Transcript of Matematyczne Metody Fizyki Ihome.agh.edu.pl/~mariuszp/wfiis_mmf/wyklad_mmf1_1_0809.pdf · M....

Page 1: Matematyczne Metody Fizyki Ihome.agh.edu.pl/~mariuszp/wfiis_mmf/wyklad_mmf1_1_0809.pdf · M. Przybycie ń Matematyczne Metody Fizyki I Wyk ład 1 -2 ... Algebra liniowa, T. Jurlewicz,
Page 2: Matematyczne Metody Fizyki Ihome.agh.edu.pl/~mariuszp/wfiis_mmf/wyklad_mmf1_1_0809.pdf · M. Przybycie ń Matematyczne Metody Fizyki I Wyk ład 1 -2 ... Algebra liniowa, T. Jurlewicz,

M. PrzybycieM. Przybycieńń Matematyczne Metody Fizyki IMatematyczne Metody Fizyki I WykWykłład 1ad 1--22

Matematyczne Metody Fizyki IMatematyczne Metody Fizyki IDr hab. inDr hab. inżż. Mariusz . Mariusz PrzybyciePrzybycieńń

� Matematyka dla przyrodników i inżynierów, D.A. McQuarrie, PWN, Warszawa 2005.

� Wybrane rozdziały matematycznych metod fizyki, A. Lenda, B. Spisak, Wydawnictwo AGH, Kraków 2006.

� Matematyka w fizyce klasycznej i kwantowej, F.W. Byron, R.W. Fuller, PWN, Warszawa 1974.

� Mathematical Methods for Physics and Engineering, K.F. Riley, M.P. Hobson, S.J. Bence, Cambridge Univ. Press, 2006.

� Algebra liniowa, T. Jurlewicz, Z. Skoczylas, GiS, Wrocław 2002.� Matematyka dla studiów inżynierskich,

S. Białas, A. Ćmiel, A. Fitzke, Wydawnictwo AGH, Kraków 1973.

� Algebra i geometria analityczna w zadaniach, H. Arodź, K. Rościszewski, ZNAK, Kraków 2005.

� Zbiór zadań z algebry, L. Jeśmianowicz, J. Łoś, PWN,Warszawa 1975.� Algebra i wielowymiarowa geometria analityczna w zadaniach,

S. Przybyło, A. Szlachtowski, WNT, Warszawa 2005.

� http://home.agh.edu.pl/~mariuszp

Page 3: Matematyczne Metody Fizyki Ihome.agh.edu.pl/~mariuszp/wfiis_mmf/wyklad_mmf1_1_0809.pdf · M. Przybycie ń Matematyczne Metody Fizyki I Wyk ład 1 -2 ... Algebra liniowa, T. Jurlewicz,

M. PrzybycieM. Przybycieńń Matematyczne Metody Fizyki IMatematyczne Metody Fizyki I WykWykłład 1ad 1--33

WiadomoWiadomośści wstci wstęępnepneFunkcje trygonometryczne:

� wybrane wartości funkcji trygonometrycznych:

θθθθ (stopnie)

θθθθ (radiany)

sin tansin cos tan sin coscot cos tan tan

α αα αα αα αα + α = α = = α = α =α + α = α = = α = α =α + α = α = = α = α =α + α = α = = α = α =α αα αα αα α + α + α+ α + α+ α + α+ α + α

2 2

2 2

1 11

1 1

� tożsamości trygonometryczne dla pojedynczego kąta:

Math

Player

Math

Player

Page 4: Matematyczne Metody Fizyki Ihome.agh.edu.pl/~mariuszp/wfiis_mmf/wyklad_mmf1_1_0809.pdf · M. Przybycie ń Matematyczne Metody Fizyki I Wyk ład 1 -2 ... Algebra liniowa, T. Jurlewicz,

M. PrzybycieM. Przybycieńń Matematyczne Metody Fizyki IMatematyczne Metody Fizyki I WykWykłład 1ad 1--44

ToTożżsamosamośści trygonometryczneci trygonometryczneTożsamości trygonometryczne dla dwóch kątów:

� Wyprowadzenie wzorów na sinus i cosinus sumy kątów:

� współrzędne punktu P: w Oxy: (cos(αααα+ββββ), sin(αααα+ββββ)) oraz w Ox’y’: (cosββββ, sinββββ)

x

x’

y’y

PR

NM

T

ααααββββ

o 1-1

� współrzędne punktu R: w Oxy: (0, sin(αααα+ββββ))

� cos ββββ = x’= TN+NP = MR+NP = OR sinαααα + RP cosαααα =

= sin(αααα+ββββ) sin αααα + cos(αααα+ββββ) cos αααα

� sin ββββ = y’= OM-TM = OM-NR = OR cosαααα + RP sinα α α α =

= sin(αααα+ββββ) cos αααα - cos(αααα+ββββ) sin αααα

� mnożąc pierwsze z powyższych równań przez

sinαααα a drugie przez cosαααα otrzymujemy:

sin(αααα+ββββ) = sinαααα cosββββ + cosαααα sinββββ

� podobnie znajdujemy:

cos(αααα+ββββ) = cosαααα cosββββ −−−− sinαααα sinββββ

Page 5: Matematyczne Metody Fizyki Ihome.agh.edu.pl/~mariuszp/wfiis_mmf/wyklad_mmf1_1_0809.pdf · M. Przybycie ń Matematyczne Metody Fizyki I Wyk ład 1 -2 ... Algebra liniowa, T. Jurlewicz,

M. PrzybycieM. Przybycieńń Matematyczne Metody Fizyki IMatematyczne Metody Fizyki I WykWykłład 1ad 1--55

ToTożżsamosamośści trygonometryczneci trygonometrycznePodstawiając –ββββ zamiast ββββ w powyższych wzorach, znajdujemy wyrażenia

na sinus i cosinus różnicy kątów. W rezultacie mamy:

(((( ))))(((( ))))

(((( ))))sin sin cos cos sin tan tantan

tan tancos cos cos sin sinα ±β = α β ± α βα ±β = α β ± α βα ±β = α β ± α βα ±β = α β ± α β α ± βα ± βα ± βα ± β⇒ α±β =⇒ α±β =⇒ α±β =⇒ α±β = α βα βα βα βα ± β = α β α βα ± β = α β α βα ± β = α β α βα ± β = α β α β 1∓∓∓∓∓∓∓∓

