OBRÓBKA PLASTYCZNA METALI - mech.pg.edu.pl‚cenie i... · •W ka żdej sieci krystalicznej...

59
OBRÓBKA PLASTYCZNA METALI

Transcript of OBRÓBKA PLASTYCZNA METALI - mech.pg.edu.pl‚cenie i... · •W ka żdej sieci krystalicznej...

OBRÓBKA PLASTYCZNA METALI

ODKSZTAŁCENIE I REKRYSTALIZACJA METALI

1. ODKSZTAŁCENIE METALI

2. ZDROWIENIE I REKRYSTALIZACJA

3. TECHNICZNE ASPEKTY ODKSZTAŁCENIA PLASTYCZNEGO

ODKSZTAŁCENIE METALI

Ciało stałe poddane wzrastającemu obciążeniu nazimno przechodzi przez następujące stadia:

• odkształcenie sprężyste (odwracalne)

• odkształcenie plastyczne (nieodwracalne)

• zerwanie (dekohezja)

Ważna cecha metali i stopów – plastyczność –

zdolność do trwałego odkształcenia się bez

naruszenia spójności

Odkształcenie sprężyste metali zachodzipoprzez przemieszczanie się atomów na odległości nie większe niż odległości sieciowe, dzięki czemu nie następujązasadnicze zmiany w ułożeniu atomów w sieci, zachodzi tylko zwiększenie energii ciała odkształcanego, np. ściskanego lub rozciąganego pręta lub sprężyny.

Odkształcenie sprężyste - odkształcenie materiału spowodowane przez działanie naprężeń wywołanych przez siłę zewnętrzną lub naprężeń własnych, które zanika po zdjęciu naprężeń.

Schemat położenia atomów w odkształconym sprężyście monokrysztale

τ

τ

• Plastyczność: zdolność metali i stopów do trwałego odkształcania się bez naruszenia spójności

• Obróbka plastyczna: walcowanie, kucie, prasowanie, ciągnienie

• Produkty i półprodukty hutnicze po obróbce plastycznej: pręty, kształtowniki, rury, druty, blachy, odkuwki

• Obróbka: na zimno lub na gorąco

• Stopień gniotu: Z = S0 – S1 / S0

Odkształcenie plastyczne

• jest to takie odkształcenie materiału, spowodowane przez działanie naprężeń, które pozostaje po zdjęciu naprężeń.

• Do mechanizmów odkształcenia plastycznego należą:

�Poślizg dyslokacyjny�Bliźniakowanie�Pełzanie dyslokacyjne�Pełzanie dyfuzyjne�Poślizg po granicach ziarn

•Odkształcenie plastyczne na zimno w monokryształach może się realizować przez poślizg dyslokacyjny lub bliźniakowanie.

• Podstawowym mechanizmem odkształcenia plastycznego na zimno jest poślizg, który polega na równoległym przesunięciu jednej części kryształu względem drugiej.

•Budowa krystaliczna obu części kryształu pozostaje nie zmieniona

Schemat odkształcenia plastycznego monokryształu przez poślizg

Dla idealnej sieci, bez defektów – przesunięcie jednej części kryształu względem drugiej, wymaga pokonania siły wiązań wszystkich atomówrozłożonych po obu stronach płaszczyzny poślizgu.

NAPRĘŻENIE ŚCINAJĄCE, KTÓRE MUSI POKONAĆ TEN OPÓR = WYTRZYMAŁOŚĆ TEORETYCZNA:

MPa43

max 1010 ÷≈τ

Doświadczalnie stwierdzono, że dla pojedynczych kryształów czystych metali τmax jest 100 do 1000 razy mniejsze!.

Powód: nie może zachodzić jednoczesne ślizganie się całej płaszczyzny atomowej po przyległej płaszczyźnie.

•Poślizg nie zachodzi jednocześnie na całym obszarze płaszczyzny poślizgowej, bo wymagało by to zbyt dużej siły potrzebnej do jednoczesnego przezwyciężenia wiązańatomów w całej płaszczyźnie.

•Zamiast tego poślizg realizuje się „krok po kroku” przez przesuwanie się w płaszczyźnie poślizgu dyslokacji.

• Przesuwanie się dyslokacji nazywamy poślizgiem dyslokacji.

