Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda...

168
Metody grupowania i ich implementacja do eksploracji danych postaci symbolicznej Dariusz Mazur 10 stycznia 2005

Transcript of Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda...

Page 1: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

Metody grupowania i ich implementacja do eksploracji danych

postaci symbolicznej

Dariusz Mazur

10 stycznia 2005

Page 2: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

2

Page 3: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

Spis treści

Spis tabel 6

Spis algorytmów 8

Wykaz ważniejszych oznaczeń 9

Wstęp 10

1 Eksploracja danych 17

1.1 Geneza eksploracji danych . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Cele i wymagania eksploracji danych . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 Ocena jakości eksploracji danych . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4 Techniki eksploracji danych . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.5 Wykorzystywanie zewnętrznej wiedzy . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.6 Eksploracja danych lingwistycznych . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.7 Eksploracja danych biznesowych . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.7.1 Segmentacja bazy klientów . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.7.2 Grupowanie w transakcyjnych bazach danych . . . . . . . . . . . . . . . . . . 38

1.7.3 Analiza koszyka zakupów . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.7.4 Wysyłanie katalogów reklamowych . . . . . . . . . . . . . . . . . . . . . . . . 39

1.8 Analiza zachowań internautów . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.9 Zagadnienie grupowania w katalogu towarów . . . . . . . . . . . . . . . . . . . . . . 40

2 Dane 42

2.1 Rodzaje danych . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2 Porównywanie danych . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2.1 Miary odległości . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2.2 Miara podobieństwa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3

Page 4: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

4 SPIS TREŚCI

2.2.3 Miary asocjacji . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.2.4 Miary odległości dla grup danych . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3 Dane symboliczne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4 Dane lingwistyczne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4.1 Lingwistyka formalna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4.2 Wyrażenia symboliczne i lingwistyczne . . . . . . . . . . . . . . . . . . . . . . 55

2.4.3 Rozpoznawanie znaczeń w dokumentach tekstowych . . . . . . . . . . . . . . 57

2.5 Tematyczne bazy danych . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.6 Wiarygodność danych . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3 Grupowanie 62

3.1 Wstęp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1.1 Podział metod grupowania . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1.2 Zastosowanie grupowania . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Formalny zapis problemu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3 Grupowanie iteracyjne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.1 grupowanie K-średnich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.2 Grupowanie metodą najbliższego sąsiada . . . . . . . . . . . . . . . . . . . . . 73

3.3.3 Grupowanie rozmyte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4 Aglomeracyjne grupowanie hierarchiczne . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5 Grupowanie podziałowe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.6 Grupowanie dokumentów tekstowych . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.7 Grupowanie genetyczne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.8 Ocena jakości grupowania . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.8.1 Podstawowe definicje związane z pomiarami jakości grupowania . . . . . . . . 91

3.8.2 Miara jednorodności . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.8.3 Reguła podziału na 2 części . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.8.4 Test χ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.8.5 Przyrost informacji . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.8.6 Wskaźnik Xie - Beni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4 Metody oparte o listy decyzyjne 97

4.1 Wprowadzenie list decyzyjnych . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.1.1 Tworzenie formuł warunku . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2 Zasada działania metody grupowania . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2.1 Analogia do metod hierarchicznych . . . . . . . . . . . . . . . . . . . . . . . . 101

Page 5: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

SPIS TREŚCI 5

4.2.2 Tworzenie macierzy przynależności . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2.3 Funkcja kryterium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3 Algorytm grupowania wykorzystujący pełny przegląd . . . . . . . . . . . . . . . . . . 102

4.4 Algorytmy oparte na przeszukiwaniu heurystycznym . . . . . . . . . . . . . . . . . . 104

4.5 Algorytm wykorzystujący mechanizm genetyczny . . . . . . . . . . . . . . . . . . . . 105

4.6 Dyskusja na temat zalet grupowania opartego o listy decyzyjne . . . . . . . . . . . . 106

5 Badanie algorytmów grupowania na danych symbolicznych 109

5.1 Program wspomagający eksplorację danych . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 Testowe zbiory danych . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3 Badanie wrażliwości algorytmów . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3.1 Cel i zakres badań . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3.2 Otrzymane rezultaty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4 Badanie algorytmów nie wymagających funkcji odległości . . . . . . . . . . . . . . . 120

5.4.1 Cel i zakres badań . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.4.2 Otrzymane rezultaty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.5 Wnioski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6 Selekcja i grupowanie danych lingwistycznych 135

6.1 Zagadnienie uwzględniania dostępnej wiedzy procesie grupowania . . . . . . . . . . . 136

6.1.1 Wykorzystanie wiedzy zawartej w słowach . . . . . . . . . . . . . . . . . . . . 136

6.1.2 Słownik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.1.3 Zasady grupowania nazw towarów . . . . . . . . . . . . . . . . . . . . . . . . 138

6.2 Badanie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.2.1 Analiza danych wejściowych . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.2.2 Konstrukcja nazwy w katalogu towarów . . . . . . . . . . . . . . . . . . . . . 141

6.2.3 Metoda wykorzystania słownika do porównywania bardzo krótkich tekstów . 142

6.2.4 Przebieg badania . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.2.5 Badanie funkcji odległości dla danych lingwistycznych . . . . . . . . . . . . . 145

6.2.6 Badanie skuteczności grupowania danych lingwistycznych . . . . . . . . . . . 147

6.3 Wnioski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7 Podsumowanie 154

Bibliografia 159

Page 6: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

Spis tabel

1.1 Porównanie wiedzy cichej i formalnej[101] . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Tabela koincydencji dla atrybutów binarnych. . . . . . . . . . . . . . . . . . . . . . 48

2.2 Funkcje podobieństwa stosowane dla dystrybuant zmiennej losowej. . . . . . . . . . 53

2.3 Semantyka składników elementarnych [63]. . . . . . . . . . . . . . . . . . . . . . . . 59

3.1 Tablica koincydencji dla grupy j. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1 Testowa mała baza obiektów. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Przykład tabeli kodowania danych symbolicznych. . . . . . . . . . . . . . . . . . . . 115

5.3 Grupowanie FCMdd dla różnych funkcji odległości dla małej bazy. . . . . . . . . . . 116

5.4 Podział dla grupowania FCMdd dla różnych funkcji odległosci dla małej bazy. . . . . 116

5.5 Trafność dla grupowania FCMdd dla różnych funkcji odległości dla małej bazy. . . . 117

5.6 Podział dla grupowania aglomeracyjnego mała baza. . . . . . . . . . . . . . . . . . . 117

5.7 Trafność dla grupowania aglomeracyjnego dla małej bazy. . . . . . . . . . . . . . . . 117

5.8 Jakość grupowania aglomeracyjnego dla małej bazy. . . . . . . . . . . . . . . . . . . . 118

5.9 Grupowanie FCMdd dla różnych funkcji odległości dla bazy głosowań . . . . . . . . 118

5.10 Trafność dla grupowania FCMdd dla różnych funkcji odległości dla bazy głosowań . 119

5.11 Dla grupowania aglomeracyjnego dla bazy głosowań . . . . . . . . . . . . . . . . . . 119

5.12 Trafność dla dla grupowania aglomeracyjnego dla bazy głosowań . . . . . . . . . . . 119

5.13 Przyrost informacji dla różnych algorytmów grupowania bez użycia funkcji odległości

dla małej bazy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.14 Podział dla algorytmów grupowania bez użycia funkcji odległości dla małej bazy . . 127

