Portfolio dtp arturp

18
Artur Polakowski operator DTP portfolio

description

przegląd prac

Transcript of Portfolio dtp arturp

Page 1: Portfolio dtp arturp

Artur Polakowskioperator DTP

portfolio

Page 2: Portfolio dtp arturp

2

Przegląd prac

Zrealizowane projekty zostały podzielone według programów, za pomocą których zostały stworzone. Niniejszy przegląd prezentuje przykładowe wykorzystanie narzędzi, dostępnych w poszczególnych programach.

e-mail [email protected]

in

Page 3: Portfolio dtp arturp

Wybór prac

3

Page 4: Portfolio dtp arturp

4 spis treści

QuarkXpress

Prace wykonane w Quarkxpress – skład tekstu, przygotowanie zdjęć i grafik. Ułożenie elementów zgodnie z przygotowanym layoutem. Tworzenie styli akapitowych i znakowych. Formatowanie tekstu – spisy treści, indeksy, odsyłacze, tytuły, wyróżnienia itp. 

Page 5: Portfolio dtp arturp

5

��

�����������������

���������������������� ����������������������������������������������������

�������������������������������������������������������� �������­������������������������

�����������������������������������������������������������������­����������������������

������Δ������������������������� ����������������������������� ���������������������

�������������������������������������������

����������������������������������� �������

� �������������� ��������������������������

��������������������������� ��������� ��

����­���������������������� �������������

��������������������������������������������

���������������� ������������������������

������ �� ���� �� �����������������������

�������������� ������  �� ������������ ��

����������� � �������������������������

��������­���� �������� �­���� ������ �� ����

�������������������� ��� ������� � ����

� ����������� �������������������������������

���������� ������� ���������������������������

���������� ������������ ��������������

��� �������������� ������������� ������ ��������

������ ������������������������� �������

�������������������������������������������

�������� ��������������������������������������

������������������������ �­�������������������

������������������� � �������� ��������

������������������������ �����������­�����

����­� ­�������������������������������

������ ����������������� �� �������� ����

� ����������������������������������� �������

��������������������������������������������

��������������������������������������������

������������ ���������������� �� �� ����

�����������������

������� �� ������������������������� ��� ��� ���

��� ��� ���� ������ �� � �������������� �����

����������������������������������������������

������������������������ �����������������

������������������� ��������������� ������

����� ���� ���� �� �������� ��� ��

��������������������������� ���� �������������

�� ���� �������� �������� ������ ­���� ��������

���������������������������������������������

������ ������ ������ � �������

17

Schemat 3. Relacje między władzą wykonawczą a władzą ustawodawczą w republice prezydenckiej

WYBORCY wybierają

PARLAMENT

jest odpowiedzialny

powołuje

RZĄDPREZYDENTA

Głową państwa jest prezydent wybierany na 4 lata w wyborach powszechnych.Władza ustawodawcza należy do dwuizbowego Kongresu (Izba Reprezentantówi Senat). Parlament nie może być rozwiązany przed upływem kadencji.Władzę wykonawczą sprawuje prezydent, który jest jednocześnie szefem rządu.Jest on niezależny politycznie od parlamentu.

6-8

��������������������������������������������������������� �������� ��������� ����� ����������� � ����� � ��������� ����������� ������ ����� � �������������� ������������� ���������������� ������� ���������������� ��������������� ��� ��������� ��������� ��� ����� �� ��������������������������������������� � ����� ���� ������������������� �� ������ ���� ������������������������� ��������������� ���������� ����������������­������ ��������������� ������

��� ��������������������������������������� ������������� �� ���� ��� ����� ������� � ����� ���������� ������������� �������������� �� ������­���� ������ ���� ��� ����� ���������� ������������� ������������������ ����������������� ����������� � ���� ��������� �������� �������������� � �� �������������

Czy we współczesnej Europie monarchie mają sens istnienia?Uzasadnijcie odpowiedź po debacie „za i przeciw”.

Stany Zjednoczone Ameryki Północnej

Woda destylowana (lub przegotowana) nie przewodzi prądu elektrycznego– żaróweczka nie świeci.

Niektóre ciecze przewodzą jednak prąd elektryczny. Są one wodnymi roztworamielektrolitów, tzn. niektórych kwasów, zasad i soli, np. octu lub soli kuchennej. Stopionesole także przewodzą prąd elektryczny. W wodzie występują cej w przyrodzierozpuszczone są na ogół sole mineralne. Taka woda przewodzi prąd elektrycznyw przeciwieństwie do wody destylowanej lub przegotowanej.

56

Ciecze:=nie majà własnego kształtu, wlane do naczynia przybierajà jego kształt, dajà si´

przelewaç,=majà swojà obj´toÊç, którà trudno jest zmieniç, tzn. sà mało ÊciÊliwe,=wlane do naczynia tworzà samorzutnie swojà górnà powierzchni´, zwanà

powierzchnià swobodnà,= sà najcz´Êciej złymi przewodnikami ciepła,=niektóre przewodzà pràd elektryczny.

