Master Lec

download Master Lec

of 27

Transcript of Master Lec

  • 8/10/2019 Master Lec

    1/27

    1

  • 8/10/2019 Master Lec

    2/27

    Advanced Density Functional Theory.Jesus M. Ugalde

    Kimika Fakultatea, Euskal Herriko Unibertsitatea and DonostiaInternational Physics Center (DIPC); P.K. 1072, 20080 Donostia,

    Euskadi (Spain)http://www.ehu.es/chemistry/theory

  • 8/10/2019 Master Lec

    3/27

    2

  • 8/10/2019 Master Lec

    4/27

    Advanced Density Functional Theory for

    Electronic Structure Calculations.

    Jesus M. Ugalde

    Kimika Fakultatea, Euskal Herriko Unibertsitatea, and DonostiaInternational Physics Center (DIPC); P.K. 1072, 20080 Donostia,

    Euskadi (Spain)http://www.ehu.es/chemistry/theory

  • 8/10/2019 Master Lec

    5/27

    The Hohenberg-Kohn Theorem

    3

  • 8/10/2019 Master Lec

    6/27

    The Hohenberg-Kohn Theorem

    Let the ground states of H and H be nondegenerate,E =

    | H

    | [] | T + U + V | [] = E []

    The functional E v [] achieves its minimum value for the true ground

    state electron density associated with the external potential v.6

  • 8/10/2019 Master Lec

    9/27

    The Euler Equation of DFT

    Variational functional:

    = E []

    dr ( r )

    N

    Euler equation:

    E []( r ) = 0

    7

  • 8/10/2019 Master Lec

    10/27

    The Chemical Potential:

    E [N, ( r ) ] E [N, v ( r ) ]Consequently,

    dE =E N v

    dN + E v( r ) v( r ) drUse

    dr ( r ) = dN ; = E N v ; E v( r ) = ( r )to obtain the fundamental equation for the chemical reactivity:

    dE = dN + ( r ) v( r ) drentry point to Conceptual DFT

    8

  • 8/10/2019 Master Lec

    11/27

    The Kohn-Sham formulation

    Recall the Euler equation:

    E []( r ) = 0 ; E [] = T [] + dr ( r ) v( r ) + 12 dr dr ( r ) ( r )| r r | + E xc []

    Theorem. (T. L. Gilbert, Phys. Rev. B 12, 2111 (1975))

    (r ) 0 , ( r ) dr = N ; ( i) N i=1 / i | j = ij / ( r ) =

    N

    i=1i ( r ) i( r )

    Namely, ( r ) 0, ( r ) dr = N is N-representable

    9

  • 8/10/2019 Master Lec

    12/27

    Consider the non-interacting system described by the single Slater de-terminant made by the {i}N i=1 orbitals and estimate its kinetic energy ,namely:

    T s =N

    i=1i | 122 | i

    and express the energy of the real system as:

    E [] = T s [] + (r ) v( r ) dr +

    12 d

    r dr ( r ) ( r

    )

    | r r | + E xc []

    E xc [] = E xc [] + ( T [] T s [])The exchange-correlation functional contains someundetermined kinetic energy

    Its non-interacting potential will be determined later10

  • 8/10/2019 Master Lec

    13/27

    The expression for the Euler equation is:

    T s []( r )

    + v( r ) + (r

    ) dr

    | r r | + E xc []

    ( r )

    veff ( r )= s

    The Kohn-Sham presciption: Determine E xc [] to obtain a workable ex-pression for veff ( r ). Then, the ( r ) can be obtained by solving thenon-interacting system:

    12

    2i + veff ( r ) i = ii ; i = 1 , N

    11

  • 8/10/2019 Master Lec

    14/27

    The Kohn-Sham Implementation

    1. Devise: E xc []

    vxc ( r ) = E xc []

    (r

    )

    2. Make a guess for the Kohn-Sham orbitals {i}N i=1

    Build: veff ( r ) = v( r ) + (r ) d r |r r |

    + vxc ( r )

    Solve: 122i + veff ( r ) i = ii , i = 1 , N ; until consistency

    3. Calculate: E [] = T s [] + ( r ) v( r ) dr + 12 dr dr (r ) ( r )|r r |

    + E xc []

    12

  • 8/10/2019 Master Lec

    15/27

    The exchangecorrelation functional

    E ee = dr dr 2 ( r , r )|

    r

    r |

    2 ( r 1 , r 2 ) = N ( N 1)