5.15 Trafność uzyskanego grupowania dla różnych algorytmów grupowania bez użycia funk-

cji odległości dla małej bazy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.16 Lista reguł decyzyjnych pełny przegląd dla małej bazy . . . . . . . . . . . . . . . . . 128

5.17 Lista reguł decyzyjnych algorytm heurystyczny dla małej bazy . . . . . . . . . . . . 128

6

Page 7: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

SPIS TABEL 7

5.18 Lista reguł decyzyjnych algorytm genetyczny dla małej bazy . . . . . . . . . . . . . . 128

5.19 Lista reguł decyzyjnych algorytm pełny przegląd dla bazy głosowań . . . . . . . . . . 128

5.20 Lista reguł decyzyjnych algorytm heurystyczny dla bazy głosowań . . . . . . . . . . . 129

5.21 lista reguł decyzyjnych algorytm genetyczny dla bazy głosowań . . . . . . . . . . . . 129

5.22 Przyrost informacji dla algorytmów bez użycia funkcji odległości dla bazy głosowań . 130

5.23 Trafność uzyskanego grupowania dla algorytmów bez użycia funkcji odległości dla

bazy głosowań . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.1 Przypisywanie znaczeń na podstawie słownika . . . . . . . . . . . . . . . . . . . . . . 142

6.2 Mały katalog towarów . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.3 Tablica wag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.4 Lista reguł decyzyjnych heurystyczny dla bazy towarów . . . . . . . . . . . . . . . . 145

6.5 Jakość grupowania FCMdd dla różnych funkcji odległości dla bazy towarów . . . . . 147

6.6 Jakość grupowania a różnymi algorytmami bez użycia funkcji odległości dla bazy to-

warów . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.7 Otrzymany podział dla grupowania algorytmami z tabeli 6.6 . . . . . . . . . . . . . 149

6.8 Otrzymany podział dla grupowania algorytmami z tabeli 6.6 cz.2 . . . . . . . . . . . 150

6.9 Otrzymany podział dla grupowania algorytmami z tabeli 6.6 cz.3 . . . . . . . . . . . 151

Page 8: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

Spis algorytmów

3.1 Algorytm grupowania k-średnich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2 Grupowanie metodą najbliższego sąsiada . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3 Algorytm PAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Grupowanie rozmyte FCMdd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5 Grupowanie aglomeracyjne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.6 Grupowanie podziałowe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.7 Przypisywanie obiektów do grup na podstawie listy decyzyjnej . . . . . . . . . . . . 98

4.8 Procedura przypisywania obiektów do grup na podstawie listy reguł . . . . . . . . . 100

4.9 Rekurencyjne przypisywanie obiektów do grup na podstawie listy reguł . . . . . . . 101

4.10 Heurystyczny metoda liniowa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.11 Grupowanie wykorzystujące przeszukiwanie heurystyczne . . . . . . . . . . . . . . . 122

5.12 Grupowanie dokonujące pełnego przeglądu . . . . . . . . . . . . . . . . . . . . . . . . 124

8

Page 9: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

Wykaz ważniejszych oznaczeń

A = a1, a2, . . . zbiór wartości atrybutu,

Ai(x) ∈ Ai wartość i-tego atrybutu opisującego obiekt,

α(x) formuła logiczna odwołująca się do wartości

atrybutów obiektu,

X zbiór obiektów,

|X| liczebność zbioru X,

Ci ⊂ X grupa,

|Ci| liczebność grupy i,

d(·) symbol miary odległości pomiędzy obiektami,

C zbiór grup możliwych do wyznaczenia w zbiorze przykładów P ,

|P | liczebność zbioru przykładów,

|PC | liczebność podzbioru przykładów zbioru P należących do grupy C,

pA prawdopodobieństwo że obiekt należy do podzbioru XA,

pAi prawdopodobieństwo że obiekt należący do XA należy do grupy Ci,

V = vj zbiór elementów wzorcowych (prototypów) grup,

U = uik macierz przynależności obiektów do poszczególnych grup.

9

Page 10: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

Wstęp

Gwałtowny rozwój techniki obliczeniowej spowodował, że człowiek obecnie zalewany jest stru-

mieniami danych. Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą

olbrzymie ilości danych, gromadzonych następnie w pamięciach komputerów. Tak jak maszyna pa-

rowa zapoczątkowała rewolucję przemysłową, skutkiem której był wielokrotny, o kilka rzędów wiel-

kości, wzrost wydajności pracownika w zakresie czynności fizycznych, tak komputery spowodowały

ogromny wzrost wydajności pracowników umysłowych. Obecne czasy ogłoszono erą informacji i wie-

dzy, a podstawowymi wyznacznikami są komputer i internet. Możliwości techniczne są olbrzymie,

w komputerach gromadzone są gigantyczne ilości danych, które bez większego trudu mogą zostać

dostarczone w dowolne miejsce świata. Dane zbierane i gromadzone są nieomal wszędzie, często zu-

pełnie automatycznie, bez udziału człowieka. Obserwowany do niedawna brak dostępnych danych

przekształcił się w ich nadmiar, trudny do ogarnięcia i analizy – i to właśnie zaczyna stanowić

poważny, o ile nie najpoważniejszy problem. Kłopot pojawia się na styku człowiek — komputer.

Człowiek ze swym umysłem daleko doskonalszym od najlepszej i najbardziej rozbudowanej maszyny

ma jednak ograniczone możliwości percepcji. Natomiast komputery, mimo dużej objętości pamię-

ci i szybkości działania (dla działań elementarnych przekraczających ludzkie możliwości), potrafią

w znikomym stopniu zrozumieć człowieka i świat (odgadnąć jego zamiary, domyśleć się jego intencji

czy potrzeb). Z uwagi na to, że ostatecznym odbiorcą danych i informacji jest człowiek, dla nie-

go dokonuje się wszelkiego rodzaju przetwarzania danych. Problemem bowiem nie jest efektywne

gromadzenie i przetwarzanie danych, lecz zdolność interpretacji i wyciągania użytecznych wniosków

[38].

