Właściwości reologiczne materiałów dr inż. Anna Krztoń...

19
Właściwości reologiczne materiałów dr inż. Anna Krztoń-Maziopa (lab 411 Gmach Chemii) 1. Cel ćwiczenia - poznanie metod badań reologicznych umożliwiających analizę zachowania się różnego rodzaju substancji (takich jak: stopy i roztworów polimerów, masy ceramiczne, środki spożywcze, farmaceutyczne lub kosmetyki) pod wpływem naprężeń ścinających - wyznaczenie krzywych płynięcia płynów Newtona i Binghama - odstępstwa od zachowań newtonowskich i binghamowskich - poznanie zjawiska tiksotropii wybranych płynów nienewtonowskich oraz wyznaczenie współczynników chrono- i mobilotiksotropii. 2. Podstawy teoretyczne Przepływ jest jedną z postaci odkształcenia ciał dlatego też zaproponowano następującą definicję reologii jako nauki zajmującej się badaniami odkształceń materii. Reologia zajmuje się mechaniką ciał rzeczywistych ulegającym odkształceniom pod wpływem działania sił zewnętrznych. Celem reologii jest umiejętność przewidywania układu sił, który spowoduje określone odkształcenie danego ciała lub odwrotnie- przewidywania odkształceń wynikających z przyłożenia określonego układu sił (obciążenia). Reologię dzielimy na mikro- i makroreologię. Mikroreologia, która znajduje się w obszarze zainteresowań fizykochemików, zajmuje się związkami, jakie występują między rzeczywistą strukturą materii (np. budową wewnętrzną polimerów) a jej właściwościami. Makroreologia obejmuje zachowanie układu (np. zawiesiny) jako całości pod wpływem przyłożonego układu sił. 2.1. Odkształcenie Pod działaniem sił zewnętrznych wszystkie ciała rzeczywiste ulegają odkształceniu (deformacji). Odkształceniem nazywamy zmianę wzajemnego położenia elementów ciała. 2.1.1 Rodzaje odkształceń Wyróżniamy trzy rodzaje odkształceń: odkształcenia sprężyste, odkształcenia plastyczne, oraz przepływ. Odkształcenie nazywamy sprężystym, gdy jest ono samorzutnie odwracalne, tzn. gdy zanika natychmiast i całkowicie po ustaniu działania siły. Odkształcenie plastyczne jest nieodwracalne. Nie zanika ono po ustaniu działania siły. Energia zużyta na odkształcenie plastyczne ulega rozproszeniu i zmianie na energię cieplną. Przepływem nazywamy nieodwracalne odkształcenie, którego stopień, pod działaniem sił o skończonej wartości, wzrasta stale z upływem czasu. Energia zużyta na

Transcript of Właściwości reologiczne materiałów dr inż. Anna Krztoń...

Właściwości reologiczne materiałów dr inż. Anna Krztoń-Maziopa (lab 411 Gmach Chemii)

1. Cel ćwiczenia- poznanie metod badań reologicznych umożliwiających analizę zachowania się różnego rodzaju substancji (takich jak: stopy i roztworów polimerów, masy ceramiczne, środki spożywcze, farmaceutyczne lub kosmetyki) pod wpływem naprężeń ścinających - wyznaczenie krzywych płynięcia płynów Newtona i Binghama- odstępstwa od zachowań newtonowskich i binghamowskich- poznanie zjawiska tiksotropii wybranych płynów nienewtonowskich oraz wyznaczenie współczynników chrono- i mobilotiksotropii.

2. Podstawy teoretycznePrzepływ jest jedną z postaci odkształcenia ciał dlatego też zaproponowano następującą

definicję reologii jako nauki zajmującej się badaniami odkształceń materii. Reologia zajmuje się

mechaniką ciał rzeczywistych ulegającym odkształceniom pod wpływem działania sił

zewnętrznych. Celem reologii jest umiejętność przewidywania układu sił, który spowoduje

określone odkształcenie danego ciała lub odwrotnie- przewidywania odkształceń wynikających z

przyłożenia określonego układu sił (obciążenia).

Reologię dzielimy na mikro- i makroreologię. Mikroreologia, która znajduje się w obszarze

zainteresowań fizykochemików, zajmuje się związkami, jakie występują między rzeczywistą

strukturą materii (np. budową wewnętrzną polimerów) a jej właściwościami. Makroreologia

obejmuje zachowanie układu (np. zawiesiny) jako całości pod wpływem przyłożonego układu sił.

2.1. Odkształcenie

Pod działaniem sił zewnętrznych wszystkie ciała rzeczywiste ulegają odkształceniu (deformacji).

Odkształceniem nazywamy zmianę wzajemnego położenia elementów ciała.

2.1.1 Rodzaje odkształceń

Wyróżniamy trzy rodzaje odkształceń: odkształcenia sprężyste, odkształcenia plastyczne,

oraz przepływ.

Odkształcenie nazywamy sprężystym, gdy jest ono samorzutnie odwracalne, tzn. gdy zanika

natychmiast i całkowicie po ustaniu działania siły. Odkształcenie plastyczne jest nieodwracalne. Nie

zanika ono po ustaniu działania siły. Energia zużyta na odkształcenie plastyczne ulega rozproszeniu

i zmianie na energię cieplną. Przepływem nazywamy nieodwracalne odkształcenie, którego stopień,

pod działaniem sił o skończonej wartości, wzrasta stale z upływem czasu. Energia zużyta na

wymuszenie przepływu ulega rozproszeniu.

