Topic - url€¦ · Woojin Lee, Jack Chui, Gawon kim, Dharmesh Bhakta (Intel) Dan Oh (Samsung...

21
Image Topic: o Nam elementum commodo mattis. Pellentesque malesuada blandit euismod. Topic: o Nam elementum commodo mattis. Pellentesque malesuada blandit euismod. o Nam elementum commodo mattis. Pellentesque malesuada blandit euismod. Topic: o Nam elementum commodo mattis. Pellentesque malesuada blandit euismod. TITLE In-depth Analysis of DDR3/DDR4 Channel with Active Termination Changwook Yoon, (Intel) Woojin Lee, Jack Chui, Gawon kim, Dharmesh Bhakta (Intel) Dan Oh (Samsung Electronics)

Transcript of Topic - url€¦ · Woojin Lee, Jack Chui, Gawon kim, Dharmesh Bhakta (Intel) Dan Oh (Samsung...

Page 1: Topic - url€¦ · Woojin Lee, Jack Chui, Gawon kim, Dharmesh Bhakta (Intel) Dan Oh (Samsung Electronics) Agenda • Introduction –Basic of On-die termination –Comparison of

Image

Topic:

o Nam elementum commodo mattis. Pellentesque

malesuada blandit euismod.

Topic:

o Nam elementum commodo mattis. Pellentesque

malesuada blandit euismod.

o Nam elementum commodo mattis. Pellentesque

malesuada blandit euismod.

Topic:

o Nam elementum commodo mattis. Pellentesquemalesuada blandit euismod.

TITLE

In-depth Analysis of DDR3/DDR4 Channel with Active Termination

Changwook Yoon, (Intel)

Woojin Lee, Jack Chui, Gawon kim, Dharmesh Bhakta (Intel)

Dan Oh (Samsung Electronics)

Page 2: Topic - url€¦ · Woojin Lee, Jack Chui, Gawon kim, Dharmesh Bhakta (Intel) Dan Oh (Samsung Electronics) Agenda • Introduction –Basic of On-die termination –Comparison of

Agenda

• Introduction– Basic of On-die termination– Comparison of on-die termination: Passive/Active

• Non-Linearity in Active Termination– I-V curve in active termination– Impacts

• Impact of Non-Linearity in Active Termination– SSN variation – Timing variation

• Summary

Page 3: Topic - url€¦ · Woojin Lee, Jack Chui, Gawon kim, Dharmesh Bhakta (Intel) Dan Oh (Samsung Electronics) Agenda • Introduction –Basic of On-die termination –Comparison of

Basic of Active Termination

Active termination is hard to meet desirable impedance

Unexpected impedance determines signal quality in

o DC level

o Reflection noise

o Crosstalk

o SSN

Channel

ZT1

ZT2

IT

SSN

TX

Channel

Page 4: Topic - url€¦ · Woojin Lee, Jack Chui, Gawon kim, Dharmesh Bhakta (Intel) Dan Oh (Samsung Electronics) Agenda • Introduction –Basic of On-die termination –Comparison of

Comparison of Active Termination

Passive ODT Active ODT Passive Active

Layer Poly PMOS

Area Large Small

PVT variation Less-sensitive sensitive

I-V Linearity Good Bad

Page 5: Topic - url€¦ · Woojin Lee, Jack Chui, Gawon kim, Dharmesh Bhakta (Intel) Dan Oh (Samsung Electronics) Agenda • Introduction –Basic of On-die termination –Comparison of

I-V Curve in Active & Passive Termination

• Passive termination: current is inversely linear to output voltage

• Active termination: current is NOT linear to output voltage

• Calibration point is an operating voltage at desirable impedance

OP=CP ·VCC

Vout

VCC

Vout

VCC

Iout Iout

Low CP=0~0.49 High CP=0.51~1

Middle CP=0.5

Page 6: Topic - url€¦ · Woojin Lee, Jack Chui, Gawon kim, Dharmesh Bhakta (Intel) Dan Oh (Samsung Electronics) Agenda • Introduction –Basic of On-die termination –Comparison of

I-V Curve & Impedance

• As RT is getting less, IOUT becomes larger

• IOUT at Lower VOUT is more stable than Higher VOUT More NON-Linear

• RT is more constant at higher VOUT Need to measure linearity

40Ω60Ω90Ω

CP=0.35

OP=420mV

Page 7: Topic - url€¦ · Woojin Lee, Jack Chui, Gawon kim, Dharmesh Bhakta (Intel) Dan Oh (Samsung Electronics) Agenda • Introduction –Basic of On-die termination –Comparison of

Non-linearity Coefficient

• At calibration point, voltage range needs to be defined first.