� No we po ję cia:

Powierzchnia swobodna cieczy –pozioma, samorzutnie wytwarzanaprzez ciecze ich górna powierzchnia.

Elektrolity – substancje, którychwodne roztwory przewodzą prądelektryczny.

W roztworze soli płynie prąd– żaróweczka świeci. Roztwórten przewo dzi prąd elektryczny.

Zmontuj obwód taki, jak na zdjęciu. Umieść dwa pręty z przewodnika, np. gwoździe,w zlewce z badaną cieczą:a) wodą destylowaną lub przegotowaną,b) wodnym roztworem soli kuchennej, który otrzymasz przez rozpuszczenie soliw szklance wody. Pręty połącz z bateryjką i żaróweczką.

DoÊwiadczenie 25

Przykładowe strony z umieszczonymi ilustracjami, przygotowanymi w programach graficznych. Ramki utworzono w QuarkXpress, kolory nadano z palety próbek. Formatowanie tekstu za pomocą styli akapitowych i znakowych. W publikacjach zastosowano strony wzorcowe.

Page 6: Portfolio dtp arturp

6 spis treści

Adobe InDesign

Prace wykonane w InDesgn CS5 – skład tekstu, przygotowanie zdjęć i grafik. Ułożenie elementów zgodnie z przygotowanym layoutem. Tworzenie styli akapitowych i znakowych. Formatowanie tekstu – spisy treści, indeksy, odsyłacze, tytuły, wyróżnienia itp.  

Page 7: Portfolio dtp arturp

7

5Krótki przewodnik po podręczniku

Dla dociekliwych – naucz się więcej niż to konieczne.

Kropkami oznaczamy stopień trudności zadań, a pucharem – zadania wymagające więcej pracy lub pomysłowości.

Pamiętaj, aby zadania rozwiązywać w zeszycie przedmiotowym.

Powtórzenie przed klasówką – łatwy sposób na przygotowanie do sprawdzianu.

Wykonując zadanie z szarym numerem, doświadczysz matematyki poprzez grę lub zabawę.

Zadania na temat...– zestaw zadań powiązanych tematycznie.

Zadania na deser – dodatkowe ciekawe zadania.

20 Karta pracy

imięinazwiskoucznia

data klasaPoznajemy naturalne źródła węglowodorówI PodkreÊl nazwy substancji b´dàcych êródłem w´glowodorów.

• skały osadowe • ropa naftowa • krzemionka • gaz ziemny • w´giel kamienny

2 Do przedstawionych na fotografiach substancji dopasuj nazwy produktów, które mo˝na z nich otrzymaç. Wpisz litery (a−e) pod zdj´ciem danej substancji. Pami´taj, ˝e z jednej substancji mo˝na otrzymaç kilka ró˝nych produktów.

*

3 Wiedzàc, ˝e ka˝da kreska we wzorze strukturalnym w´glowodoru oznacza wiàzanie chemiczne utworzone przez par´ elektronów walencyjnych, wpisz obok zdaƒ prawdziwych liter´ P, a obok fałszywych – liter´ F.

ropanaftowa

1.

węgielkamienny

2.

a) benzynab) gaz koksowniczyc) naftad) butane) oleje nap´dowe

Wymieƒ nazwy produktów, które mo˝na otrzymaç

z gazu ziemnego:

W czàsteczce w´glowodoru znajduje si´ 6 wspólnych par elektronowych i 20 elektronów walencyjnych.

W czàsteczce w´glowodoru znajduje si´ 7 wspólnych par elektronowych i 14 elektronów walencyjnych.

W czàsteczce w´glowodoru znajduje si´ 8 wspólnych par elektronowych i 10 elektronów walencyjnych.

4 Wpisz odpowiednie wzory sumaryczne pod modelami czàsteczek zwiàzków nieorganicznych i organicznych.a) b) c) d)

5 G´stoÊç ropy naftowej zale˝y od jej składu. Oblicz mas´ jednej baryłki ropy naftowej (1 baryłka = 159 l), wiedzàc, ˝e g´stoÊç zawartej w niej ropy naftowej wynosi d = 0,750 g

cm3.

model atomu azotu model atomu w´glamodel atomu chlorumodel atomu wodoru

Odpowiedê:

Grupaa

H

H

H

HC C

HH

kn_chemia_gim_3.indd 20 12/13/11 2:19 PM

76 Test

2

b5 Dobierz ilustracje do stref krajobrazowych. Wpisz przy nazwach stref krajobrazowych 4 p.

właściwe numery ilustracji. Następnie wpisz numery we właściwych miejscach na mapie krajobrazowej świata.

1 2 3 4

wilgotny las równikowy – ....... pustynia gorąca – ....... tajga – ....... sawanna – .......

6 Oznacz zdanie literą P, jeśli jest prawdziwe, lub literą F, jeśli jest fałszywe. 4 p.

a) W strefie wilgotnych lasów równikowych panuje wysoka temperatura i mała wilgotność powietrza.

b) W strefie stepów występują dni i noce polarne.

c) Wieloletnia zmarzlina przyczynia się do powstawania podmokłych obszarów w tundrze.

d) Największe lądolody występują w Arktyce.