Dodając stronami wzory na sin(αααα±ββββ) a następnie stosując podstawienia

α+βα+βα+βα+β = γ γ γ γ oraz αααα−−−−ββββ = δ δ δ δ znajdujemy wyrażenie na sinγγγγ + sinδδδδ. Postępując

analogicznie można znaleźć pozostałe z poniższych wzorów:

sin sin sin cos cos cos cos cos

sin sin cos sin cos cos sin sin

γ + δ γ − δ γ + δ γ − δγ + δ γ − δ γ + δ γ − δγ + δ γ − δ γ + δ γ − δγ + δ γ − δ γ + δ γ − δ γ + δ = γ + δ =γ + δ = γ + δ =γ + δ = γ + δ =γ + δ = γ + δ = γ + δ γ − δ γ + δ γ − δγ + δ γ − δ γ + δ γ − δγ + δ γ − δ γ + δ γ − δγ + δ γ − δ γ + δ γ − δ γ − δ = γ − δ = −γ − δ = γ − δ = −γ − δ = γ − δ = −γ − δ = γ − δ = −

2 22 2 2 2

2 22 2 2 2

Ważne przypadki szczególne:

(((( ))))

tansin sin cos tantan

sincos cos sin tan tan

cos cos

ααααα = α α α =α = α α α =α = α α α =α = α α α =− α− α− α− α

α ±βα ±βα ±βα ±βα = α − α α ± β =α = α − α α ± β =α = α − α α ± β =α = α − α α ± β =

α βα βα βα β

2

2 2

22 2 2

1

2

Page 6: Matematyczne Metody Fizyki Ihome.agh.edu.pl/~mariuszp/wfiis_mmf/wyklad_mmf1_1_0809.pdf · M. Przybycie ń Matematyczne Metody Fizyki I Wyk ład 1 -2 ... Algebra liniowa, T. Jurlewicz,

M. PrzybycieM. Przybycieńń Matematyczne Metody Fizyki IMatematyczne Metody Fizyki I WykWykłład 1ad 1--66

Funkcje hiperboliczneFunkcje hiperboliczneOdwrotne funkcje trygonometryczne (funkcje arcus):

Definicja: Funkcje hiperboliczne zdefiniowane są w następujący sposób:

(((( )))) (((( ))))e e e esinh coshx x x xx x− −− −− −− −= − = += − = += − = += − = +1 1

2 2Własności:

(((( )))) (((( ))))sinh sinh cosh cosh cosh sinhsinhsinh sinh cosh cosh sinh cosh tanhcosh

x x x x x xxx x x x x x xx

− = − − = − =− = − − = − =− = − − = − =− = − − = − =

= + = == + = == + = == + = =

2 2

2 2

1

2 2 2

(((( ))))(((( )))) (((( ))))sinh sinh cosh cosh sinh tanh tanh

tanhtanh tanhcosh cosh cosh sinh sinh

x y x y x y x yx y

x yx y x y± = ±± = ±± = ±± = ± ±±±±⇒ ± =⇒ ± =⇒ ± =⇒ ± = ±±±±α ±β = ±α ±β = ±α ±β = ±α ±β = ± 1

Page 7: Matematyczne Metody Fizyki Ihome.agh.edu.pl/~mariuszp/wfiis_mmf/wyklad_mmf1_1_0809.pdf · M. Przybycie ń Matematyczne Metody Fizyki I Wyk ład 1 -2 ... Algebra liniowa, T. Jurlewicz,

M. PrzybycieM. Przybycieńń Matematyczne Metody Fizyki IMatematyczne Metody Fizyki I WykWykłład 1ad 1--77

Wykresy funkcji hiperbolicznychWykresy funkcji hiperbolicznychFunkcje hiperboliczne:

Odwrotne funkcje hiperboliczne (funkcje arcus):

Math

Player

Page 8: Matematyczne Metody Fizyki Ihome.agh.edu.pl/~mariuszp/wfiis_mmf/wyklad_mmf1_1_0809.pdf · M. Przybycie ń Matematyczne Metody Fizyki I Wyk ład 1 -2 ... Algebra liniowa, T. Jurlewicz,

M. PrzybycieM. Przybycieńń Matematyczne Metody Fizyki IMatematyczne Metody Fizyki I WykWykłład 1ad 1--88

Symbole sumy (Symbole sumy (ΣΣΣΣ) i iloczynu () i iloczynu (ΠΠΠΠ))� sumę oraz iloczyn wyrazów ciągu liczb ap, ap+1, ap+2, …, an-1, an, gdzie p<n

zapisujemy w sposób skrócony w następujący sposób:

... ...n n

i p p n i p p ni p i p

a a a a a a a a+ ++ ++ ++ += == == == =

= + + + = ⋅ ⋅ ⋅= + + + = ⋅ ⋅ ⋅= + + + = ⋅ ⋅ ⋅= + + + = ⋅ ⋅ ⋅∑ ∏∑ ∏∑ ∏∑ ∏1 1

Przykład: Suma wyrazów ciągu arytmetycznego a0, a0+d, a0+2d, … a0+nd dana jest

wzorem: (((( )))) (((( )))) (((( ))))n

k

a kd n a nd====

+ = + ++ = + ++ = + ++ = + +∑∑∑∑ 0 0

0

11 2

2

Przykład: Suma wyrazów ciągu geometrycznego a0, a0q, a0q2, … a0q

n, gdzie q≠1,

dana jest wzorem: nnk

k

qa q a

q

++++

====

−−−−====

−−−−∑∑∑∑1

0 0

0

1

1

� sumy mogą przebiegać po dowolnej liczbie wskaźników, np:

... ... ... ...n m m n

ij pr p r nr p r n r pm nm iji p j r j r i p

a a a a a a a a a+ + ++ + ++ + ++ + += = = == = = == = = == = = =

= + + + + + + + + + == + + + + + + + + + == + + + + + + + + + == + + + + + + + + + =∑∑ ∑∑∑∑ ∑∑∑∑ ∑∑∑∑ ∑∑1 1 1

� jeżeli zakres zmienności indeksów jest taki sam stosuje się zapis:

,

n n n

ij iji j i j

a a= = == = == = == = =

====∑∑ ∑∑∑ ∑∑∑ ∑∑∑ ∑1 1 1

Page 9: Matematyczne Metody Fizyki Ihome.agh.edu.pl/~mariuszp/wfiis_mmf/wyklad_mmf1_1_0809.pdf · M. Przybycie ń Matematyczne Metody Fizyki I Wyk ład 1 -2 ... Algebra liniowa, T. Jurlewicz,

M. PrzybycieM. Przybycieńń Matematyczne Metody Fizyki IMatematyczne Metody Fizyki I WykWykłład 1ad 1--99

Metody dowodzenia twierdzeMetody dowodzenia twierdzeńńZasada indukcji matematycznej: Jeżeli twierdzenie w którym jest mowa o

liczbach naturalnych (1) jest prawdziwe dla określonej liczby naturalnej n0,

i (2) jeśli z prawdziwości tego twierdzenia dla liczby naturalnej n wynika jego

prawdziwość dla liczby następnej n+1, to twierdzenie jest prawdziwe dla do-

wolnej liczby naturalnej n r n0.

