Lec 01Intro2007

download Lec 01Intro2007

of 47

Transcript of Lec 01Intro2007

  • 8/6/2019 Lec 01Intro2007

    1/47

    Intro to Sychrotron Radiation, EE290F, 16 Jan 2007David Attwood Lecture 1

    Synchrotron Radiation forMaterials Science Applications

    David Attwood

    University of California, Berkeley

    and

    Center for X-Ray Optics

    Lawrence Berkeley National Laboratory

    (http://www.coe.berkeley.edu/AST/srms)

  • 8/6/2019 Lec 01Intro2007

    2/47

    Synchrotron Radiation for Materials Science Applications(www.coe.berkeley.edu/AST/srms)

    Soft X-Rays and

    Extreme Ultraviolet Radiation:Principles and Applications

    Cambridge University Press or

    Table of contents

    Errata

    Intro_Webpage2007

    Instructor: Prof. David T. Attwood Email: [email protected]

    Co-listed at UC Berkeley as EE290F and AST290S

    Spring semester, January 16 to May 8, 2007, Tu & Th 2:103:30 PM2007 Class Schedule

    Starting 1/16/2007, this class will be broadcast live over the Internet (Berkeley Webcast)

    and electronically archived for later viewing

    New paperback textbook:

    If not yet available through Cambridge University Press (Feb. 1, 2007), a smaller paperback versioncan be obtained through the UC Berkeley ASUC bookstore website, http://ucberkeley.bkstr.com

    Click on: Find your textbooks and follow prompts to book required for EE290F.

    Lecture material used in class: 1. Intro. to Synchrotron Radiation Homework problems:

    Chapter 1 Etc.

    orASUC bookstore

  • 8/6/2019 Lec 01Intro2007

    3/47

    Spring 2007 Class Schedule for Synchrotron

    Radiation for Materials Science Applications

    SpringClassSchedule.aiSynchrotron Radiation for Materials Science Applications

    Professor David Attwood

    Univ. California, Berkeley

    1. Introduction to Synchrotron Radiation (16 Jan 2007)

    2. X-Ray Interaction with Matter: Absorption, Scattering,

    Refraction (18 Jan 2007)3. Probing Matter: Diffraction, Spectroscopy, Photoemission;

    given by Prof. Anders Nilsson, Stanford University

    (23 Jan 2007)

    4. Radiation by an Accelerated Charge: Scattering by Free

    and Bound Electrons (25 Jan 2007)

    5. Multi-Electron Atom, Atomic Scattering Factors: Wave

    Propagation and Refractive Index (30 Jan 2007)

    6. Refraction and Reflection, Total Internal Reflection,

    Brewster's Angle, Kramers-Kronig (1 Feb 2007)

    7. Multilayer Interference Coatings, Scattering, Diffraction,

    Reflectivity and Applications (6 Feb 2007)

    8. Introduction to Synchrotron Radiation, Bending Magnet

    Radiation (8 Feb 2007)

    9. Bending Magnet Critical Photon Energy; Undulator

    Central Radiation Cone (13 Feb 2007)

    10. Undulator Equation and Radiated Power (15 Feb 2007)

    11. Spectral Brightness of Undulator Radiation, Harmonics,Wiggler Radiation (20 Feb 2007)

    12. Spatial and Temporal Coherence; Coherent Undulator

    Radiation (22 Feb 2007)

    13. Applications of Coherent Undulator Radiation

    (27 Feb 2007)

    14. Visit the Advanced Light Source, Berkeley (ALS)

    (1 March 2007)

    15. Advanced Spectroscopy for Atomic and Molecular Physics;

    given by Prof. Anders Nilsson, Stanford University

    (6 March 2007)16. X-Ray Absorption Spectroscopy: XAFS, NEXAFS, XANES,

    EXAFS; given by Dr. Tony VanBuuren, LLNL/UC Merced

    (8 March 2007)

    17. X-Ray Diffraction for Materials Analysis; given by

    Dr. Simon Clark, ALS/LBNL (13 March 2007)

    18. Photoemission and Photoemission Spectroscopy; given

    by Dr. Zahid Hussain, ALS/LBNL (20 March 2007)

    19. Angle Resolved Photoemission and Nano-ARPES; given

    by Dr. Eli Rotenberg, ALS/LBNL (22 March 2007)

    20. Photo-Emission Electron Microscopy (PEEM); given by

    Dr. Andreas Scholl, ALS/LBNL (3 April 2007)

    21. X-Rays and Magnetism; given by Prof. Jochim Sthr,

    Stanford University (5 April 2007)

    22. XMCD; Out-of-Plane Bending Magnetic Radiation;

    given by Brooke Mesler, UC Berkeley (10 April 2007)

    23. Zone Plate Microscopy and Applications (12 April 2007)

    24. Nanoscale Magnetic Imaging; given by Dr. Peter Fisher,CXRO/LBNL (17 April 2007)

    25. Nanotomography for the Life Sciences; given by

    Prof. Carolyn Larabell, UCSF, and Dr. Mark LeGros, LBNL

    (19 April 2007)

    26. X-Ray Microtomography for Material Studies; given by

    Dr. Alastair MacDowell, ALS/LBNL (24 April 2007)

    27. Coherent Soft X-Ray Scattering for Studying Nanoscale

    Materials; given by Prof. Stephen Kevan, U. Oregon, Eugene

    (26 April 2007)28. Student Projects (oral reports on related material)

  • 8/6/2019 Lec 01Intro2007

    4/47

    1 m 100 nm 10 nm 1 nm 0.1 nm = 1

    10 keV

    CuK

    2a0

    SiKOKCKSiL

    1 keV

    Photon energy

    Wavelength

    100 eV10 eV1 eV

    IR VUV

    Hard X-raysUV Extreme Ultraviolet

    Soft X-rays

    See smaller features

    Write smaller patterns

    Elemental and chemical sensitivity

    CuK

    The Short Wavelength Regionof the Electromagnetic Spectrum

    Ch01_F01VG.aiProfessor David AttwoodUniv. California, Berkeley Intro to Synchrotron Radiation, EE290F, 16 Jan 2007