7 Podaj przyczyny, dla których ludziom trudno się osiedlać: 4 p.

a) na pustyni lodowej – ...................................................................................................................

b) w lesie równikowym – ................................................................................................................

c) na pustyni gorącej – ....................................................................................................................

d) w tundrze – .................................................................................................................................

Przykładowe strony z umieszczonymi ilustracjami, przygotowanymi w programach graficznych. Elementy stałe w publikacji umieszczono na stronach worcowych. Ramki utworzono w programie InDesign, kolory nadano z palety próbek. Formatowanie tekstu za pomocą styli akapitowych i znakowych. 

Page 8: Portfolio dtp arturp

8 spis treści

Adobe Illustrator

Prace wykonane w Illustratorze CS5 – przygotowanie grafik zgodnie z założeniami layoutu, na podstawie szkiców lub opisu redaktora. Grafiki zostały eksportowane do plików w formacie ai, w celu umieszczenia ich w publikacji. 

Page 9: Portfolio dtp arturp

9

20

5.3. Wahadło matematycznePrzykład 1

Uczniowie doświadczalnie badali, czy okres wahań wahadła matematycznego zależy od tego, w jakim układzie odniesienia jest rozpatrywany. Do jednego z końców nierozcią-gliwej nici przywiązali metalową nakrętkę, a drugi koniec nici zamocowali do sufitu windy. Badali okres drgań wahadła w windzie poruszającej się ze stałą prędkością oraz w windzie jadącej do góry ruchem jednostajnie przyspieszonym z a g4

1= .a) Narysuj i opisz siły działające na nakrętkę i podaj okres drgań wahadła w każdym z przy-padków.b) Wyznacz stosunek okresów drgań wahadła w windzie w opisanych przypadkach.

Rozwiązanie

a)1. Gdy winda porusza się ruchem jednostajnym prostoliniowym, na nakrętkę pozostającą w położeniu równowagi (rys. a) działają dwie siły: siła grawitacji Fg

" i siła sprężystości nici Fs" , które się równoważą.

Po wychyleniu wahadła z położenia równowagi siłę ciężkości działającą na wahadło rozkła-damy na składowe (rys. b). Siła Fx = mg · sina, działa w kierunku wychylenia, ale ma zwrot do niego przeciwny. Dla małych kątów l

xsina = możemy więc zapisać: F mg lx–x $= . Siła ta

jest proporcjonalna do wychylenia i sprawia, że wahadło drga ruchem harmonicznym z okre-

sem T gl21 r= .

a) b) c) d)

Podręcznik rozdz. 5.4.

a

l

= const.v

Fg

Fx

Fy

Fs

l

Fs

Fg

= const.v la

Fs

Fb

Fg

a

l

a

F

Fx

Fs

Fy

2. Gdy winda porusza się w górę ruchem prostoliniowym jednostajnie przyspieszonym, na nakrętkę pozostającą w położeniu równowagi działają trzy siły: siła grawitacji Fg, siła sprę-żystości nici Fs i siła bezwładności Fb (rys. c).Po wychyleniu z położenia równowagi na nakrętkę działa siła Fx = m(g + a) · sina, w kierunku wychylenia, ale o zwrocie do niego przeciw nym (rys. c). Dla małych wychyleń siła przybierze po-stać: F m g a l

x–x $= +^ h . Ta właśnie siła, proporcjonalna do wychylenia, sprawia, że wahadło

drga ruchem harmo nicznym z okresem T g al22 r= + .

92

4. F

un

kc

je

Funkcja postaci f(x) = xa , a ≠ 0, x ≠ 0

Funkcja f x xa=_ i , gdzie a ≠ 0, określona jest dla liczb rzeczywistych różnych od zera.

Zbiorem wartości funkcji jest zbiór liczb rzeczywistych różnych od zera.Funkcja nie ma miejsc zerowych.Wykresem funkcji jest hiperbola.• Jeśli a > 0, to: – dla argumentów dodatnich wartości funkcji są dodatnie, a dla ujemnych – ujemne; – funkcja jest malejąca w przedziale (–3; 0) i w przedziale (0; 3).• Jeśli a < 0, to: – dla argumentów dodatnich wartości funkcji są ujemne, a dla ujemnych – dodatnie; – funkcja jest rosnąca w przedziale (–3; 0) i w przedziale (0; 3).

Sporządź wykres funkcji f x x8=_ i , dla x ∈ R \ {0}.

