Mariusz Prażmowski 1) , Henryk Paul 2) , Fabian Żok 1,3)

18
THE EFFECT OF HEAT TREATMENT ON THE PROPERTIES OF ZIRCONIUM - CARBON STEEL BIMETAL PRODUCED BY EXPLOSION WELDING Mariusz Prażmowski 1) , Henryk Paul 2) , Fabian Żok 1,3) 1) Technical University of Opole, Mechanical Department, 2) Institute of Metallurgy and Materials Science PAN, 3) ZTW Explomet, xplomet

description

xplomet. THE EFFECT OF HEAT TREATMENT ON THE PROPERTIES OF ZIRCONIUM - CARBON STEEL BIMETAL PRODUCED BY EXPLOSION WELDING. Mariusz Prażmowski 1) , Henryk Paul 2) , Fabian Żok 1,3) 1) Technical University of Opole , Mechanical Department, - PowerPoint PPT Presentation

Transcript of Mariusz Prażmowski 1) , Henryk Paul 2) , Fabian Żok 1,3)

Page 1: Mariusz Prażmowski  1) ,  Henryk Paul  2) ,  Fabian Żok  1,3)

THE EFFECT OF HEAT TREATMENT ON THE PROPERTIES OF ZIRCONIUM -

CARBON STEEL BIMETAL PRODUCED BY EXPLOSION WELDING

Mariusz Prażmowski 1), Henryk Paul 2), Fabian Żok 1,3)

1) Technical University of Opole, Mechanical Department,2) Institute of Metallurgy and Materials Science PAN, 3) ZTW Explomet,

xplomet

Page 2: Mariusz Prażmowski  1) ,  Henryk Paul  2) ,  Fabian Żok  1,3)

Presentation plan

1. Aim of the study

2. Research material

3. Characteristics of the received bonds

4. Heat treatment parameters

5. Mechanical properties of the claddings

6. Changes of hardness profile in the bonding zone

7. Analysis of the microstructure

8. Summation

2

Page 3: Mariusz Prażmowski  1) ,  Henryk Paul  2) ,  Fabian Żok  1,3)

Cladding processing operations

Drilling

Welding

Straightening

Forming

Page 4: Mariusz Prażmowski  1) ,  Henryk Paul  2) ,  Fabian Żok  1,3)

Aim of the study

The aim of the study is to analyze the effect of heat treatment for changes of mechanical properties and structural strengthening bimetals zirconium alloy steel bonded by explosive welding method.

5

Page 5: Mariusz Prażmowski  1) ,  Henryk Paul  2) ,  Fabian Żok  1,3)

Research material

Zr 700 (gr.3,175 mm)

6

MaterialThe chemical composition[%]

C Fe, Cr H O Zr+Hf N

Zr 700 < 0,002 0,05 < 0,0003 0,05 >99,2 < 0,002

P355NL2 (gr. 20 mm)

Material

The chemical composition [%]

C Mn Si P S Ni Cr Mo Al N Nb

P355LN2 0,170 1,13 0,345 0,008 0,001 0,285 0,150 0,035 0,045 0,004 0,019

Tensile strength [MPa]

Yield strength[MPa]

Elongation[%]

Rm R0,2 A

280 143 35

Tensile strength [MPa

Yield strength[MPa]

Elongation[%]

Rm R0,2 A

551 402 26,7

Page 6: Mariusz Prażmowski  1) ,  Henryk Paul  2) ,  Fabian Żok  1,3)

Research material

7

Zr 700 + P355NL2(3,175 mm)+ (20 mm)

Deotantion velocity VD [m/s] VD 1,3 VD 1,6 VD

Deotantion velocity VD [m/s] 2200 2800 3500

Distance between plates h [mm] const

steel steel steel

Page 7: Mariusz Prażmowski  1) ,  Henryk Paul  2) ,  Fabian Żok  1,3)

The interface parameters for different VD

8

where: P – summary area of meltings, [ µm2]

L – bondline length [ µm]

V [m/s]Bond

length L [μm]