(1) sprawdzamy prawdziwość twierdzenia dla n0=1: Q(1)/6 = 6/6 = 1

Przykład: Pokaż, że Q(n) = n4+2n3+2n2+n jest podzielne przez 6 dla wszystkich n>0.

(2) Q(n+1) = (n+1)4 + 2(n+1)3 + 2(n+1)2 + (n+1) =

= (n4 + 4n3 + 6n2 + 4n +1) + 2(n3 + 3n2 + 3n +1) + 2(n2 + 2n + 1) + (n+1) =

= (n4 + 2n3 + 2n2 +n) + (4n3+ 12n2 + 14n +6)

Musimy teraz sprawdzić czy 4n3+14n jest podzielne przez 6, czyli czy R(n) = 2n3+7n

jest podzielne przez 3, przeprowadzając dodatkowy dowód przez indukcję:

(1) dla n0=1: R(1)/3 = 9/3 = 3

(2) R(n+1) = 2(n+1)3 + 7(n+1) = 2(n3+3n2+3n+1) + 7(n+1) = (2n3+7n) + 3(2n2+2n+3)

R(n) jest więc podzielne przez 3, co oznacza, że ostatecznie Q(n) jest podzielne przez 6.

Math

Player

Page 10: Matematyczne Metody Fizyki Ihome.agh.edu.pl/~mariuszp/wfiis_mmf/wyklad_mmf1_1_0809.pdf · M. Przybycie ń Matematyczne Metody Fizyki I Wyk ład 1 -2 ... Algebra liniowa, T. Jurlewicz,

M. PrzybycieM. Przybycieńń Matematyczne Metody Fizyki IMatematyczne Metody Fizyki I WykWykłład 1ad 1--1010

Metody dowodzenia twierdzeMetody dowodzenia twierdzeńńDowód przez zaprzeczenie:

� zakładamy prawdziwość hipotezy oraz logicznego zaprzeczenia rezultatu

który chcemy udowodnić (tzn. jeśli dowodzimy „jeśli P to Q” to zakładamy

prawdziwość „P” i „nie Q”),

� stosując znane twierdzenia i własności dochodzimy do sprzeczności (tzn.

konkluzji sprzecznej z naszymi założeniami lub jakiegoś w oczywisty

sposób nieprawdziwego twierdzenia, np. 1 = 0)

Przykład: Udowodnić, że nie jest liczbą wymierną.2

� załóżmy, że jest liczbą wymierną, tzn. że daje się zapisać w postaci

gdzie a i b nie mają wspólnych dzielników.

2ab

====2

� co oznacza, że a2 jest liczbą parzystą, a w konsekwencji

samo a jest parzyste, ponieważ iloczyn liczb nieparzystych jest liczbą nieparzystą.

a a bb

= ⇒ == ⇒ == ⇒ == ⇒ =2 22 2

� a więc można napisać a = 2c fi 2c2 = b2 fi b jest parzyste.

� oznacza to że a i b oba są parzyste, a więc mają wspólny dzielnik – sprzeczność!

Przykład: Tw: Jest nieskończenie wiele liczb pierwszych. (dowód q = p1 p2 p3 … pn + 1)

Page 11: Matematyczne Metody Fizyki Ihome.agh.edu.pl/~mariuszp/wfiis_mmf/wyklad_mmf1_1_0809.pdf · M. Przybycie ń Matematyczne Metody Fizyki I Wyk ład 1 -2 ... Algebra liniowa, T. Jurlewicz,

M. PrzybycieM. Przybycieńń Matematyczne Metody Fizyki IMatematyczne Metody Fizyki I WykWykłład 1ad 1--1111

Dwumian NewtonaDwumian NewtonaSymbol Newtona:

(((( )))) (((( )))) (((( ))))!! !

nn nk n k k nk kk n k= ≤ ≤ = < ∨ >= ≤ ≤ = < ∨ >= ≤ ≤ = < ∨ >= ≤ ≤ = < ∨ >

−−−−0 0 0dla oraz dla

Własności: (((( )))) (((( )))) (((( )))) (((( )))) (((( )))) (((( )))) (((( ))))n

s

n n n n n k s n kk n k k k k k k

−−−−

====

+ + ++ + ++ + ++ + += = + == = + == = + == = + =− − +− − +− − +− − +∑∑∑∑1

0

1

1 1

Przykład: Dowód metodą indukcji matematycznej trzeciej z powyższych własności:

k kL P

k k++++

= = == = == = == = = ++++

1

1(1) sprawdzamy prawdziwość twierdzenia dla n0=1:

(2)

n n

s s

k s k s k n n k n k n kk k k k k k

−−−−

= == == == =

+ + + + + + ++ + + + + + ++ + + + + + ++ + + + + + + = + = + == + = + == + = + == + = + = + ++ ++ ++ +

∑ ∑∑ ∑∑ ∑∑ ∑1

0 0

1

1 1

p q rs p s t q t

s t t

p q p q p qx y x y s t r

s t r t t r− −− −− −− −

= = == = == = == = =

++++ ⇒ + = ⇒ =⇒ + = ⇒ =⇒ + = ⇒ =⇒ + = ⇒ = −−−−

∑ ∑ ∑∑ ∑ ∑∑ ∑ ∑∑ ∑ ∑0 0 0

Przykład: Wychodząc z (x+y)p(x+y)q ª (x+y)p+q oraz porównując wsp. przy xp+q-ryr mamy:

Dwumian Newtona (rozwinięcie dwumianowe): (((( )))) (((( ))))nn k n k

k

nx y x yk−−−−

====

+ =+ =+ =+ =∑∑∑∑0

Math

Player

Math

Player

Page 12: Matematyczne Metody Fizyki Ihome.agh.edu.pl/~mariuszp/wfiis_mmf/wyklad_mmf1_1_0809.pdf · M. Przybycie ń Matematyczne Metody Fizyki I Wyk ład 1 -2 ... Algebra liniowa, T. Jurlewicz,

M. PrzybycieM. Przybycieńń Matematyczne Metody Fizyki IMatematyczne Metody Fizyki I WykWykłład 1ad 1--1212

,

ax bx c

b b acxa

+ + =+ + =+ + =+ + =

− ± −− ± −− ± −− ± −====

2

2

1 2

0

4

2

(((( )))),

,

y x x

x

x

x x

= − −= − −= − −= − −

± +± +± +± +====

±±±±====

= = −= = −= = −= = −

2

1 2

1 2

1 2

2 3

2 4 12

2

2 4

2

3 1

(((( )))),

,

,

y x x

x

x

x

= − += − += − += − +

± −± −± −± −====

±±±±====

====

2

1 2

1 2

1 2

2 1

2 4 4

2

2 0

2

1

(((( )))),

,

y x x

x

x

= − += − += − += − +

± −± −± −± −====

± −± −± −± −= = ± − == = ± − == = ± − == = ± − =

= ± −= ± −= ± −= ± −

2

1 2

1 2

2 3

2 4 12

2

2 81 2

2

1 2 1 ??