Odkształcenie plastyczne na zimno realizuje poprzez poślizg dyslokacji.

Schemat ruchu dyslokacji krawędziowej w płaszczyźnie poślizgu

Wg.: L.A. Dobrzański, Podstawy nauki o materiałach i metaloznawstwo WNT, Gliwice -

Warszawa 2002

W każdym kroku następuje zerwanie sił atomowych i przemieszczenie atomów tylko lokalnie – w strefie dyslokacji i tylko o odległości rzędu odległości atomowych. W każdym kroku dyslokacja przesuwa się o jedną odległość atomową – o parametr sieci.

•W każdej sieci krystalicznej istnieją wyróżnione płaszczyzny, a na nich kierunki, wzdłuż których może zachodzić łatwiejszy poślizg niż w innych płaszczyznach. Sąto tzw. płaszczyzny łatwego poślizgu, najgęściej obsadzone atomami.

• W takich płaszczyznach poślizg dyslokacji jest najłatwiejszy, gdyż droga przeskoku dyslokacji jest najkrótsza.

•Po przesunięciu się o określony wektor poślizg dyslokacji jest blokowany przez zwiększającą się gęstość dyslokacji, adalsze poślizgi w krysztale mogą zachodzić w płaszczyznach o mniej gęstym ułożeniu atomów.

•Płaszczyzna poślizgu oraz kierunek poślizgu tworzą razem system poślizgu.

Systemy poślizgu; linie i pasma poślizgu

S y s te m y p o ś l iz g u

T y p s ie c i P rz y k ła d y

m e ta l i P ła sz c z y z n y i k ie ru n k i

p o ś l iz g u w k o m ó rc e s tru k tu ra ln e j

O z n a c z e n ie g ru p y

p ła s z c z y z n ró w n o w a żn y c h

O z n a c z e n ie g ru p y

k ie ru n k ó w ró w n o w a żn y c h

Ilo ś ć s y s te m ó w p o ś liz g u

A 1 – R S C - re g u la rn a śc ie n n ie

c e n tro w a n a

F e γ ,

A g A l

A u , C u N i P b

{ 1 1 1 } < 1 1 0 > 4 × 3 = 1 2

F e α M o W

{ 1 1 0 } < 1 1 0 > 6 × 2 = 1 2

F e α M o W

{ 2 1 1 } < 1 1 0 > 1 2 × 1 = 1 2

A 2 – R P C – re g u la rn a

p rz e s trz e n n ie c e n tro w a n a

F e α C r N b

{ 3 2 1 } < 1 1 0 > 2 4 × 1 = 2 4

A 3 – H Z – h e k s a g o n a ln a

z w a r ta

C d M g T i Z n

{ 0 0 0 1 } < 1 1 2 0 > 1 × 3 = 3

t

•Uruchomienie dyslokacji (poślizgu) następuje w tym

systemie poślizgu, w którym naprężenie ścinające τ osiągnie

minimalną wartość – krytyczne naprężenie styczne τ kr.

Rozkład sił w rozciąganym monokrysztale walcowym

τ = = F/S0 · cos α · cos ϕ

•Naprężenie styczne osiąga maksymalną wartość, gdy płaszczyzna poślizgu i kierunek tworzą kąt 45º z osią próbki i w tym systemie zajdzie w pierwszej kolejności poślizg.

•Gdy dyslokacje zostaną zablokowane, dalsze odkształcenie jest możliwe przez wzrost siły F, co powoduje przekroczenie naprężenia krytycznego dla innych systemów poślizgu lub poprzez obrót sieci krystalicznej zmieniającej wielkość naprężenia stycznego w innych płaszczyznach poślizgu.

•W sieci RPC nie ma płaszczyzn o zwartym ułożeniu atomów jak płaszczyzny {111} w RSC lub {0001} w HZ. Mniejsza gęstośćułożenia atomów w płaszczyznach sprawia, że naprężnie krytyczneττττ kr jest duże.

• Naprężenie ττττ kr w monokrysztale Fe∝

(sieć RPC) w temperaturze pokojowej wynosi około 15 MPa.

•W monokryształach o sieci RSC naprężnie to jest niższe i dla Al i Cu wynosi 0,55 ÷ 1 MPa, dla Ni – 3,3 ÷ 7,5 MPa.

