Properties of super-heavy elements in Hartree-Fock-Bogolubov model with the Gogny force.

15
Properties of super-heavy elements in Hartree-Fock-Bogolubov model with the Gogny force. M. Warda Katedra Fizyki Teoretycznej, Uniwersytet Marii Curie-Skłodowskiej, Lublin, Poland, J. Egido, L. Robledo Departamento de Física Teórica C-XI, Universidad Autónoma de Madrid, Madrid, Spain.

description

Properties of super-heavy elements in Hartree-Fock-Bogolubov model with the Gogny force. M. Warda Katedra Fizyki Teoretycznej, Uniwersytet Marii Curie-Skłodowskiej, Lublin, Poland, J. Egido, L. Robledo Departamento de F í sica Te ó rica C-XI, Universidad Aut ó noma de Madrid, - PowerPoint PPT Presentation

Transcript of Properties of super-heavy elements in Hartree-Fock-Bogolubov model with the Gogny force.

Page 1: Properties of super-heavy elements  in Hartree-Fock-Bogolubov model with the Gogny force.

Properties of super-heavy elements in Hartree-Fock-Bogolubov model with the Gogny force.

M. WardaKatedra Fizyki Teoretycznej, Uniwersytet Marii Curie-Skłodowskiej,Lublin, Poland,

J. Egido, L. RobledoDepartamento de Física Teórica C-XI, Universidad Autónoma de Madrid,Madrid, Spain.

Page 2: Properties of super-heavy elements  in Hartree-Fock-Bogolubov model with the Gogny force.

XII Nuclear Physics Workshop, Kazimierz Dolny 2005

Motivation

Recent progress in synthesis of super-heavy elements (Dermstedt, Dubna, RIKEN)

Good results of Hartree-Fock-Bogolubov theory with the Gogny force in trans-fermium nuclei

D1S Gogny force Imposed axial symmetry

Ground state properties (deformations, α decay) Fission barriers

Page 3: Properties of super-heavy elements  in Hartree-Fock-Bogolubov model with the Gogny force.

XII Nuclear Physics Workshop, Kazimierz Dolny 2005

Deformation parameter β2

Page 4: Properties of super-heavy elements  in Hartree-Fock-Bogolubov model with the Gogny force.

XII Nuclear Physics Workshop, Kazimierz Dolny 2005

Deformation parameter β2

Page 5: Properties of super-heavy elements  in Hartree-Fock-Bogolubov model with the Gogny force.

XII Nuclear Physics Workshop, Kazimierz Dolny 2005

Deformation parameter β3

Page 6: Properties of super-heavy elements  in Hartree-Fock-Bogolubov model with the Gogny force.

XII Nuclear Physics Workshop, Kazimierz Dolny 2005

Deformation parameter β4

Page 7: Properties of super-heavy elements  in Hartree-Fock-Bogolubov model with the Gogny force.

XII Nuclear Physics Workshop, Kazimierz Dolny 2005

Deformation parameter β6

Page 8: Properties of super-heavy elements  in Hartree-Fock-Bogolubov model with the Gogny force.

XII Nuclear Physics Workshop, Kazimierz Dolny 2005

Deformation parameter β8

Page 9: Properties of super-heavy elements  in Hartree-Fock-Bogolubov model with the Gogny force.

XII Nuclear Physics Workshop, Kazimierz Dolny 2005

Deformation energy

Page 10: Properties of super-heavy elements  in Hartree-Fock-Bogolubov model with the Gogny force.

XII Nuclear Physics Workshop, Kazimierz Dolny 2005

Height of fission barriers

Page 11: Properties of super-heavy elements  in Hartree-Fock-Bogolubov model with the Gogny force.

XII Nuclear Physics Workshop, Kazimierz Dolny 2005

Height of fission barriers

Page 12: Properties of super-heavy elements  in Hartree-Fock-Bogolubov model with the Gogny force.

XII Nuclear Physics Workshop, Kazimierz Dolny 2005

Fission barriers of element 116

N=164 N=184 N=190N=174

Page 13: Properties of super-heavy elements  in Hartree-Fock-Bogolubov model with the Gogny force.

XII Nuclear Physics Workshop, Kazimierz Dolny 2005

Page 14: Properties of super-heavy elements  in Hartree-Fock-Bogolubov model with the Gogny force.

XII Nuclear Physics Workshop, Kazimierz Dolny 2005

α decay half-lives

Page 15: Properties of super-heavy elements  in Hartree-Fock-Bogolubov model with the Gogny force.

XII Nuclear Physics Workshop, Kazimierz Dolny 2005

Conclusions

Properties of the super-heavy nuclei are well described by the Gogny force calculations.

Results are in consistence with the other models and with available experimental data.

The magic numbers are deduced at N=162 (deformed ground state) and at N=182 (spherical ground state).

The isotones beyond N=184 have got octupole deformation. Following results of α decay and spontaneous fission barriers

the super-heavy nuclei around N=180 have the highest half-lives. Triaxial deformations should be included.