  • 8/6/2019 Lec 01Intro2007

    5/47

    +Ze

    Photoelectron

    Photon

    ()

    KL

    M

    e

    Characteristic Absorption Edges forAlmost All Elements in this Spectral Region

    Ch01_F02a_F10_Tb1.ai

    n = n = 4

    n = 3

    n = 2

    n = 1

    N0

    M

    L

    K

    Bindingenergy

    (negative)

    Kineticenerg

    y

    (positive)

    EK, abs

    Ekinetic = EK, abs

    EL, abs

    K

    K

    L L

    Professor David Attwood

    Univ. California, Berkeley Intro to Synchrotron Radiation, EE290F, 16 Jan 2007

  • 8/6/2019 Lec 01Intro2007

    6/47

    n

    N

    M

    L

    K

    44...4

    NVII 4f7/2..NIV 4d3/2..NI 4s

    MV 3d5/2MIV 3d3/2MIII 3p3/2

    MII 3p1/2MI 3s

    LIII 2p3/2LII 2p1/2LI 2s

    K 1s

    33...0

    7/25/2...1/2

    333

    33

    221

    10

    5/23/23/2

    1/21/2

    222

    110

    3/21/21/2

    1 0 1/2

    j

    K1

    Cu K1 = 8,048 eV (1.541) Cu L1 = 930 eVCu K2 = 8,028 eV (1.544) Cu L2 = 930 eV

    Cu K1 = 8,905 eV Cu L1 = 950 eV

    Absorption edges

    for copper (Z = 29):

    EN1, abs = 7.7 eV

    .

    .EM3, abs = 75 eV

    .EM1, abs = 123 eV

    EL3, abs = 933 eVEL2, abs = 952 eVEL1, abs = 1,097 eV

    EK, abs = 8,979 eV(1.381)

    K2

    L1

    M1

    L2L2

    K1 K3 K3

    Energy Levels, Quantum Numbers, andAllowed Transitions for the Copper Atom

    Ch01_F11VG_rev.6.05.aiProfessor David AttwoodUniv. California, Berkeley Intro to Synchrotron Radiation, EE290F, 16 Jan 2007

  • 8/6/2019 Lec 01Intro2007

    7/47ApxB_1_47_Jan07.ai

    Electron Binding Energies, in Electron Volts(eV), for the elements in their Natural Forms

    www.cxro.LBL.gov

    Intro to Synchrotron Radiation, EE290F, 16 Jan 2007Professor David Attwood

    Univ. California, Berkeley

  • 8/6/2019 Lec 01Intro2007

    8/47

    1

    HHydrogen

    1.0079

    1

    1s1

    3

    LiLithium

    0.534.63

    6.941

    1

    1s22s1

    4

    BeBeryllium

    1.8512.32.23

    9.012

    2

    1s22s2

    2

    HeHelium

    4.003

    1

    1s2

    11

    Na0.972.53

    22.990

    1

    [Ne]3s1

    12

    Mg1.744.303.20

    24.31

    2

    [Ne]3s2

    Sodium

    Potassium

    13

    Al2.706.022.86

    26.98

    3

    [Ne]3s23p1

    Aluminum

    14

    Si2.334.992.35

    1.823.54

    2.093.92

    28.09

    4

    [Ne]3s23p2

    15

    P

    30.974

    3,5,4

    [Ne]3s23p3

    Silicon

    14

    Si2.334.992.35

    28.09

    4

    [Ne]3s23p2

    Silicon

    Density (g/cm3)

    Concentration (1022atoms/cm3)

    Nearest neighbor ()

    Atomic number Atomic weight

    References: International Tables for X-ray Crystallography (Reidel, London, 1983) (Ref. 44)and J.R. De Laeter and K.G. Heumann (Ref. 46, 1991).

    Key

    Symbol

    ElectronconfigurationName

    Oxidation states(Bold most stable)

    Phosphorus

    16

    S

    32.066

    2,4,6

    [Ne]3s23p4

    Sulfur

    17

    Cl

    35.453

    1,3,5,7

    [Ne]3s23p5

    Chlorine

    18

    Ar

    39.948

    1,3,5,7

    [Ne]3s23p6

    ArgonMagnesium

    19

    K0.861.33

    39.098

    1

    [Ar]4s1

    20

    Ca1.532.303.95

    40.08

    2

    [Ar]4s2

    Calcium

    21

    Sc2.994.013.25

    44.96

    3

    [Ar]3d14s2

    Scandium

    22

    Ti4.515.672.89

    47.88

    4,3

    [Ar]3d24s2

    Titanium

    23

    V6.097.202.62

    50.94

    5,4,3,2

    [Ar]3d34s2

    Vanadium

    24

    Cr7.198.332.50

    52.00

    6,3,2

    [Ar]3d54s1

    Chromium

    25

    Mn7.478.19

    54.94

    7,6,4,2,3

    [Ar]3d54s2

    Manganese

    26

    Fe7.878.492.48

    55.85

    2,3

    [Ar]3d64s2

    Iron

    27

    Co8.829.012.50

    58.93

    2,3

    [Ar]3d74s2

    Cobalt

    28

    Ni8.919.142.49

    58.69

    2,3

    [Ar]3d84s2

    Nickel

    29

    Cu8.938.472.56

    63.55

    2,1

    [Ar]3d104s1

    Copper

    30

    Zn7.136.572.67

    65.39

    2

    [Ar]3d104s2

    Zinc

    31

    Ga5.915.102.44

    69.72

    3

    [Ar]3d104s24p1

    Gallium

    32

    Ge5.324.422.45

    72.61

    4

    [Ar]3d104s24p2

    Germanium

    33

    As5.784.642.51

    74.92

    3,5

    [Ar]3d104s24p3

    Arsenic

    34

    Se4.813.672.32

    78.96

    2,4,6

    [Ar]3d104s24p4

    Selenium

    35

    Br3.122.35

    79.904

    1,5

    [Ar]3d104s24p5

    Bromine

    36

    Kr

    83.80

    [Ar]3d104s24p6

    Krypton

    Rubidium

    37

    Rb1.531.08

    85.47

    1

    [Kr]5s1

    38

    Sr2.581.784.30

    87.62

    2

    [Kr]5s2

    Strontium

    39

    Y4.483.033.55

    88.91

    3

    [Kr]4d15s2

    Yttrium

    40

    Zr6.514.303.18

    91.22

    4

    [Kr]4d25s2

    Zirconium

    41

    Nb8.585.562.86

    92.91

    5,3

    [Kr]4d45s1

    Niobium

    42

    Mo Tc10.26.422.73

    95.94

    6,3,2

    [Kr]4d55s1

    Molybdenum

    4311.57.072.70

    (98)

