4b - IPO GL Design

download 4b - IPO GL Design

of 53

Transcript of 4b - IPO GL Design

  • 7/21/2019 4b - IPO GL Design

    1/53

    Valve Mechanics

  • 7/21/2019 4b - IPO GL Design

    2/53

    Valve Mechanics

    Upon completion of this section you will be able to:

    Calculate the opening and closing pressures for an IPO

    gas lift valve.

    Calculate the opening and closing pressures for a PPO

    gas lift valve.

    Understand the relationship that tubing pressure and

    casing pressure have on the operation of GLVs.

  • 7/21/2019 4b - IPO GL Design

    3/53

    Force Balance Theory forIPO Valves

  • 7/21/2019 4b - IPO GL Design

    4/53

    Pressure Regulator

    Diaphragm/

    Atmospheric Bellows

    Spring

    Stem

    Stem Tip

    Port

    Downstream

    Upstream

    Spring Operated Gas Lift Valve

    Upstream/

    Casing

    Downstream/Tubing

  • 7/21/2019 4b - IPO GL Design

    5/53

    Opening Forces

    Dome

    (Loading Element)

    Bellows

    (Responsive Element)

    PC, Casing Pressure

    Area

    of

    Bellows

    APArea of Port

    P1Tubing

    Pressure

    PdAB= Pt(Ap) + Pc (ABAp)Force Balance at Opening

  • 7/21/2019 4b - IPO GL Design

    6/53

    Closing Forces

    Force Balance at Closing

    PdAB = PC(AB)

    Pd

    AbPc

    ApP1

  • 7/21/2019 4b - IPO GL Design

    7/53UNBALANCED VALVE

    F = P X A

    Pc1

    Pd

    Pt

    WHEN THE VALVE IS CLOSED

    TO OPEN IT..

    Pd x Ab= Pc1(Ab - Ap) + Pt Ap

    Pd

    Pc2

    WHEN THE VALVE IS OPEN

    TO CLOSE IT..

    Pd x Ab = Pc2 (Ab)

    Valve Opening and Closing Pressures

  • 7/21/2019 4b - IPO GL Design

    8/53

    CLOSING FORCE (IPO VALVE) Fc = PdAb =PcAb

    OPENING FORCES (IPO VALVE) Fo1= Pc (Ab- Ap)

    Fo2= Pt Ap

    TOTAL OPENING FORCE Fo = Pc (Ab - Ap) + Pt Ap

    JUST BEFORE THE VALVE OPENS THE FORCES ARE EQUAL

    Pc (Ab - Ap) + Pt Ap = Pc Ab

    Pd - Pt (Ap/Ab)

    SOLVING FOR Pc Pc = --------------------------

    1 - (Ap/Ab)

    WHERE: Pd = Pressure in dome

    Pt = Tubing pressure

    Pc = Casing pressure

    Ab = Area of bellows

    Ap = Area of port

    Valve Opening and Closing Pressures

  • 7/21/2019 4b - IPO GL Design

    9/53

    Pb - Pt (Ap/Ab)Pc = ----------------------

    1 - (Ap/Ab)

    Where R = Ratio Ap/Ab

    Pb - Pt (R)

    Pc = ----------------------

    1 - R

    Pb = Pc (1 - R) + Pt (R)

    Valve Opening and Closing Pressures

  • 7/21/2019 4b - IPO GL Design

    10/53

    0

    2000

    6000

    8000

    10000

    12000

    14000

    4000

    1000 2000

    DEPTHF

    TTVD

    TUBING PRESSURECASING PRESSURE

    1500500 2500

    DRAWDOWN

    3000 3500

    FBHP SIBHP

    Gas lift valves close in sequence

  • 7/21/2019 4b - IPO GL Design

    11/53

    Test Rack Opening Pressure

    Pb - Pt (Ap/Ab)Pc = ----------------------

    1 - (Ap/Ab)

    TRO

    Pd @ 60F 0

    Pd @ 60FTRO = ----------------------

    1 - R

    R

    Note: Pd @ 60F = (Tc) (Pd @ Depth)

  • 7/21/2019 4b - IPO GL Design

    12/53

    Calculation Summary

    Pd = Pcsg(1-R) + Ptbg(R)Psc= Pd - DPc

    Pso= Pcsg- DPc

    Pd @ 60F = Tc (Pd) TRO = (Pd @ 60F)/(1-R)

  • 7/21/2019 4b - IPO GL Design

    13/53

    INJECTION GAS

    PRODUCED FLUID

    CASING P.