Average wave heigh

H [μm]

Average wave lengthn [μm]

Summary area of meltins P [μm2]

The equivalent

thickness of meltings RGP

[μm]

VD 12 685 58 454 5 596 0,46

1,3 VD 13 648 148 1002 137 484 10.06

1,6 VD 16 823 214 940 912 943 54,30

n – wave length [ µm]

H – wave heigh [ µm]

Melt depth equivalent

0

200

400

600

800

1000

0

10

20

30

40

50

60

1,0 VD 1,3 VD 1,6 VD

wa

ve

pa

ram

ete

rs H

, n

[μm

]

mel

t d

ep

th e

qu

iva

len

t R

GP

m]

detonation velocity vD [m•s-1]

RGPHn

Page 8: Mariusz Prażmowski  1) ,  Henryk Paul  2) ,  Fabian Żok  1,3)

Clad + base material

Zr 700+ P355NL2 (3,175 mm)+ (20 mm)

Plate VD 1,3 VD 1,6 VD

Shear strength Rs

MPa 351 321 281

Place Zr Zr złącze

Peel off strength Ro

MPa 449 144 180

Place Zr złącze złącze

Tensile strength Rm MPa 544 563 184

Mechanical properties

9

Rys. Shear test specimen - RS

Rys. Tensile test specimen Rm

Fig. Peel off specimen -RO

Tab. Mechanical properties of claddings after joinig

Page 9: Mariusz Prażmowski  1) ,  Henryk Paul  2) ,  Fabian Żok  1,3)

The selection of heat treatment parameters

10Fig. Microhardness of bimetal for variable heat treatment temperature

110

140

170

200

230

260

-0,50 -0,25 0,00 0,25 0,50

mic

roh

ard

nes

s H

V0,

05

distance from interface [mm]

after cladding 400 450500 550 600650 700

zirconiumsteel

Page 10: Mariusz Prażmowski  1) ,  Henryk Paul  2) ,  Fabian Żok  1,3)

The selection of heat treatment parameters

11Fig. Tensile strength Rm of the bimetal for a variable heat treatment temperature

250

300

350

400

450

500

400 450 500 550 600 650 700

Ten

sile

str

eng

th R

m [M

Pa]

Temperature HT [o C]

Bimetal after HT

Zr 700

steel

Page 11: Mariusz Prażmowski  1) ,  Henryk Paul  2) ,  Fabian Żok  1,3)

0

100

200

300

400

500

600

0 90 180 270 360 450

tem

pera

ture

HT

[oC

]

time [min]

The selection of heat treatment parameters

12

Stage I

Heating wit the furnace until 3000C within 35 min.

Stage II

Heating up to 6000C with velocity 1000C/h.

Stage III

Annealing in 6000C over 90 min.

Stage IV

Cooling until 3000C with a velocity 1000C/h.

Stage V

Cooling in still air.

Fig. Course of the heat treatment

Page 12: Mariusz Prażmowski  1) ,  Henryk Paul  2) ,  Fabian Żok  1,3)

351 321

281

449

144

180

544562

184

340

281

293

390

53 53

396 387

159

0

100

200

300

400

500

600

1.0 VD 1.3 VD 1.6VD

str

en

gh

t: s

he

ar

(Rs

), s

trip

pin

g(R

o),

te

ns

ile (R

m)

[MP

a]

detonation velocity vD [m•s-1]

Rs RoRm Rs-HTRo-HT Rm-HT

Testing of mechanical properties

13

Fig. Mechanical properties (strength: shear- Rs, peel off- Ro, tensile- Rm) off caldding metal after joining (solid line) and after heat treatment (dotted line)

30-35%

10%30%

15 %

Page 13: Mariusz Prażmowski  1) ,  Henryk Paul  2) ,  Fabian Żok  1,3)

140

170

200

230

260

290

320

-0,50 -0,25 0,00 0,25 0,50

mic

roh

ard

nes

s H

V0,

05

distance from interface [mm]

