Cyclic steady states of a thick-walled reactor with stress...

10
* Dr inż. Grzegorz Widłak, Prof. dr hab. inż. Andrzej P. Zieliński, Instytut Konstrukcji Maszyn, Wydział Mechaniczny, Politechnika Krakowska. GRZEGORZ WIDŁAK, ANDRZEJ P. ZIELIŃSKI * CYCLIC STEADY STATES OF ATHICK-WALLED REACTOR WITH STRESS CONCENTRATORS CYKLICZNE STANY uSTALONE W GRubOśCIENNYM REAKTORZE Z KONCENTRATORAMI NAPRężEŃ Abstract The paper deals with elastic-plastic stress states in vicinity of a radial cross-bore in a thick-walled reactor loaded by variable internal pressure and a temperature gradient. In the description of material, the linear Prager model of hardening has been applied. The mechanism of development of reverse plastification in each load cycle has been observed. The termal effect is presented on an example of the steady stress states. The transient states (starting and closing work periods of the reactor) have been investigated in the PhD thesis of the first author Keywords: thick-walled reactor, radial cross-bore, shakedown, thermal effects, finite element method Streszczenie W artykule badano sprężysto-plastyczne stany naprężeń w pobliżu otworu grobościennego re- aktora obciążonego zmiennym ciśnieniem wewnętrznym i różnicą temperatur. W opisie mate- riału stosowano liniowy model wzmocnienia Pragera. Obserwowano mechanizm rozwoju prze- ciwzwrotnego uplastycznienia występujący przy każdym cyklu obciążenia. Efekty termiczne pokazano na przykładzie stanów ustalonych. Stany nieustalone (rozruch i wygaszanie reaktora) były badane w ramach rozprawy doktorskiej pierwszego autora. Słowa kluczowe: reaktor grubościenny, otwór promienny, przystosowanie plastyczne, efekty termiczne, metoda elementów skończonych

Transcript of Cyclic steady states of a thick-walled reactor with stress...

Page 1: Cyclic steady states of a thick-walled reactor with stress ...suw.biblos.pk.edu.pl/resources/i4/i4/i8/i1/r4481/WidlakG_CyclicSteady.pdf · Rys. 1. Reaktor stosowany w rafinerii ropy

* Dr inż. GrzegorzWidłak, Prof. dr hab. inż.Andrzej P. Zieliński, Instytut Konstrukcji Maszyn,WydziałMechaniczny,PolitechnikaKrakowska.

GRZEGORZWIDŁAK,ANDRZEJP.ZIELIŃSKI*

CYCLICSTEADYSTATESOFATHICK-WALLEDREACTORWITHSTRESSCONCENTRATORS

CYKLICZNESTANYuSTALONEWGRubOśCIENNYMREAKTORZEZKONCENTRATORAMINAPRężEŃ

A b s t r a c t

Thepaperdealswithelastic-plasticstressstatesinvicinityofaradialcross-boreinathick-walledreactorloadedbyvariableinternalpressureandatemperaturegradient.Inthedescriptionofmaterial,thelinearPragermodelofhardeninghasbeenapplied.Themechanismofdevelopmentofreverseplastificationineachloadcyclehasbeenobserved.Thetermaleffectispresentedonanexampleofthesteadystressstates.Thetransientstates(startingandclosingworkperiodsofthereactor)havebeeninvestigatedinthePhDthesisofthefirstauthor

Keywords: thick-walled reactor, radial cross-bore, shakedown, thermal effects, finite element method

S t r e s z c z e n i e

Wartykulebadanosprężysto-plastycznestanynaprężeńwpobliżuotworugrobościennegore-aktoraobciążonegozmiennymciśnieniemwewnętrznymiróżnicątemperatur.Wopisiemate-riałustosowanoliniowymodelwzmocnieniaPragera.Obserwowanomechanizmrozwojuprze-ciwzwrotnegouplastycznieniawystępującyprzykażdymcykluobciążenia.Efektytermicznepokazanonaprzykładziestanówustalonych.Stanynieustalone(rozruchiwygaszaniereaktora)byłybadanewramachrozprawydoktorskiejpierwszegoautora.