    TO OPEN

    CASING P

    TO CLOSE

    AT SURFACE

    VALVE # 1

    VALVE # 2

    VALVE # 3

    DOME P.

    1200 PSI

    1260 PSI

    1300 PSI

    NOTE : ALL VALVES 3/16 R-20R = 0.038 1-R = 0.962

    Pd = Pc (1-R) + Pt (R)

    TUBING P.

    @ DEPTH

    890 PSI

    740 PSI

    560 PSI

    ? PSI

    ? PSI

    ? PSI

    1340 PSI ? PSI

  • 7/21/2019 4b - IPO GL Design

    14/53

    Force Balance Theory for PPO

    Valves

  • 7/21/2019 4b - IPO GL Design

    15/53

    Production Pressure Operated

    Valves

    Also known as fluid valves Most commonly used in dual GL

    wells

    Primarily sense tubing pressure Achieved through use of cross-overseat

  • 7/21/2019 4b - IPO GL Design

    16/53

    F = P X A

    Pc

    Pt1

    WHEN THE VALVE IS CLOSED

    TO OPEN IT..

    Fs= Pt1(Ab - Ap) + Pc Ap

    Fs

    Pc

    WHEN THE VALVE IS OPEN

    TO CLOSE IT..

    Fs = Pt2 (Ab)

    PPO Valve Mechanics

    Pt2

    THE REVERSE OF AN IPO VALVE

    Fs

    Fs = Ps.t. X Ab

  • 7/21/2019 4b - IPO GL Design

    17/53

    CLOSING FORCE (PPO VALVE) Fc= Fs= Ps.t.* Ab

    OPENING FORCES (PPO VALVE) Fo1= Pt (Ab- Ap)

    Fo2= Pc Ap

    TOTAL OPENING FORCE Fo = Pt (Ab - Ap) + Pc Ap

    JUST BEFORE THE VALVE OPENS THE FORCES ARE EQUAL

    Pt (Ab - Ap) + Pc Ap = Ps.t.*Ab

    Ps.t.- Pc (Ap/Ab)

    SOLVING FOR Pt Pt = --------------------------

    1 - (Ap/Ab)

    WHERE: Pb = Pressure in bellows

    Pt = Tubing pressure

    Ps.t. = Spring tension effectPc = Casing pressure

    Ab = Area of bellows

    Ap = Area of port

    Valve Opening and Closing Pressures

  • 7/21/2019 4b - IPO GL Design

    18/53

    Ps.t.- Pc (Ap/Ab)Pt = ----------------------

    1 - (Ap/Ab)

    Where R = Ratio Ap/Ab

    Pt - Pc (R)OP = ----------------------

    1 - R

    Pvc = Pt (1 - R) + Pc (R)

    Valve opening and closing

    pressures

  • 7/21/2019 4b - IPO GL Design

    19/53

    Test Rack Opening Pressure

    Ps.t. - Pc (Ap/Ab)

    Pt = ----------------------

    1 - (Ap/Ab)

    TRO

    Pvc 0

    Pvc

    TRO = ----------------------

    1 - R

    R

  • 7/21/2019 4b - IPO GL Design

    20/53

    Calculation Summary

    Pvc @ L = Pt(1-R) + Pc(R) TRO = Pvc@ L /(1-R)

  • 7/21/2019 4b - IPO GL Design

    21/53

    Operation

    In the closed position, tubing pressure is acting on the bellowsand casing pressure is acting on the ball. When the combined forces of tubing pressure and casing

    pressure are greater than the spring tension the valve opens.

    When the valve opens, tubing pressure is acting on the ball and

    the bellows. The valve closes on a drop in tubing pressure. Test rack opening pressures should generally increase as you

    get deeper on the design sheet. This is due to increase in tubing

    pressure as you go downhole.

  • 7/21/2019 4b - IPO GL Design

    22/53

    Characteristics

    Advantages Not temperature sensitive

    Suitable for dual installations

    Each valve is operated at the same casing pressure so

    higher casing pressure is maintained in deep wells.

    Disadvantages Difficult to troubleshoot

    High back pressure holds the valves open

    Not suitable for wells with IPO spacing

    Dependant on the parameter over which we have the leastcontrol

  • 7/21/2019 4b - IPO GL Design

    23/53

    Example: Operating Pressure

    Calculation

    Using the supplied calculation worksheet,derive the Operating Pressure equation for an

    injection pressure operated (IPO) gas lift

    valve.