1.0vD

1.0vD HT

zirconiumsteel

1.0 vD

1.0 vD HT

140

170

200

230

260

290

320

-0,50 -0,25 0,00 0,25 0,50

mic

roh

ard

nes

s H

V0,

05

distance from interface [mm]

1.3vD

1.3vD HT

zirconiumsteel

1.3 vD

1.3 vD HT

140

170

200

230

260

290

320

350

-0,50 -0,25 0,00 0,25 0,50

mic

roh

ard

nes

s H

V0,

05

distance from interface [mm]

1.6vD

1.6vD HT

zirconiumsteel

1.6 vD

1.6 vD HT

Strengthtening in bond zone - (microhardness

HV0,05 )

Fig. Microhardness distribution in bond zone for different detonation velocities:

a) 1.0vD, b) 1.3vD, c) 1.6vD, solid line- materiał w after „cladding”,

dotted line – after heat treatment

45%

35%

50%

35-45%

35-45% 35-45%

Page 14: Mariusz Prażmowski  1) ,  Henryk Paul  2) ,  Fabian Żok  1,3)

130

160

190

220

250

280

310

340

-0,50 -0,25 0,00 0,25 0,50

mic

roh

ard

nes

s H

V0,

05

distance from interface [mm]

1.0vD 1.0vD HT

1.3vD 1.3vD HT

1.6vD 1.6vD HT

1.0 vD HT

zirconiumsteel

1.3 vD HT

1.6 vD HT

1.0 vD

1.3 vD

1.6 vD

Strengthening in bond zone - (microhardness HV0,05 )

Fig. Microhardness distribution in bond zone for different detonation velocities – summary graph. Measuring along 3 parallel lines trough the bond line (perpendicular

to the bond). Applied load: 50G.

170 HV

140 HV

Page 15: Mariusz Prażmowski  1) ,  Henryk Paul  2) ,  Fabian Żok  1,3)

Microstructular analysis

16

Fig. Microstructure of bonding zone of Zr700/P355NL2 bimetal, showing strong deformation of subsurfaces of combined plates: a) wave bottom, b) wave edge, c)

structure of bimetal after heat treatment.

a b

c

steel

steel

Page 16: Mariusz Prażmowski  1) ,  Henryk Paul  2) ,  Fabian Żok  1,3)

Summation

In work was analyzed the influence of thermal treatment on the mechanical properties and structural changes in the bond zone of bimetallic sets of steel plate P355NL2 (base plate) cladding with zirconium Zr 700 (clad plate) performed by explosive welding technology.

On the basis of microscopic analyzes, it was observed that the increase in velocity of detonation increases the height and length of the wave, and favors the growth of the participation of melted area in the joint areas. This phenomenon has a significant effect on the mechanical properties of the bimetal.

Analysis of the results of tensile strength tests, shear and ram test leads to the conclusion that a small share of the intermetallic areas significantly increasing the strength of the bond, while the increase in the RGP coefficient more than an acceptable value, i.e. it means when the RGP >> 10um, results in a rapid decreasing of mechanical properties.

Use of heat treatment causes a decrease in the mechanical properties of the cladding element. However, in the case of bimetals with relatively small participation of melted layer showing a relatively high mechanical properties.17

Page 17: Mariusz Prażmowski  1) ,  Henryk Paul  2) ,  Fabian Żok  1,3)

Summation

The application of thermal treatment affect substantially to the value of strengthening in the base material.

Reduction of mechanical properties and loss of strengthening near to the interface after heat treatment is related to the observed in the microscopic study structural changes in the bond zone.

Heat treatments causes the phenomenon of recrystallization, and lead to the formation of equiaxed grain structure in the closest zone to border of bond.

18

Page 18: Mariusz Prażmowski  1) ,  Henryk Paul  2) ,  Fabian Żok  1,3)

Thank your for your attention

“Scientific work financed from the budget for science in the years 2010-2013 as a research project”.

19

PhD student is a scholar of the project: PhD Scholarships - investment in Opole province faculty co-financed by the ESF