Slides - Piasecki, Jarosław

download Slides - Piasecki, Jarosław

of 21

Transcript of Slides - Piasecki, Jarosław

  • 8/12/2019 Slides - Piasecki, Jarosaw

    1/21

    CASIMIR FORCES INDUCED BYBOSE-EINSTEIN CONDENSATION

    Jarosaw Piasecki

    [email protected]

    Institute of Theoretical Physics

    Faculty of Physics

    University of Warsaw

    KMMF, 08.11. 2012 p. 1/21

  • 8/12/2019 Slides - Piasecki, Jarosaw

    2/21

    MOTTO

    Tis much better to do a little with certainty

    & leave the rest for others that come after,

    than to explain all things by conjecture

    without making sure of any thing.

    Isaak Newton

    KMMF, 08.11. 2012 p. 2/21

  • 8/12/2019 Slides - Piasecki, Jarosaw

    3/21

    HENDRIK BRUGT GERHARD

    CASIMIR (1909 - 2000)

    H. B. G. Casimir

    "On the attraction between two perfectly conductingplates"Proc. K. Ned. Akad. Wet. 51, 793-795 (1948).

    cr4

    2

    240

    H. B. G. Casimir, D. Polder

    "The influence of retardation on the London-van derWaals forces"Phys. Rev. 73, 360-372 (1948).

    U(r) = 12

    r723c

    4KMMF, 08.11. 2012 p. 3/21

  • 8/12/2019 Slides - Piasecki, Jarosaw

    4/21

    TYPES OF THE CASIMIR EFFECT

    electromagnetic

    in quantum field theory

    in particle physics

    in cosmologyin critical phenomena

    dynamical Casimir effect

    KMMF, 08.11. 2012 p. 4/21

  • 8/12/2019 Slides - Piasecki, Jarosaw

    5/21

    STATING THE PROBLEM:

    Derive the Casimir effect in an imperfect (interacting) Bose

    gas filling the volume contained between two infiniteparallel plane walls.Hamiltonian of the imperfect Bose gas:

    H=H0+ aV

    N2

    2

    H0=kinetic energy (perfect gas Hamiltonian)a/V >0=repulsive mean-field interaction per pair ofbosonsV =volume occupied by the system.H is superstable!

    KMMF, 08.11. 2012 p. 5/21

  • 8/12/2019 Slides - Piasecki, Jarosaw

    6/21

    METHOD OF ANALYSIS

    Bose gas occupies volumeV =L2Dof a rectangular box

    with linear dimensionsL LD.Ddenotes the distance between twoL Lsquare walls.The excess grand canonical free energy per unit wall areais defined by

    s(T , D , ) = limL

    (T , L , D , )

    L2

    D b(T, )

    whereb(T, )denotes the grand canonical potential perunit volume evaluated in the thermodynamic limit.The Casimir force equals

    F(T , D , ) = s(T , D , )D

    KMMF, 08.11. 2012 p. 6/21

  • 8/12/2019 Slides - Piasecki, Jarosaw

    7/21

    BOUNDARY CONDITIONS

    One-particle kinetic energy(k) = (k2x+k2y+k

    2z)

    2/2m

    z-axis perpendicular toL Lwallsperiodic

    kz =2

    D

    nz, nz = 0,

    1,

    2,...

    Dirichlet

    kz =

    Dnz, nz = 1, 2,...

    Neumann

    kz =

    Dnz, nz = 0, 1, 2,...

    kx, ky -periodic b.c.

    KMMF, 08.11. 2012 p. 7/21

  • 8/12/2019 Slides - Piasecki, Jarosaw

    8/21

    IMPORTANT RELATION

    Grand canonical potential

    (T , L , D , ) = kBTln (T , L , D , )(T , L , D , )is related to the analytic continuation of theperfect gas partition function0 by

    (T , L , D , ) = exp

    L2D

    2a 2

    L2D

    2a

    (i) +ii

    dt exp

    L2D

    a

    t2

    2 t

    0(T , L , D , t)

    (

  • 8/12/2019 Slides - Piasecki, Jarosaw

    9/21

    BULK PROPERTIES OF THE

    IMPERFECT BOSE GAS

    The bulk grand canonical free-energy density

    b(T, ) = limL

    1L3

    kBT ln(T,L,L,) = p(T, )

    can be calculated with the use of the steepest descent

    method.If < c=an0,c

    p(T, ) =

    1

    2 an2

    (T, ) +p0(T, an(T, ))wheren(T, )is the unique solution of the equation

    n=n0(T, an)KMMF, 08.11. 2012 p. 9/21

  • 8/12/2019 Slides - Piasecki, Jarosaw

    10/21

    BULK PROPERTIES OF THE

    IMPERFECT BOSE GAS

    If > c=an0,c

    p(T, ) =2

    2a+p0(T, 0)

    In the two-phase region

    n=

    a

    and the density of condensate is equal to

    a n0,c

    KMMF, 08.11. 2012 p. 10/21

  • 8/12/2019 Slides - Piasecki, Jarosaw

    11/21

  • 8/12/2019 Slides - Piasecki, Jarosaw

    12/21

    CASIMIR FORCE: PERIODIC

    BOUNDARY CONDITIONS

    The steepest descent method yields the asymptotic form ofthe excess free energy density. The Casimir force in theone-phase region near the condensation point equals