2.1.2 Odkształcenie objętościowe i postaciowe

Odkształcenie, które zmienia jedynie objętość ciała - bez zmiany jego kształtu - nazywamy

odkształceniem objętościowym. Przykładowo, w wyniku wzrostu ciśnienia ciało o kształcie kuli

zmniejszy swoją objętość, lecz zachowa kształt kulisty. Odkształcenie objętościowe powodujące

zmniejszenie objętości nazywamy kompresją, zaś powodujące jej zwiększenie - dylatacją.

Odkształcenie postaciowe powoduje zmianę kształtu ciała bez zmiany jego objętości (oczywiście

gęstość ciała nie ulega wówczas zmianie). Najprostszym przypadkiem odkształcenia postaciowego

jest tzw. ścinanie proste.

2.2. Ciała reologicznie doskonałe

Zgodnie z drugim aksjomatem reologii każde ciało rzeczywiste posiada wszelkie możliwe

własności reologiczne, ale ujawnia je w różnym stopniu zależnie od panujących warunków. Stąd też

o ciele rzeczywistym nie możemy nigdy powiedzieć w sposób ścisły, że ma dokładnie określone

własności reologiczne. Oczywiste jest, że ciała doskonałe w rzeczywistości nie istnieją. Ciała

doskonałe definiowane są za pomocą odpowiednich reologicznych równań stanu (zwanych także po

prostu równaniami reologicznymi lub równaniami konstytutywnymi). Reologiczne równanie stanu

podaje zależność między naprężeniem, odkształceniem i czasem, a parametry występujące w tym

równaniu definiują własności reologiczne danego ciała.

W określonych warunkach własności reologiczne ciał rzeczywistych można przybliżyć za pomocą

matematycznych modeli reologicznych takich jak:

a) ciało doskonale sprężyste Hooke'a (np. sprężyna)

b) ciało doskonale plastyczne St. Venanta (np. suwak)

c) płyn doskonale lepki Newtona (np. tłumik hydrauliczny lub tłok).

Rys.1. Podstawowe zależności opisujące zachowanie oraz modele mechaniczne ciał

reologicznie doskonałych.

Podstawowe parametry reologiczne:

- naprężenie styczne (ścinające) – miara sił wewnętrznych powstających w ciele pod wpływem

zewnętrznej siły odkształcającej, przyłożonej stycznie do powierzchni, symbol: τ, jednostka [Pa] w

układzie SI lub [dyna/cm2 ] w cgs,

- odkształcenie – chwilowa lub trwała zmiana geometrycznego kształtu lub wymiaru ciała

wywołana działaniem sił zewnętrznych; symbol γ , bezwymiarowe lub podawane w procentach,

- szybkość ścinania – zmian odkształcenia w jednostce czasu, symbol: jednostka [s-1]

- lepkość - miara oporu wewnętrznego płynu poddanego odkształceniom pod wpływem

przyłożonego naprężenia.

Po raz pierwszy naprężenie i szybkość odkształcania substancji pod jego wpływem zostały

powiązane przez Newtona równaniem:

w którym współczynnik proporcjonalności h nazywany jest lepkością dynamiczną płynu. Jeżeli

wartość h płynu w danej temperaturze jest stała w czasie i niezależna od szybkości ścinania, to taki

płyn nazywa się płynem newtonowskim. Jednostką lepkości dynamicznej jest paskalosekunda [Pas]

lub centipuaz [cP] (1mPas =1cP). Przykładowe wartości lepkości dynamicznej dla wybranych

substancji przedstawiono w Tabeli 1.

Prócz lepkości dynamicznej w praktyce przemysłowej używa się także lepkości kinematycznej

definiowanej jako stosunek lepkości dynamicznej płynu do jego gęstości: n =h/r , jednostką

lepkości kinematycznej jest Stokes [St] (w Układzie SI: m2/s].

Przy matematycznym opisie zachowania reologicznego płynów przyjmuje się szereg

założeń dotyczących między innymi charakteru przepływu płynu:

- przepływ wiskozymetryczny (ustalony),

- płyn nieściśliwy

- stała temperatura.

Wśród przepływów wiskozymetrycznych wyróżniamy:

1) przepływ wleczony między płaskimi płytami (przedstawiony na Rys.2)

Rys. 2. Proste ścinanie płynu między równoległymi płytami (przepływ wleczony).

2) przepływ ciśnieniowy w przewodzie cylindrycznym – przepływ Poiseuille’a (reometry kapilarnelub rurowe) (Rys.3a),

3) przepływ ciśnieniowy między płaskimi równoległymi płytami lub przepływ w kierunku osiowym przez pierścieniową szczelinę utworzoną przez dwa współosiowe cylindry,

4) przepływ wleczony w szczelinie między wirującymi względem siebie współosiowymi cylindrami – tzw. przepływ Couette’a (Rys.3.b),

5) przepływ wleczony między stożkiem a płytką, wirującymi względem siebie (Rys.3c),

6) przepływ wleczony między płaskimi równoległymi płytami, wirującymi względem siebie (Rys.3d).

a) b) c) d)

Rys. 3. Przykłady przepływów wiskozymetrycznych.