• W monokryształach o sieci HZ naprężenie to np. dla Cd, Zn i Mg wynosi odpowiednio 0,13; 0,3 i 0,5 MPa.

•Naprężenie teoretyczne ττττ potrzebne do zrealizowania poślizgu przy nieobecności dyslokacji, czyli przy założeniu przezwyciężenia siły wiązań atomowych na całej płaszczyźnie poślizgu, jest 102 ÷ 104 razy większe od powyższych naprężeń krytycznych.

•Po wyczerpaniu możliwości poślizgu (zablokowanie dyslokacji) odkształcenie monokryształu realizuje siępoprzez bliźniakowanie.

• Bliźniakowanie wymaga znacznie większych naprężeń niż poślizg, dlatego zachodzi w drugiej kolejności.

•Bliźniakowanie występuje przede wszystkim w kryształach o sieci HZ (Mg, Ti, Zn), które mająmniejszą liczbę systemów poślizgu od sieci RSC i w kryształach o sieci RPC (Feά, Mo, W), w których naprężenia krytyczne poślizgu są większe ze względu na brak płaszczyzn zwarcie wypełnionych atomami, jak w RSC (Cu, Al, Ni).

Schemat odkształcenia plastycznego monokryształu przez bliźniakowanie

Bliźniak jest segmentem kryształu składającym się z przesuniętych po sobie warstw. Dwie skrajne płaszczyzny ograniczające bliźniak nazywane sąpłaszczyznami bliźniakowania.

Bliźniak ma strukturę sieci (ułożenie atomów) będącąlustrzanym odbiciem względem płaszczyzny bliźniakowania struktury nieodkształconej części kryształu.

�Odkształcenie plastyczne w materiale polikrystalicznymrealizuje się przez poślizg w wielu różnych ziarnach jednocześnie.

� Ziarna są pojedynczymi kryształami różnie zorientowanymi w przestrzeni, nawzajem ograniczają się i odkształceniu jednego ziarna musi towarzyszyćjednoczesne odkształcenie ziaren sąsiednich.

�Z tego powodu poślizgom w jednym ziarnie w określonym systemie poślizgu towarzyszą poślizgi w ziarnach sąsiednich, w tym samym lub innym systemie.

�Proces tworzenie się poślizgów jest hamowany granicami ziarn.

Odkształcenie plastyczne na zimno polikryształów• Granica sprężystości i

plastyczności

• Górna Re wywołana odrywaniem atomów domieszek od dyslokacji

• Dolna Re – równanie Halla-Petcha Red = σ0 + kd(-1/2)

• Zgniot i tekstura zgniotu

Odkształcenie metali

0A

FR e

e=

Odkształcenie u

Siła

F

l0A0

F=0F=0

u

Fs

Fe

Fm

0A

FR

m

m=

%1000

015 ×

−=

l

llA

%1000

10 ×−

=A

AAz

εεεε

σσσσ

σspr

εspr

εtrwałe = L1/L0ε = ∆L/L0

σ = P/SP - siłaS - przekrój pręta

B

CA

Zależność między odkształceniem względnym ε, a naprężeniem σ w czasie rozciągania pręta polikrystalicznego.

Odcinek prostoliniowy - od współrzędnych (0,0) do (εspr, σspr) reprezentuje sprężyste odkształceniepręta, zgodne z zależnością - prawem Hooke’a:

gdzie:

σ - naprężenia, σ = P/S = siła rozciągająca / przekrój pręta;

ε = ∆L / L0,

E – moduł sprężystości podłużnej (moduł Younga)

E

σε =

Początkowy odcinek na wykresie rozciągania jest dokładnie prostoliniowy tylko dla monokryształów.

W materiałach polikrystalicznych odcinek ten ma pewnąkrzywiznę wynikającą z obecności wielu ziaren o różnej orientacji oraz obecności dyslokacji.