Zbieranie i gromadzenie danych ma swój głęboki sens, bo stanowi przyczynek do zdobywania

wiedzy. Po to człowiek bada i analizuje otaczający go świat, by go lepiej poznać. W celu poszerze-

nia swych możliwości konstruuje on systemy, które pomagają osiągać zamierzony cel [96]. Proces

przekształcania danych w Wiedzę jest bardzo złożony, do tej pory poznano zaledwie część z jego

wielu etapów [101]. Wiele wysiłku jest poświęcane skonstruowaniu systemu, który będzie umożliwiał

lub wspomagał w możliwie najszerszym zakresie pozyskiwanie Wiedzy [75]. Wspomaganie człowieka

przez komputer polega na tym, że komputer wykonuje pewne czynności (przekształcenia danych)

10

Page 11: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

11

analogicznie, jak to by zrobił człowiek tylko, że wielokrotnie szybciej i taniej.

Główne zagadnienie pozyskiwania wiedzy, jakim jest eksploracja danych, jest bardzo szerokie i ma

charakter interdyscyplinarny [39]. Nawet pobieżne analiza skutkuje wkraczaniem na wiele różnych

obszarów. Stosowane są techniki wywodzące się ze statystyki [64], teorii informacji [118], systemów

uczenia maszynowego [27], baz danych [25], zarządzania wiedzą [11, 101] czy lingwistyki [110, 130].

W ramach eksploracji danych można wyróżnić kilka kierunków badań nad technikami tam stoso-

wanymi. W pracach [38, 25, 3, 11, 89] wymienia się poszukiwanie asocjacji, klasyfikację, grupowanie,

regresję, analizę funkcjonalną, analizę skupień, analizę szeregów czasowych, wyszukiwanie anomalii.

Już sama lista zagadnień pokazuje jak szerokim jest zagadnienie eksploracji danych, każda z technik

umożliwia uzyskanie użytecznych wyników w innej formie bądź dla innego rodzaju interpretacji.

W niniejszej pracy szczególną uwagę poświęcono problemowi eksploracji z danych symbolicznych.

Przegląd literatury w zestawieniu z wielkimi oczekiwaniami i potrzebami w tym zakresie wskazuje

na potrzebę systematycznych badań w tym zakresie [132]. Szacuje się że 70-90 procent informacji ma

postać symboliczną [6, 123, 24]. Wiele z tych danych ma postać lingwistyczną, czasami jest to czysty,

naturalny język z pełną gramatyką, słownikiem a czasami tylko sztucznie wybrany podzbiór, wystar-

czający do reprezentacji przyjętych informacji. Potrzeby są widoczne na każdym etapie eksploracji

danych. Począwszy od przygotowania zbiorów danych, które zawierając dane symboliczne wymagają

różnorodnych technik analizy z uwagi na bardzo szerokie spektrum stosowanych reprezentacji czy

zawartości informacyjnej [42] . W zależności od rodzaju danych można mieć do czynienia z informa-

cją niedokładną, niepewną ale również informacją zależną od kontekstu danych, stosowanego języka,

semantyki [70, 132].

W zakresie eksploracji danych, z uwagi na obszerność tematyki, przeprowadzono dyskusję jed-

nego rodzaju metod, mianowicie grupowania. Pozyskiwanie wiedzy metodami grupowania pozostaje

w kręgu zainteresowań autora w szczególności pozyskiwania wiedzy w zastosowaniach biznesowych i

przetwarzania baz danych pochodzących z systemów internetowych (analiza zachowań internautów),

marketingowych (analiza zachowań konsumentów), medycznych (identyfikacja jednostek chorobo-

wych) [9, 10].

Grupowanie jest zagadnieniem polegającym na identyfikacji naturalnych grup, w których obiekty

podobne do siebie mają zostać umieszczone w jednej grupie, natomiast obiekty znacznie się różniące

w różnych grupach [71]. Grupowanie jest trudnym problemem kombinatorycznym a stosowane w róż-

nych środowiskach i dziedzinach przekłada się na różne koncepcje, metody i efekty możliwe zarówno

do zastosowania jak i do otrzymania [70]. Zagadnienie grupowania jest przedmiotem zainteresowań

badaczy z zakresu statystyki [34], systemów uczących [40, 27], baz danych [99]. Podstawowy podział

metod grupowania omówiony został w [70], zastosowanie do eksploracji baz danych w [25]. Stosuje się

również techniki wykorzystujące metody należące w różnych obszarów, przykładowo w [58, 37, 70].

Page 12: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

12 WSTĘP

Istotne znaczenie dla zagadnienia eksploracji danych ma teoria zbiorów rozmytych zaproponowana w

[129]. Samo zagadnienie zastosowanie grupowania, jako problem znajdowania interesujących struktur

wśród zgromadzonych danych, zaprezentowano w [113], w [12] zaprezentowano algorytm grupowania

rozmytego jako szczególny przypadek algorytmu klasyfikacji opisanego w [7]. Innego rodzaju bada-

nia w celu uogólnienia idei grupowania przedstawiono w [80]. Dotyczyły one koncepcji identyfikacji

i ekstrakcji pojedynczych klastrów zamiast dokonywania kompletnego rozdziału zbioru na ustalo-

ną ilość grup. Techniki grupowania wykorzystują metody zaczerpnięte z metod ewolucyjnych [42],

genetycznych [56] i heurystycznych [15, 78].

Zagadnienie grupowania obejmuje trzy aspekty:

• sposób ujęcia przetwarzanych danych,

• sposób określania podobieństwa i niepodobieństwa, zgodnie z którym łączy się obiekty w grupy,

• metody poszukiwania optymalnych rozwiązań, w tym przypadku rozwiązaniem jest dokonaniepodziału na grupy.

Pomimo intensywnego rozwoju technik eksploracji danych, nadal istnieje wiele zagadnień, które

wymagają dalszych badań. W zakresie przetwarzania danych symbolicznych, które ze swej natury

obejmują znacznie większy obszar, wiele zagadnień znajduje się na początkowym etapie rozwią-

zywania. Część z nich jest inspirowane bezpośrednio z technik przetwarzania danych numerycz-

nych, natomiast inne wykorzystują oryginalne rozwiązania. Prace w tym zakresie przedstawiono

w [53, 56, 51, 45].

Kolejnym obszarem grupowania stały się dane lingwistyczne — wykorzystujące język naturalny,

czyli formę wymiany informacji stosowaną od tysięcy lat przez człowieka [105, 109]. Określenia

lingwistyczne realizują pełny opis obiektu, zarówno jakościowy jak i ilościowy [65, 131, 114]. Dalej

dotyczą wykorzystania zasad działania rozumu u człowieka [131], przetwarzaniem wiedzy [103, 101].

Rozszerzenie zakresu zainteresowań na dane symboliczne skutkuje rezygnacją z wielu założeń

leżących u podstawy przetwarzania danych ilościowych. Wymienia się brak możliwości reprezen-

tacji obiektów w sensie punktów w przestrzeni euklidesowej, atrybuty opisujące obiekty należą do

skal słabych lub są całkowicie niemierzalne, przez co niemożliwe jest wykorzystanie wielu funkcji

podobieństwa, z uwagi na zależności kontekstowe trudno definiowalne są heurystyki ograniczające

obszar przeszukiwań. W zależności od badanego rodzaju danych powyższe ograniczenia i problemy

występują z różnym nasileniem.