2.3. Płyny newtonowskie i nienewtonowskie

Mianem płynu określa się każdą substancję, która płynie. Zalicza się tutaj zarówno gazy i

ciecze, jak również te ciała stałe, które w pewnych, łatwych do zrealizowania warunkach wykazują

przepływ. Koncepcja płynu doskonale lepkiego Newtona (płynu newtonowskiego) opisuje

własności reologiczne wielu układów rzeczywistych, takich jak np. płyny, w których lepkie

rozpraszanie energii następuje w wyniku zdarzeń stosunkowo małych cząsteczek.

Charakterystykę reologiczną płynu newtonowskiego, obrazującą zależność naprężenia

stycznego (τ) od szybkości ścinania ˙(γ) , opisaną równaniem: τ = f ˙(γ) nazywamy krzywą

płynięcia. Krzywa płynięcia płynu newtonowskiego jest linią prostą przechodzącą przez początek

układu współrzędnych. Wszystkie płyny, dla których krzywa płynięcia w ustalonych warunkach

temperatury i ciśnienia nie jest linią prostą przechodzącą przez początek układu współrzędnych,

nazywamy płynami nienewtonowskimi.

Ogólna klasyfikacja płynów nienewtonowskich

Wśród płynów nienewtonowskich wyróżnia się trzy podstawowe grupy:

a) Płyny reostabilne, których własności reologiczne nie zależą od czasu ścinania. Przykładowe

krzywe płynięcia dla tego rodzaju płynów przedstawiono na Rys. 3.

Rys. 3. Ogólna klasyfikacja płynów reostabilnych.

Płyny lepkie nie mające granicy płynięcia nazywane są płynami Stokesa. Płyn Stokesa w

warunkach laminarnego ścinania, może zachowywać się w różny sposób:

a) może występować prosta proporcjonalność między naprężeniem stycznym a szybkością ścinania - mamy wtedy do czynienia z płynem newtonowskim;b) dwukrotny wzrost naprężenia stycznego może spowodować więcej niż dwukrotny wzrostszybkości ścinania - mamy wówczas do czynienia ze zjawiskiem rozrzedzenia ścinaniem (ang. shear thinning);c) dwukrotny wzrost naprężenia stycznego może spowodować mniej niż dwukrotny wzrostszybkości ścinania – tzw. efekt zagęszczania ścinaniem (ang. shear thickening).

Do ich opisu matematycznego płynów Stokesa wykorzystuje się najczęściej następujące modele

reologiczne:

Zasadniczo istnieje wiele innych modeli reologicznych, które w sposób bardziej

dokładny niż te wymienione wyżej, pozwalają opisać zachowanie się danego układu

reologicznego w warunkach niskich czy wysokich szybkości ścinania. Każdorazowo dobór

odpowiedniego modelu do opisu danego układu powinien być poprzedzony pozyskaniem

informacji o składzie badanej próbki (układ homogeniczny, heterogeniczny, jedno-,

wielofazowy, rodzaj i ilość faz, rodzaj i ilość dodatków takich jak: modyfikatory reologii

(zagęstniki, upłynniacze, plastyfikatory, elektrolity, etc.) oraz możliwych oddziaływaniach

między elementami składowymi układu. Z punktu widzenia reologii układami, które są

najtrudniejsze do zbadania i jednoznacznej identyfikacji są układy wielofazowe i napełniane.

Jednakże, jeżeli przyjrzymy się substancjom, z którymi mamy niemal na co dzień do

czynienia, to szybko zauważamy, ze większość z nich: stopy i roztwory polimerów, środki

spożywcze (np. przetwory mleczne, majonezy, sosy, lody, musztarda, ketchup, kleiki, galarety,

lody, stopiona czekolada, pulpy owocowe), kosmetyczne (np. kremy, mleczka, odżywki, żele),

leki (zawiesiny, roztwory i emulsje), farby (dyspersyjne i emulsyjne, drukarskie), lakiery,

kleje, piany, zaprawy, kity, szpachle, zawiesiny ceramiczne, stanowią materiały niezwykle

skomplikowane reologicznie. Jako użytkownicy niekoniecznie zdajemy sobie sprawę, że za

„jedwabistą konsystencją” kremu, jogurtu czy innego produktu, odpowiednim

przetwórstwem mieszanki polimerowej, zapobieganiem spływaniu farby, kleju do glazury czy

szpachli, stoi właśnie reologia. Technolog produkcji z kolei musi mieć tego pełną świadomość.

Znajomość reologii danego układu pozwala na dokładne planowanie procesu produkcji i

znaczną redukcję kosztów. W praktyce przemysłowej najczęściej mamy do czynienia z płynami

rozrzedzanymi ścinaniem (pseudoplastycznymi) stabilnymi bądź niestabilnymi reologicznie. Do

płynów stabilnych reologicznie zaliczamy te, których parametry, takie jak np. lepkość nie ulegają

zmianie w funkcji czasu przy stałej szybkości ścinania, a do niestabilnych takie, których

odpowiednie parametry w tych samych warunkach są zmienne w czasie.