Słowa kluczowe: reaktor grubościenny, otwór promienny, przystosowanie plastyczne, efekty termiczne, metoda elementów skończonych

Page 2: Cyclic steady states of a thick-walled reactor with stress ...suw.biblos.pk.edu.pl/resources/i4/i4/i8/i1/r4481/WidlakG_CyclicSteady.pdf · Rys. 1. Reaktor stosowany w rafinerii ropy

158

1. Introduction

High-pressure, thick-walled cylindrical vessels, which are used in the petrochemicalandotherprocessindustryareusuallysubjecttocyclicmechanicalandthermalloads.Suchvessels very often have small radial holes in theirwalls, which are necessary formediatransmissionandattachmentofinstrumentation.Theseholesarestrongstressconcentrationsourcesandintheirvicinityplasticeffectscanoftenoccur.Therefore,itisessentialtodesignthevesselsagainstcyclicplasticityfailuremechanisms,whichcanresultindevelopmentofcracksdangerousforthewholestructure.ThecracksofthiskindwereobservedinoneofpolyethylenereactorsinthepetroleumrefineryinPoland[1,2].Theyappearednearasmallholefordischargingthereactorfromthefinalproduct(Fig.1).Thepurposeofthepresentworkis,therefore,toexaminecloselyandcomprehensivelythisimportantindustrialproblemwithrespecttolocalplasticityeffectsduringcyclicoperatingofthereactor.

a) b)

Fig.1.Reactorusedinthepetroleumrefinery:a)generalview,b)objectofinterest–radialhole anditsvicinity

Rys.1.Reaktorstosowanywrafineriiropynaftowej:a)widokogólny,b)okolicepromieniowegootworu–przedmiotbadań

2. Cyclic response of thick-walled reactor subject to pressure load

Inthepresentsectionamechanismofdevelopmentofreverseplastificationsisillustrated.Asimpleassessmentofthelinearkinematichardeningruleisalsopresentedinthecontextoftheratchettingevaluation.

2.1.Materialmodel

Therate-independentplasticitymodelusedinthisstudyisassumedtoexhibitkinematichardeningwiththeHuber–vonMisesyieldcondition[3].Therefore,theequivalentstresscanbedefinedas

1/23 ( ) : ( ) ,2e σ = − −

S a S a (1)

Page 3: Cyclic steady states of a thick-walled reactor with stress ...suw.biblos.pk.edu.pl/resources/i4/i4/i8/i1/r4481/WidlakG_CyclicSteady.pdf · Rys. 1. Reaktor stosowany w rafinerii ropy

159

whereSisthedeviatoricstresstensorandadenotesthebackstressdeviator,representingcurrentcenteroftheyieldsurface.Theyieldfunction

0ef Y= σ − (2)

givesyieldconditionf=0,whichmustholdthroughouttheplasticresponse.ThesizeoftheyieldsurfaceisdenotedbyY0,whichremainsconstantinkinematichardeningmodels.Therearemanyformulationsofcoupledkinematicmodels[4].Pragerproposed[5]thesimplestpossibleformofevolutionoftheyieldsurfaceduringplasticstrainingbylineartranslationinthestressspace:

a pl= 2

3C εε (3)

Thismodelisverypopularinengineeringcomputations,becauseitneedsonlyoneplasticparameterC.Despitethefactthatthismodelcouldreasonablyrepresenttheshapeofsomemonotonic stress-strain curves, it fails to produce ratchetting in uniaxial tests.Moreover,rapid prediction of shakedown in the initial cycles ofmultiaxial loading does notmatchexperimentalresults.Moreappropriatemodelswereinvestigatedin[6].Nevertheless,inthefirstapproachtotheproblem,itseemstobereasonabletousethissimplemodel inordertodemonstratemechanismsresponsibleforthedevelopmentofcyclicplasticity.InfurthercalculationsthevaluesofY0 =275MPaandC=2000MPawereassumed.

2.2.FEmodel

In reactors, the pressure load and thermal gradients usually have cyclic character,thereforeitisessentialtodevelopaFEMmodel(Ansys),whichisappropriateforaccurateand effective cyclic plasticity simulations [7]. Estimation and investigation of the robustintegrationalgorithmofconstitutiveequations,whichishereinutilized,canbefoundin[8].