Należy również w tym miejscu przytoczyć jeden z celów eksploracji danych: ma ona służyć po-

zyskaniu nowej wiedzy. W zakresie pozyskiwania wiedzy istotną rolę odgrywają reguły decyzyjne.

Reprezentacja wiedzy w postaci reguł uznawana jest za czytelniejszą dla człowieka niż inne reprezen-

tacje [28, 29, 97]. Podkreśla się jej modularność i przydatność do analizy przez eksperta. Ponieważ

Page 13: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

13

w przewarzającej części wiedzę tworzy człowiek jedynie przy pomocy komputera, to należy stoso-

wać takie metody, które „pomogą” mu w możliwie najlepszy sposób. Jednym z kierunków badań jest

opracowanie nowych metod prezentacji wyników, zgodnych z możliwościami percepcji człowieka, tak

aby możliwie zminimalizować ilość „strat” informacji i wiedzy na styku człowiek – komputer. W tym

kontekście znaczenia nabiera kierunek badań związany z grupowaniem konceptualnym, postrzega-

niem mentalnym [97, 113, 121, 124, 130]. Jednocześnie dla całości grupowania danych rzeczywistych

niezwykle istotne znaczenie ma dobór funkcji określających podobieństwo grupowanych obiektów

[109] i jakość (w sensie realizacji zadanego celu) tworzonych grup. Równie ważne jest rozumienie

znaczenia analizowanych danych i „przekazanie” tej wiedzy maszynie [33].

Cel pracy

Celem pracy jest zbadanie metod eksploracji danych postaci symbolicznej oraz przedstawienie

własnych propozycji metod grupowania. Analizie zostały poddane metody grupowania w kontekście

danych symbolicznych oraz lingwistycznych. W tym celu dokonano przeglądu literatury zawierającej

treści związane z niniejszą tematyką, dokonano analizy dziedziny grupowania, jaką są dane biznesowe

oraz dane lingwistyczne. Przeprowadzono badanie metod grupowania przydatnych do przetwarzania

danych wymienionych postaci. W zakresie własnych propozycji metod grupowania przedstawiono

metodę grupowania opartą o listy decyzyjne. Stanowi ona alternatywne rozwiązanie dla zagadnienia

grupowania danych symbolicznych. W oparciu o tą metodę autor zaproponował i zaimplementował

trzy nowe algorytmy grupowania.

Zakres pracy

Zakres pracy oraz cele szczegółowe są następujące:

• analiza zbiorów danych w aspekcie ich wykorzystania w procesie pozyskiwania wiedzy,

• porównanie metod grupowania danych symbolicznych,

• adaptacja wybranych metod i algorytmów do analizy danych symbolicznych,

• przedstawienie metody uwzględniania dostępnej wiedzy o zbiorze danych w procesie porówny-wania tekstów,

• przedstawienie metody porównywania danych lingwistycznych o szczególnych właściwościach,jakimi są teksty pochodzące z katalogu towarów,

• przedstawienie algorytmu grupowania typu pełny przegląd opartego o listy decyzyjne,

Page 14: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

14 WSTĘP

• przedstawienie heurystycznego algorytmu grupowania opartego o listy decyzyjne,

• przedstawienie genetycznego algorytmu grupowania opartego o listy decyzyjne.

Autor niniejszej pracy zaprojektował i napisał program komputerowy, w którym zaimplemen-

tował wszystkie badane algorytmy i metody. Przy jego pomocy dokonał analizy i porównania do-

stępnych metod grupowania w zależności od niektórych elementów takich jak grupowana dziedzina,

stosowane funkcje odległości oraz inne parametry wejściowe. Celem przeprowadzonych badań by-

ło wykazanie istnienia zbiorów danych, dla których zaproponowana metoda daje lepsze wyniki niż

pozostałe metody grupowania.

Teza pracy

W pracy formułuje się następującą tezę:

Zaproponowana metoda grupowania oparta o listy decyzyjne jest alternatywną metodą grupo-

wania danych symbolicznych, a w niektórych przypadkach lepszą od dotychczas stosowanych

metod grupowania.

Tezy szczegółowe:

1. metody grupowania nie wykorzystujące funkcji odległości, oparte wyłącznie o kryterium jakości

grupowania, w niektórych przypadkach lepiej nadają się do grupowania danych symbolicznych,

2. dzięki wykorzystaniu dodatkowej wiedzy o znaczeniu słów, użytych w nazwach grupowanych

obiektów, uzyskuje się lepsze wyniki grupowania (bardziej zgodne z oczekiwaniami ekspertów),

3. dzięki zastosowaniu listy reguł do prezentacji rezultatów grupowania, metoda grupowania opar-

ta o listy decyzyjne, jest lepsza od metod prezentujących wyniki w postaci macierzy przypisań

czy też obiektów wzorcowych, z punktu widzenia percepcji człowieka.

Treść pracy

Rozdział 1 omawia podstawowe obszary, które obejmuje eksploracja danych: powiązanie z potrze-

bami informacyjnymi, pozyskiwaniem wiedzy, stosowane techniki analizy, oczekiwane rezultaty. W

rozdziale tym zawarte jest ogólne, opisowe wprowadzenie do problemu eksploracji danych. Kluczo-

wym w procesie badania metod eksploracji danych jest wyznaczenie hierarchii kryteriów, wg których

dokonana zostanie ocena wyników. Własną hierarchię kryteriów autor niniejszej pracy przedstawił

w podrozdziale 1.3. W podrozdziale 1.7 przedstawiono zagadnienia eksploracji danych wywodzą-

cych się z obszaru danych biznesowych. W podrozdziale 1.8 przedstawiono potrzebę i możliwość

Page 15: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

15

eksploracji w obszarach danych związanych w Internetem, takimi jak analiza zachowań internautów

w kontekście zawartości stron internetowych. Omówiono dostępny zakres danych oraz możliwości po-

zyskania wiedzy. Oprócz szeregu znanych z literatury zadań autor zaproponował własne zagadnienie

wchodzące w zakres eksploracji danych jakim jest grupowanie w katalogu towarów (podrozdział

1.9). Tematyka kolejnych rozdziałów obejmuje podstawy teoretyczne wykorzystywane w dalszym

toku pracy.

W rozdziale 2 omówiono rodzaje danych z jakimi ma się do czynienia w procesie eksploracji

danych. Ukazano różnorodność informacyjną danych spotykaną w bazach danych. Przedstawiono

dane numeryczne, symboliczne, lingwistyczne i ich, istotne z punktu widzenia dalszego przetwarzania,

własności.