Dla płynów nienewtonowskich rozrzedzanych ścinaniem lepkość maleje wraz ze wzrostem

szybkości ścinania, przy czym dla bardzo małych (bliskich zeru) i bardzo dużych szybkości

ścinania ( >105 s-1) płyny te zachowują się jak ciecze newtonowskie o stałej lepkości. Obszary

graniczne charakteryzowane są odpowiednio przez h0 – lepkość graniczna przy szybkości ścinania

zmierzającej do 0 i h∞ - dla wysokich szybkości ścinania. Uogólnione krzywe płynięcia i lepkości

dla tego rodzaju płynu przedstawiono na Rys. 4.

Rys. 4. Krzywe płynięcia i lepkosci dla płynu rozrzedzanego ścinaniem.

Przyczyny rozrzedzania ścinaniem: przyjmuje się, że w zawiesinach cząstek o pokroju liniowym

oraz w roztworach polimerów nierozgałęzionych, w stanie spoczynku na skutek ruchów Browna

cząsteczki przyjmują przypadkowe położenie, bez wyróżnionego kierunku orientacji. Pojawienie

się sił ścinających powoduje orientację cząsteczek w kierunku przepływu. Takie równoległe

ułożenie cząsteczek powoduje zmniejszenie oporów tarcia, co makroskopowo przejawia się jako

spadek lepkości. Należy pamiętać, że w układzie nadal działają siły zapobiegające orientacji

przestrzennej cząstek w kierunku przepływu. Dla określonej szybkości ścinania ustala się więc stan

równowagi dynamicznej między położeniem równoległym, a przypadkowym wynikającym z

ruchów termicznych cząsteczek. Zatem im większa szybkość ścinania, tym bardziej równowaga

przesunięta jest w kierunku ułożenia równoległego cząstek, czyli tym większy obserwowany spadek

lepkości. W oparciu o powyższe zachowanie można wytłumaczyć dlaczego przy niskich i bardzo

wysokich szybkościach ścinania płyny rozrzedzane ścinaniem wykazują cechy newtonowskie. Otóż

przy bardzo małych szybkościach ścinania przeważają chaotyczne ruchy cząstek, co nie powoduje

zniszczenia struktury płynu, czyli jego lepkość nie ulega zmianie. Z kolei przy bardzo wysokich

szybkościach ścinania następuje pełne uporządkowanie cząstek w kierunku przepływu, a dalszy

wzrost szybkości ścinania nie wpływa na strukturę płynu. Z kolei występowanie rozrzedzania

ścinaniem dla dyspersji cząstek pokroju kulistym może wynikać z tworzenia się w stężonych

układach aglomeratów (tzn. ugrupowań cząstek o objętości większej niż sumaryczna objętość

cząstek wchodzących w ich skład), co powoduje pozorny wzrost objętościowego stężenia fazy

zawieszonej prowadzący do zwiększenia lepkości. W warunkach przepływu, wskutek działających

naprężeń następuje częściowe rozrywanie aglomeratów na mniejsze struktury. Powoduje to

uwolnienie części fazy ciekłej zatrzymanej między ziarnami, pozorny spadek stężenia fazy

zawieszonej i obniżenie lepkości. Nadal jednak w układzie mają miejsce oddziaływania prowadzące

do formowania aglomeratów, prowadzi to do ustalenia się stanu równowagi między rozpadem

struktur i ich tworzeniem się na skutek wewnętrznych oddziaływań. Im większe naprężenia działają

na taki układ, tym bardziej stan równowagi jest przesunięty w kierunku rozpadu aglomeratów.

Zatem im wyższa szybkość ścinania tym mniejsza lepkość i odwrotnie. Na tej podstawie można

także wyjaśnić przyczyny zachowania newtonowskiego w obszarach granicznych szybkości

ścinania. Niewielkie szybkości nie powodują zniszczenia aglomeratów, zatem struktura płynu

zostaje zachowana i jego lepkość się nie zmienia. Z kolei przy wysokich szybkościach ścinania,

cząstki ulegają całkowitemu rozproszeniu, a dalszy wzrost szybkości ścinania nie wpływa ani na

strukturę płynu ani też na jego lepkość, która utrzymuje się wówczas na stałym poziomie.

Płyny nienewtonowskie zagęszczane ścinaniem spotykane są dość rzadko w praktyce

przemysłowej, ich lepkość w warunkach izotermicznych rośnie ze wzrostem szybkości ścinania.

Uważa się, że zjawisko zagęszczania ścinaniem (dylatacji) wynika z występowania tarcia między

cząstkami fazy zawieszonej wywołanego działaniem naprężeń ścinających. Efekt ten spotykany jest

częściej w przypadku stężonych zawiesin. W stanie spoczynku lub przy niewielkich szybkościach

ścinania siły tarcia są niewielkie ponieważ ciecz znajdująca między ziarnami pełni rolę „smaru”.

Zwiększenie szybkości ścinania powoduje szybsze przemieszczanie się cząstek i wzrost odległości

między nimi, co z kolei przekłada się na zwiększenie objętości całego układu wskutek wzrostu

obszarów międzyziarnowych. Faza ciekła nie jest w stanie wypełnić wówczas wszystkich

przestrzeni międzyziarnowych i przestaje pełnić rolę smaru. Konsekwencją tego jest wzrost tarcia

między ziarnami co obserwowane jest jako makroskopowy wzrost lepkości układu. Zachowanie

takie ilustruje Rys. 5

Rys. 5. Krzywa lepkości i mechanizm zagęszczania ścinaniem w zawiesinach.

b) Płyny lepkosprężyste, łączące własności reologiczne płynów lepkich i ciał stałych sprężystych.