    F(T , D , )

    kBT

    =

    1

    D3

    [2(x)

    x (x) ]

    with

    (x) =

    n=1

    1 + 2nx

    n3 exp(

    2nx)

    x= D

    per, per = =

    anc(anc

    )

    21/2

    (3/2)

    KMMF, 08.11. 2012 p. 12/21

  • 8/12/2019 Slides - Piasecki, Jarosaw

    13/21

    CASIMIR FORCE IN THE PRESENCE

    OF CONDENSATE

    In the two-phase region (in the presence of condensate)one observes a power-law decay

    F(T , D , )kBT =2(3) 1D3 , > anc

    exactly the same, and with the same amplitude as in the

    perfect Bose gas.

    KMMF, 08.11. 2012 p. 13/21

  • 8/12/2019 Slides - Piasecki, Jarosaw

    14/21

    IMPERFECT AND PERFECT GAS:

    COMPARING CRITICAL BEHAVIOR

    Divergence of the range of exponential forces at theapproach to condensation:

    imperfect (mean-field) Bose gas

    (anc )1

    perfect Bose gas

    0 ()1/2

    KMMF, 08.11. 2012 p. 14/21

    ONE PARTICLE DENSITY MATRIX

  • 8/12/2019 Slides - Piasecki, Jarosaw

    15/21

    ONE-PARTICLE DENSITY MATRIX

    FOR=

    /KBT >0

    THE CASE OF A PERFECT GAS:

    < x2|1|x1 >=F(|x2 x1|)

    3F(x) =

    j=1

    1

    j3/2

    exp j x2

    j2

    =

    xexp2

    x

    +

    s=1

    xexp A

    +(s)x

    2cos A(s)

    x

    with

    A(s) =

    2(2 + 42s2)1/4 1

    (2 + 42s2)1/2 .

    KMMF, 08.11. 2012 p. 15/21

  • 8/12/2019 Slides - Piasecki, Jarosaw

    16/21

    BULK CORRELATION LENGTH AND

    RANGE OF CASIMIR FORCES

    Correlation function of a perfect Bose gas

    6[n2(r; , T) n2] = j=1

    1

    j3/2exp

    j r

    2

    j2

    2

    = /kBT, =h/

    2mkBT

    Large distance (r ) asymptotics

    6[n2(r; , T) n2] =

    r

    2

    exp

    r

    0()

    .

    0() = h4

    2m1 = range of Casimir force !

    KMMF, 08.11. 2012 p. 16/21

  • 8/12/2019 Slides - Piasecki, Jarosaw

    17/21

  • 8/12/2019 Slides - Piasecki, Jarosaw

    18/21

    ELEMENTS OF CALCULATION

    Knowledge of the asymptotic behavior of Bose functions

    gr() =q=1

    exp(q)qr

    when 0

    g1/2() =

    , g1/2() = 1

    permits to evaluate derivatives of the density with respectto the chemical potential at the condensation point=imp,c=nca.

    KMMF, 08.11. 2012 p. 18/21

    BULK CORRELATIONS AND

  • 8/12/2019 Slides - Piasecki, Jarosaw

    19/21

    BULK CORRELATIONS AND

    CASIMIR FORCES

    =range of Casimir forces.=range of bulk correlations

    perfect gas

    0,periodic= 20,Dirichlet = 20,Neumann=0

    critical exponent= 1/2

    imperfect (mean field) gasperiodic = 2Dirichlet = 2Neumann= 2

    critical exponent= 1

    KMMF, 08.11. 2012 p. 19/21

  • 8/12/2019 Slides - Piasecki, Jarosaw

    20/21

    SOME REFERENCES

    M. Krech, Casimir Effect in Critical Systems, World Scientific,

    Singapour (1994).G. Brankov, N.S. Tonchev, and D. M. Danchev, Theory ofCritical Phenomena in Finite-Size Systems, World Scientific,Singapore (2000).

    L. Palova, P. Chandra, P. Coleman, The Casimir effect fromcondensed matter perspective, Am. J. Phys. 77(2009) 1055.

    E. Elizalde, A, Romeo, Essentials of the Casimir effect and itscomputation, Am. J. Phys. 59(1991) 711.

    Ph.A. Martin, P.R. Buenzli, The Casimir effect,Acta.Phys.Polon.B 37(2006) 2503-2559.

    KMMF, 08.11. 2012 p. 20/21

  • 8/12/2019 Slides - Piasecki, Jarosaw

    21/21

    SOME REFERENCES

    Ph. A. Martin and V. A. Zagrebnov, The Casimir effect

    for the Bose-gas in slabs, EPL 73, 15 (2006).

    M. Napirkowski and J. Piasecki , Phys. Rev. E 84,061105 (2011).

    M. Napirkowski and J. Piasecki , J. Stat. Phys. 147,1145 (2012).

    KMMF, 08.11. 2012 p. 21/21