    7

    [Kr]4d55s2

    Technetium

    44

    Ru12.47.362.65

    101.1

    2,3,4,6,8

    [Kr]4d75s1

    Ruthenium

    45

    Rh12.47.272.69

    102.91

    2,3,4

    [Kr]4d85s1

    Rhodium

    46

    Pd12.06.792.75

    106.4

    2,4

    [Kr]4d10

    Palladium

    47

    Ag10.55.862.89

    107.87

    1

    [Kr]4d105s1

    Silver

    48

    Cd8.654.632.98

    112.41

    2

    [Kr]4d105s2

    Cadmium

    49

    In7.293.823.25

    114.82

    3

    [Kr]4d105s25p1

    Indium

    50

    Sn7.293.703.02

    118.71

    4,2

    [Kr]4d105s25p2

    Tin

    51

    Sb6.693.312.90

    121.76

    3,5

    [Kr]4d105s25p3

    Antimony

    52

    Te6.252.952.86

    127.60

    2,4,6

    [Kr]4d105s25p4

    Tellurium

    53

    I4.952.35

    126.90

    1,5,7

    [Kr]4d105s25p5

    Iodine

    54

    Xe

    131.29

    [Kr]4d105s25p6

    Xenon

    Cesium

    55

    Cs1.900.86

    132.91

    1

    [Xe]6s1

    56

    Ba3.591.584.35

    137.33

    2

    [Xe]6s2

    Barium

    57

    La6.172.683.73

    138.91

    3

    [Xe]5d16s2

    Lanthanum

    72

    Hf13.34.483.13

    178.49

    4

    [Xe]4f145d26s2

    Hafnium

    73

    Ta16.75.552.86

    180.95

    5

    [Xe]4f145d36s2

    Tantalum

    74

    W19.36.312.74

    183.85

    6,5,4,3,2

    [Xe]4f145d46s2

    Tungsten

    Francium

    87 Fr

    (223)

    1

    [Rn]7s1

    88 Ra

    (226)

    2

    [Rn]7s2

    Radium

    Cerium

    58

    Lanthanide series

    Actinide series

    Ce6.772.913.65

    140.12

    3,4

    [Xe]4f15d16s2

    59

    Pr6.782.903.64

    140.91

    3,4

    [Xe]4f36s2

    Praseodymium

    60

    Nd Pm7.002.923.63

    7.543.023.59

    144.24

    3

    [Xe]4f46s2

    Neodymium

    61 (145)3

    [Xe]4f56s2

    Promethium

    62

    Sm

    150.36

    3,2

    [Xe]4f66s2

    Samarium

    5.252.083.97

    63

    Eu

    152.0

    3,2

    [Xe]4f76s2

    Europium

    7.873.013.58

    64

    Gd

    157.25

    3

    [Xe]4f75d16s2

    Gadolinium

    8.273.133.53

    65

    Tb

    158.93

    3,4

    [Xe]4f96s2

    Terbium

    8.533.163.51

    66

    Dy

    162.50

    3

    [Xe]4f106s2

    Dysprosium

    8.803.213.49

    67

    Ho

    164.93

    3

    [Xe]4f116s2

    Holmium

    9.043.263.47

    68

    Er

    167.26

    3

    [Xe]4f126s2

    Erbium

    9.333.323.45

    69

    Tm

    168.93

    3,2

    [Xe]4f136s2

    Thulium

    6.972.423.88

    70

    Yb

    173.04

    3,2

    [Xe]4f146s2

    Ytterbium

    9.843.393.43

    71

    Lu

    174.97

    3

    [Xe]4f145d16s2

    Lutetium

    Thorium

    90

    Th11.73.043.60

    232.05

    4

    [Rn]6d27s2

    91

    Pa15.44.013.21

    231.04

    5,4

    [Rn]5f26d17s2

    Protactinium

    92

    U Np Pu Am Cm Bk Cf Es Fm Md No Lr 19.14.822.75

    19.84.89

    238.03

    6,5,4,3

    [Rn]5f36d17s2

    Uranium

    9320.55.20

    (237)

    6,5,4,3

    [Rn]5f46d17s2

    Neptunium

    94 (244)6,5,4,3

    [Rn]5f67s2

    Plutonium

    11.92.943.61

    95 (243)6,5,4,3

    [Rn]5f77s2

    Americium

    96 (247)3

    [Rn]5f76d17s2

    Curium

    97 (247)4,3

    [Rn]5f97s2

    Berkelium

    98 (251)3

    [Rn]5f107s2

    Californium

    99 (252)

    [Rn]5f117s2

    Einsteinium

    100 (257)

    [Rn]5f127s2

    Fermium

    101 (258)

    [Rn]5f137s2

    Mendelevium

    102 (259)

    [Rn]5f147s2

    Nobelium

    103 (262)

    [Rn]5f146d17s2

    Lawrencium

    89 Ac Sg Bh Hs MtRf Db10.12.673.76

    (227)

    3

    [Rn]6d17s2

    Actinium

    104(261)

    [Rn]5f146d27s2

    Rutherfordium

    105(262)

    [Rn]5f146d37s2

    Dubnium

    106(266)

    [Rn]5f146d47s2 [Rn]5f146d57s2 [Rn]5f146d67s2 [Rn]5f146d77s2

    Seaborgium

    107(264)