Wykazują one częściowy powrót sprężysty po usunięciu naprężenia stycznego powodującego

odkształcenie. Płyny lepkosprężyste (lepkoplastyczne) opisywane są najczęściej za pomocą

następujących modeli reologicznych:

Szczególnymi przypadkami tego rodzaju płynów są: płyn Maxwella oraz płyn Binghama.

Płyn Maxwella można przedstawić poglądowo za pomocą szeregowo połączonych elementów

Newtona (tłumik) oraz Hooke'a (sprężyna) – Rys 6.a. Pod wpływem stałego naprężenia stycznego

działającego na taki płyn początkowo następuje jego sprężyste odkształcenie (rozciągnięcie

sprężyny) i dopiero po przekroczeniu wartości granicznej naprężenia następuje odkształcenie

lepkie (przesunięcie tłoka). Po odjęciu naprężenia następuje częściowy powrót sprężysty materiału.

(sprężyna wraca do stanu poprzedniego – odkształcenie odwracalne, natomiast przesunięcie tłoka

obrazuje odkształcenie nieodwracalne – lepkie).

Płyn Binghama (Rys.6b) można z kolei opisać zespołem trzech elementów, w którym układ

równolegle połączonych elementów St. Venanta i Newtona jest szeregowo połączony z elementem

Hooke'a.

W zależności od wartości przyłożonego naprężenia stycznego, ciało Binghama zachowuje się albo

jak ciało stałe, albo jak ciecz:

— przy naprężeniach małych, tj. t < to (naprężenie styczne graniczne jest równe sile tarcia

stycznego suwaka) odkształca się jedynie sprężyna,

— po przekroczeniu naprężenia granicznego, tj. gdy t > to ciało zaczyna się odkształcać (płynąć),

przy czym szybkość odkształcenia będzie wprost proporcjonalna do różnicy między przyłożoną siłą

a siłą tarcia elementu St. Venanta.

a) b)

Rys. 6. Modele mechaniczne płynów Maxwell (a) i Binghama (b).

Płyny lepkosprężyste (lepkoplastyczne) charakteryzują się występowaniem tzw. granicy płynięcia

τo: definiowanej jako wartość naprężenia, przy której kończy się zakres odkształceń sprężystych

materiału i rozpoczyna obszar odkształceń nieodwracalnych (lepkosprężystych i/lub lepkich).

Przyjmuje się że za pojawianie się granicy płynięcia w cieczach odpowiadają między innymi:

oddziaływania miedzycząsteczkowe (van der Waalsa) tzn. oddziaływania elektrostatyczne między

dipolami trwałymi (siły Keesoma), dipolami trwałymi i indukowanymi (siły Debye'a), siły

dyspersyjne Londona oraz wiązania wodorowe.

W układzie dyspersyjnym, w którym jedna lub więcej faz jest rozproszona w postaci cząstek

lub pęcherzyków w ośrodku ciągłym, tworzy się struktura odporna na naprężenia styczne nie

przekraczające wartości granicznej (granicy płynięcia). Im bardziej cząstki fazy zawieszonej

przylegają do siebie, tzn. im bardziej sztywna jest struktura, tym większa jest granica płynięcia. Po

przekroczeniu granicy płynięcia struktura ulega całkowitemu zniszczeniu i układ zachowuje się jak

ciecz, na którą działa naprężenie styczne równe różnicy między rzeczywistym naprężeniem i τo: Z

kolei przy obniżeniu naprężenia stycznego poniżej wartości τo zakładamy, że struktura ulega

natychmiastowej odbudowie (ponieważ układ jest reostabilny).

Przykłady substancji z granicą płynięcia:

- zawiesiny i emulsje o dużej zawartości fazy rozproszonej

- żele

- smary

- kity

- farby dyspersyjne

- farby drukarskie

- masy ceramiczne

- tynki

- niektóre kosmetyki i leki (kremy, szminki, fluidy, maści)

- środki spożywcze (ketchup, majonez, jogurt, masło, margaryna, stopiona czekolada)

- materiały elektro- i magnetoreologiczne

c) Płyny reologicznie niestabilne, których własności reologiczne zależą od czasu ścinania (np. płyny

tiksotropowe lub reopeksyjne).

W rozważaniach dotyczących zjawisk zagęszczanie i rozrzedzania ścinaniem zakłada się, że

następuje natychmiastowe przystosowanie się struktury płynu do warunków ścinania. W

rzeczywistości zmiany te przebiegają z określoną szybkością, często są one na tyle szybkie, że to co

obserwujemy to warunki równowagi. Płyny nienewtonowskie są na ogół płynami, których

właściwości reologiczne zmieniają się w czasie (płyny niestabilne reologicznie). Często wykazują

również tzw. efekty pamięci, które mogą wynikać np. z magazynowania przez niektóre płyny

energii mechanicznej, w wyniku czego następuje pewne opóźnienie w ich odpowiedzi

(charakterystyczne dla płynów lepkosprężystych) lub z całkowitego rozpraszania energii

mechanicznej – struktura płynu z opóźnieniem przystosowuje się do warunków ścinania –

charakterystyczne dla płynów lepkich. Zjawisko lepkiego (niesprężystego), zależnego od czasu

zachowania płynów nazywane jest tiksotropią lub antytiksotropią.