Rozdział 3 przedstawia podstawowe metody grupowania – głównej techniki eksploracji wykorzy-

stywanej w niniejszej pracy. Omówiono grupowanie hierarchiczne, optymalizacyjne, wykorzystujące

zbiory rozmyte, algorytmy genetyczne.

Rozdział 4 zawiera jedną z głównych propozycji autora jaką są metody grupowania wykorzy-

stujące jako podstawę listy decyzyjne. W rozdziale tym przedstawiono podstawowe założenia tej

metody oraz zaproponowano trzy algorytmy ją wykorzystujące. Są to algorytm pełnego przeglądu,

algorytm heurystyczny metoda liniowa oraz algorytm adaptujący metody genetyczne. Podstawo-

we zalety niniejszej metody to: możliwość grupowania danych symbolicznych bez potrzeby użycia

funkcji odległości (funkcji porównującej obiekty); większa, w stosunku do metod hierarchicznych,

różnorodność kształtów otrzymywanych podziałów; nowa forma prezentacji rezultatu grupowania

jaką jest zapis listy decyzyjnej. W podrozdziale 3.8 autor przedstawił sposób interpretacji i wyko-

rzystania nowej formy prezentacji rezultatu grupowania jakim jest lista reguł. Badania skuteczności

przedstawionej metody autor przeprowadził poprzez porównanie rezultatów grupowania z innymi

metodami. Przebieg badań opisany jest w podrozdziałach 5.4 oraz 6.2.6.

Rozdział 5 zawiera wyniki eksperymentów nad adaptacją niektórych algorytmów do grupowa-

nia danych symbolicznych. W podrozdziale 5.1 opisano zaprojektowany i zaimplementowany pro-

gram komputerowy wykorzystywany do eksperymentów z danymi symbolicznymi. Omówiono zakres

funkcjonalny, strukturę programu, możliwości wprowadzania danych zewnętrznych oraz prezentacji

wyników. Analizowano dwa rodzaje algorytmów: wymagające miary odległości oraz jej nie wymaga-

jące. Podział ten jest podyktowany tym, że w przypadku danych symbolicznych niezwykle trudno

jest o taką definicję odległości, która trafnie by reprezentowała podobieństwo obiektów. Autor badał

wpływ stosowanych rozwiązań na wyniki a jednocześnie poszukiwał rozwiązań dających się zasto-

sować w eksploracji danych biznesowych. Wykazano dużą zależność doboru funkcji porównania od

rodzaju przetwarzanych danych, co jest wadą w procesie eksploracji danych.

Page 16: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

16 WSTĘP

Rozdział 6 zawiera przedstawioną przez autora krytyczną analizę przydatności i skuteczności sto-

sowania technik grupowania do analizy niektórych danych biznesowych. Podrozdział 6.1.1 zawiera

propozycję autora wykorzystania dodatkowej, zewnętrznej wiedzy w procesie grupowania niektórych

danych lingwistycznych poprzez zastosowanie słownika. Podrozdział 6.1.3 zawiera rezultaty prac

własnych autora nad problemem grupowania w katalogu towarów zaprezentowanego w podrozdzia-

le 1.9 wykorzystujących metody przedstawione w rozdziałach 4 oraz 6. Zaprezentowano adaptacje

algorytmu FCMdd do grupowania danych lingwistycznych. Wykorzystano technikę uwzględniania

dodatkowej wiedzy w procesie grupowania realizowaną przy pomocy słownika. Przeprowadzony eks-

peryment obejmował również wykorzystanie, zaproponowanych przez autora, algorytmów opartych

o listy decyzyjne. Rezultaty grupowania zaprezentowano w podrozdziale 6.2.6.

Ostatni rozdział zawiera spostrzeżenia i wnioski zdobyte w trakcie badań oraz nakreśla kierunki

dalszych prac.

Page 17: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

Rozdział 1

Eksploracja danych

1.1 Geneza eksploracji danych

Pozyskiwanie wiedzy jest zagadnieniem wynikającym z potrzeb informacyjnych [20]. Chęć pozy-

skania nowej wiedzy stanowi kombinację zaspokojenia potrzeb informacyjnych trojakiego rodzaju:

jakie informacje są potrzebne, gdzie można je znaleźć oraz jak można ich użyć. Tak sformułowane

zadanie pozyskiwania wiedzy jest trudne nawet dla człowieka. Rolą systemu komputerowego może

być jedynie wspieranie, pomoc w weryfikacji kolejnych hipotez, pomysłów, idei. Potrzeby informa-

cyjne jako zjawisko są trudne do zdefiniowania, można jedynie scharakteryzować je poprzez analogie

i pojęcia pomocnicze:

• potrzeby informacyjne są obecne w umysłach osób poszukujących nowej wiedzy, w procesiepozyskiwania następuje ujawnienie takich informacji,

• potrzeby informacyjne można wyrazić poprzez identyfikację braków wiedzy, aczkolwiek tylkoczęść potrzeb może być w ten sposób ujawniona,

• potrzeby informacyjne zmieniają się, ewoluują pod wpływem pozyskanej wiedzy i informacji,

• pozyskanie nowej wiedzy powoduje odkrycie nowych obszarów potrzeb informacyjnych.

Z takiej charakterystyki wynika ewolucyjna właściwość potrzeb informacyjnych, które są odkry-

wane i zaspokajane w kolejnych iteracjach procesu pozyskiwania wiedzy.

Termin „Pozyskiwanie wiedzy z baz danych” (ang. KDD - Knowledge Discovery in Databases)

przyjmuje się jako:

poszukiwanie interesujących wzorców i zapisanie ich w zwięzły i wyczerpujący spo-

sób [41].

17

Page 18: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

18 Eksploracja danych

Z tak przedstawionej definicji należy wyciągnąć następujący wniosek: poszukiwane są wzorce,

które są prawdziwe, nowatorskie, użyteczne i możliwe do przyswojenia przez człowieka.

Jeżeli mowa o odkrywaniu wiedzy to należy uściślić podstawowe terminy i klasyfikację używa-

ną w tym kontekście. Słowa dane, informacje, wiedza w potocznym znaczeniu często używane są

zamiennie jednak w kontekście badań nad pozyskiwaniem wiedzy należy stanowczo rozdzielić ich

znaczenia i zakres stosowania. Za dane uważa się znaki reprezentujące pomiary, wyniki, obserwacje

[81]. Dane zapisywane są na nośniku przy pomocy odpowiedniej aparatury (w komputerach elementy

do przechowywania danych zwane są pamięcią). Dane również mogą być przekazywane przy pomocy

różnych mediów do innych lokalizacji.

Informacja ustala i umiejscawia znaczenie danych w określonym kontekście i środowisku [81].