Ithasbeenassumedthattheinvestigatedreactorhasthefollowingdimensions(compareFig.2):internalradiusa=150mm,externalradiusisdefinedbyratioa/b=0,7andradialholediameterratioisd/a=0,05.Theradialcrossholeconfigurationhastwoplanesofsymmetry,soonlyaquarter-modelsarerequired(seeFig.3).Thex-Rplanehasthefollowingsymmetryconditions

u 0

00

R

x

θ

θ

θ

=τ =τ =

(4)

andthex–θplane

u 0

00

x

xR

=τ =τ =

(5)

where uθ ,uxarecorrespondingdirectdisplacementsand Rθτ , xθτ , xRτ , xθτ representshearstresses.

Page 4: Cyclic steady states of a thick-walled reactor with stress ...suw.biblos.pk.edu.pl/resources/i4/i4/i8/i1/r4481/WidlakG_CyclicSteady.pdf · Rys. 1. Reaktor stosowany w rafinerii ropy

160

Fig.2.Generalviewofinvestigatedreactormodel

Rys.2.Ogólnywidokmodelubadanegoreaktora

Fig.3.Reducedcomputationalmodelandboundaryconditions;globalandlocal

coordinatesystems

Rys.3.Modelobliczeniowyijegowarunkibrzegowe;globalnyilokalnyukład

współrzędnych

Dimensionsofthesegmentaresuitablychosensoasnottodisturbthelocalstressfield.Apressureloadpisappliedontheinternalsurfaceofthemainboreaswellasontheradialholesurface.Theclosed-endboundaryconditionisdefinedbyapplicationofuniformaxialtensionattheendofthecylinder

( )( )

2

2

/

1 /b

a bp p

a b=

− (6)

The presented segment is discretized with 13200 higher-order finite elements. Everyelement is defined by 20 nodes having three translational degrees of freedom per node.Aspecificvalueofthepressureload,loadingmanneraswellasthermalboundaryspecificationaregiveninthesuccessivesections,whichdescribeparticularanalyses.

2.3.Mechanismofdevelopmentofreverseplastification

Radialholesinthethick-walledvesselstructure,havenegligibleinfluenceonreductionoftheglobalload-carryingcapacity.Nevertheless,theyarestrongstressconcentrationsources,causingsignificantdecreaseofelasticlimitloadsandrapidplastificationnearthehole[6].

Inordertodemonstratecharacteristicmechanismwhichisresponsibleforthedevelopmentofcyclicplasticity,loadingandunloadingprocesshasbeensimulated.Forthegivenpressurevaluesupto3p0(p0=32MPa–isthereactorelasticcapacity),thematerialeffortstateandredistributionoftheprincipalstressesareobserved.Themaximumeffortpointisidentified

Page 5: Cyclic steady states of a thick-walled reactor with stress ...suw.biblos.pk.edu.pl/resources/i4/i4/i8/i1/r4481/WidlakG_CyclicSteady.pdf · Rys. 1. Reaktor stosowany w rafinerii ropy

161

in the subsequent stages. In Fig. 4 and Fig. 5 a position of this point is presented. It islocatedontheedgebetweentheradialholesurfaceandthex-Rsymmetryplane.Therefore,dimensionlessshift /z cζ = uniquelydefinesitslocation.Theaxiallocalcoordinateishereindenotedbyz,whereascisthethicknessofreactorwall.

Withtheincreaseofpressure,aproportionaldecreaseoftheminorstressesisobserved.Theminorstressdirectioncoincideswiththeradiallocalcoordinate.Aslightdecrease,inorder to fulfill theconsistencycondition,of themajor (hoopdirection)andmiddle (axialdirection)stressesisnoticed.Suchatendencyisobservedinallthesubsequentmaximumeffortpoints,inwhichtheprincipaldirectionsareillustratedinthefiguresbelow.

Anessentialredistributionofprincipaldirectionsisnoticedduringtheunloadingprocess(Fig.5).Justbelowthereliefpressurep/p0=2,acharacteristicstressstateoccurs,inwhichtheinitiallypositivemajor(hoop)stresschangestobecompressiveanditsvalueisequalinthismomenttotheaxialstressmagnitude.Therefore,intheplanedeterminedbytheaxialdirectionandthetangenttothecircumferentialdirectioninthispoint,theshearvanishandthenormalstressesinalldirectionsarethesame(localhydrostaticstate).