Materiał sprężysto-plastyczny ze wzmocnieniem nieliniowym, z wyraźną

granicą plastyczności

ε ε ε ε

σσσσReH

ReL

•Górna granica plastyczności (ReH) - wywołana odrywaniem dyslokacji od atmosfer atomów obcych

•Dolna granica plastyczności σd (ReL) – zależna od wielkości ziarna, zgodnie z równaniem Halla-Petcha

Red = σ0 + kd(-1/2) d – wielkość ziarna, k – stała, σ0 - naprężenie tarcia sieci

wzmocnieniem nieliniowym, z wyraźną granicą plastyczności

ε ε ε ε

σσσσReH

ReL

Granica plastyczności –naprężenie niezbędne do zapoczątkowania makroskopowego odkształcenia plastycznego we wszystkich ziarnach

Odkształcenie plastyczne metalu na zimno powoduje

zmiany:

• kształtu i wymiarów elementu,

• mikrostruktury,

• stanu naprężeń,

• właściwości.

Zgniot - całokształt zmian w materiale, wywołany

odkształceniem plastycznym.

Gniot (stopień gniotu) = (S0 – S)/S0 x 100%,

S0 – początkowe pole przekroju poprzecznego materiału,

S – pole po odkształceniu

Struktura włóknista - wydłużone ziarna w materiale

polikrystalicznym odkształconym plastycznie, ułożone w

jednym kierunku.

Tekstura zgniotu – uprzywilejowana orientacja ziaren w

materiale polikrystalicznym, wywołana odkształceniem

plastycznym.

Przy dużym gniocie, np. 40% w metalach o sieci A1,

płaszczyzna i kierunki poślizgu mają tendencję do układania

się w kierunku przyłożonego naprężenia.

Tekstura decyduje o anizotropii właściwości mechanicznych i

fizycznych metali (różnicy właściwości w zależności od

kierunku).

(a) Równoosiowe ziarna w stopie jednofazowym przed odkształceniem plastycznym;

(b) wydłużone ziarna i pasma poślizgu w ziarnach jednofazowego stopu po odkształceniu plastycznym na zimno, struktura włóknista

a) b)50 µm

Gniot na zimno powoduje powstanie naprężeń tzw. własnych:

I rodzaju - submikroskopowych, występujących wewnątrz ziaren, spowodowanych odkształceniami w obrębie ziaren,

II rodzaju - mikroskopowych, występujących między ziarnami, w wyniku wzajemnych komplementarnych odkształceń ziaren,

III rodzaju - makroskopowych, spowodowanych nierównomiernym odkształceniem na przekroju wyrobu.

Naprężenia własne są niekorzystne; mogą powodowaćniepożądane odkształcenia wyrobu i pęknięcia.

Przykład zmian właściwości mechanicznych (umocnienia) materiału metalowego w wyniku odkształcenia plastycznego na zimno

Gniot (stopień gniotu) =

S0 – początkowe pole przekroju poprzecznego materiału,

S – pole przekroju po odkształceniu

( )%100

0

0 ×−

=S

SS

Zmiany właściwości fizycznych i chemicznych metali wywołanych odkształceniem plastycznym:

�spadek przewodności elektrycznej, przenikalności i podatności magnetycznej

�wzrost histerezy magnetycznej

�spadek odporności na korozję

•Odkształcenie plastyczne na zimno powoduje wzrost

energii wewnętrznej materiału wskutek zwiększenia ilości

defektów sieci krystalicznej

•W zależności od rodzaju materiału i gniotu, 2 ÷ 10 %

pracy mechanicznej włożonej w odkształcenie pozostaje

w materiale, reszta zamienia się w ciepło i jest

rozproszona na zewnątrz.

•Materiał odkształcony na zimno jest w stanie

metastabilnym – dąży do wydzielenia nadmiaru energii.

•Proces ten jest aktywowany cieplnie, tzn. zachodzi tym

szybciej, im wyższa jest temperatura materiału, a dla

większości materiałów w temperaturze pokojowej

przebiega na tyle wolno, że nie daje żadnych skutków

praktycznie zmieniających właściwości materiału przez

dowolnie długi czas.

•Proces powrotu materiału odkształconego na zimno do

stanu stabilnego dzieli się na dwa podstawowe stadia –

zdrowienie statyczne i rekrystalizację statyczną.