• Linearity at CP is RT variation within defined voltage variation

• High LCP means High NON-linearity

𝐿𝐶 = |Δ𝑅

Δ𝑉𝑋%|

CP

+/- 5%

40Ω

60Ω

90Ω

-5% OP +5%LC

(Ω/V)

40Ω 43.3 40.9 38.3 41.7

60Ω 64.2 60.6 56.8 61.7

90Ω 95.5 90 84.4 92.5

Page 8: Topic - url€¦ · Woojin Lee, Jack Chui, Gawon kim, Dharmesh Bhakta (Intel) Dan Oh (Samsung Electronics) Agenda • Introduction –Basic of On-die termination –Comparison of

DC Level

• As RT goes higher, low-voltage and current becomes lower (Larger eye-height)

• As RS goes higher, low-voltage goes higher (smaller eye-height) and current goes lower (less power)

Channel

RS

Iout RT,V

1.2

Page 9: Topic - url€¦ · Woojin Lee, Jack Chui, Gawon kim, Dharmesh Bhakta (Intel) Dan Oh (Samsung Electronics) Agenda • Introduction –Basic of On-die termination –Comparison of

Crosstalk from Active Termination

• Measured crosstalk at victim depending on RT,A or RT,V

• Crosstalk is more sensitive to RT,V than RT,A

• Lower RT (A) has less noise but larger noise variation than higher RT (B)

A

B

RT,AVictim

RT,V

Aggressor x 6

RS,V=34

1.21.2

1.2

Driver

Page 10: Topic - url€¦ · Woojin Lee, Jack Chui, Gawon kim, Dharmesh Bhakta (Intel) Dan Oh (Samsung Electronics) Agenda • Introduction –Basic of On-die termination –Comparison of

SSN from Active Termination

• Measured SSN at victim depending on RT,A or RT,V under Coupling and No Coupling

• Without coupling, SSN becomes less as RT,A or RT,V goes higher

• With coupling, noise follows crosstalk trend at RT,V but SSN trend at RT,A

RT,A

Victim

RT,V

SSN x 38

RI,V=34

1.2

PDN

CouplingDriver

Page 11: Topic - url€¦ · Woojin Lee, Jack Chui, Gawon kim, Dharmesh Bhakta (Intel) Dan Oh (Samsung Electronics) Agenda • Introduction –Basic of On-die termination –Comparison of

Active Impedance Setting

• 0.35VCC needs higher current to make 40ohm than 0.75VCC

• Linearity (+/-5%) at 0.35VCC is smaller than 0.75VCC

CP

(0~1)Linearity

(Ω/V)

Low CP (0.35) 40.8

High CP(0.75) 57.5

+/- 5%+/- 5%RP=40 Iout

Vout

VCC19.1mA

7.5mA

𝑅𝑎 = |𝑉𝐶𝐶 − 𝑉𝑜𝑢𝑡

𝐼𝑜𝑢𝑡|

Page 12: Topic - url€¦ · Woojin Lee, Jack Chui, Gawon kim, Dharmesh Bhakta (Intel) Dan Oh (Samsung Electronics) Agenda • Introduction –Basic of On-die termination –Comparison of

ISI Waveform

CP

(0~1)Linearity

(Ω/V)VLOW

(mV)RTERM

(Ω)Jitter(UI)

Ideal 40 - - - 0.058

Low CP (0.35) 40.8 700 24.5 0.078

High CP(0.75) 57.5 500 47 0.064

At POD, low-voltage at 0.75xVCC is close to ideal 40

Though linearity is bad, calibration point is more important to get better timing error

Vout

RA=40

Channel

Ideal VCC

Ideal 40Ω

Time Time Time

Volt

age

(V)

Volt

age

(V)

Volt

age

(V)

Active R at CP=0.35 Active R at CP=0.75

Page 13: Topic - url€¦ · Woojin Lee, Jack Chui, Gawon kim, Dharmesh Bhakta (Intel) Dan Oh (Samsung Electronics) Agenda • Introduction –Basic of On-die termination –Comparison of

ISI+Crosstalk Waveform

• Crosstalk is bigger at 0.75xVCC but jitter is less

CP

(0~1)Linearity

(Ω/V)IO Noise

(mV)Jitter(UI)

Low CP (0.35) 40.8 105 0.183

High CP(0.75) 57.5 184 0.168

Vout

Ideal VCC

Victim

Aggressor

1.1

1.2

1.3

0 20 40 60 80 100

Vo

ltag

e (V

)

Time (ns)

0.75V

0.35V

Time

Volt

age

(V)

Volt

age

(V)

Active R at CP=0.35 Active R at CP=0.75

Page 14: Topic - url€¦ · Woojin Lee, Jack Chui, Gawon kim, Dharmesh Bhakta (Intel) Dan Oh (Samsung Electronics) Agenda • Introduction –Basic of On-die termination –Comparison of

ISI+SSN Waveform

• PWR & IO noise at 0.35xVCC is bigger due to larger current

• Noise ratio at 0.75xVCC is bigger due to larger RT

CP

(0~1)Linearity

(Ω/V)PWR Noise

(mV)IO Noise

(mV)Jitter(UI)