Pierwiastki rPierwiastki róównania kwadratowegownania kwadratowego

i = −= −= −= −1Jednostka

urojona:

,x i= ±= ±= ±= ±1 2 1 2

Math

Player

Math

PlayerMath

Player

Page 13: Matematyczne Metody Fizyki Ihome.agh.edu.pl/~mariuszp/wfiis_mmf/wyklad_mmf1_1_0809.pdf · M. Przybycie ń Matematyczne Metody Fizyki I Wyk ład 1 -2 ... Algebra liniowa, T. Jurlewicz,

M. PrzybycieM. Przybycieńń Matematyczne Metody Fizyki IMatematyczne Metody Fizyki I WykWykłład 1ad 1--1313

… liczba rzeczywista.

… liczba (czysto) urojona.

Liczby zespoloneLiczby zespolone z = z = aa + + bibi

Liczby rzeczywiste aLiczby urojone bi

6.25

–3 + 4i

–23 + 0i–4iππππ – 24i

± i–216.4e

100 – (2/5) i

Liczby zespoloneLiczby zespolone

ππππii 2

3

2 + i 3

7/8

(wymierne i niewymierne)(wymierne i niewymierne)

Liczby zespolone (�) to liczby zawierające jednostkę urojoną i (L.Euler).Postać algebraiczna liczb zespolonych to z = a+bi, gdzie a, b œ�.

a = Re(z) – część rzeczywista liczby z, b = Im(z) – część urojona liczby z

Fundamentalne twierdzenie algebry stwierdza, że jeśli f(z) jest dowolnym

wielomianem stopnia n, to równanie f(z) = 0 ma dokładnie n rozwiązań (w �).

Jeśli b = 0 oraz a ≠ 0, mamy a+0i … lub a.Jeśli b ≠ 0 oraz a = 0, mamy 0+bi … lub ib

Page 14: Matematyczne Metody Fizyki Ihome.agh.edu.pl/~mariuszp/wfiis_mmf/wyklad_mmf1_1_0809.pdf · M. Przybycie ń Matematyczne Metody Fizyki I Wyk ład 1 -2 ... Algebra liniowa, T. Jurlewicz,

M. PrzybycieM. Przybycieńń Matematyczne Metody Fizyki IMatematyczne Metody Fizyki I WykWykłład 1ad 1--1414

WWłłasnoasnośści liczb zespolonychci liczb zespolonych

Liczbą sprzężoną do liczby z = a + + + + bi nazywamy wielkość z* = a −−−− bi

z zz a b= = += = += = += = +2 2*Modułem liczby z = a++++bi nazywamy wielkość:

� Dwie liczby zespolone są sobie równe wtedy i tylko wtedy gdy ich części

rzeczywiste i urojone są niezależnie sobie równe:

z1= z2 ⇔⇔⇔⇔ Re{z1}=Re{z2} i Im{z1}=Im{z2}

� W zbiorze liczb zespolonych nie jest określona relacja uporządkowania

(tzn., że nie ma sensu wyrażenie np. 9+6i > 3+2i )

� Liczba zespolona jest czysto rzeczywista wtedy i tylko wtedy gdy z = z*� Liczba zespolona jest czysto urojona wtedy i tylko wtedy gdy z = -z*

(((( )))) (((( ))))Re Re Im Imz z z z z z z zi

= = + = − = −= = + = − = −= = + = − = −= = + = − = −1 1

2 2* * * *�

Przykład: Znajdź liczbę sprzężoną i moduł liczby zespolonej z= a + 2i ---- 3bi(((( )))) (((( ))))

(((( ))))

*z a b i z a b i

z zz a b

= + − ⇒ = − −= + − ⇒ = − −= + − ⇒ = − −= + − ⇒ = − −

= = + −= = + −= = + −= = + −22

2 3 2 3

2 3*

Uwaga: zachodzą następujące relacje |z| = |z*| oraz |z1| + |z2| b |z1+z2|

Page 15: Matematyczne Metody Fizyki Ihome.agh.edu.pl/~mariuszp/wfiis_mmf/wyklad_mmf1_1_0809.pdf · M. Przybycie ń Matematyczne Metody Fizyki I Wyk ład 1 -2 ... Algebra liniowa, T. Jurlewicz,

M. PrzybycieM. Przybycieńń Matematyczne Metody Fizyki IMatematyczne Metody Fizyki I WykWykłład 1ad 1--1515

Im(Im(Im(Im(z))))

Re(Re(Re(Re(z))))

z = a+ib

a

b

|z|

ϕϕϕϕ

PPłłaszczyzna zespolona i argumentaszczyzna zespolona i argumentKażdą liczbę zespoloną z = a+ibmożna przedstawić jako punkt o współrzęd-

nych kartezjańskich (a, b) na tzw. płaszczyźnie zespolonej:

• wektor wodzący tego punktu ma początek w punkcie (0,0) i koniec w (a,b)• jego długość jest równa modułowi liczby zespolonej

• kąt zawarty między osią Re(z) i wektorem wodzącym punktu (a,b) nazywa-my fazą lub argumentem liczby zespolonej i oznaczamy ϕϕϕϕ = arg(z).

Im(Im(Im(Im(z))))

Re(Re(Re(Re(z))))

z = x+iy

z* = x−−−−iy

|z|

|z|

Diagram Arganda

cos sina b

a b a bϕ = ϕ =ϕ = ϕ =ϕ = ϕ =ϕ = ϕ =

+ ++ ++ ++ +2 2 2 2

Liczba z= 0 może mieć dowolną fazę.

W pozostałych przypadkach faza dana jest przez:

Danej liczbie zespolonej można przyporzą-

dkować nieskończenie wiele faz: ϕϕϕϕ + 2kππππ,

gdzie k jest dowolną liczbą całkowitą.

Argumentem głównym (ozn. Arg(z))

nazywamy fazę z przedziału -ππππ b ϕϕϕϕ <ππππ.