Rozwiązanie

x –8 –4 –2 –1 1 2 4 8f(x) –1 –2 –4 –8 8 4 2 1

Przykład 16s. 23, ćw. 13

20

5.3. Wahadło matematycznePrzykład 1

Uczniowie doświadczalnie badali, czy okres wahań wahadła matematycznego zależy od tego, w jakim układzie odniesienia jest rozpatrywany. Do jednego z końców nierozcią-gliwej nici przywiązali metalową nakrętkę, a drugi koniec nici zamocowali do sufitu windy. Badali okres drgań wahadła w windzie poruszającej się ze stałą prędkością oraz w windzie jadącej do góry ruchem jednostajnie przyspieszonym z a g4

1= .a) Narysuj i opisz siły działające na nakrętkę i podaj okres drgań wahadła w każdym z przy-padków.b) Wyznacz stosunek okresów drgań wahadła w windzie w opisanych przypadkach.

Rozwiązanie

a)1. Gdy winda porusza się ruchem jednostajnym prostoliniowym, na nakrętkę pozostającą w położeniu równowagi (rys. a) działają dwie siły: siła grawitacji Fg

" i siła sprężystości nici Fs" , które się równoważą.

Po wychyleniu wahadła z położenia równowagi siłę ciężkości działającą na wahadło rozkła-damy na składowe (rys. b). Siła Fx = mg · sina, działa w kierunku wychylenia, ale ma zwrot do niego przeciwny. Dla małych kątów l

xsina = możemy więc zapisać: F mg lx–x $= . Siła ta

jest proporcjonalna do wychylenia i sprawia, że wahadło drga ruchem harmonicznym z okre-

sem T gl21 r= .

a) b) c) d)

Podręcznik rozdz. 5.4.

a

l

= const.v

Fg

Fx

Fy

Fs

l

Fs

Fg

= const.v la

Fs

Fb

Fg

a

l

a

F

Fx

Fs

Fy

2. Gdy winda porusza się w górę ruchem prostoliniowym jednostajnie przyspieszonym, na nakrętkę pozostającą w położeniu równowagi działają trzy siły: siła grawitacji Fg, siła sprę-żystości nici Fs i siła bezwładności Fb (rys. c).Po wychyleniu z położenia równowagi na nakrętkę działa siła Fx = m(g + a) · sina, w kierunku wychylenia, ale o zwrocie do niego przeciw nym (rys. c). Dla małych wychyleń siła przybierze po-stać: F m g a l

x–x $= +^ h . Ta właśnie siła, proporcjonalna do wychylenia, sprawia, że wahadło

drga ruchem harmo nicznym z okresem T g al22 r= + .

92

4. F

un

kc

je

Funkcja postaci f(x) = xa , a ≠ 0, x ≠ 0

Funkcja f x xa=_ i , gdzie a ≠ 0, określona jest dla liczb rzeczywistych różnych od zera.

Zbiorem wartości funkcji jest zbiór liczb rzeczywistych różnych od zera.Funkcja nie ma miejsc zerowych.Wykresem funkcji jest hiperbola.• Jeśli a > 0, to: – dla argumentów dodatnich wartości funkcji są dodatnie, a dla ujemnych – ujemne; – funkcja jest malejąca w przedziale (–3; 0) i w przedziale (0; 3).• Jeśli a < 0, to: – dla argumentów dodatnich wartości funkcji są ujemne, a dla ujemnych – dodatnie; – funkcja jest rosnąca w przedziale (–3; 0) i w przedziale (0; 3).

Sporządź wykres funkcji f x x8=_ i , dla x ∈ R \ {0}.

Rozwiązanie

x –8 –4 –2 –1 1 2 4 8f(x) –1 –2 –4 –8 8 4 2 1

Przykład 16s. 23, ćw. 13

Szkic ilustracji umieszczono na warstwie, któa służyła jako wzór. Na wyższych warstwach tworzono rysunek, wykorzystując polecenie „bryły 3D” oraz tradycyjne narzędzia rysowania. Teksty wpisano na warstwie najwyższej. Do zapisu matematycznego użyto programu MathMagic, aby zachować spójnośc wyglądu publikacji.

Page 10: Portfolio dtp arturp

10 spis treści

Adobe Photoshop

Prace wykonane w Photoshopie CS5 – przygotowanie i obróbka grafiki rastrowej zgodnie z założeniami layoutu, obróbka zdjęć. Tworzenie infografik.  

Etap 1 – przygotowanie zdjęć potrzebnych do infografiki. 

Etap 2 – przygotowanie tła. 

126

Page 11: Portfolio dtp arturp

11

Etap 3 – nałożenie dodatkowych zdjęć i nadanie im obrysu. 

Etap 4 – nałożenie wykresów narysowanych w programie Illustrator. 

Gotowa infografika – umieszczona na stronie jako tło. Teksty (tytuł, tekst główny, podpisy zdjęć) dodano w programie DTP.

–2–1

01

23

4x

0

1

y

x

12

32

34

56

A

1 0

–1–2

–3

1 2 3 4 5 6

1

2

3

x

z

y

126126

Aby okreÊliç poło˝enie pszczoły napowierzchni kwiatu, nale˝y podaç dwiewspółrz´dne punktu A (w tym punkcie

znaj duje si´ Êrodek pszczoły).