Low CP (0.35) 40.8 219 166 0.216

High CP(0.75) 57.5 178 158 0.166

Vout

VCC with PDN

Victim

Burst

PDN

Time

Volt

age

(V)

Time

Volt

age

(V)

Active R at CP=0.35 Active R at CP=0.75

Page 15: Topic - url€¦ · Woojin Lee, Jack Chui, Gawon kim, Dharmesh Bhakta (Intel) Dan Oh (Samsung Electronics) Agenda • Introduction –Basic of On-die termination –Comparison of

ISI+Crosstalk+SSN Waveform

• PWR noise at 0.35xVCC is worsen, but IO noise is better

• Timing error at 0.75xVCC is better despite larger IO noise

CP

(0~1)Linearity

(Ω/V)PWR Noise

(mV)IO Noise

(mV)Jitter(UI)

Low CP (0.35) 40.8 240 251 0.31

High CP(0.75) 57.5 193 344 0.254

VoutVictim

Aggressor

PDN

Burst

VCC with PDN

Time

Volt

age

(V)

Time

Volt

age

(V)

Active R at CP=0.35 Active R at CP=0.75

Page 16: Topic - url€¦ · Woojin Lee, Jack Chui, Gawon kim, Dharmesh Bhakta (Intel) Dan Oh (Samsung Electronics) Agenda • Introduction –Basic of On-die termination –Comparison of

Channel Summary

• High calibration point is better jitter than low calibration point in POD topology

• Crosstalk is worsen at high calibration point

• SSN is better at high calibration point BUT noise reduction ratio is smaller

• Under larger IO noise, jitter can be smaller due to low voltage level

CP PWR Noise IO Noise Jitter

ISILow CP (0.35) - - 0.078

High CP(0.75) - - 0.064

XtalkLow CP (0.35) - 105 0.183

High CP(0.75) - 184 0.168

SSNLow CP (0.35) 219 166 0.216

High CP(0.75) 178 158 0.166

ALLLow CP (0.35) 240 251 0.31

High CP(0.75) 193 344 0.254

Page 17: Topic - url€¦ · Woojin Lee, Jack Chui, Gawon kim, Dharmesh Bhakta (Intel) Dan Oh (Samsung Electronics) Agenda • Introduction –Basic of On-die termination –Comparison of

Lower Linearity

CP

(0~1)High L Low L

Low CP (0.35) 20.8 13.3

High CP(0.75) 29.2 21.7

Iout

Vout

VCC

Page 18: Topic - url€¦ · Woojin Lee, Jack Chui, Gawon kim, Dharmesh Bhakta (Intel) Dan Oh (Samsung Electronics) Agenda • Introduction –Basic of On-die termination –Comparison of

ISI from Linear Termination

• Low linearity has more similar low-voltage (VLOW) to passive termination

• Under smaller eye-height (-45mV), 13% jitter is improved

CP

(0~1)Linearity

(Ω/V)VLOW

(mV)RTERM

(Ω)Jitter(UI)

Ideal 40 - - - 0.058

High LLow CP (0.35) 20.8 700 24.5 0.078

High CP(0.75) 29.2 500 47 0.072

Low LLow CP (0.35) 13.3 676 26.5 0.071

High CP(0.75) 21.7 545 41 0.058

Time

Volt

age

(V)

655mV

700mV

High LLow L

Page 19: Topic - url€¦ · Woojin Lee, Jack Chui, Gawon kim, Dharmesh Bhakta (Intel) Dan Oh (Samsung Electronics) Agenda • Introduction –Basic of On-die termination –Comparison of

Crosstalk from Linear Termination

• Low linearity has more similar low-voltage (VLOW) to passive termination

• Under smaller eye-height (-75mV), 12% jitter is improved

CP

(0~1)Linearity

(Ω/V)IO Noise (mV)

Jitter(UI)

High LLow CP (0.35) 20.8 105 0.183

High CP(0.75) 29.2 182 0.168

Low LLow CP (0.35) 13.3 150 0.167

High CP(0.75) 21.7 191 0.149

Time

Volt

age

(V)

High LLow L

Page 20: Topic - url€¦ · Woojin Lee, Jack Chui, Gawon kim, Dharmesh Bhakta (Intel) Dan Oh (Samsung Electronics) Agenda • Introduction –Basic of On-die termination –Comparison of

Summary

• Correct non-linear termination setting is necessary

– Appropriate calibration point (CP:0~1)

– At calibration point, non-linear coefficient is calculated

• Non-linear termination degrades signal quality with

– DC level shifting

– Change of crosstalk magnitude

– Leveling SSN impact on the channel

• DC shifting from non-linearity is major noise effect in DDR channel

Page 21: Topic - url€¦ · Woojin Lee, Jack Chui, Gawon kim, Dharmesh Bhakta (Intel) Dan Oh (Samsung Electronics) Agenda • Introduction –Basic of On-die termination –Comparison of

---

QUESTIONS?

Thank you!