Furthermore, with the progressive relief, a proportional decrease of compression intheradialprincipaldirectionisobserved.Eventually,itreachesazerovalueandtheradialdirectioncouldbeconsideredasamajorprincipaldirection.Astrongcompressionof theplastifiedzone,occurringinthehoopdirection,contributestotheconsiderablechangeoftheorderofprincipalstresses.Thefinalstressstate,resultsinreverseplastificationandtheactiveprocesscausesfurthershiftofthemaximumeffortpoint.Incompressibilityoftheplasticflowproducesalsointhiscaseconsiderableenlargementofcompressionintheaxialdirection.

Fig.4.Stressesinprincipaldirectionatthemaximumeffortpoint (p0=32MPa), /z cζ = , z–reactorthickness

Rys.4.Naprężeniegłównewpunkciemaksymalnegonatężenia (p0=32MPa)–obciążenie, /z cζ = , z–grubośćreaktora

Page 6: Cyclic steady states of a thick-walled reactor with stress ...suw.biblos.pk.edu.pl/resources/i4/i4/i8/i1/r4481/WidlakG_CyclicSteady.pdf · Rys. 1. Reaktor stosowany w rafinerii ropy

162

Fig.5.Stressesinprincipaldirectionatthemaximumeffortpoint(po=32MPa),

/z cζ = ,z–reactorthickness

Rys.5.Naprężeniagłównewpunkciemaksymalnegowytężenia(po=32MPa)–odciążenie,

/z cζ = ,z–grubośćreaktora

2.4.Inadaptationrange

When reactor loads exceed elastic shakedown limit, phenomenon of cyclic plasticityoccurs,whichisacauseoffatiguefailureinvery-low-cycleandlow-cycleregimes.Inadditiontoalternatingplasticity,aratchettingresponseisoftenpresent,accountingforaccelerationoffatiguedamageoractingasafailuremechanismitself.Although,plasticstrainsdevelopedinthefirstcyclearerelativelylow,theycanbeaccumulatedinapredominantdirectionduringsubsequentcycles.Theaccumulationofplasticstrainsisoneaspectofcyclicplasticity.Theother, appearing in the fatiguedamage form, is characterizedbymicro- andmacro-crackpropagationprocessandfinal fracture.However, there isastrong interactionbetween thedamageprocesses.Crackinitiationandpropagationarestronglyaffectedbytheaccumulatedplasticstrains.

Operatinginaninadaptationrangeisadmittedbysomedesigncodes.Moreover,whenthenumberofcyclesissolowthatthefatiguedamageisprevented,asitisinthecaseofreactors,emphasisshouldbeputoncheckofprogressivedeformation.Thisrequiresapplicationofappropriatemodelsofratchetting,whichcanresultinfailureitself.

Inthepressurevesselwithahole,translationofthepointofmax.effort(Fig.4,Fig.5)fadeswiththecyclingandthispointsettlesintheinitiallocationcorrespondingtothefirstloading.In thecaseofmodellingof theratchettingmode,magnitudeofplasticstrainschangeandprogressivedeformationisobservedinthesurroundingregions,asithasbeendemonstratedin[6].Inthefollowing,plasticstraincomponentsarepresentedforthemaximumeffortpoint,asafunctionofthenumberofcycles(Fig.6).ForthePragerhardeningmodel,therearenosignificantchanges in theplasticstrainhistory.After initial, relatively largeplastification,areverseplasticityisobservedduetostrongcompressiveeffectsafterunloading(1stcycle).A slight difference between magnitudes of plastic strain increments during loading andunloadingisnoticeableonlyforthefirstthreecycles.Further,anintegralofeverycomponentof plastic strain tensor is practically equal to zero over each individual cycle.Therefore,thelinearPragermodelshouldnotbeusedforrepresentationofratchettinginthisspecificstructre.