Terminem tiksotropia określa się takie procesy odwracalne, w których wskutek niszczenia

wewnętrznej struktury układu, następuje izotermiczne zmniejszanie się tarcia wewnętrznego płynu

wraz z upływem czasu ścinania (np. podczas jego mieszania), a w czasie spoczynku mamy do

czynienia z wyraźnym (dającym się zmierzyć w czasie) powrotem do pierwotnej konsystencji.

Antytiksotropia jest zjawiskiem odwrotnym.

Tiksotropią nie jest nieodwracalne zmniejszanie tarcia na skutek zjawisk powodujących

rzeczywistą destrukcję cząstek (np. rozrywanie łańcuchów polimerowych). Tiksotropię wykazuje

wiele środków spożywczych, farb drukarskich, klejów, zapraw, smarów, płuczek wiertniczych itp.

Płyn tiksotropowy charakteryzuje się następującymi cechami:

1) tworzenie struktury w stanie spoczynku

2) struktura ta może być zniszczona wskutek ścinania

3) proces zniszczenia i odbudowy struktury jest odwracalny i zachodzi izotermicznie

4) przy stałej szybkości i laminarnym przepływie płyn zachowuje się następująco:

- naprężenie styczne maleje z upływem czasu jeśli płyn znajdował się uprzednio wstanie spoczynku lub był ścinany przy niższej szybkości ścinania

- naprężenie styczne wzrasta upływem czasu gdy płyn był uprzednio ścinany wwarunkach wyższej szybkości ścinania

- gdy szybkość ścinania płynu jest utrzymywana na stałym poziomie przez dostateczniedługi okres czasu to niezależnie od historii płynu, naprężenie ścinające dąży dowartości równowagowej zależnej jedynie od szybkości ścinania

5) odpowiedź naprężenia stycznego na skokową zmianę szybkości ścinania jest natychmiastowa(nie ma opóźnienia charakterystycznego dla odpowiedzi sprężystej)

Typową charakterystyką rejestrowaną dla cieczy tiksotropowych jest tzw. pętla histerezy.

Porównanie pętli histerezy dla płynu tiksotropowego i reopeksyjnego przedstawiono na Rys. 7. :

Rys. 7. Przykładowe przebiegi pętli histerezy dla płynów tiksotropowego i antytiksotropowego.

Płyn tiksotropowy po dostatecznie długim okresie spoczynku poddawany jest ścinaniu z szybkością

rosnącą w sposób ciągły od zera do pewnej wartości maksymalnej, zaś po osiągnięciu tego punktu

szybkość ścinania maleje w sposób ciągły z powrotem do zera. Na podstawie pętli histerezy można

określić tiksotropię układu. Przy czym, z uwagi na to że właściwości tiksotropowe układu są silnie

zależne od historii próbki ma to często wymiar wyłącznie jakościowy. Zwykle rejestrowana pętla

histerezy często odbiega od idealnego przebiegu, przedstawionego na Rys.7, przykładowe krzywe

dla układów rzeczywistych przedstawiono na Rys.8.

Rys. 8. Przykładowe przebiegi pętli histerezy dla płynów rzeczywistych.

Ilościowo tiksotropię układu można szacować wyznaczając współczynniki chrono – (H) i

mobilotiksotropii (M).

Współczynnik chronotiksotropii, H, można traktować jako miarę szybkości rozpadu struktury

wewnętrznej płynu tiksotropowego w czasie przy stałej szybkości ścinania. Zaś współczynnik

mobilotiksotropii, M, jest miarą rozpadu tiksotropowego wywołanego rosnącą szybkością ścinania.

Sposób wyznaczania obu współczynników przedstawiono na Rys.9.

Rys. 9. Metoda wyznaczania współczynników chrono- i mobilotiksotropii.

Mechanizm

Zjawisko to występuje zazwyczaj w liofobowych stężonych zawiesinach koloidalnych,

których cząstki w stanie spoczynku agregują wskutek fizycznych oddziaływań i tworzą sieć

przestrzenną - mikrostrukturę. Powstała sieć przestrzenna musi być wystarczająco silna aby

przezwyciężyć ruchy Browna. Podczas ścinania słabe wiązania fizyczne rozrywają się i sieć

przestrzenna ulega rozpadowi na fragmenty. Po pewnym czasie, przy określonej szybkości ścinania

ustala się równowaga dynamiczna między tworzeniem a rozpadem agregatów. Przy wyższych

szybkościach, równowaga przesuwa się w kierunku większej dyspersji. Główną przyczyną spadku

lepkości układu ze wzrostem szybkości ścinania jest zmniejszanie się ilości energii rozpraszanej w

wyniku rozrywania wiązań miedzy cząstkami (liczba wiązań jest mniejsza przy wyższych

szybkościach ścinania) – czyli jest to typowe rozrzedzanie ścinaniem. Drugą charakterystyczną

cechą cieczy tiksotropowych jest zależność lepkości od czasu, którą można wyjaśnić jako wynik

opóźnionego przystosowania się struktury płynu do chwilowych warunków ścinania.