    Bohrium

    108(277)

    Hassium

    109(268)

    Meitnerium

    75

    Re21.06.802.74

    186.21

    7,6,4,2,1

    [Xe]4f145d56s2

    Rhenium

    76

    Os22.67.152.68

    190.2

    2,3,4,6,8

    [Xe]4f145d66s2

    Osmium

    77

    Ir22.67.072.71

    192.2

    2,3,4,6

    [Xe]4f145d76s2

    Iridium

    78

    Pt21.46.622.78

    195.08

    2,4

    [Xe]4f145d96s1

    Platinum

    79

    Au19.35.892.88

    197.0

    3,1

    [Xe]4f145d106s1

    Gold

    80

    Hg

    200.59

    2,1

    [Xe]4f145d106s2

    Mercury

    81

    Tl11.93.503.41

    204.38

    3,1

    [Xe]4f145d106s26p1

    Thallium

    82

    Pb11.33.303.50

    207.2

    4,2

    [Xe]4f145d106s26p2

    Lead

    83

    Bi9.802.823.11

    208.98

    3,5

    [Xe]4f145d106s26p3

    Bismuth

    84

    Po9.272.673.35

    (209)

    114(287)

    4,2

    [Xe]4f145d106s26p4

    Polonium

    85

    At

    (210)

    1,3,5,7

    [Xe]4f145d106s26p5

    Astatine

    86

    Rn

    (222)

    110(271)

    111(272)

    112(283)

    [Xe]4f145d106s26p6

    Radon

    5

    BBoron

    2.4713.71.78

    10.81

    3

    1s22s22p1

    6

    CCarbon

    2.2711.41.42

    12.011

    4,2

    1s22s22p2

    7

    NNitrogen

    14.007

    3,5,4,2

    1s22s22p3

    8

    OOxygen

    16

    2

    1s22s22p4

    9

    FFluorine

    19.00

    1

    1s22s22p5

    10

    NeNeon

    20.180

    1s22s22p6

    Group

    IA

    IIA

    IIIA IVA VA VIA VIIA VIIIA IB IIB

    IIIB IVB VB VIB VIIB

    VIII

    Solid

    Gas

    Liquid

    Syntheticallyprepared

    Periodic_Tb_clr_May2007.ai

    Broadly Tunable Radiation is Needed to Probe

    the Primary Resonances of the Elements

    Professor David AttwoodUniv. California, Berkeley Intro to Synchrotron Radiation, EE290F, 16 Jan 2007

  • 8/6/2019 Lec 01Intro2007

    9/47

    Intro to Sychrotron Radiation, EE290F, 16 Jan 2007David Attwood Lecture 1

    Surface science

    Magnetic materials

    Materials chemistry

    Environmental sciences

    Protein crystallogrphy

    Biomicroscopy

    Chemical dynamics

    Typical Applications of Synchrotron Radiation

  • 8/6/2019 Lec 01Intro2007

    10/47

    BrightPowrfulXRs.ai

    Bright and Powerful X-Rays

    from Relativistic Electrons

    e

    Undulator radiationSynchrotron radiation

    e

    1010 brighter than the

    most powerful (compact)

    laboratory source

    An x-ray light bulb in

    that it radiates all colors

    (wavelengths, photons energies)

    Lasers exist for the IR, visible,

    UV, VUV, and EUV

    Undulator radiation is quasi-

    monochromatic and highly

    directional, approximating

    many of the desired properties

    of an x-ray laser

    N

    NN

    N

    S

    S

    S

    S

    Professor David Attwood

    Univ. California, Berkeley Intro to Synchrotron Radiation, EE290F, 16 Jan 2007

  • 8/6/2019 Lec 01Intro2007

    11/47

    Ch05_F09VG_Jan07.ai

    Synchrotron Radiation from Relativistic Electrons

    xv

    Note: Angle-dependent doppler shift

    v

  • 8/6/2019 Lec 01Intro2007

    12/47

    Ch05_F11VG.ai

    Synchrotron Radiation in a Narrow Forward Cone

    a sin2

    1

    2

    ~

    (5.1)

    (5.2)

    Frame moving with electron Laboratory frame of reference

    Professor David Attwood

    Univ. California, Berkeley Intro to Synchrotron Radiation, EE290F, 16 Jan 2007

  • 8/6/2019 Lec 01Intro2007

    13/47

    Ch05_F11modif_VG.ai

    Relativistic Electrons Radiate

    in a Narrow Forward Cone

    a sin2

    k k

    k = 2/

    Lorentztransformationk

    k

    1

    2

    kxkz

    k

    2ktan

    21

    2

    Dipole radiation

    Frame of reference

    moving with electrons

    Laboratory frame of reference

    x

    z

    kx = k

    kz = 2k (Relativistic Doppler shift)z

    x

    z=

    x

    Professor David Attwood

    Univ. California, Berkeley Intro to Synchrotron Radiation, EE290F, 16 Jan 2007

  • 8/6/2019 Lec 01Intro2007

    14/47

    Ch05_UsefulFormulas.ai

    Some Useful Formulas for Synchrotron Radiation

    = 1239.842 eV nm

    Ee = mc2, p = mv

    = = 1957 Ee(GeV)

    = = ; = ; (1 )

    where

    Undulator: ;

    Bending Magnet: ,

    Ee

    mc2

    1

    22

    1

    1

    v

    cv2

    c2

    1

    1 2

    Professor David Attwood

    Univ. California, Berkeley Intro to Synchrotron Radiation, EE290F, 16 Jan 2007

  • 8/6/2019 Lec 01Intro2007

    15/47

    e

    1

    F

    e

    1 N

    F

    e

    1

    >>

    F

    Ch05_F01_03.ai

    Bending magnetradiation

    Wiggler radiation

    Undulator radiation

    Three Forms of Synchrotron Radiation

    Professor David Attwood

    Univ. California, Berkeley Intro to Synchrotron Radiation, EE290F, 16 Jan 2007

  • 8/6/2019 Lec 01Intro2007

    16/47

    3rdGenFacilities_Jan06.ai

    Third Generation Facilities, Like Electtra,Have Many Straight Sections and a SmallElectron Beam

    e

    Photons

    X-ray Many straight

    sections containingperiodic magneticstructures

    Tightly controlledelectron beam

    UV

    Modern Synchrotron

    Radiation Facility

    Many straight sections for

    undulators and wigglers

    Brighter radiation for

    spatially resolved studies

    (smaller beam more

    suitable for microscopies)