Math

Player

Math

Player

Page 16: Matematyczne Metody Fizyki Ihome.agh.edu.pl/~mariuszp/wfiis_mmf/wyklad_mmf1_1_0809.pdf · M. Przybycie ń Matematyczne Metody Fizyki I Wyk ład 1 -2 ... Algebra liniowa, T. Jurlewicz,

M. PrzybycieM. Przybycieńń Matematyczne Metody Fizyki IMatematyczne Metody Fizyki I WykWykłład 1ad 1--1616

Dodawanie liczb zespolonychDodawanie liczb zespolonych� Dodawanie (odejmowanie) liczb zespolonych (z1 = a1+ib1 oraz z2 = a2+ib2):

(((( )))) (((( ))))(((( ))))

z z a ib a ib

a a i b b

± = + ± + =± = + ± + =± = + ± + =± = + ± + =

= ± + ±= ± + ±= ± + ±= ± + ±

1 2 1 1 2 2

1 2 1 2

(((( ))))(((( ))))

Re Re ReIm Im Im

z z z zz z z z

± = ±± = ±± = ±± = ±⇒⇒⇒⇒ ± = ±± = ±± = ±± = ±

1 2 1 2

1 2 1 2

Im(Im(Im(Im(z))))

Re(Re(Re(Re(z))))

z1

z = z1 + z2

z2

b1

a1

b2

a2

b1+b2

a1+a2

(((( )))) (((( )))) (((( )))),, ,z a b a a bz a b b+ = + =+ = + =+ = + =+ = + = + ++ ++ ++ +21 1 1 2 1 2 12 2

Dodawanie l.z. jest przemienne i łączne:

(((( )))) (((( ))))z z z z

z z z z z z+ = ++ = ++ = ++ = +

+ + = + ++ + = + ++ + = + ++ + = + +1 2 2 1

1 2 3 1 2 2

Przykład: Wykonaj działanie z1111+z2222-z3333

gdzie z1=1+2i, z2=3-4i, z3=-2+i

(((( )))) (((( )))) (((( ))))

(((( ))))(((( )))) (((( ))))

z z z

i i i

i i

+ − =+ − =+ − =+ − =

= + + − − − + == + + − − − + == + + − − − + == + + − − − + =

= + − − + − − = −= + − − + − − = −= + − − + − − = −= + − − + − − = −

1 2 3

1 2 3 4 2

1 3 2 2 4 1 6 3

(((( ))))z z z z± = ±± = ±± = ±± = ±1 2 1 2* * *Sprzężenie zespolone sumy (różnicy) l.z.

Math

Player

Page 17: Matematyczne Metody Fizyki Ihome.agh.edu.pl/~mariuszp/wfiis_mmf/wyklad_mmf1_1_0809.pdf · M. Przybycie ń Matematyczne Metody Fizyki I Wyk ład 1 -2 ... Algebra liniowa, T. Jurlewicz,

M. PrzybycieM. Przybycieńń Matematyczne Metody Fizyki IMatematyczne Metody Fizyki I WykWykłład 1ad 1--1717

MnoMnożżenie i dzielenie liczb zespolonychenie i dzielenie liczb zespolonych

(((( )))) (((( ))))(((( ))))

z z a ib a ib

a a b b i a b b a

= + + == + + == + + == + + =

= − + += − + += − + += − + +

1 2 1 1 2 2

1 2 1 2 1 2 1 2(((( )))) (((( ))))z z z z

iz z z z z z

====⇒ = −⇒ = −⇒ = −⇒ = −

====1 2 2 12

1 2 3 1 2 3

1 oraz

(((( ))))(((( ))))

a a b b i b a a bz a ib a ib a ibz a ib a ib a ib a ib

a a b b b a a bi

a b a b

+ + −+ + −+ + −+ + −+ + −+ + −+ + −+ + −= = ⋅ = == = ⋅ = == = ⋅ = == = ⋅ = =

+ + −+ + −+ + −+ + − −−−−

+ −+ −+ −+ −= += += += +

+ ++ ++ ++ +

1 2 1 2 1 2 1 21 1 1 1 1 2 2

222 2 2 2 2 2 2

2 2

1 2 1 2 1 2 1 2

2 2 2 2

2 2 2 2

zz zz z

−−−−⇒ ∀ ≠ ≡ =⇒ ∀ ≠ ≡ =⇒ ∀ ≠ ≡ =⇒ ∀ ≠ ≡ =1

2

10

*

� Mnożenie i dzielenie liczb zespolonych (z1 = a1+ib1 oraz z2 = a2+ib2):

Przykład: Wykonaj działania z1z2 oraz z1////z2 gdzie z1=3+2i, z2=-1-4i.(((( )))) (((( ))))(((( )))) (((( ))))(((( )))) (((( ))))

z z i i i i i iz i i i iz i i

= + − − = − − − − = −= + − − = − − − − = −= + − − = − − − − = −= + − − = − − − − = −

+ − + − ++ − + − ++ − + − ++ − + − += = = − += = = − += = = − += = = − +− − − +− − − +− − − +− − − +

2

1 2

1

2

3 2 1 4 3 2 12 8 5 14

3 2 1 4 11 10 11 10

17 17 171 4 1 4

(((( )))) zz z zz z z z z z z z

z z z z = = = == = = == = = == = = =

11 1 1

1 2 1 2 1 2 1 2

2 2 2 2

**

* * **

� Własności sprzężenia zespolonego i modułu:

Math

Player

Page 18: Matematyczne Metody Fizyki Ihome.agh.edu.pl/~mariuszp/wfiis_mmf/wyklad_mmf1_1_0809.pdf · M. Przybycie ń Matematyczne Metody Fizyki I Wyk ład 1 -2 ... Algebra liniowa, T. Jurlewicz,

M. PrzybycieM. Przybycieńń Matematyczne Metody Fizyki IMatematyczne Metody Fizyki I WykWykłład 1ad 1--1818

ZbiZbióór liczb zespolonychr liczb zespolonych

(((( )))) (((( )))) (((( )))) (((( )))) (((( )))) (((( ))))(((( )))) (((( )))) (((( )))) (((( ))))(((( ))))

(((( )))) (((( )))) (((( )))) (((( ))))(((( ))))(((( )))) (((( ))))(((( )))) (((( )))) (((( )))) (((( ))))

, , , , ,

,

,

, ,

, , , ,

z z z a b a b a b a b a a b b

a a a b b b a b b b a a

aa bb aa bb ab ba ab ba

aa bb ab ba aa bb ab ba

a b a b a b a b zz zz

+ = + = + + =+ = + = + + =+ = + = + + =+ = + = + + =

= + − + + + + == + − + + + + == + − + + + + == + − + + + + =

= − + − + + + == − + − + + + == − + − + + + == − + − + + + =

= − + + − + == − + + − + == − + + − + == − + + − + =

= + = += + = += + = += + = +

1 2 1 1 2 2 1 2 1 2

1 2 1 2 1 2 1 2

1 1 2 2 1 1 2 2

1 1 1 1 2 2 2 2

1 1 2 2 1 2

Uwaga: przy wyborze kąta zawsze trzeba zwrócić uwagę w której ćwiartce znajduje się

badana liczba zespolona.