Aby dokładnie okreÊliç poło˝enie ciaław danej chwili, wy godnie jest umieÊciçje w układzie współrz´dnych.W zale˝noÊci od tego, czy ciałoporusza si´ po prostej (np. słupek rt´ciw termome trze), po płaszczyênie (np.łódka na jeziorze) czy w prze strzenitrójwymiarowej (np. lecàcy ptak),obiera si´ układ współrz´dnych jedno-,dwu- lub trójwymiarowy.

–2–1

01

23

4x

0

1

y

x

12

32

34

56

A

1 0

–1–2

–3

1 2 3 4 5 6

1

2

3

x

z

y

Aby odczytaç poło˝enie biedronki na êdêble,wystarczy jednowymiarowy układ współ rz´d nych,czyli oÊ liczbowa.

Aby okreÊliç w danej chwili poło˝enie pszczoływ przestrzeni, potrzebny jest trójwymiarowy układwspółrz´dnych.

Układy współrz´dnych

126

Przykład wykorzystania programu Photoshop do tworzenia infografiki. Zwiększono wielkość tła przez dodanie obszaru powyżej zdjęcia. Na tło nałożono dodatkowe zdjęcia z obrysem i dodano wykresy narysowane w programie Illustrator. Gotową infografikę uzupełniono o teksty w InDesign.

Page 12: Portfolio dtp arturp

12 spis treści

MathMagic

Prace wykonane w MathMagic – przygotowanie wzorów matematycznych zgodnie z założeniami layoutu, umieszczenie ich w publikacji lub w grafice.  

Page 13: Portfolio dtp arturp

13

187

Rozwiązaniazadań

RO

zW

iĄz

aN

ia z

aD

1. k

inematyka

Zadanie 12.Wprowadzamy układ odniesienia o  osi skierowanej na północ i  początku w  położeniu początkowym pierwszego motocyklisty. Należy pamiętać, że v2

"  zwrócony jest w kierunku „ujemnym”.Położenie pierwszego motocyklisty zmienia się w czasie zgodnie z równaniem:

x t tv1 1=_ i .Położenie drugiego motocyklisty natomiast zgodnie z równaniem:

x t d t at2– v2 2

2= +_ i .

Motocykliści spotkają się, jeśli istnieje czas t, dla którego x t x t1 2=_ _i i, co prowadzi do równania:

–at t d2 0v v2

1 2+ + =_ i .Jest to równanie kwadratowe względem zmiennej t. Równanie takie ma rozwiązanie, jeżeli jego wyróżnik jest nieujemny, zatem musi być spełniony warunek:

ad2v v1 22H+_ i .

2. Ruch i siły

Zadanie 1.W sytuacji opisanej w zadaniu siła ciężkości chłopca równoważona jest przez sumę pionowych składowych sił naciągów lin:

sin sinQ F N NF1 2 1 2a b= + = + .

Poziome składowe sił naciągu równoważą się (chłopiec nie porusza się w kierunku prawo–lewo), F F1 2=l l, czyli:

cos cosN N1 2a b= .

Z powyższych równań tworzymy układ równań, z którego wyznaczamy wartości sił naciągu:

sin cos sin coscos

sincos

N Q mg1 a b b a

b

a b

b= + =+_ i ,

sin cos sin coscos

sincos

N Q mg2 a b b a

a

a b

a= + =+_ i .

b = 2a oraz b + a = 90°, zatem a = 30°, b = 60°.

Po podstawieniu danych liczbowych do wzorów na N1 i N2 mamy:,

N 160 10 0 5

300kg

Nsm

12$ $

= = ,,

,N 160 10 0 866

519 6kg

Nsm

22$ $

.= .

Siła naciągu liny w punkcie A jest równa sile N1, a siła naciągu w punkcie B – sile N2.

Zadanie 2.D. Na korek działa pionowo w górę siła wyporu, a pionowo w dół – siła ciężkości i  siła oporu ruchu. Działające siły równoważą się. Wartość siły oporu jest równa różnicy wartości siły wyporu i siły ciężkości:

– –, , ,F F F 0 01 10 0 002 10 0 08kg kg No wyp g sm

sm

2 2$ $= = = .

Zadanie 3.1.Wszystkie ogniwa poruszają się z  tym samym przyspieszeniem równym przyspieszeniu ziemskiemu: g 10 s

m2= . W czasie spadku pomiędzy sąsiednimi ogniwami nie działają żadne siły naciągu. Prędkość,

z jaką ostatnie ogniwo uderzy w stół, jest równa prędkości końcowej w spadku swobodnym:

, ,gl2 2 10 0 6 3 46mv sm

sm

2$ $ .= = .

a b

A B

N→

N→

F´→

Q→

F´→

F→

F→

1 2

2

11

2

2. ruch i siły

58

10.5. Siła elektromotoryczna i opór wewnętrzny

Przykład

Obwód elektryczny składa się z baterii o sile elektromoto-rycznej E = 12 V i oporze wewnętrznym r = 1 Ω oraz opo-rów zewnętrznych: R1 = 18 Ω, R2 = 30 Ω, R3 = 70 Ω, połą-czonych tak jak na schemacie. Oblicz:a) natężenia prądów płynących przez opory R1, R2 i R3,b) moce wydzielone na opornikach R1, R2 i R3,c) współczynnik sprawności baterii jako iloraz mocy uży-tecznej i całkowitej mocy obwodu.