  • 7/21/2019 4b - IPO GL Design

    24/53

    Section 4a: Gas Lift Design

  • 7/21/2019 4b - IPO GL Design

    25/53

    Constant Casing Pressure Drop Method

    #1

  • 7/21/2019 4b - IPO GL Design

    26/53

    0 1000 2000

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    10000

    PRESSURE (PSIG)

    DEPTH

    FTTVD

    DEPTH OF WELL (MID PERFS)

    TEMPERATURE F

    100 150 200

    Constant Casing Pressure Drop Method

    #1.

    #2

  • 7/21/2019 4b - IPO GL Design

    27/53

    0 1000 2000

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    10000

    PRESSURE (PSIG)

    DEPTH

    FTTVD

    DEPTH OF WELL (MID PERFS)

    TEMPERATURE F

    100 150 200

    S.I.B.H.P.

    #2.

    Constant Casing Pressure Drop Method

    #3

  • 7/21/2019 4b - IPO GL Design

    28/53

    0 1000 2000

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    10000

    PRESSURE (PSIG)

    DEPTH

    FTTVD

    DEPTH OF WELL (MID PERFS)

    TEMPERATURE F

    100 150 200

    S.I.B.H.P.F.B.H.P.

    #3.

    Constant Casing Pressure Drop Method

    #4

  • 7/21/2019 4b - IPO GL Design

    29/53

    0 1000 2000

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    10000

    PRESSURE (PSIG)

    DEPTH

    FTTVD

    DEPTH OF WELL (MID PERFS)

    TEMPERATURE F

    100 150 200

    S.I.B.H.P.F.B.H.P.

    #4.

    Constant Casing Pressure Drop Method

    #5

  • 7/21/2019 4b - IPO GL Design

    30/53

    0 1000 2000

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    10000

    PRESSURE (PSIG)

    DEPTH

    FTTVD

    DEPTH OF WELL (MID PERFS)

    TEMPERATURE F

    100 150 200

    S.I.B.H.P.F.B.H.P.

    MANDREL #1

    #5.

    Constant Casing Pressure Drop Method

    #6

  • 7/21/2019 4b - IPO GL Design

    31/53

    0 1000 2000

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    10000

    PRESSURE (PSIG)

    DEPTH

    FTTVD

    DEPTH OF WELL (MID PERFS)

    TEMPERATURE F

    100 150 200

    F.B.H.P. #1

    S.I.B.H.P.F.B.H.P.

    MANDREL #1

    #6.

    Constant Casing Pressure Drop Method

    #7

  • 7/21/2019 4b - IPO GL Design

    32/53

    0 1000 2000

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    10000

    PRESSURE (PSIG)

    DEPTH

    FTTVD

    DEPTH OF WELL (MID PERFS)

    TEMPERATURE F

    100 150 200

    MANDREL #2

    F.B.H.P. #2 S.I.B.H.P.F.B.H.P.

    MANDREL #1

    #7.

    Constant Casing Pressure Drop Method

    #8

  • 7/21/2019 4b - IPO GL Design

    33/53

    0 1000 2000

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    10000

    PRESSURE (PSIG)

    DEPTH

    FTTVD

    DEPTH OF WELL (MID PERFS)

    TEMPERATURE F

    100 150 200

    MANDREL #2

    MANDREL #3

    F.B.H.P. #3 S.I.B.H.P.F.B.H.P.

    MANDREL #1

    #8.

    Constant Casing Pressure Drop Method

    #9

  • 7/21/2019 4b - IPO GL Design

    34/53

    0 1000 2000

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    10000

    PRESSURE (PSIG)

    DEPTH

    FTTVD

    DEPTH OF WELL (MID PERFS)

    TEMPERATURE F

    100 150 200

    MANDREL #4

    MANDREL #2

    F.B.H.P. #4 S.I.B.H.P.F.B.H.P.

    MANDREL #1

    MANDREL #3

    #9.

    Constant Casing Pressure Drop Method

    #10

  • 7/21/2019 4b - IPO GL Design

    35/53

    0 1000 2000

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    10000

    PRESSURE (PSIG)

    DEPTH

    FTTVD

    DEPTH OF WELL (MID PERFS)

    TEMPERATURE F

    100 150 200

    MANDREL #4

    MANDREL #2

    MANDREL #5

    F.B.H.P. #5

    S.I.B.H.P.F.B.H.P.

    MANDREL #1

    MANDREL #3

    #10.