Przykład: Sprawdź czy w zbiorze liczb zespolonych zachodzi rozdzielność

mnożenia względem dodawania.

Przykład: Znajdź fazę i moduł liczby zespolonej z = 2-3i

(((( ))))

(((( )))) (((( )))) radarg arctan arctan .

z zz

yz

x

= = + − == = + − == = + − == = + − =

− − − −= = = −= = = −= = = −= = = −

222 3 13

30 9828

2

*

Page 19: Matematyczne Metody Fizyki Ihome.agh.edu.pl/~mariuszp/wfiis_mmf/wyklad_mmf1_1_0809.pdf · M. Przybycie ń Matematyczne Metody Fizyki I Wyk ład 1 -2 ... Algebra liniowa, T. Jurlewicz,

M. PrzybycieM. Przybycieńń Matematyczne Metody Fizyki IMatematyczne Metody Fizyki I WykWykłład 1ad 1--1919

Im(Im(Im(Im(z))))

Re(Re(Re(Re(z))))

z = a+ib

a

b

|z|

ϕϕϕϕ

PostaPostaćć trygonometryczna liczb zespolonychtrygonometryczna liczb zespolonychKażdą liczbę zespolona z=a+bi można przedstawić w postaci trygonometrycznej:

(((( ))))cos sina biz a bi z z iz z

++++= + = = ϕ + ϕ= + = = ϕ + ϕ= + = = ϕ + ϕ= + = = ϕ + ϕ

Mnożenie i dzielenie l.z. w postaci trygonometycznej:

(((( )))) (((( ))))(((( ))))

(((( )))) (((( ))))(((( ))))

cos sin cos sin

cos cos sin sin sin cos sin cos

cos sin

z z z z i i

z z i

z z i

= ϕ + ϕ ϕ + ϕ == ϕ + ϕ ϕ + ϕ == ϕ + ϕ ϕ + ϕ == ϕ + ϕ ϕ + ϕ =

= ϕ ϕ − ϕ ϕ + ϕ ϕ + ϕ ϕ == ϕ ϕ − ϕ ϕ + ϕ ϕ + ϕ ϕ == ϕ ϕ − ϕ ϕ + ϕ ϕ + ϕ ϕ == ϕ ϕ − ϕ ϕ + ϕ ϕ + ϕ ϕ =

= ϕ + ϕ + ϕ + ϕ= ϕ + ϕ + ϕ + ϕ= ϕ + ϕ + ϕ + ϕ= ϕ + ϕ + ϕ + ϕ

1 2 1 2 1 1 2 2

1 2 1 2 1 2 1 2 12

1 2 1 2 1 2

Wnioski:� można tak dobrać wartości argumentów, aby były spełnione relacje:

arg(z1z2) = arg(z1) + arg(z2) oraz arg(z1/z2) = arg(z1) - arg(z2)

� Twierdzenie de Moivre’a: (cosϕ+isinϕ)n = cos(nϕ) + isin(nϕ)

(((( ))))(((( ))))

(((( )))) (((( ))))(((( ))))cos sincos sin

cos siniz zz

iz z zi

ϕ + ϕϕ + ϕϕ + ϕϕ + ϕ= = ϕ − ϕ + ϕ − ϕ= = ϕ − ϕ + ϕ − ϕ= = ϕ − ϕ + ϕ − ϕ= = ϕ − ϕ + ϕ − ϕ

ϕ + ϕϕ + ϕϕ + ϕϕ + ϕ1 11 11

1 2 1 2

2 2 22 2

Math

Player

Page 20: Matematyczne Metody Fizyki Ihome.agh.edu.pl/~mariuszp/wfiis_mmf/wyklad_mmf1_1_0809.pdf · M. Przybycie ń Matematyczne Metody Fizyki I Wyk ład 1 -2 ... Algebra liniowa, T. Jurlewicz,

M. PrzybycieM. Przybycieńń Matematyczne Metody Fizyki IMatematyczne Metody Fizyki I WykWykłład 1ad 1--2020

Przykład: Wyraź cos3θθθθ i sin3θθθθ poprzez kombinacje potęg cosθθθθ i sinθθθθ.

Zastosowanie twierdzenia de Zastosowanie twierdzenia de MoivreMoivre’’aaMath

Player

Stosujemy twierdzenie de Moivre’a:

(((( )))) (((( ))))cos sin cos sin cos cos sin sin cos sini i iθ + θ = θ + θ = θ − θ θ + θ θ − θθ + θ = θ + θ = θ − θ θ + θ θ − θθ + θ = θ + θ = θ − θ θ + θ θ − θθ + θ = θ + θ = θ − θ θ + θ θ − θ3 3 2 2 3

3 3 3 3

Porównując, oddzielnie, części rzeczywiste i urojone, dostajemy:

cos cos cos sin cos cossin sin cos sin sin sin

θ = θ − θ θ = θ − θθ = θ − θ θ = θ − θθ = θ − θ θ = θ − θθ = θ − θ θ = θ − θθ = θ θ − θ = θ − θθ = θ θ − θ = θ − θθ = θ θ − θ = θ − θθ = θ θ − θ = θ − θ

3 2 3

2 3 3

3 3 4 3

3 3 3 4

Przykład: Wyraź cos4θθθθ poprzez kombinacje cosinusów wielokrotności kąta.

(((( )))) (((( ))))

(((( )))) (((( )))) (((( ))))cos sin cos sin

cos sin cos sin cos

n nn nz z i i

n i n n i n n

−−−−−−−−+ = θ+ θ + θ + θ =+ = θ+ θ + θ + θ =+ = θ+ θ + θ + θ =+ = θ+ θ + θ + θ =

= θ+ θ + − θ + − θ = θ= θ+ θ + − θ + − θ = θ= θ+ θ + − θ + − θ = θ= θ+ θ + − θ + − θ = θ2

cosz z−−−−⇒ + = θ⇒ + = θ⇒ + = θ⇒ + = θ12

cos

cos cos

z z zz z z

z zz z

θ = + = + + + + =θ = + = + + + + =θ = + = + + + + =θ = + = + + + + =

= + + + + = θ + θ += + + + + = θ + θ += + + + + = θ + θ += + + + + = θ + θ +

4

4 4 2

4 2 4

4 2

4 2

1 1 1 1 14 6 4

162

1 1 1 1 3 1 1 34 2

16 4 8 8 2 8

(((( ))))sinn nz z i n−−−−− = θ− = θ− = θ− = θ2 sinz z i−−−−⇒ − = θ⇒ − = θ⇒ − = θ⇒ − = θ12Podobnie znajdujemy, że:

Page 21: Matematyczne Metody Fizyki Ihome.agh.edu.pl/~mariuszp/wfiis_mmf/wyklad_mmf1_1_0809.pdf · M. Przybycie ń Matematyczne Metody Fizyki I Wyk ład 1 -2 ... Algebra liniowa, T. Jurlewicz,

M. PrzybycieM. Przybycieńń Matematyczne Metody Fizyki IMatematyczne Metody Fizyki I WykWykłład 1ad 1--2121

PostaPostaćć biegunowa liczb zespolonychbiegunowa liczb zespolonychZ analizy matematycznej wiemy, że:

0e e e e e e e ...!

kx y x y x x z

k

d z z zzdx k

+ α α+ α α+ α α+ α α

====

= = = α = = + + + += = = α = = + + + += = = α = = + + + += = = α = = + + + +∑∑∑∑2 3

0

1 12 6

1) ponieważ (((( )))) (((( ))))cos sin sin cos cos sind i i i id

ϕ + ϕ = − ϕ + ϕ = ϕ + ϕϕ + ϕ = − ϕ + ϕ = ϕ + ϕϕ + ϕ = − ϕ + ϕ = ϕ + ϕϕ + ϕ = − ϕ + ϕ = ϕ + ϕϕϕϕϕ

ecos sin ii ϕϕϕϕϕ + ϕ =ϕ + ϕ =ϕ + ϕ =ϕ + ϕ =więc można napisać

2) inaczej(((( )))) (((( )))) (((( )))) (((( ))))

...! ! ! !

... ... cos sin! ! ! !

i i i i ie i

i i

ϕϕϕϕ ϕ ϕ ϕ ϕϕ ϕ ϕ ϕϕ ϕ ϕ ϕϕ ϕ ϕ ϕ= + ϕ + + + + + == + ϕ + + + + + == + ϕ + + + + + == + ϕ + + + + + =

ϕ ϕ ϕ ϕϕ ϕ ϕ ϕϕ ϕ ϕ ϕϕ ϕ ϕ ϕ= − + − + ϕ − + − = ϕ + ϕ= − + − + ϕ − + − = ϕ + ϕ= − + − + ϕ − + − = ϕ + ϕ= − + − + ϕ − + − = ϕ + ϕ

2 3 4 5

2 4 3 5

12 3 4 5

12 4 3 5

Każdą liczbę zespolona z=a+bi można przedstawić w postaci biegunowej:

(((( )))) (((( ))))cos sin expz a bi z i z i= + = ϕ + ϕ = ϕ= + = ϕ + ϕ = ϕ= + = ϕ + ϕ = ϕ= + = ϕ + ϕ = ϕMnożenie i dzielenie liczb zespolonych w postaci biegunowej:

(((( )))) (((( ))))ee e e e

e

ii ii i

i

z zzz z z z z z

z zz

ϕϕϕϕϕ +ϕ ϕ −ϕϕ +ϕ ϕ −ϕϕ +ϕ ϕ −ϕϕ +ϕ ϕ −ϕϕ ϕϕ ϕϕ ϕϕ ϕ

ϕϕϕϕ= = = == = = == = = == = = =1

1 2 1 21 2

2

1 11

1 2 1 2 1 1

2 12

Page 22: Matematyczne Metody Fizyki Ihome.agh.edu.pl/~mariuszp/wfiis_mmf/wyklad_mmf1_1_0809.pdf · M. Przybycie ń Matematyczne Metody Fizyki I Wyk ład 1 -2 ... Algebra liniowa, T. Jurlewicz,

M. PrzybycieM. Przybycieńń Matematyczne Metody Fizyki IMatematyczne Metody Fizyki I WykWykłład 1ad 1--2222

Przykład: Znajdź wszystkie rozwiązania równania z3 = 1

Pierwiastek z liczby zespolonejPierwiastek z liczby zespolonejTwierdzenie: Istnieje dokładnie n różnych pierwiastków n-tego stopnia z każdej

liczby zespolonej różnej od zera, tzn. rozwiązań równania wn = z i wszystkie te

pierwiastki dają się zapisać wzorem, w którym k = 0, 1, …, n-1:

Math

Player

cos sin expn nk

k k kw z i z i

n n nϕ + π ϕ + π ϕ + πϕ + π ϕ + π ϕ + πϕ + π ϕ + π ϕ + πϕ + π ϕ + π ϕ + π = + == + == + == + =

2 2 2

(((( ))))expk i i

k k kkw iw w e w e

π ππ ππ ππ π−−−−

= = == = == = == = =+ π+ π+ π+ π= == == == = = = == = == = == = =

32 2

3 30 1 2

0 1 20 2

13 1

Re z

2π/32π/32π/32π/3

1-1

-i

i

2π/32π/32π/32π/3

2π/32π/32π/32π/3

Im z

w0

w1

w2

Własności pierwiastka n-tego stopnia z l.z. 1:

� (((( ))))exp , , ...,kki k nnππππω = = −ω = = −ω = = −ω = = −2

0 1 1gdzie

� (((( )))) (((( ))))k n

k l k l k++++ω ω = ω ω = ω ω =ω ω = ω ω = ω ω =ω ω = ω ω = ω ω =ω ω = ω ω = ω ω =1 1 1

� (((( )))) (((( ))))expkn n n i

k

ki

k k k n

ein

e

− − −− − −− − −− − − ππππ

ππππ= = == = == = == = =

π −π −π −π −ω = ω = = =ω = ω = = =ω = ω = = =ω = ω = = = −−−−

∑ ∑ ∑∑ ∑ ∑∑ ∑ ∑∑ ∑ ∑1 1 1 2

1 2

0 0 0

2 10

1

Math

Player

Page 23: Matematyczne Metody Fizyki Ihome.agh.edu.pl/~mariuszp/wfiis_mmf/wyklad_mmf1_1_0809.pdf · M. Przybycie ń Matematyczne Metody Fizyki I Wyk ład 1 -2 ... Algebra liniowa, T. Jurlewicz,

M. PrzybycieM. Przybycieńń Matematyczne Metody Fizyki IMatematyczne Metody Fizyki I WykWykłład 1ad 1--2323

Zespolony logarytm i zespolona potZespolony logarytm i zespolona potęęgagaDefinicja: Logarytmem naturalnym z liczby zespolonej z (ozn. Ln(z)) nazywamy

liczbę zespoloną w taką, że z = ew.� (((( )))) (((( )))) (((( ))))ln ln lnw w w wz z e e e z z w w z z++++= = ⇒ = + = += = ⇒ = + = += = ⇒ = + = += = ⇒ = + = +1 2 1 2