1. Aktywowana cieplnie migracja atomów

międzywęzłowych i równoczesna migracja wakansów

skutkująca zmniejszeniem stężenia wakansów

2. Przegrupowania dyslokacji (poligonizacja) i anihilacja

dyslokacji (np. rekombinacja atomów miedzywęzłowych

z lukami oraz dyslokacji o przeciwnych wektorach

Burgersa)

3. Rozrastanie się podziaren w uprzywilejowanych

kierunkach

Podczas zdrowienia, struktura materiału nie ulega zasadniczej

przebudowie!

Zdrowienie statyczne

Poligonizacja prowadzi do zgrupowania dyslokacji w pewnych płaszczyznach, przez co powstają podziarna, różniące się między sobą orientacją sieci krystalicznej (różnice te są rzędu tylko stopnia).

Przegrupowania dyslokacji: a) tworzenie ścianek poligonalnych, b) łączenie się ścianek, c) zanik ścianek przez wspinanie dyslokacji (1-3 kolejne stadia)

Możliwy zrost ziaren o małym kącie dezorientacji podczas zdrowienia.

W trakcie dalszego zdrowienia możliwe jest także zrastanie podziaren o małych różnicach orientacji sieci krystalograficznej

Skutki zdrowienia:

• Wyzwolenie całości lub części energii zmagazynowanej, zanik całkowity lub częściowy naprężeń i zmiany właściwości materiału przeciwne wywołanym odkształceniem – całkowite przy braku rekrystalizacji lub małe przy dalszej rekrystalizacji.

• Układ dyslokacji utworzony przez poślizgi w jednym

systemie, przy małym stopniu zgniotu, nie skutkujepowstaniem zarodków rekrystalizacji w ostatnim etapie

zdrowienia, a następnie rekrystalizacją metalu

• Układ dyslokacji utworzony przez poślizgi w wielu systemach prowadzi do powstania subziaren o dużym stopniu dezorientacji, stanowiących zarodki rekrystalizacji.

Rekrystalizacja statyczna

•proces przebiegający w materiale odkształconym

plastycznie na zimno, w temperaturze wyższej niż

zdrowienie, polegający na rozroście zarodków ziaren

utworzonych w czasie zdrowienia, aż do całkowitego

przekrystalizowania zgniecionego materiału.

•Niezbędny jest pewien gniot krytyczny

• Granice rosnących ziarn migrują w stronę zgniecionej

osnowy pochłaniając dyslokacje i defekty punktowe.

•W trakcie rekrystalizacji dochodzi do całkowitej przebudowy struktury ziaren polikryształu i ich granic.

• Gęstość dyslokacji zostaje zredukowana o cztery do

sześciu rzędów wielkości i w konsekwencji wiele własności fizycznych materiału zostaje poważnie zmodyfikowanych (twardość, ciągliwość, opór elektryczny, struktura domen magnetycznych i inne).

• Podobnie jak zdrowienie, rekrystalizacja jest procesem aktywowanym termicznie.

Wielkość ziarna po odkształceniu plastycznym i rekrystalizacji

Temperatura rekrystalizacji

• Zależna od: stopnia gniotu, sposobu, temperatury i szybkości odkształcenia, czasu wyżarzania, wielkości ziarna

• Wzór Boczwara:

TR = (0,35÷0,6) Tt

Zmiany twardości metalu odkształconego plastycznie na zimno w zależności od temperatury następnego wyżarzania i stopnia gniotu Z

Rekrystalizacja pierwotna i wtórna

• Pierwotna: migracja szerokątowych granic zarodków rekrystalizacji do czasu, gdy zrekrystalizowane ziarno zajmie całą objętość uprzednio odkształconego metalu

• Wtórna: następuje selektywny wzrost niektórych ziaren, bez okresu inkubacji, kilkaset stopni C powyżej temperatury rekrystalizacji. Przyczyna: obecność faz na granicach ziaren, zbyt krótki okres wyżarzania, tekstura

• Tekstura rekrystalizacji: statystyczna przewaga ziaren o jednakowej orientacji

Rozrost ziarna podczas rekrystalizacji wtórnej. Ziarna o wypukłych granicach kurczą się, zaś ziarna z granicami wklęsłymi – rozrastają się

Przykładowa zmiana konfiguracji granic ziaren (w 2 wymiarach) podczas rekrystalizacji wtórnej

Rekrystalizacja wtórna – selektywny rozrost ziaren o uprzywilejowanej orientacji, co prowadzi do silnego zróżnicowania rozmiarów ziaren i znacznego udziału w objętości ziaren dużych. Charakterystyczna cechamateriału o strukturze gruboziarnistej: wysoka kruchość.