    Constant Casing Pressure Drop Method

  • 7/21/2019 4b - IPO GL Design

    36/53

    End Day 3

  • 7/21/2019 4b - IPO GL Design

    37/53

    Agenda

    Day 1: Introduction & Objectives; ALTechnology; Gas Lift Overview;Field TripLufkin

    Day 2: Gas Lift Equipment Day 3: Well Performance; Gas Lift Design Day 4: GL Design (cont.); Computer Based

    Applications

    Day 5: GL Trouble-shooting andOptimization

  • 7/21/2019 4b - IPO GL Design

    38/53

    Day 4Delivery Duration Begin End

    Review Day 3 Lecture 0:30 8:00 AM 8:30 AMIPO Gas lift design Individual Activity 1:30 8:30 AM 10:00 AM

    Break 0:15 10:00 10:15

    Design Bias

    Overview of design bias. Lecture 1:00 10:15 AM 11:15 AM

    IPO Gas lift design w/ design bias Individual Activity 0:45 11:15 AM 12:00 PM

    Lunch 1:00 13:30 14:30

    PPO Gas Lift Design

    PPO design methodology. Lecture 0:45 12:00 PM 12:45 PM

    PPO Gas lift design Individual Activity 0:45 12:45 PM 1:30 PM

    Section 5: Computer Based ApplicationsComputer Based Applications

    Introduction to SNAP Demo 0:30 1:30 PM 2:00 PM

    Break 0:15 14:00 14:15

    IPO Gas lift design using SNAP Individual Activity 1:15 2:00 PM 3:15 PM

    PPO Gas lift design using SNAP Individual Activity 0:45 3:15 PM 4:00 PM

    Topics

  • 7/21/2019 4b - IPO GL Design

    39/53

    Gas Lift Design Example #1Design a continuous flow gas lift installation for the well described below.

    Use the provided calculation sheet and determine the following informationfor all valves: setting depth, port size, test rack opening pressure.

    English Metric

    Tubing Size 2-7/8" 6.5 ppf 62 mm

    Desired Producing Rate 600 BPD 100 M3

    Percent Water 50% 50%

    Water Specific Gravity 1.08 1.08

    Gas Specific Gravity 0.65 0.65

    Oil Gravity 35API 0.85 rel dens

    Static Fluid Gradient (Gs) 0.465 10.5 kPa / mtr

    Depth of Perforations 5257 ft. 1600 meters

    Depth of Packer 5000 ft. 1500 meters

    Wellhead Pressure (Pwh) 100 psig 700 kPa

    Static Bottom Hole Pressure (Pws) 1600 psig 11,000 kPa

    Flowing Bottom Hole Pressure (Pwf) 1160 psig 8000 kPa

    Temperature at Surface (T@S) 90F 32 C.Temperature at Bottom Hole (T@bh) 136F 58 C

    Operating Injection Pressure (Pi@S) 800 psig 5600 kPa

    Kickoff Pressure (Pko) 850 psig 5900 kPa

    Suggested IPO Valve R-20 R-20

    Suggested Valve Port Size 1/4" 6.35 mm

    Voluma of Gas Available 1200 MCFD 30,000 M3

    Formation GLR 100:1 20 M3/kltr

    Solution

    http://sptupstream.conocophillips.net/sites/learning/prd/gaslift_gregstephenson_Mar2013/Sept%202011/GL%20Design%201.ppthttp://sptupstream.conocophillips.net/sites/learning/prd/gaslift_gregstephenson_Mar2013/Sept%202011/GL%20Design%201.ppt
  • 7/21/2019 4b - IPO GL Design

    40/53

    Design Bias

  • 7/21/2019 4b - IPO GL Design

    41/53

    Design Bias in Gas Lift Designs

    Tubing head pressure

    Tubing pressure / minimum gradient Casing pressure drops to close valve systematically

    (disadvantage?) Re-opening valves / Valve interference

    Differential at bottom point Casing pressure available Design bias will vary depending on condition Gas passage Well coming in Add some more mandrels? Usually called safety factors

  • 7/21/2019 4b - IPO GL Design

    42/53

    Transfer Point Bias

    Accounts for uncertainty in flowing gradient Affects spacing Affects valve calculations

    Options Percentage of tubing pressure

    % (PcsgPtbg)

    Bracketing

    Design Line

    User defined per station

  • 7/21/2019 4b - IPO GL Design

    43/53

    Design Lines

    0 1000 2000

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    10000

    PRESSURE (PSIG)

    DEPTH

    FTTVD

    DEPTH OF WELL (MID PERFS)

    MANDREL #4

    MANDREL #2

    MANDREL #5

    F.B.H.P.