1 2 1 2 1 2 1 2

Zapiszemy liczbę zw postaci wykładniczej i znajdziemy jej logarytm:

(((( ))))(((( )))) (((( )))) (((( ))))(((( ))))exp Arg ln ln Argz z i z k z z i z k = + π ⇒ = + + π= + π ⇒ = + + π= + π ⇒ = + + π= + π ⇒ = + + π 2 2

Przykład: (((( )))) (((( )))) (((( ))))ln ln exp , , , ...i i k i k ii i π π π ππ π π ππ π π ππ π π π− = − + π = − + π =− = − + π = − + π =− = − + π = − + π =− = − + π = − + π =

ππππ−−−− 3

2

72 2

2 2 2 2

Przykład: Oblicz z = i -2i

(((( )))) (((( ))))e e eln ln exp ln expi kz i i kz i e i i kππππ + π+ π+ π+ π− π+ π− π+ π− π+ π− π+ π ππππ= = = − = − ⋅ + π == = = − = − ⋅ + π == = = − = − ⋅ + π == = = − = − ⋅ + π =

22 422 2 2

2

Math

Player

Definicja: Niech z i wœ C.... Potęgą liczby z = |z|eiϕϕϕϕ(gdzie faza ϕϕϕϕ = Arg(z)+2kππππ)

o wykładniku w nazywamy wielkość z w = exp(w ln(z)) = |z|wexp(iϕϕϕϕw) gdzie

e e e eRe Im Re Im ln Im Rew w i w w i w z i w w i wz z z z ϕ −ϕ ϕϕ −ϕ ϕϕ −ϕ ϕϕ −ϕ ϕ= = == = == = == = =oraz

(((( ))))eRe Im arg ln Im Re

ww w wz z z z w w−ϕ−ϕ−ϕ−ϕ= = + ϕ= = + ϕ= = + ϕ= = + ϕorazA więc:

Page 24: Matematyczne Metody Fizyki Ihome.agh.edu.pl/~mariuszp/wfiis_mmf/wyklad_mmf1_1_0809.pdf · M. Przybycie ń Matematyczne Metody Fizyki I Wyk ład 1 -2 ... Algebra liniowa, T. Jurlewicz,

M. PrzybycieM. Przybycieńń Matematyczne Metody Fizyki IMatematyczne Metody Fizyki I WykWykłład 1ad 1--2424

Interpretacja funkcji zespolonej sinz:

(((( )))) (((( )))) (((( ))))(((( )))) (((( )))) (((( ))))[[[[ ]]]]

(((( )))) (((( ))))

e e e e

e +e e -e

sin sin cos sin cos sin

sin cos sin cosh cos sinh

i x iy i x iy y y

y y y y

z x iy x i x x i xi i

x i x x y i x y

+ − ++ − ++ − ++ − + −−−−

− −− −− −− −

= + = − = + − + == + = − = + − + == + = − = + − + == + = − = + − + =

= + = += + = += + = += + = +

1 1

2 2

1 1

2 2

F. trygonometryczne zmiennej zespolonejF. trygonometryczne zmiennej zespolonej

(((( )))) (((( ))))e e e esin cosix ix ix ixx xi

− −− −− −− −= − = += − = += − = += − = +1 1

2 2

Definicja: Korzystając z postaci biegunowej i trygonometrycznej liczby zespo-

lonej możemy zdefiniować funkcje sinus i cosinus w następujący sposób:

Uwaga: Definicje te spełniają wszystkie tożsamości trygonometryczne.

(((( )))) (((( ))))e e e esin cosiz iz iz izz zi

− −− −− −− −= − = += − = += − = += − = +1 1

2 2

Definicja: W analogiczny sposób definiujemy sinus i cosinus liczby zespolonej:

Uwaga: Także te definicje spełniają wszystkie standardowe wzory trygonometryczne, np.:

(((( )))) (((( ))))

(((( )))) (((( )))) (((( ))))e e e e e e

sin sin cos cos sin cos sin sin cos

cos sin cosiz iz iz iz i z i z

z z z z z z z z z

z z z− − −− − −− − −− − −

− = − − = + = =− = − − = + = =− = − − = + = =− = − − = + = =

− = + + − = + =− = + + − = + =− = + + − = + =− = + + − = + =

2 2

2 22 2 2 2

1 2 2

1 1 12

4 4 2

Math

Player

Page 25: Matematyczne Metody Fizyki Ihome.agh.edu.pl/~mariuszp/wfiis_mmf/wyklad_mmf1_1_0809.pdf · M. Przybycie ń Matematyczne Metody Fizyki I Wyk ład 1 -2 ... Algebra liniowa, T. Jurlewicz,

M. PrzybycieM. Przybycieńń Matematyczne Metody Fizyki IMatematyczne Metody Fizyki I WykWykłład 1ad 1--2525

Funkcje hiperboliczne zmiennej zespolonejFunkcje hiperboliczne zmiennej zespolonej

(((( )))) (((( ))))e e e esinh coshx x x xx x− −− −− −− −= − = += − = += − = += − = +1 1

2 2

Definicja: Funkcje hiperboliczne zdefiniowane są w następujący sposób:

(((( )))) (((( ))))e e e esinh coshz z z zz z− −− −− −− −= − = += − = += − = += − = +1 1

2 2

Definicja: W analogiczny sposób definiujemy sinus i cosinus hiperboliczny

liczby zespolonej:

Przykład: Oblicz cos(ππππ-i)

Własności funkcji hiperbolicznych:

(((( )))) (((( ))))sinh sinh cosh cosh cosh sinhsinhsinh sinh cosh cosh sinh cosh tanhcosh

x x x x x xxx x x x x x xx

− = − − = − =− = − − = − =− = − − = − =− = − − = − =

= + = == + = == + = == + = =

2 2

2 2

1

2 2 2

Uwaga: Istnieją następujące związki pomiędzy funkcjami trygonometrycznymi i hiper-

bolicznymi zmiennej zespolonej:

sin sinh cos cosh sinh sin cosh cosiz i z iz z iz i z iz z= = = == = = == = = == = = =

Math

Player

(((( )))) (((( )))) (((( )))) (((( ))))cos cos cosh sin sinh cosh cosh .i iπ − = π − − π − = − − = − ≈ −π − = π − − π − = − − = − ≈ −π − = π − − π − = − − = − ≈ −π − = π − − π − = − − = − ≈ −1 1 1 1 1 543

Uwaga: Widać, że Im(cosz) = 0 wzdłuż pionowych prostych dla których x = kππππ, k=0, 1,…