Słowo informacja pochodzi od łacińskiego informare, co oznacza „::::::::nadawać

:::::::formę”. Koncepcja in-

formacji sformułowana była na potrzeby telekomunikacji. Znane jest twierdzenie Shannona mate-

matycznie definiujące możliwość przesyłania danej ilości informacji (bitów) w określonym paśmie

częstotliwości. Istotne jest również semantyczne znaczenie informacji. Informacja umożliwia zmianę

sposobu postrzegania rzeczy, obiektów, wpływa na osąd i to odróżnia ją od danych. Słowo wiedza

może być definiowane jako zrozumienie, które uzyskuje się poprzez indywidualne doświadczenie lub

studiowanie faktycznych informacji i danych. Informacja jest „dziełem” zmysłów, a intelekt, czy też

mądrość jest potrzebna aby przekształcić te informacje w wiedzę.

Wiedza opisuje zdolność osoby lub organizacji do działania w nowym kontekście i środowisku.

W informatyce jako wiedzę traktuje się informacje pozwalające na wnioskowanie. Wiedza wykracza

poza informacje, gdyż implikuje zdolność do rozwiązywania problemów, stanowi przesłanki podej-

mowanych działań i rozumowań. Wiedzę utożsamia się ze zbiorem reguł (bazą wiedzy) podczas gdy

informacje utożsamia się z bazą faktów [49]. Wiedza to zdolność do rozwiązywania danej klasy pro-

blemów. Jest pozyskiwana w wyniku procesu uczenia się. Uczenie natomiast jest procesem, podczas

którego ludzie odkrywają problem, opracowują rozwiązanie problemu, realizują rozwiązanie i oce-

niają wyniki. Proces ten prowadzi do odkrywania nowych problemów [5]. Według encyklopedii „The

American Heritage” [107]wiedza to:

— znajomość, świadomość lub zrozumienie uzyskane przez doświadczenie lub studiowanie,

— stan, fakt rozumienia lub specyficzna informacja na temat czegoś,

— suma wszystkiego co zostało doświadczone, odkryte lub nauczone,

— organizacja informacji.

Omawiając termin Wiedza (duża litera podkreśla szerszy sens i znaczenie tego terminu), należy przy-

toczyć podstawowy podział, według którego wiedza jest klasyfikowana. Kryterium podziału wynika

z dostępnych metod przechowywania i przekazywania wiedzy. I tak Wiedza jawna, formalna (ang.

explicit knowledge) jest to wiedza, która może być wypowiedziana, wyartykułowana, dzięki czemu

może podlegać zarejestrowaniu, przeniesieniu na papier lub inny nośnik. Ulega rozpowszechnieniu

Page 19: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

1.1 Geneza eksploracji danych 19

Tabela 1.1. Porównanie wiedzy cichej i formalnej[101]

Wiedza cicha (ang. tacit) Wiedza jawna (ang. explicit)Subiektywna Obiektywna

Wypływa z doświadczenia Wynika z racjonalnego rozumowaniaPraktyka Teoria

przy pomocy różnego rodzaju narzędzi w ramach technik zarządzania wiedzą. Przykładowo są to

narzędzia wspomagające pracę grupową, do współdzielenia wiedzy, systemy baz wiedzy (np. help

desk).

Wiedza cicha (ang. tacit knowledge) - rozumiana jako wiedza niewypowiedziana, pozostająca

w ludzkim umyśle. O fakcie istnienia takiej wiedzy można się przekonać podczas bezpośredniego

kontaktu z daną osobą. Jest się przekonanym, że ta osoba posiada wiedzę ale zostaje to przekazywa-

ne w sposób nieformalny, trudny do wychwycenia, niemożliwy do wyrażenia językiem naturalnym.

Możliwe natomiast jest oszacowanie zakresu posiadanej wiedzy oraz przekazanie takiej wiedzy in-

nej osobie, ale przy zachowaniu bezpośredniego kontaktu pomiędzy tymi osobami. W tablicy 1.1

zestawiono dodatkowe atrybuty przypisywane poszczególnym rodzajom wiedzy.

Pojęcie mądrość jest nadrzędne do pozostałych i najtrudniejsze do zdefiniowania. Można przy-

jąć w uproszczeniu, że mądry człowiek (bo mądrość odnosi się wyłącznie do ludzi) to człowiek

posiadający bogatą wiedzę.

W ramach zagadnień zajmujących się przetwarzaniem wiedzy wyróżnia się następujące zadania

[101]:

Pośredniczenie — współdzielenie wiedzy, narzędzia służące przekazywaniu informacji, zapisów,

pomysłów, zarówno bezpośrednio jak i za pośrednictwem bazy wiedzy.

Uzewnętrznienie — narzędzia wspomagające akwizycję wiedzy, przekształcanie jej na postać jaw-

ną, organizowanie wiedzy.

Uwewnętrznienie —polega na przekształcanie wiedzy jawnej w cichą, zachodzi to podczas uczenia

się, przyswajania wiedzy.

Poznawanie —wspomaga podejmowanie decyzji w oparciu o zgromadzoną wiedzę oraz zdobywanie

nowej, korzystając z wymienionych powyżej trzech funkcji.

Wymieniona powyżej klasyfikacja obejmuje występujące w procesie przetwarzania wiedzy prze-

kształcenia i przekazy wiedzy. Pozwala ona wyodrębnić pewne procesy, które następnie można pod-

dać całkowitej bądź częściowej formalizacji, i dalej skomputeryzowaniu.

Eksploracja danych (ang. DM – Data Mining) ściśle się wiąże z pojęciem pozyskiwanie wiedzy.

Stanowi bowiem główny etap w procesie pozyskiwania wiedzy. Całość procesu pozyskiwania składa

Page 20: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

20 Eksploracja danych

się 5 etapów. W literaturze spotyka się następująco wyodrębnione etapy [38]:

1. selekcja,

2. przygotowanie,

3. przekształcanie,

4. eksploracja danych (ang. DM – Data Mining),

5. interpretacja.

Pozyskiwanie wiedzy rozpoczyna się od zrozumienia dziedziny, w której planowane jest poszukiwa-

nie. Następnie gromadzi się dostępną wiedzę na dany temat, identyfikuje cele prowadzonych działań

oraz identyfikuje potrzeby. Po przeprowadzonej analizie dostępnych zasobów bazodanowych, zarów-

no pod względem technicznym (format zapisu, format danych, mechanizmy dostępowe, objętość),

jak i merytorycznym (rejestrowane wielkości, reprezentacja rzeczywistych zjawisk, wiarygodność,

kompletność), przygotowuje się przetworzony zbiór danych stanowiący podzbiór bazy wejściowej.

Następnym krokiem jest eksploracja danych w odpowiednio wyselekcjonowanym, przygotowanym i

przekształconym zbiorze. Ostatni etap KDD to ocena i interpretacja rezultatów eksploracji danych

oraz przygotowanie pozyskanej w ten sposób wiedzy do użycia.

Obecnie większość badań koncentruje się na metodach stosowanych w eksploracji danych, chociaż

pozostałe etapy mają również doniosłe znaczenie dla osiągnięcia pomyślnych rezultatów [25, 39].