    Interesting coherence properties

    at very short wavelengths

    Professor David Attwood

    Univ. California, Berkeley Intro to Synchrotron Radiation, EE290F, 16 Jan 2007

  • 8/6/2019 Lec 01Intro2007

    17/47

    Third Generation Synchrotron Facilities

    3rdGenSynchFacil_Jan07.aiIntro to Synchrotron Radiation, EE290F, 16 Jan 2007

    ESRF 6 GeV France

    ALS 1.9 GeV USA

    APS 7 GeV USABESSY II 1.7 GeV Germany

    ELETTRA 2.0 GeV Italy

    SPring-8 8 GeV Japan

    MAX II 1.5 GeV Sweden

    SLS 2.4 GeV Switzerland

    PLS 2 GeV Korea

    SRRC 1.4 GeV Taiwan

    SSRL 3 GeV USA

    CLS 2.9 GeV Canada

    Soleil 2.5 GeV France

    Diamond 3 GeV UKFacilities Under Construction

    Australian 3 GeV AustraliaLight Source

    Courtesy of Herman Winick, SSRL, Stanford

    www-ssrl.slac.stanford.edu/SR_SOURCES.HTML

    Others are in the design stage or planning an upgrade to third generation.

    Professor David Attwood

    Univ. California, Berkeley

  • 8/6/2019 Lec 01Intro2007

    18/47

    Synchrotron Radiation

    e

    Photons

    X-ray

    Many straightsections containing

    periodic magnetic

    structures

    Tightly controlledelectron beam

    UV

    (5.80)

    (5.82)

    (5.85)

    Ch05_F00VG_Jan06.ai

    Undulator

    radiation

    N

    S

    N

    S

    S

    N

    S

    N

    e

    u

    t

    2 ns

    70 psNe

    Intro to Synchrotron Radiation, EE290F, 16 Jan 2007Professor David Attwood

    Univ. California, Berkeley

  • 8/6/2019 Lec 01Intro2007

    19/47

    Ch05_F07_revJune05.ai

    Bending Magnet Radiation Covers a BroadRegion of the Spectrum, Including thePrimary Absorption Edges of Most Elements

    1013

    1014

    1012

    1011

    0.01 0.1 1 10 100

    Photon energy (keV)

    Photon

    flux(ph/sec)

    Ec

    50%

    Ee = 1.9 GeV = 400 mAB = 1.27 Tc = 3.05 keV

    (5.7a)

    (5.7b)

    (5.8)

    e

    = 1mrad/ = 0.1%

    Advantages: covers broad spectral range

    least expensive

    most accessable

    Disadvantages: limited coverage ofhard x-rays

    not as bright as undulator

    4Ec

    50%

    ALS

    Professor David Attwood

    Univ. California, Berkeley Intro to Synchrotron Radiation, EE290F, 16 Jan 2007

  • 8/6/2019 Lec 01Intro2007

    20/47

    Ch05_F08_Jan07.ai

    Undulator Radiation from a Small Electron BeamRadiating into a Narrow Forward Cone is Very Bright

    Magnetic undulator

    (N periods)

    Relativistic

    electron beam,

    Ee = mc2

    2

    u u22

    1

    N

    ~

    cen1

    N

    cen=

    ~

    Brightness =

    Spectral Brightness =

    photon flux

    (A) ()

    photon flux

    (A) () (/)

    Intro to Synchrotron Radiation, EE290F, 16 Jan 2007Professor David Attwood

    Univ. California, Berkeley

  • 8/6/2019 Lec 01Intro2007

    21/47

    An Undulator Up Close

    Undulator_Close_Jan07.ai

    ALS U5 undulator, beamline 7.0, N = 89, u = 50 mm

    Intro to Synchrotron Radiation, EE290F, 16 Jan 2007Professor David Attwood

    Univ. California, Berkeley

  • 8/6/2019 Lec 01Intro2007

    22/47

    Undulator Radiation

    eN

    S S

    N

    N N

    S S

    u

    E = mc2

    =1

    1 v2

    c2

    N = # periods

    esin2 ~

    1

    2 cen

    e radiates at the

    Lorentz contracted

    wavelength:

    Doppler shortened

    wavelength on axis:

    Laboratory Frameof Reference

    Frame ofMoving e

    Frame ofObserver

    FollowingMonochromator

    For 1N

    cen1

    N

    cen 40 rad

    =u

    Bandwidth:

    N

    = (1 cos)

    = (1 + 22)

    Accounting for transverse

    motion due to the periodic

    magnetic field:

    u

    22

    u

    22= (1 + + 22)K

    2

    2

    where K = eB0u /2mc

    Ch05_LG186.ai

    ~

    ~

    ~~

    typically

    Intro to Synchrotron Radiation, EE290F, 16 Jan 2007Professor David Attwood

    Univ. California, Berkeley

  • 8/6/2019 Lec 01Intro2007

    23/47

    The Equation of Motion in an Undulator

    Ch05_F15_Eq16_19.top.ai

    (5.16)

    Magnetic fields in the periodic undulator cause the electrons to oscillate and thus

    radiate. These magnetic fields also slow the electrons axial (z) velocity somewhat,reducing both the Lorentz contraction and the Doppler shift, so that the observedradiation wavelength is not quite so short. The force equation for an electron is

    where p = mv is the momentum. The

    radiated fields are relatively weak so that

    Taking to first order v vz, motion in the x-direction is

    By = Bo cos2zu

    y

    z

    x

    v

    e

    = e(E + vB)dp

    dt

    e(vB)dp

    dt

    Intro to Synchrotron Radiation, EE290F, 16 Jan 2007Professor David Attwood

    Univ. California, Berkeley

  • 8/6/2019 Lec 01Intro2007

    24/47

    Calculating Power in the Central Radiation Cone: Usingthe well known dipole radiation formula by transformingto the frame of reference moving with the electrons