    2 |( r 1 , r 2 , . . . , r N ) |2 dr 3 . . . d r N

    2 ( r 1 , r 2 ) = 12

    ( r 1 ) [( r 2 ) + xc ( r 1 , r 2 ) ]

    E ee [] = 12 dr dr ( r ) ( r )

    |r

    r |

    +12 dr dr ( r ) xc ( r , r )

    |r

    r |

    = J []+ E xc []

    [E xc []( T []T s [])]13

  • 8/10/2019 Master Lec

    16/27

  • 8/10/2019 Master Lec

    17/27

    H = T + V + U , 0 1

    V

    /

    ||

    = ( r ) ,. Hence : V =0

    = veff ( r ) , V =1

    = v( r )

    1

    0

    E

    d = E =1

    E =0

    dH = H

    d =

    V

    d + Ud

    E

    d =

    dr ( r )

    V

    d +

    1

    2dJ [] +

    1

    2d

    ( r 1 ) xc ( r 1 , r 2 )

    |r

    1 r

    2 | dr 1 r 2

    15

  • 8/10/2019 Master Lec

    18/27

    E =1 E =0 = dr ( r ) 10 V

    d +

    12

    J []+12 ( r 1 )

    10 xc ( r 1 , r 2 ) d

    |r 1 r 2 | dr 1 r 2

    E =0 = T S + dr ( r ) V =0

    E =1 = T S + dr ( r ) V =1 ( r ) + 12 J [] + ( r 1 ) xc ( r 1 , r 2 )|r 1 r 2 | dr 1 r 2But, recall that the original expresson for E =1 E

    E = T + dr ( r ) v( r ) + 12 J [] + ( r 1 ) xc ( r 1 , r 2 )|r 1 r 2 | dr 1 r 216

  • 8/10/2019 Master Lec

    19/27

    Same expressions upon consideration of the following equivalencies:

    T S xc ( r 1 , r 2 ) = 10 xc ( r 1 , r 2 ) dT xc (

    r

    1 ,r

    2 )The adiabatic connection has adsorbed the excess kinetic en-ergy term into an exchangecorrelation hole description.

    17

  • 8/10/2019 Master Lec

    20/27

    The Local Density ApproximationE xc [( r )] =

    ( r )

    xc [( r )] dr

    xc [( r 1 )] = 12

    10 xc ( r 1 , r 2 ) d

    |r 1 r 2 | dr 2

    xc [( r )] = x [( r )] + c[( r )]

    LDAx [] = 34

    3 ( r )

    1 / 3

    V W N c [] = F []

    18

  • 8/10/2019 Master Lec

    21/27

    Practical Approximate Exchange-Correlation Functionals

    E xc = dr ( r ) xc , , , , , , . . .Jacobs ladder

    DFT heaven . . .

    . . . . . . meta-GGA: . . . , ( r ) GGA: . . . ,( r ) LSDA: ( r ) Hartree world

    And he dreamed, and behold a ladder set up on the earth, and

    the top of it reached to heaven... (Gen 28:12)19

  • 8/10/2019 Master Lec

    22/27

    The Hybrid Approximate Functionals

    E xc = dr 1 ( r 1 ) xc ( r 1 , r 2 )

    |r 1

    r 2

    |

    dr 2

    E xc = 10 E xc d20

  • 8/10/2019 Master Lec

    23/27

    The Crudest Hybrid Functional:

    E xc 12

    E =0xc + E =1xc

    E =0xc Hartree-Fock like exchange with the Kohn-Sham orbitalsE =1xc Exchange-correlation functional

    Better Approximate Hybrid Functionals:E Hybridxc = (1 ax ) E DF T x + a xE HF x + E DF T c

    B3LYP Approximate Hybrid Functional:E B 3 LY P xc = E

    LDAxc + a 0 ( E

    HF x E LDAx )+ ax ( E B 88x E LDAx )+ a c( E LY P c E LDAc )

    21

  • 8/10/2019 Master Lec

    24/27

    Doubly Hybrid Functionals: (nal) fth-rung func-tionals because they add information about theunoccupied Kohn-Sham orbitals.

    22

  • 8/10/2019 Master Lec

    25/27

    Doubly hybrid density functional for accurate descriptions of

    nonbond interactions, thermochemistry, and thermochemicalkinetics

    E R 5xc [] = E LDAxc

    + c1 E HF x E LDAx + c2 E GGAx+ c3 E MP 2c E LDAc + c4 E GGAc

    Y. Zhang, X. Xu and W. A. Goddard III; PNAS, 106, 4963 (2009)

    23

  • 8/10/2019 Master Lec

    26/27

  • 8/10/2019 Master Lec

    27/27