    MANDREL #1

    MANDREL #3

    Design line

  • 7/21/2019 4b - IPO GL Design

    44/53

    Casing Pressure Drop

    Ensures injection through single valve Attempts to offset tubing pressure effect Relative to port size

    Methodologies include:Constant pressure dropPtmaxPtmin

    Valve-dependant (catalog-based)

  • 7/21/2019 4b - IPO GL Design

    45/53

    Temperature bias

    Static pressure gradient

    SBHP

    Flowing temperature gradientStatic temperature gradient

    Static fluid level

    1stpotential operating point

  • 7/21/2019 4b - IPO GL Design

    46/53

    (Ptmax- Ptmin) Method

    #1.

  • 7/21/2019 4b - IPO GL Design

    47/53

    Valve #1

    Pressure

    De

    p

    t

    h

    Pc1

    Pt@L Pc @ L

    30-50#

    Differential

    Pt

    #2.

  • 7/21/2019 4b - IPO GL Design

    48/53

    #1

    Pressure

    De

    p

    t

    h

    Pc1

    50#

    Differential

    Pt

    Pt min Pt max

    Point A

    Pc2 = Pc1-[ (Pt max-Pt min) (TEF)]

    #3.

  • 7/21/2019 4b - IPO GL Design

    49/53

    #1

    Pressure

    De

    p

    t

    h

    Pc1

    50#

    Differential

    Pt

    Pt min

    Pt max

    #2

    Point A

    Pc2=1000-[(750-425) (.104)]

    Pc2=966 psi

    (33.8 psi)

    Pc1

    #4.

    Pc2

  • 7/21/2019 4b - IPO GL Design

    50/53

    #1

    Pressure

    De

    p

    t

    h

    Pc1Pt

    #2

    #3

    Pc2

    Pc3

    Pc3=966-[(815-625) (.104)]

    Pc3=946 psi

    (19.76 psi)

    Pc2#5.

  • 7/21/2019 4b - IPO GL Design

    51/53

    #1

    PressurePc1Pt

    #2

    #3

    Pc2

    Pc3

    D

    ep

    t

    h

    Pt min Pt max

    Point A

    Pc2#6.

  • 7/21/2019 4b - IPO GL Design

    52/53

    #1

    PressurePc1Pt

    #2

    #3

    Pc2

    Pc3

    D

    ep

    t

    h

    Pt min

    Pc4= 946-[(925-750) (.104)]

    Pc4= 928 psi

    (18.2 psi)

    Pc4

    (.05 x Depth) + Pwh

    #4

  • 7/21/2019 4b - IPO GL Design

    53/53

    Gas Lift Design Example #2Redesign the gas lift installation for example #1 using at least 2 forms of

    design bias.

    English Metric

    Tubing Size 2-7/8" 6.5 ppf 62 mm

    Desired Producing Rate 600 BPD 100 M3

    Percent Water 50% 50%

    Water Specific Gravity 1.08 1.08

    Gas Specific Gravity 0.65 0.65Oil Gravity 35API 0.85 rel dens

    Static Fluid Gradient (Gs) 0.465 10.5 kPa / mtr

    Depth of Perforations 5257 ft. 1600 meters

    Depth of Packer 5000 ft. 1500 meters

    Wellhead Pressure (Pwh) 100 psig 700 kPa

    Static Bottom Hole Pressure (Pbhs) 1600 psig 11,000 kPa

    Flowing Bottom Hole Pressure (Pbhf) 1160 psig 8000 kPa

    Temperature at Surface (T@S) 90F 32 C.Temperature at Bottom Hole (T@bh) 136F 58 C

    Operating Injection Pressure (Pi@S) 800 psig 5600 kPa

    Kickoff Pressure (Pko) 850 psig 5900 kPa

    Suggested IPO Valve R-20 R-20

    Suggested Valve Port Size 1/4" 6.35 mm

    Voluma of Gas Available 1200 MCFD 30,000 M3

    Formation GLR 100:1 20 M3/kltr

    Well Data

    Solution

    http://sptupstream.conocophillips.net/sites/learning/prd/gaslift_gregstephenson_Mar2013/Course%20Materials/Presentations/GL%20Design%202.ppthttp://sptupstream.conocophillips.net/sites/learning/prd/gaslift_gregstephenson_Mar2013/Sept%202011/GL%20Design%202.ppthttp://sptupstream.conocophillips.net/sites/learning/prd/gaslift_gregstephenson_Mar2013/Course%20Materials/Presentations/GL%20Design%202.ppthttp://sptupstream.conocophillips.net/sites/learning/prd/gaslift_gregstephenson_Mar2013/Sept%202011/GL%20Design%202.ppt