    Ch05_T4_topVG.ai

    e

    *e

    z

    N periods

    x

    z

    Lorentz transformation

    Lorentztransformation

    sin2

    = N

    u

    u

    x

    z= N

    cen =

    1

    * N

    =u*

    Determinex, z, tmotion:

    x, z, tlaboratory frame of reference x,z, t frame of reference moving with theaverage velocity of the electron

    Dipole radiation:

    =

    x,z, t motiona(t) acceleration

    = e (E + vB)

    m = e B0 cos

    vx(t); ax(t) = . . .

    vz(t);

    az(

    t) =

    . . .

    dp

    dt

    dvx

    dt

    dz

    dt

    2zu

    dP

    d

    e2

    a2 sin2

    1620c3

    = (1sin2 cos2 ) cos2utdP

    d

    e2

    c2

    40u

    K2

    (1 +K2/2)22

    Intro to Synchrotron Radiation, EE290F, 16 Jan 2007Professor David Attwood

    Univ. California, Berkeley

  • 8/6/2019 Lec 01Intro2007

    25/47

    Power in the Central Cone

    Ch05_LG189_Jan06.ai

    Pcen =

    cen=

    e2I

    0u K2

    2

    eB0u2m0c

    1

    N

    1

    N

    = / 1+ K2

    2

    x = (1 + + 22)u22

    K2

    2

    K =

    cen =

    N periods

    1

    1N

    cen =

    e

    u

    Photon energy (eV)

    Pcen

    (W)

    Tuning

    curve

    = N

    ALS, 1.9 GeV

    400 mA

    u = 8 cmN = 55

    K = 0.5-4.0

    0 100 200 300 4000

    0.50

    1.00

    1.50

    2.00

    (1 + )2

    K2f(K)

    Intro to Synchrotron Radiation, EE290F, 16 Jan 2007Professor David Attwood

    Univ. California, Berkeley

  • 8/6/2019 Lec 01Intro2007

    26/47

    0 500 1000 1500 20000

    0.5

    1

    1.5

    2

    2.5

    cen =

    1

    * Nn = 1

    n = 3

    Pcen (W)

    = 3720u = 50 mmN = 89

    = 400 mAcen = 35 r

    ALS

    1

    N

    1

    3N

    =

    1

    =

    3

    = 89

    = 270

    = 3330u = 49 mmN = 84

    = 200 mA

    cen = 35 r

    n = 1

    n = 30.2

    0.4

    0.6

    0.8

    1.0

    = 84

    BESSY II

    = 250

    Pcen (W)

    Power in the Central Radiation ConeFor Three Soft X-Ray Undulators

  • 8/6/2019 Lec 01Intro2007

    27/47

    cen =

    1

    * N

    Power in the Central Radiation ConeFor Three Hard X-Ray Undulators

    1

    N

    1

    3N

    =

    1

    =

    3

    0

    5

    10

    15

    n = 1

    APS

    n = 3

    0 5 10 15 20 25

    15

    10

    5

    0

    n = 1

    n = 3

    Pcen

    (W)

    = 11,800u = 42 mmN = 38

    = 200 mAcen = 17 r

    = 13,700u = 33 mmN = 72

    = 100 mA

    cen= 11 r

    ESRF

    Pcen (W)

    = 38

    = 120

  • 8/6/2019 Lec 01Intro2007

    28/47

    Ch05_Eq57_58VG_Jan2006.ai

    Brightness and Spectral Brightness

    (5.57)

    (5.58)

    Brightness is defined as radiated power per unitarea and per unit solid angle at the source:

    Brightness is a conserved quantity in perfect

    optical systems, and thus is useful in designingbeamlines and synchrotron radiation experiments

    which involve focusing to small areas.

    Spectral brightness is that portion of the brightness lying within a relative spectral bandwidth /:

    B

    Asds Ai

    Perfect optical system:

    As s= Ai i ; = 100%

    s

    s i

    i

    Intro to Synchrotron Radiation, EE290F, 16 Jan 2007Professor David Attwood

    Univ. California, Berkeley

  • 8/6/2019 Lec 01Intro2007

    29/47

    Ch05_F24VG_Feb04.aiProfessor David Attwood

    Univ. California Berkeley

    Spectral Brightness is Useful for Experiments

    that Involve Spatially Resolved Studies

    Brightness is conserved(in lossless optical systems)

    Starting with many photons in asmall source area and solid angle,permits high photon flux in aneven smaller area

    opticsource

    dsource

    dsourcesource = dfocusoptic

    dfocus

    Smaller

    after focus

    Large in a

    focusing optic

    1-2 GeV

    Undulators

    6-8 GeV

    Undulators

    Wigglers

    Bending

    magnets

    10 eV 100 eV 1 keV 10 keV 100 keV

    Photon energy

    Spectralbright

    ness

    12 nm 1.2 nm 0.12 nm1020

    1019

    1018

    1017

    1016

    1015

    1014

    Intro to Synchrotron Radiation, EE290F, 16 Jan 2007

  • 8/6/2019 Lec 01Intro2007

    30/47

    d

    Ch08_F00_Jan07.ai

    e

    lcoh = 2

    /2{temporal (longitudinal) coherence}

    d = /2 {spatial (transverse) coherence}

    or d 2FWHM = 0.44

    (8.3)

    (8.5)

    (8.5*)

    Pcoh,/= 1 (K)

    (8.6)

    (8.9)

    (/2)2

    (dxx)(dyy)