Zmiany właściwości metalu w funkcji temperatury wyżarzania po odkształceniu plastycznym na zimno:

1 – naprężenia, 2 – wielkość ziarna, 3 – wytrzymałość na rozciąganie, 4 –wydłużenie

Wpływ stopnia odkształcenia na temperaturę rekrystalizacji i wielkość ziarna po rekrystalizacji Al 99,99% (wygrzewanie 1 godzina).

1 – temperatura rekrystalizacji, 2 – wielkość ziarna

większy gniot => większa wartość energii zmagazynowanej => obniżenie TR

Na temperaturę rekrystalizacji wpływają: • Czystość metalu: zanieczyszczenia

ograniczają ruchliwość granic ziarn =>podwyższenie TR

• Drobnoziarnistość – mały rozmiar ziarn=> obniżenie TR

• Temperatura odkształcenia plastycznego – mała wartość => obniżenie TR

Gniot krytyczny – przeważnie w przedziale 2-12%, powoduje po rekrystalizacji szczególnie gruboziarnistą strukturę.

Zależnośćrozmiaru ziarnapo wyżarzaniu odgniotu

•Z tego powodu projektując obróbkę plastyczną wyrobów, które będą podlegać rekrystalizacji, należy unikać odkształcenia krytycznego.

•Przyczyną silnego rozrostu ziarna jest mała ilość zarodków rekrystalizacji.

•Po gniocie mniejszym od krytycznego rekrystalizacja nie zachodzi, ponieważ odkształcenie było zbyt małe do wytworzenia zarodków rekrystalizacji, tj. podziaren o szerokokątowych granicach.

Temperatura rekrystalizacji stanowi kryterium podziału zabiegów:

�Obróbki plastycznej na zimno – obróbka poniżej temperatury rekrystalizacji. Ma miejsce zgniot.

�Obróbki plastycznej na gorąco – obróbka powyżejtemperatury rekrystalizacji. Równolegle ze zgniotem zachodzi rekrystalizacja.

3. TECHNICZNE ASPEKTY ODKSZTAŁCENIA PLASTYCZNEGO

Zapamiętać:

•Materiały metaliczne są ciałami plastycznymi – pod wpływemobciążenia, którego wartość przekracza granicę sprężystości,zmieniają swoje wymiary i kształt bez utraty spójności (bezzniszczenia).

•Odkształcenie plastyczne na zimno odbywa się przez: Poślizg – wzajemne przemieszczanie się jednej części kryształuwzględem drugiej (sieć krystaliczna przemieszczonych częścikryształu nie ulega zmianie) wzdłuż linii i pasm poślizgu.Bliźniakowanie- jednorodne ścinanie kolejnych warstw atomów.

•Umocnienie odkształceniowe zachodzi w materiale podczas jego deformacji. Zmiany zachodzące w jego strukturze i własnościach to zgniot,. Jego miara jest stopień gniotu (ubytek przekroju w procentach

Zapamiętać c.d.

•Materiał, który został poddany zdrowieniu zawiera mniej energii zmagazynowanej niż bezpośrednio po odkształcaniu i przez to jestbardziej stabilny termodynamicznie.

•Proces rekrystalizacji prowadzi do powstania w materiale nowych ziaren, które zawierają mniej dyslokacji niż ziarna odkształcone

•Rekrystalizacja pierwotna prowadzi do stopniowego powstawania nowych ziaren. W materiale tworzy się nowa, prawie niezaburzonastruktura, a procesowi temu towarzyszy wydzielanie się z materiału energii zmagazynowanej. Proces ten trwa do momentu aż w całym uprzednio odkształconym materiale powstaną nowe ziarna.

•Jeżeli materiał był poddany odkształceniu równemu lub mniejszemuzgniotowi krytycznemu (2÷10%) to po rekrystalizacji będzie on miał strukturę gruboziarnistą. W tym przypadku ilość energii zmagazynowanej jest zbyt mała by mogły powstać zarodki nowych ziaren.