Dodatki tiksotropujące

Są to substancje dodawane do środków mieszanek nadając im właściwości tiksotropowe.

Jest to niezwykle istotne w technologii środków spożywczych, kosmetyków, farb, lakierów, mas

tynkarskich, kitów, klejów ponieważ dodatki tiksotropowe zapewniają stosunkowo małą lepkość

produktu w momencie nakładania i zapobiegają spływaniu kompozycji z pionowych powierzchni.

Stosowane są między innymi etery celulozy (metyloceluloza, hydroksyetyloceluloza) - do wodnych

roztworów i dyspersji polimerów, smektyty (bentonit, montmorylonit) – zastosowania j.w.,

krzemionka koloidalna – głównie do układów niewodnych, polimery (poliuretany, epoksydy) –

stosowane w kompozycjach polimerowych

Ogólne zasady pomiaru własności reologicznych płynów nienewtonowskich

Własności reologiczne płynów charakteryzują ich zachowanie w warunkach przepływu i

tylko w warunkach przepływu mogą być mierzone. Ogólne zasady reometrii płynów

nienewtonowskich wynikają z ich charakterystycznych cech. Wśród płynów nienewtonowskich

możemy wyróżnić takie, które nie wykazują efektów naprężeń normalnych (płyny

nienewtonowskie reostabilne oraz reologicznie niestabilne) oraz płyny wykazujące efekty naprężeń

normalnych. Do pomiarów reologicznych płynów nie wykazujących efektów naprężeń normalnych

stosujemy metody wiskozymetryczne, jednak większość wiskozymetrów stosowanych w

laboratoriach do pomiaru lepkości cieczy newtonowskich nie nadaje się do badania właściwości

reologicznych płynów nienewtonowskich. W większości z nich, z uwagi na cechy konstrukcyjne,

nie jest możliwe równoczesne określenie naprężenia stycznego i szybkości ścinania w dowolnym

punkcie przyrządu (wiskozymetry porównawcze). Do określenia rzeczywistej wartości naprężenia

stycznego i szybkości ścinania niezbędny jest tzw. przyrząd absolutny, w którym oznaczenia

dokonuje się na podstawie znajomości praw fizycznych opisujących przepływ oraz znajomości

geometrii pomiarowej. Stosowane w wiskozymetrii płynów newtonowskich wiskozymetry

absolutne pozwalają na wykonanie tzw. pomiaru jednopunktowego polegającego na pomiarze tylko

jednej wartości naprężenia stycznego i szybkości ścinania – czyli otrzymujemy tutaj jeden punkt na

krzywej płynięcia. Takie podejście jest wystarczające w przypadku cieczy newtonowskich gdyż ich

lepkość nie zależy od szybkości ścinania, ale nie nadaje się do określania własności płynów

nienewtonowskich. Taką samą lepkość pozorną mogą bowiem wykazywać płyny o odmiennych

własnościach reologicznych jeśli tylko ich krzywe płynięcia przecinają się w tym samym punkcie.

Do określenia właściwości reologicznych cieczy nienewtonowskiej niezbędne jest wyznaczenie

krzywej płynięcia, a pomiary muszą być wykonane w całym zakresie szybkości ścinania

występujących w danym procesie technologicznym. Pomiary wykonywane są za pomocą

przyrządów absolutnych wielopunktowych zwanych reometrami. W przypadku każdego reometru

należy dysponować ścisłym rozwiązaniem równań opisujących realizowany w urządzeniu

przepływ. W przypadku, gdy uzyskanie ścisłych rozwiązań równań ruchu płynu jest niemożliwe,

należy zadbać aby błąd popełniany przy korzystaniu z rozwiązań przybliżonych był mniejszy niż

dopuszczalny błąd pomiaru. Konieczność zachowania tego wymogu powoduje, że pomiary

reologiczne wykonuje się wyłącznie dla przepływów wiskozymetrycznych (opisanych wyżej). Dla

tego rodzaju przepływów można w sposób jednoznaczny określić zależność między naprężeniem

stycznym a szybkością ścinania.

Z kolei w przypadku płynów wykazujących efekty naprężeń normalnych (płyny

lepkosprężyste) różnica naprężeń normalnych może, w pewnych warunkach, przekraczać wartość

naprężenia stycznego. Dla tych płynów wyznaczenie krzywej płynięcia nie jest wystarczające do

uzyskania pełnej charakterystyki reologicznej. W takim wypadku niezbędny jest również pomiar

różnic naprężeń normalnych w funkcji szybkości ścinania. Do pomiarów tego rodzaju wykorzystuje

się metody reogoniometryczne, w których wykorzystujemy te same, co w metodach

wiskozymetrycznych proste przypadki przepływu. W szczególnych przypadkach do uzyskania

pełnej charakterystyki materiału o złożonych właściwościach wykorzystuje się także metody

oscylacyjne (przepływy niewiskozymetryczne) – badania wykonywane przy użyciu drgań o

niewielkiej amplitudzie.

Zasada działania reometru rotacyjnego

W reometrze rotacyjnym ścinanie badanej próbki następuje w szczelinie między dwoma elementami, z

których jeden wykonuje ruch obrotowy, a drugi jest nieruchomy. Elementy te, to najczęściej układ

dwóch współosiowych cylindrów lub też układ równoległych płytek lub stożka i płytki.