Page 7: Cyclic steady states of a thick-walled reactor with stress ...suw.biblos.pk.edu.pl/resources/i4/i4/i8/i1/r4481/WidlakG_CyclicSteady.pdf · Rys. 1. Reaktor stosowany w rafinerii ropy

163

Fig.6.Plasticstrains(localholecoordinates)inducedby100MPapressureloading–Pragerhardeningrule(a/b =0,7;d/a =0,01)

Rys.6.Odkształceniaplastyczne(współrzędnelokalneotworu)wywołanetętniącymciśnieniem 100MPa–modelwzmocnieniaPragera(a/b =0,7;d/a =0,01)

Asithasbeennoticedabove,thecasewithlinearhardeningmodelshowsslightincrementsofplasticstrains,whichisrathercausedbyaredistributioneffectandexpireswiththefurthercycling(Fig.7).

Fig.7.Hysteresisloop–Pragerhardeningrule

Rys.7.Pętlahisterezy–modelwzmocnieniaPragera

Page 8: Cyclic steady states of a thick-walled reactor with stress ...suw.biblos.pk.edu.pl/resources/i4/i4/i8/i1/r4481/WidlakG_CyclicSteady.pdf · Rys. 1. Reaktor stosowany w rafinerii ropy

164

3. Influence of thermal gradients at steady states

uptonowonly themechanical loading (pressure)hasbeenconsidered.However, thehighpressurereactorsareusuallysubjecttointernalpressureandincreasedtemperatures[9].Inthepresentsection,thesteadythermaleffectsaretakenintoaccount.Thethermalgradientcausesdevelopmentofthermalstresses,moreover, thehightemperaturescansignificantlychange thematerial properties. The study concerns examination of reactors subjected todifferentpressureandthermalloadrelationsduringsteadystatesoftheloading-unloadingcyclicprocess.

Inordertoevaluatetemperaturesinthereactormodel,whichissubjectedtostabilizedconditions,thewell-knownhomogeneousequationofsteadystateheattransferisutilized.Once the temperaturefield isknown, resulting thermal strains and stresses are calculated[10]. For detailed investigation of the thermal effects, different combinations of pressureloadsandassociatedsteadytemperaturestateshavebeenchosen.Themechanicalloadingsareappliedintheformofpressurewhichtakesvalues:60MPa,80MPaand100MPa.Ontheinternalreactorsurfaces(Fig.8)theconvectionboundaryconditionsareestablishedwith

theconvectioncoefficient 2

W2000m Kih = .Internaltemperaturestakevaluesfrom 1 50 CT = °

to 6 300 CT = ° each 50 CT∆ = ° . The external reactor surface has the ambient boundary

conditionswiththeconvectioncoefficient 0 2

W20m K

h = andtemperature 0 20 CT = ° .

Amaterialmodel used in calculations corresponds to a typical boiler steelDIN13Cr-

Mo44.Theyieldstressforthissteelis 020 300MPaY = forthetemperature 0 20 CT = ° and

decreasesto 0300 235MPaY = inthetemperature max 300 CT = ° .Thefirstanalysisconcernsdeterminationoftemperaturedistributionwiththespecified

boundaryconditions.With theaboveassumedvaluesof theconvectioncoefficients, therearenosignificantthermalgradientsinthesteadystate.Forexample,inthecaseofprocessed

medium temperature 300 CiT = ° and ambient temperature 0 20 CT = ° the difference ofinternalandexternaltemperaturesofthevesselisequal 11,2 Ct∆ = ° (Fig.9).

Inthecaseofsteadythermaleffectsdifferentdistributionsofthestressandstrainstatesinthevesselresultmainlyfromthepressurechanges.Presenceofstrongconcentrationcausesthatevenforthelowestpressurethelocalplasticstrainoccurs.Thepressureincreaseresultsinregulareffortvariationuptothehighestanalyzedtemperaturesinwhichaconsiderableyieldstressreductionisobservedandasignificantshiftingofthemaximumeffortpointintheanalyzedstructure.The largest loadconfigurationresults inplasticstrainswhichhaveaglobalrange(Fig.10).