Rozwiązanie a) Zaznaczamy na schemacie kierunek przepływu prą-du (czarne groty) we wszystkich gałęziach obwodu oraz spadki napięcia na opornikach zewnętrznych (niebieskie strzałki).

Natężenie prądu I1 w obwodzie głównym, który płynie przez opornik R1, obliczymy z prawa Ohma dla obwodu zamkniętego:

E EI r I R I r Rzz

1 1 1&+ += = , (1)

gdzie: r – opór wewnętrzny baterii, Rz – opór zastępczy oporów zewnętrznych R1, R2 i R3.

Obliczamy opór zastępczy Rz, zaczynając od oporu zastępczego oporników R2 i R3 połączo-nych równolegle:

R R R R R RR R1 1 1

,,

2 3 2 32 3

2 3

2 3& += + = .

Szukany opór zastępczy oporów zewnętrznych Rz jest sumą połączonych szeregowo oporni-ków R1 i R2,3:

R R R RR R

z 12 3

2 3+= + .

Podstawiamy powyższy wzór do (1): EI

r R R RR R1

12 3

2 3+

=+ +

.

Po podstawieniu danych liczbowych otrzymujemy: I1 = 0,3 A.

Wyznaczamy natężenia prądów I2 i I3 płynących przez oporniki R2 i R3. Wiemy, że dla obu węzłów w obwodzie możemy zapisać:

I I I1 2 3= + . (2)

Podręcznik rozdz. 10.9.

r

+–

E

R2

R1

R3

r

+–I2

I1

I1

I3

R2

R1

R3U2,3

U

E

187

Rozwiązaniazadań

RO

zW

iĄz

aN

ia z

aD

1. k

inematyka

Zadanie 12.Wprowadzamy układ odniesienia o  osi skierowanej na północ i  początku w  położeniu początkowym pierwszego motocyklisty. Należy pamiętać, że v2

"  zwrócony jest w kierunku „ujemnym”.Położenie pierwszego motocyklisty zmienia się w czasie zgodnie z równaniem:

x t tv1 1=_ i .Położenie drugiego motocyklisty natomiast zgodnie z równaniem:

x t d t at2– v2 2

2= +_ i .

Motocykliści spotkają się, jeśli istnieje czas t, dla którego x t x t1 2=_ _i i, co prowadzi do równania:

–at t d2 0v v2

1 2+ + =_ i .Jest to równanie kwadratowe względem zmiennej t. Równanie takie ma rozwiązanie, jeżeli jego wyróżnik jest nieujemny, zatem musi być spełniony warunek:

ad2v v1 22H+_ i .

2. Ruch i siły

Zadanie 1.W sytuacji opisanej w zadaniu siła ciężkości chłopca równoważona jest przez sumę pionowych składowych sił naciągów lin:

sin sinQ F N NF1 2 1 2a b= + = + .

Poziome składowe sił naciągu równoważą się (chłopiec nie porusza się w kierunku prawo–lewo), F F1 2=l l, czyli:

cos cosN N1 2a b= .

Z powyższych równań tworzymy układ równań, z którego wyznaczamy wartości sił naciągu:

sin cos sin coscos

sincos

N Q mg1 a b b a

b

a b

b= + =+_ i ,

sin cos sin coscos

sincos

N Q mg2 a b b a

a

a b

a= + =+_ i .

b = 2a oraz b + a = 90°, zatem a = 30°, b = 60°.

Po podstawieniu danych liczbowych do wzorów na N1 i N2 mamy:,

N 160 10 0 5

300kg

Nsm

12$ $

= = ,,

,N 160 10 0 866

519 6kg

Nsm

22$ $

.= .

Siła naciągu liny w punkcie A jest równa sile N1, a siła naciągu w punkcie B – sile N2.

Zadanie 2.D. Na korek działa pionowo w górę siła wyporu, a pionowo w dół – siła ciężkości i  siła oporu ruchu. Działające siły równoważą się. Wartość siły oporu jest równa różnicy wartości siły wyporu i siły ciężkości:

– –, , ,F F F 0 01 10 0 002 10 0 08kg kg No wyp g sm

sm

2 2$ $= = = .