    0

    euI(/)N2

    80dxdy

    Pcoh,N= Pcen

    u

    Professor David Attwood

    Univ. California, Berkeley Intro to Synchrotron Radiation, EE290F, 16 Jan 2007

    Coherence at Short Wavelengths

  • 8/6/2019 Lec 01Intro2007

    31/47

    Intro to Sychrotron Radiation, EE290F, 16 Jan 2007David Attwood Lecture 1

    Spatial and Spectral Filtering to ProduceCoherent Radiation

    Courtesy of A. Schawlow, Stanford

  • 8/6/2019 Lec 01Intro2007

    32/47

    Intro to Sychrotron Radiation, EE290F, 16 Jan 2007David Attwood Lecture 1

    Spatially Coherent Undulator Radiation

    = 13.4 nm

    1 mD pinhole

    25 mm wide CCD at 410 mm

    Courtesy of Patrick Naulleau, LBNL / Kris Rosfjord, UCB and LBNL

    d ? =

    2

    = 2.5 nm

  • 8/6/2019 Lec 01Intro2007

    33/47

    Coherent Power at the ALS

    Ch09_U5cohPwrALS_Feb06.ai

    1.9 GeV, 400 mA

    u = 50 mm, N = 89

    0.5 K 4.0

    x = 260 m, x = 23 r

    y = 16 m, y = 3.9 r

    euv = 10%, sxr= 2%

    U5

    0 500

    n = 1

    n = 3

    n = 1

    n = 3

    n = 1

    n = 3

    1000 1500 20000

    0.5

    1.0

    1.5

    2.0

    2.5

    0

    10

    20

    30

    40

    50

    0

    100

    200

    300

    400 80

    60

    40

    20

    0102 103102 103

    Photon Energy (eV)Photon Energy (eV)

    Photon Energy (eV)

    Pcoh,

    N(m

    W)

    Pcoh,

    /(

    W)

    Pcen

    (W)

    = 89

    = 103

    = 103Pcoh,n=3(W)

    Intro to Synchrotron Radiation, EE290F, 16 Jan 2007Professor David Attwood

    Univ. California, Berkeley

  • 8/6/2019 Lec 01Intro2007

    34/47

    Ch08_BESSYII_Feb06.ai

    1.7 GeV, 200 mA

    u = 49 mm, N = 84

    0 K 2.5

    x = 314 m, x = 18 r

    y = 24 m, y = 2 r

    euv = 10% ; sxr= 2%0 500 1000 1500 2000

    102 1030

    50

    100

    150 30

    20

    10

    0

    Photon Energy (eV)

    Pcoh,

    /

    (W)

    Pcen

    (W)

    n = 1

    n = 3

    n = 1

    n = 3

    = 103

    = 103

    0

    0.2

    0.4

    0.6

    0.8

    1.0

    0

    5

    10

    15

    102 103

    Photon Energy (eV)

    Photon Energy (eV)

    Pcoh,N

    (mW)

    n = 1

    n = 3

    = 84

    Coherent Power at BESSY II

    Pcoh,n=

    3(W)

    Professor David Attwood

    Univ. California, Berkeley Intro to Synchrotron Radiation, EE290F, 16 Jan 2007

  • 8/6/2019 Lec 01Intro2007

    35/47

    AiryPattrn600eV.ai

    Spatially Coherent Soft X-Rays With Pinhole

    Spatial Filtering: Airy Patterns at 600 eV

    = 2.48 nm (600 eV)

    d = 2.5 mt = 200 msec

    ALS beamline 12.0.2

    u = 80 mm, N = 55, n = 3

    Courtesy of Kristine Rosfjord, UC Berkeley and LBNLProfessor David Attwood

    Univ. California, Berkeley Intro to Synchrotron Radiation, EE290F, 16 Jan 2007

  • 8/6/2019 Lec 01Intro2007

    36/47

    Intro to Sychrotron Radiation, EE290F, 16 Jan 2007David Attwood Lecture 1

    S. Eisebitt, J. Lning, W.F. Schlotter, M. Lrgen, O. Hellwig, W. Eberhardt & J. Sthr / Nature, 16 Dec 2004

  • 8/6/2019 Lec 01Intro2007

    37/47

    The Transition from Undulator Radiation (K 1)to Wiggler Radiation (K >> 1)

    Ch05_F30_32VG.ai

    K = 1 Narrow spectral lines

    High spectral brightness

    Partial coherence

    K = 2K =

    = 1 + + 22

    K = 4

    0 1 2 3 4

    Photon energy (KeV)

    (Courtesy of K.-J. Kim)

    (Courtesy of R.P. Walker and B. Diviacco)

    Spectralbrightne

    ss

    Spectralbrightness

    Spectralbrightness

    u = 5 cm, N = 89

    Undulator radiation (K < 1)~

    eBou2mc

    c =

    u22

    K2

    2

    1.5 GeV

    400 mA

    0 0

    Higher photon energies

    Spectral continuum

    Higher photon flux (2N)

    Wiggler radiation (K >> 1)

    2eBom

    3

    2

    3K

    4

    K2

    2nc = 1 +

    1/N

    Frequency (f)

    f1 f3 fn fn + 2

    0

    dP

    d

    Elettra

    2 GeV

    0.4 A

    u = 6.0 cmN = 72

    K = 3.7

    nc = 22

    1016

    1015

    1014

    1013

    101 102

    Photon energy (eV)

    Photonflux(photons/sec0.1%BW)

    103 104

    Professor David Attwood

    Univ. California, Berkeley Intro to Synchrotron Radiation, EE290F, 16 Jan 2007

  • 8/6/2019 Lec 01Intro2007

    38/47

    Wiggler Radiation

    Ch05_Eq82_87_F33rev3.02.ai

    (5.7a & 82);

    At very high K >> 1, the radiated energy appears in very high harmonics, and at rather largehorizontal angles K/ (eq. 5.21). Because the emission angles are large, one tends to

    use larger collection angles, which tends to spectrally merge nearby harmonics. The resultis a continuum at very high photon energies, similar to that of bending magnet radiation,

    but increased by 2N (the number of magnet pole pieces).