Jak już powiedziano pozyskiwanie wiedzy stanowi iteracyjny proces zakładający wielokrotną inte-

rakcję z użytkownikiem. Wielokrotnie można wyodrębnić cykle, jakie tworzą się poprzez powtarzanie

lub powrót do wcześniejszych etapów. Jest to spowodowane potrzebą analizy na różnych poziomach

abstrakcji, w różnych stopniach szczegółowości, koncentracji na różnych aspektach danego zagad-

nienia [67]. Eksploracja danych natomiast stanowi najistotniejszy element w procesie pozyskiwania

wiedzy. Ponieważ pozostałe etapy tego procesu są albo zagadnieniami rutynowymi, w porównaniu

do samego zagadnienia eksploracji danych (np. selekcja danych), albo są nierozłącznie związane z

samą eksploracją danych, dlatego w wielu opracowaniach dochodzi do zrównania, lub też utożsa-

mienia pozyskiwania wiedzy z eksploracją danych, poprzez pominięcie wyszczególniania pozostałych

etapów.

Eksploracja danych powstała na gruncie statystyki, sztucznej inteligencji oraz maszynowego ucze-

nia się, korzysta z wyników badań w wielu dziedzinach. Poniżej omówiono poszczególne aspekty

związane z kształtowaniem się eksploracji danych.

Page 21: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

1.1 Geneza eksploracji danych 21

Podejście wywodzące się z matematyki i statystyki

Statystyka była najważniejszym źródłem technik stosowanych w analizie danych przez długi

okres czasu. Niewątpliwy wkład miały tu twierdzenia Bayesa, szeroko stosowane w wielu metodach

pozyskiwania wiedzy. Modele oparte o klasyfikator bayesowski, sieci bayesowskie są rozwijane w

wielu publikacjach [64, 104, 119, 26].

Do przetwarzania wiedzy dobrze nadają się nowe koncepcje reprezentacji i przetwarzania. Histo-

rycznie wcześniejsze są zbiory rozmyte (ang. fuzzy sets) zaprezentowane przez L. A. Zadeh [129]. Przy

ich pomocy można reprezentować pojęcie częściowej przynależności do zbioru, zagadnienie spotykane

w świecie realnym. Model ten pomocny jest wszędzie tam, gdzie metody klasyczne niewystarczają.

Drugą koncepcją szeroko wykorzystywaną w zakresie pozyskiwania wiedzy zaprezentowaną przez

Pawlaka [102] są zbiory przybliżone. Przykładem wykorzystania zbiorów przybliżonych w tym za-

kresie jest publikacja W. Ziarko [134].

Podejście wywodzące się z systemów uczących

Proces uczenia się polega na identyfikacji hipotez a następnie selekcji na podstawie prawdziwości,

wiarygodności, wartości z punktu widzenia użytkownika. Techniki i metody uczenia się, jako procesu

odkrywania Wiedzy, mają zastosowanie w eksploracji danych i pozyskiwaniu wiedzy.

Definicja 1. Uczeniem się systemu jest każda autonomiczna zmiana w systemie, zachodząca na

podstawie doświadczeń, która prowadzi do poprawy jakości jego działania [27].

Z tak przedstawionej definicji wynikają następujące aspekty:

• uzyskiwane w wyniku uczenia parametry są nazywane Wiedzą lub umiejętnością,

• musi istnieć przestrzeń hipotez, z której pobierane są poszczególne hipotezy do analizy,

• istnieje mechanizm tworzenia hipotez na podstawie doświadczeń (np. reprezentowanych w baziedanych w postaci transakcji),

• istnieje mechanizm akceptacji i rewizji hipotez,

• system posiada wiedzę wbudowaną oraz nabytą w trakcie uczenia,

• system działa autonomicznie, szczególnie w zakresie odkrywania hipotez, które mogą być wie-dzą, przy założeniu niepewnego statusu wiedzy oraz zawodności systemu traktowanego jako

ucznia.

Reprezentacja hipotez ściśle zależy od dziedziny, w której następuje uczenie się. Jednym ze spo-

sobów reprezentacji jest pojęcie kompleksu. Przy założeniu, że na dziedzinie D są określone pewne

Page 22: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

22 Eksploracja danych

nominalne atrybuty, kompleks opisuje jakie warunki muszą być spełnione przez wartości atrybu-

tów przykładów, aby były one przez niego pokryte. Kompleks jest interpretowany jako koniunkcja

warunków nakładanych na pojedyncze atrybuty, nazywane selektorami. Przyjmując, że atrybuty są

uporządkowane i ponumerowane, a selektor vi umieszczony na i-tej pozycji w kompleksie reprezen-

tuje warunek nakładany na wartość atrybutu ai, mającego przeciwdziedzinę Di = vi1, . . . , vim,można zdefiniować następujące selektory:

selektor pojedynczy si =< sik > spełniony dla przykładu x, jeśli atrybut ai dla tego przykładu

ma pewną wartość z jego przeciwdziedziny sik = ai(x),

selektor dysjunkcyjny si =< sia, sib, . . . , siz > spełniony, jeżeli atrybut ma jedną z wymienionych

wartości jego przeciwdziedziny:

sia, sib, . . . , siz ∈ Di, (1.1a)

sia, sib, . . . , siz 6= Di, (1.1b)

co oznacza, że

ai(x) = sia ∨ ai(x) = sib ∨ . . . ∨ ai(x) = siz, (1.1c)

selektor uniwersalny si =< ? > spełniony dla dowolnej wartości przeciwdziedziny ai(x) ∈ Ai,

selektor pusty si =< ∅ >jeżeli warunek nie jest spełniony przez żadną wartość atrybutu.

Kompleks zapisuje się jako listę oddzielonych od siebie przecinkami selektorów, ujętą w nawiasy

trójkątne. Każdy kompleks zawierający przynajmniej jeden selektor pusty nie pokrywa żadnego

przykładu i może być utożsamiany z kompleksem zawierającym wyłącznie selektory puste. Hipoteza

klasyfikuje jako pozytywne tylko i wyłącznie te przykłady, dla których wartości atrybutów spełniają

warunki narzucane przez kompleks, za pomocą których hipoteza ta jest reprezentowana.

Podejście bazodanowe

Dane podlegające eksploracji zazwyczaj przechowywane są w relacyjnej bazie danych, wiele me-

tod korzysta z technik tam stosowanych. Rachunek relacyjny, języki zapytań czy organizacja danych

służy efektywnemu przetwarzaniu związanemu z eksploracją. Rozwój technik eksploracji ma również

wpływ na rozwój systemów bazodanowych. Wiele zadań związanych z agregacją, podsumowaniem,

uogólnianiem, detekcją trendów czy dyskryminacją zmian na stałe weszło do tych narzędzi.