Wykorzystywane są także rozwiązania, w których wirujący element jest umieszczony

w„nieograniczonej” objętości płynu. Wyznaczanie krzywej płynięcia badanej cieczy polega na pomiarze

momentu skręcającego od wirującego elementu pomiarowego przy znanej częstości jego obrotów. Po-

zwala to na drodze odpowiednich obliczeń wyznaczyć szybkość ścinania i odpowiadające jej naprężenie

styczne występujące w ścinanej próbce. Zmieniając częstość obrotową elementu pomiarowego można

przy równoczesnej rejestracji odpowiadających jej wartości momentu skręcającego wyznaczyć krzywą

płynięcia badanego płynu.

Obliczenia naprężenia stycznego i szybkości ścinania dla:

a) geometrii współosiowych cylindrów:

b) płytka – płytka:

c) stożek -płytka:

Wykonanie ćwiczenia

Ćwiczenie obejmuje badanie płynięcia wybranych cieczy newtonowskich i nienewtonowskich(żele, zawiesiny, emulsje, roztwory i stopy polimerów) z wykorzystaniem reometru rotacyjnegooraz wyznaczanie podstawowych parametrów reologicznych na podstawie krzywych płynięcia ilepkości. Analizy danych wykonywane są z wykorzystaniem odpowiedniego modelu reologicznego.

Sposób obsługi reometru rotacyjnego, dobór końcówek do pomiarów – wprowadzenie w trakciećwiczenia.

1. Przygotowanie próbek płynów newtonowskich i nienewtonowskich oraz sporządzeniekompozycji tiksotropowej – według wskazówek prowadzącego.

2. Zarejestrować charakterystyki płynięcia przygotowanych próbek płynów – przeanalizowaćotrzymane wyniki z wykorzystaniem dostępnego oprogramowania (wg. wskazówekprowadzącego)

3. Dla wybranej substancji wyznaczyć zależność zmian lepkości w funkcji temperatury –przeanalizować otrzymane wyniki. Korzystając z równania Arrheniusa-Guzmana wyznaczyćenergię aktywacji lepkiego płynięcia.

W tym równaniu A i E są wielkościami stałymi, charakterystycznymi dla danej cieczy. WielkośćE nazywana jest energią aktywacji lepkiego płynięcia. Równanie to dobrze opisujezachowanie się cieczy niepolarnych; dla cieczy polarnych stwierdza się stosunkowo dużeodstępstwa.

4. Badanie płynu tiksotropowego:

Umieścić próbkę przygotowanego płynu w cylindrze pomiarowym. Przed wykonaniempomiaru należy termostatować próbkę przez 5 minut w układzie pomiarowym wtemperaturze 25°C. Zbadać przebieg zmian naprężenia ścinającego w czasie 10 minut przy

ustalonej szybkości obrotowej. Początkowo odczytywać wartości co 1s przez 2 min.następnie co 10s. Podobny pomiar wykonać po 15 min. przerwy dla innej szybkościścinania.

Zarejestrować pętle histerezy cieczy tiksotropowej i wyznaczyć współczynniki chrono- i mobilotiksotropii.

Pętlę histerezy wykonuje się rejestrując przebieg zmian naprężenia ścinającego dlawzrastających do arbitralnie wybranej maksymalnej wartości szybkości ścinania (ẙ1) anastępnie dla malejących szybkości ścinania. Czas ścinania (t1) przy maksymalnej szybkościpowinien wynosić 300s. Po upływie tego czasu należy rozpocząć rejestrację krzywejopadającej. Drugą pętlę histerezy można zarejestrować po upływie 30 minut, czas ścinaniaprzy maksymalnej szybkości (t2) powinien tutaj wynosić 600s. W celu wyznaczeniawspółczynnika mobilotiksotropii należy zdjąć 2 pętle histerezy, każdą przy innejmaksymalnej szybkości ścinania ẙ1 i ẙ2, czas ścinania w obu przypadkach powinien byćjednakowy i równy np. t1.

5 . Opracowanie wyników.

- wyniki zebrać w tabeli, która powinna zawierać obliczone wartości naprężenia ścinającegoi szybkości ścinania,

- wykonać wykresy zależności lepkości i naprężenia stycznego od szybkości ścinania,wyznaczyć parametry reologiczne z wykorzystaniem odpowiednio dobranych modelireologicznych,

wyznaczyć energię aktywacji przepływu lepkiego,

- wyznaczyć współczynniki chrono- i mobilotiksotropii – wg Rys. 9.

Przedyskutować otrzymane wyniki, powiązać parametry reologiczne badanych układów zwystępującymi w nich oddziaływaniami.

Literatura uzupełniająca:

J. Ferguson, Z. Kembłowski „Reologia stosowana płynów”, MARCUS Sc, Łódź 1995,

K. Wilczyński „Reologia w przetwórstwie tworzyw sztucznych” WNT Warszawa 2001,

W. Wilkinson „Ciecze nienewtonowskie” WNT Warszawa 1963,

A. Malkin „Rheology Fundamentals” ChemTec Publishing, Toronto 1994,

A.V. Shenoy “Rheology of filled polymer systems” Kluwer Academic Publishers 1999