Zadanie 3.1.Wszystkie ogniwa poruszają się z  tym samym przyspieszeniem równym przyspieszeniu ziemskiemu: g 10 s

m2= . W czasie spadku pomiędzy sąsiednimi ogniwami nie działają żadne siły naciągu. Prędkość,

z jaką ostatnie ogniwo uderzy w stół, jest równa prędkości końcowej w spadku swobodnym:

, ,gl2 2 10 0 6 3 46mv sm

sm

2$ $ .= = .

a b

A B

N→

N→

F´→

Q→

F´→

F→

F→

1 2

2

11

2

2. ruch i siły

58

10.5. Siła elektromotoryczna i opór wewnętrzny

Przykład

Obwód elektryczny składa się z baterii o sile elektromoto-rycznej E = 12 V i oporze wewnętrznym r = 1 Ω oraz opo-rów zewnętrznych: R1 = 18 Ω, R2 = 30 Ω, R3 = 70 Ω, połą-czonych tak jak na schemacie. Oblicz:a) natężenia prądów płynących przez opory R1, R2 i R3,b) moce wydzielone na opornikach R1, R2 i R3,c) współczynnik sprawności baterii jako iloraz mocy uży-tecznej i całkowitej mocy obwodu.

Rozwiązanie a) Zaznaczamy na schemacie kierunek przepływu prą-du (czarne groty) we wszystkich gałęziach obwodu oraz spadki napięcia na opornikach zewnętrznych (niebieskie strzałki).

Natężenie prądu I1 w obwodzie głównym, który płynie przez opornik R1, obliczymy z prawa Ohma dla obwodu zamkniętego:

E EI r I R I r Rzz

1 1 1&+ += = , (1)

gdzie: r – opór wewnętrzny baterii, Rz – opór zastępczy oporów zewnętrznych R1, R2 i R3.

Obliczamy opór zastępczy Rz, zaczynając od oporu zastępczego oporników R2 i R3 połączo-nych równolegle:

R R R R R RR R1 1 1

,,

2 3 2 32 3

2 3

2 3& += + = .

Szukany opór zastępczy oporów zewnętrznych Rz jest sumą połączonych szeregowo oporni-ków R1 i R2,3:

R R R RR R

z 12 3

2 3+= + .

Podstawiamy powyższy wzór do (1): EI

r R R RR R1

12 3

2 3+

=+ +

.

Po podstawieniu danych liczbowych otrzymujemy: I1 = 0,3 A.

Wyznaczamy natężenia prądów I2 i I3 płynących przez oporniki R2 i R3. Wiemy, że dla obu węzłów w obwodzie możemy zapisać:

I I I1 2 3= + . (2)

Podręcznik rozdz. 10.9.

r

+–

E

R2

R1

R3

r

+–I2

I1

I1

I3

R2

R1

R3U2,3

U

E

Wzory matematyczne umieszczono za pomocą wtyczki MathMagic bezpośrednio do publikacji otwartej w InDesign. Użyto fontu zastosowanego w publikacji.

Page 14: Portfolio dtp arturp

14 spis treści

Adobe Acrobat

Prace wykonane w Acrobacie CS5 – weryfikowanie zgodności publikacji ze standardami drukarskimi. Konwersja pracy przygotowanej do druku na publikację elektroniczną.  

Page 15: Portfolio dtp arturp

15

LECHOSŁAW KACZMAREK

Lech

osła

w K

aczm

arek

Moj

e św

iaty

Moje światy

Poznań 2011

Lechosław Kaczmarek urodził się 12.05.1955 w Bydgoszczy. Od 1981 r. tułał się po świecie (Paryż, Montreal, Nowy Jork, Toronto). Obecnie mieszka w Poznanu – szczęśliwy ojciec trzech córek.

Bardzo aktywny w życiu kulturalno-artystycznym Bydgoszczy pod koniec lat siedemdziesiątych. Pisał wiersze i scenariusze spektakli teatralnych, które realizował później z założoną przez siebie grupą teatralno-happeningową. Trenował wschodnie sztuki walki, pracował jako bramkarz w nocnych klubach. Po zawirowaniach politycznych roku 1981 wyjechał do Paryża, a potem dalej – do Montrealu, Nowego Jorku, Toronto, by na początku lat dziewięćdziesiątych wrócić do Polski i zamieszkać w Poznaniu.

© C

opyr

ight

by

Now

a Er

a S

p. z

o.o

. 201

1 3

57 Światy zaświaty

* * *

pogrzeb małego królaodbywa się codzienniejego poddanijuż tylko z przyzwyczajeniaidą w żałobnym kondukcienikt też dobrze nie pamiętapierwszej śmierci władcystarzy ludzie mówiąże w momencie śmiercimały król był wielkim królemi terazchcąc podtrzymać wielkośćumiera raz dziennie

Bydgoszcz 1978

57

Adobe Acrobat był wykorzystany do ostatecznej weryfikacji pracy – zgodności z standardami drukarskimi. Kompresowano w nim pliki przeznaczone do korekty redaktorskiej. Materiały publikowane elektronicznie były przygotowywane przy użyciu predefiniowanych ustawień Acrobata.