    104

    103

    102

    10

    110 102 103 104

    Photon energy (relative units)

    Photonflu

    xperunitsolidangle

    per0

    .1%b

    andwidth

    (relativeunits)

    BendingMagnet

    Radiation

    WigglerRadiation

    2N

    c

    Professor David Attwood

    Univ. California, Berkeley Intro to Synchrotron Radiation, EE290F, 16 Jan 2007

  • 8/6/2019 Lec 01Intro2007

    39/47

    StanfordWiggler.ai

    Stanford Permanent Magnet Wiggler

    LBNL/EXXON/SSRL (1982), SSRL Beamline VI

    55 pole (N = 27.5),

    w = 7 cmProfessor David Attwood

    Univ. California, Berkeley Intro to Synchrotron Radiation, EE290F, 16 Jan 2007

  • 8/6/2019 Lec 01Intro2007

    40/47

    Facility ALS BESSY II ESRF SP-8

    Electron energy 1.90 GeV 1.70 GeV 6.04 GeV 8.00 GeV 3720 3330 11,800 15,700Current (mA) 400 200 200 100Circumference (m) 197 240 884 1440

    RF frequency (MHz) 500 500 352 509Pulse duration (FWHM) (ps) 35-70 20-50 70 120

    Bending Magnet Radiation:

    Bending magnet field (T) 1.27 1.30 0.806 0.679Critical photon energy (keV) 3.05 2.50 19.6 28.9Critical photon wavelength 0.407 nm 0.50 nm 0.634 0.429 Bending magnet sources 24 32 32 23

    Undulator Radiation:

    Number of straight sections 12 16 32 48Undulator period (typical) (cm) 5.00 4.90 4.20 3.20 Number of periods 89 84 38 14Photon energy (K= 1, n = 1) 457 eV 373 eV 5.50 keV 12.7 keVPhoton wavelength (K= 1, n = 1) 2.71 nm 3.32 nm 0.225 nm 0.979 Tuning range (n = 1) 230-620 eV 140-500 eV 2.6-7.3 keV 4.7-19 keV

    Tuning range (n = 3) 690-1800 eV 410-1100 eV 7.7-22 keV 16-51 keVCentral cone half-angle (K= 1) 35 rad 33 rad 17 rad 6.6 radPower in central cone (K= 1, n = 1) (W) 2.3 0.95 14 16Flux in central cone (photons/s) 3 1 1016 1 6 1016 1 6 1016 7 9 1015

    Typical Parameters forSynchrotron Radiation

  • 8/6/2019 Lec 01Intro2007

    41/47

    Ch05_F01b_BLtransport.ai

    Beamlines are Used to Transport Photons tothe Sample, and Take a Desired Spectral Slice

    Photon

    flux

    Grating

    or crystal

    Monochromator

    Exit

    slitCurved

    focusing

    mirror

    (glancing

    incidence

    reflection)

    Focusing

    lens (pair

    of curved

    mirrors,

    zone plate

    lens, etc.)

    Sample

    Photon

    flux

    e

    Observe at sample:

    Absorption spectra Photoelectron spectra Diffraction

    Professor David Attwood

    Univ. California, Berkeley Intro to Synchrotron Radiation, EE290F, 16 Jan 2007

  • 8/6/2019 Lec 01Intro2007

    42/47

    BendingMagnet

    e

    M1 (spherical)

    M2 (spherical)

    Plane VLSgratings

    G1G2

    G3

    Fixedexitslit

    Sample

    Detector

    Scan

    XBD9509-04496_Jan04.ai

    A Typical Beamline:Monochromator Plus Focusing Opticsto Deliver Radiation to the Sample

    Courtesy of James Underwood (EUV Technology Inc.)

    Professor David Attwood

    Univ. California, Berkeley Intro to Synchrotron Radiation, EE290F, 16 Jan 2007

  • 8/6/2019 Lec 01Intro2007

    43/47

    Sample

    Translatingexit slitTranslatingentrance

    slit

    Sphericalgrating

    Horizontialdeflection/focusingmirror

    Verticalfocusingmirror

    Verticalfocusingmirror

    Horizontalfocusingmirror

    EllipticallyPolarizingUndulator

    meVresBL.ai

    High Spectral Resolution (meV) Beamline

    Professor David Attwood

    Univ. California, Berkeley Intro to Synchrotron Radiation, EE290F, 16 Jan 2007

  • 8/6/2019 Lec 01Intro2007

    44/47

    Beamline 7.0 at Berkeleys Advanced Light Source

    BL7.0.ai

    Professor David Attwood

    Univ. California, Berkeley Intro to Synchrotron Radiation, EE290F, 16 Jan 2007

  • 8/6/2019 Lec 01Intro2007

    45/47

    Ch05_VariablePolar.ai

    Variable Polarization Undulator Radiation

    Aperture andmonochromator

    Crossed planarundulators

    0

    y

    x

    z21

    e

    Variable phase delay(electron path length modulator)

    /2

    /2

    (a) (b)

    e e

    y

    z

    xu

    (Following S. Sasaki)

    (Courtesy of Kwang-Je Kim)

    Professor David Attwood

    Univ. California, Berkeley Intro to Synchrotron Radiation, EE290F, 16 Jan 2007

  • 8/6/2019 Lec 01Intro2007

    46/47

    Intro to Sychrotron Radiation, EE290F, 16 Jan 2007David Attwood Lecture 1

    A Single Storage Ring ServesMany Scientific User Groups

  • 8/6/2019 Lec 01Intro2007

    47/47

    1) D. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation

    (Cambridge, UK, 2000).

    2) P. Duke, Synchrotron Radiation (Oxford, UK, 2000).

    3) J. Als-Nielsen and D. McMorrow,Elements of Modern X-ray Physics

    (Wiley, New York, 2001).

    4) J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1999).

    Third edition.

    5) A. Hofmann, Synchrotron Radiation (Cambridge, UK, 2004).

    6) J. Samson and D. Ederer, Vacuum Ultraviolet Spectroscopy I and II

    (Academic Press, San Diego, 1998). Paperback available.

    I t t S h t R di ti EE290F 16 J 2007Professor David Attwood

    References