A difference of the local equivalent plastic strains between the loaded and unloadedstates ∆ε ε εeq

pleqpl load

eqpl unloadmax = − (7)

Page 9: Cyclic steady states of a thick-walled reactor with stress ...suw.biblos.pk.edu.pl/resources/i4/i4/i8/i1/r4481/WidlakG_CyclicSteady.pdf · Rys. 1. Reaktor stosowany w rafinerii ropy

165

Fig.8.Acomputationalmodel–thermal

boundaryconditions

Rys.8.Modelobliczeniowy–termicznewarunkibrzegowe

Fig.9.Steadystatetemperaturedistribution (Ti =300°C,T0 =20°C;tmin=287°C,

tmax=298°C)

Rys.9.ustalonystanrozkładutemperatury (Ti =300°C,T0 =20°C;tmin=287°C,

tmax=298°C)

has been chosen as a measure of reverse plastification of the structure. This differenceincreaseswithincreasingpressurebutalmostdoesnotchangewithtemperatures.Onlythehighestinternaltemperaturecausesitsconsiderablereductionbecauseofstronggrowthoftheplasticstrainzoneinthevicinityofthehole,whichresultsindecreaseofcompressiveeffectsafterunloading(Fig.11).

Fig.10.Equivalentplasticstrainsafterloading

Rys.10.Zastępczeodkształcenieplastyczne poobciążeniu

Fig.11.Equivalentplasticstraindifference(loading–unloading)

Rys.11.Różnicaodkształceńplastycznych(obciążenie–odciążenie)

Page 10: Cyclic steady states of a thick-walled reactor with stress ...suw.biblos.pk.edu.pl/resources/i4/i4/i8/i1/r4481/WidlakG_CyclicSteady.pdf · Rys. 1. Reaktor stosowany w rafinerii ropy

166

4. Conclusions

The investigationofmaterialmodelswhich are intended to represent cyclic plasticity(theArmstrong-FrederickandChabochemodels)proved[6]thattheratchettingrateinthereactorstructureissignificantattheinitialprocessstageandfurtheriskeptconstant,whicheventually leads to the failuredue to incrementalplasticcollapse.Theconstitutivemodelconsideredhere(Pragerhardeningrule)isnotintendedtodefinecyclicplasticity.AplasticmodulusC (Eqn(3)),whichisthesameforloadingandunloading(noeffectofmeanstress)results,therefore,inthestresscycles,whichformaclosedhysteresisloop.

The small thermal effects noted above change to large values in starting and closingworkperiodsofreactors(stronglyunsteadystates).Theseeffectsandtheirinfluenceonlocalelastic-plasticresponsehavebeeninvestigatedindetailandarepresentedin[6].

R e f e r e n c e s

[1]R y ś J., Strength analysis in the region of a hole in high pressure vessel,Proceedingsof the 8th InternationalResearchExpertConference “Trends in theDevelopment ofMachineryandAssociatedTechnologyTMT”,Neum,2004.

[2] Z i e l i ń s k i A.P., Ł a c z e k S., R y ś J. Optimization of Thick-Walled High-Pressure Vessels with Holes with Respect to Ductile Fracture, Proceedings of the 6thWorldCongressofStructuralandMultidisciplinaryOptimization,RiodeJaneiro2005.

[3] Ż y c z k o w s k i M.,Combined Loadings in the Theory of Plasticity,PWN,Warszawa1981.

[4]C h a b o c h e J.L., Time-independent constitutive theories for cyclic plasticity,InternationalJournalofPlasticity,2,1985.

[5] P r a g e r W., A new method of analyzing stresses and strains in work hardening plastic solids,JournalofAppliedMechanics,23,1956.

[6]W i d ł a k G., Localshakedown analysis of a thick-walled reactor subject to mechanical and thermal loads., PhD thesis supervised byA.P. Zieliński, Cracowuniversity ofTechnology,Cracow2010.

[7] Z i e l i ń s k i A.P., W i d ł a k G., Local shakedown analysis in regions of holes in high pressure vessels, Proceedings of the IX International Conference onComputationalPlasticity,COMPLASIX,barcelona,2007.

[8]W i d ł a k G., Radial return method applied in thick-walled cylinder analysis,JournalofTheoreticalandAppliedMechanics,48,2010.

[9]C a m i l l e r i D., M a c k e n z i e D., Shakedown of a thick cylinder with a radial crosshole,ASMEPressureVesselsandPipingDivision,2006.

[10] W i d ł a k G., Z i e l i ń s k i A.P., Local shakedown analysis of reactors subject to pressure and thermal loads,Proceedingsofthe8thWorldCongressonComputationalMechanics,Venice2008.