57 Światy zaświaty

* * *

pogrzeb małego królaodbywa się codzienniejego poddanijuż tylko z przyzwyczajeniaidą w żałobnym kondukcienikt też dobrze nie pamiętapierwszej śmierci władcystarzy ludzie mówiąże w momencie śmiercimały król był wielkim królemi terazchcąc podtrzymać wielkośćumiera raz dziennie

Bydgoszcz 1978

5757 Światy zaświaty

* * *

pogrzeb małego królaodbywa się codzienniejego poddanijuż tylko z przyzwyczajeniaidą w żałobnym kondukcienikt też dobrze nie pamiętapierwszej śmierci władcystarzy ludzie mówiąże w momencie śmiercimały król był wielkim królemi terazchcąc podtrzymać wielkośćumiera raz dziennie

Bydgoszcz 1978

5757 Światy zaświaty

* * *

pogrzeb małego królaodbywa się codzienniejego poddanijuż tylko z przyzwyczajeniaidą w żałobnym kondukcienikt też dobrze nie pamiętapierwszej śmierci władcystarzy ludzie mówiąże w momencie śmiercimały król był wielkim królemi terazchcąc podtrzymać wielkośćumiera raz dziennie

Bydgoszcz 1978

57

Page 16: Portfolio dtp arturp

16 spis treści

html (Adobe Dreamweaver)

Prace wykonane w programie Dreamweaver – przygotowanie zakładek internetowych zgodnie z założeniami layoutu, przy wykorzystaniu zaproponowanych styli CSS. Przygotowywanie zdjęć i ilustracji dostosowanych do wyświetlania na ekranie. 

Page 17: Portfolio dtp arturp

17

Strony internetowe tworzono przy użyciu styli CSS. Lokalnie używano znaczników html, np. pogrubienie czcionki, przeniesienie wiersza do nowej linii itp.

Page 18: Portfolio dtp arturp

18 spis treści

Wybór publikacji

Diagnoza edukacji matematycznej

Arkusze gimnazjalne – matematyka

Dlaczego – miniporadnik zadań na dowodzenie z matematyki

Matematyka Nowej Ery – podręczniki do gimnazjum, kl. 1, kl. 2, kl. 3

Matematyka dla ciebie – podręczniki do szkoły podstawowej, kl. 4 cz. 1, cz. 2, kl. 5 cz. 1, cz. 2, kl. 6 cz. 1, cz. 2

Matematyka Plus – zbór zadań

Maturalne karty pracy – matematyka, szkoła średnia

Matematyka z kluczem – podręczniki, kl. 4 cz. 1, cz. 2, kl. 5 cz. 1, cz. 2, kl. 6

Matematyka z kluczem – zbiory zadań, klasy 4 do 6

Policzmy to razem – zbiór zadań z matematyki, gimnazjum

Vademecum – zbiór zadań maturalnych z fizyki

Spotkania z fizyką – podręcznik, 1 kl. gimnazjum

Spotkania z fizyką – zeszyty ćwiczeń, kl. 1, 2, 3, gimnazjum

Zbiór zadań z fizyki – kl. 1, kl. 2, kl. 3, szkoła średnia

Fizyka i astronomia, zbiór zadań – szkoła średnia, części 1, 2, 3

Książka Nauczyciela, 1 2 3 Teraz My

Książka Nauczyciela, Na tropach przyrody 6

Książka Nauczyciela, Ponad Słowami

Książka Nauczyciela, Prosto do matury

Książka Nauczyciela, Spotkania z fizyką

Książka Nauczyciela, Swoimi słowami

Książka Nauczyciela, Zrozumieć słowo

Książka Nauczyciela, Chemia 1, gimnazjum

Książka Nauczyciela, Chemia 2, gimnazjum

Książka Nauczyciela, Chemia 3, gimnazjum

Karty pracy – Tajemnice przyrody

Biuletyn – Chemia (publikacja elektroniczna)

Biuletyn – Tajemnice przyrody (publikacja elektroniczna)

Broszura Korzyści – fizyka (publikacja elektroniczna)

Chcę wiedzieć więcej A – podręcznik nauczania wczesnoszkolnego

Liczę coraz lepiej C – podręcznik nauczania wczesnoszkolnego

Radzę sobie coraz lepiej – podręcznik nauczania wczesnoszkolnego

Lubię pisać i kolorować – podręcznik nauczania wczesnoszkolnego

Dziecięce strategie rozwiązywania zadań matematycznych

Swoimi słowami – podręcznik językowy, kl. 1, 2, 3, gimnazjum

Swoimi słowami 2 – język polski, podręcznik do liceum ogólnokształcącego

Potęga słowa 2 - podręcznik do języka polskiego, szkoła średnia

Historia 5 – podręcznik do szkoły podstawowej

Historia 6 – podręcznik do szkoły podstawowej

Historia 2 – podręcznik, szkoła średnia

Wiedza o społeczeństwie – podręczniki do szkoły średniej, zakres podstawowy oraz zakres rozszerzony

Wiedza o społeczeństwie 3 – podręcznik do gimnazjum

Technika 4 – podręcznik do szkoły podstawowej

Muzyka 1 – podręcznik do gimnazjum

Matura 2007 – zbiór zadań maturalnych

Matura 208 – zbiór zadań maturalnych

Moje światy – tomik poezji