Podejście lingwistyczne

Z uwagi na to, że większość ze zgromadzonych danych ma charakter symboliczny (nienumerycz-

ny), wymagane jest skonstruowanie narzędzi odpowiednich do przetwarzania takich danych. Szacuje

Page 23: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

1.2 Cele i wymagania eksploracji danych 23

wiedza posiadana wyodrębnione informacje

R

wiedza nowoodkryta

Rys. 1.1. Cel eksploracji danych.

się że 70-90 procent informacji ma postać symboliczną [6, 123, 24]. Wiele z tych danych ma postać

lingwistyczną, czasami jest to czysty, naturalny język z pełną gramatyką, słownikiem a czasami tylko

sztucznie wybrany podzbiór, wystarczający do reprezentacji przyjętych informacji.

Podejście lingwistyczne charakteryzuje się dużą różnorodnością stosowanych technik. Klasyczna

technika, opierająca się na statystyce występowania słów została przedstawiona w pracy [114]. Ko-

lejne techniki opierają się na analizie syntaktycznej, semantycznej i morfologicznej tekstów [74]. Inne

opierają się na cytowaniach (jak to ma miejsce w przypadku literatury naukowej) bądź odsyłaczach

(przykładem jest hipertekst) [82].

1.2 Cele i wymagania eksploracji danych

Ogólnie mówiąc celem eksploracji danych jest pozyskanie nowej wiedzy. Jednak eksploracja da-

nych jest zagadnieniem ściśle zależnym od zastosowania i różne zastosowania mogą wymagać różnych

technik w celu uzyskania rozwiązania.

Formalnie eksploracja danych polega na poszukiwaniu pewnych wzorców (np. w formie zdań,

reguł), które są interesujące i wiarygodne. Wiarygodność da się w pewien sposób oszacować, np.

poprzez policzenie liczby przykładów, które dany wzorzec potwierdzają, natomiast w kwestii czy

dany wynik jest interesujący sędzią jest użytkownik. Zadanie eksploracji PI w języku zdań L zapisujesię następująco:

PI(l,L) = l ∈ L : L jest interesujące , (1.2)

Page 24: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

24 Eksploracja danych

gdzie: L jest językiem, w którym można zapisać wzorce, zdania, oznaczane jako l w przedmiocieeksploracji danych [89].

Przykładowo może to być podanie pytań, na które DM stara się odpowiedzieć. Najbardziej ogólne

mogłoby brzmieć następująco: Proszę powiedzieć coś interesującego o danych. Takie sformułowanie

problemu, chociaż prawidłowe, stawia trudne warunki do zrealizowania. Przede wszystkim pojęcie

coś interesującego jest trudne do zdefiniowania a nawet do wyartykułowania przez użytkownika. Re-

guły i wzorce wygenerowane przed system DM mogą być albo trywialne (i dobrze znane) albo nie

posiadać żadnej wartości dla użytkownika. Nie znany jest również oczekiwany poziom szczegółowości

ani forma prezentowanych wyników. Przykładowo można otrzymać następujące wyniki na podstawie

analizy transakcyjnej bazy danych, pochodzącej z rejestracji transakcji sprzedaży w sklepie samoob-

sługowym:

• częściej wybierane są ceny zakończone na 9 — reguła dobrze znana fachowcom od marketingu,

• mleko jest kupowane średnio co 5 minut — ta reguła nie niesie żadnej użytecznej informacji,

• w piątki średnio mleko sprzedawane jest do 15 — taki wynik sugeruje braki w zaopatrzeniu.

Użytkownik oczywiście potrafi w większości przypadków ocenić na ile prezentowane wyniki są dla

niego interesujące, ale może to uczynić jedynie ręcznie, osobno analizując każdy rezultat. Problemem

jest to, że ludzkie możliwości są ograniczone i taka analiza może dotyczyć niewielu przypadków.

W celu ułatwienia zadania poszukiwania interesujących hipotez stosuje się pewną zasadę do-

tyczącą poszukiwania i wyboru potencjalnie interesujących wzorców. W wyniku badania z zakresu

CPM (ang. combinatoral pattern matching) utworzono następującą regułę [44]:

Jest lepiej używać skomplikowanych wzorców i złożyć je przy pomocy prostych kombinacji

logicznych niż prostych wzorców i używać skomplikowanych kombinacji logicznych.

W celu ukonkretnienia założeń można posłużyć się zadaniem: znaleźć interesujące asocjacje po-

między danymi. Takie postawienie sprawy daje podpowiedź o kierunkach dalszych poszukiwań. W

tym zakresie posługuje się analizą asocjacji (ang. assotiations)[2] występujących pomiędzy zmien-

nymi. Wśród metod temu służących wymienia się analizę koincydencji [85] oraz analizę relacji [1].

Obszarów stosowania eksploracji danych jest wiele, obejmują one te miejsca, w których stosuje

się systemy informatyczne, między innymi w celu gromadzenia pozyskanych danych w postaci baz

danych. Jesteśmy świadkami prawdziwej eksplozji baz danych, mając na myśli ich liczbę i objętość.

Z powodu dużej prostoty konstruowania bazy danych oraz akceptowalnych cen systemy gromadzące

dane stosuje się prawie we wszystkich dziedzinach życia. Wszędzie tam natomiast, gdzie istnieje już

baza danych, pojawia się potrzeba analizy tych danych w celu odkrycia nieznanej dotąd wiedzy.

Page 25: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

1.2 Cele i wymagania eksploracji danych 25

Dziedziny, w których szeroko stosuje się eksplorację danych to: technika, medycyna, astronomia,

szeroko pojęty biznes.

Jak już powiedziano na wstępie, cechą wspólną obszarów w których stosuje się DM jest oparcie

się o duże bazy danych zgromadzone w wyniku działania systemu informatycznego, który gromadzi

dane o badanych, kontrolowanych i obserwowanych obiektach. Dane mogą powstawać w wyniku

sztucznie inspirowanego eksperymentu lub rejestracji naturalnych działań.

Aby eksploracja danych była efektywna powinny być spełnione następujące wymagania:

1. Obsługa różnych typów danych.

Dostępne dane mogą być różnej postaci, pochodzić z różnego rodzaju aplikacji, dotyczyć róż-

nych aspektów reprezentowanych w bazie danych. Pomijając bowiem niektóre dane jest się

narażonym na utratę możliwości pozyskania nowej wiedzy. Z uwagi na to, że wiele baz zawiera

dane różnych typów (jednocześnie są w nich obecne dane numeryczne, tekstowe i multimedial-

ne) aplikacje DM winny umożliwiać jak najmniej ograniczoną ich eksplorację.

2. Efektywne i skalowalne algorytmy.

Zazwyczaj analizowane bazy są dużych rozmiarów, z tendencją do powiększania się i to we

wszystkich kierunkach (ilość przykładów, atrybutów, wartości). Aby czas analizy był akcep-

towalny, szczególnie w systemach interaktywnych, należy stosować algorytmy o co najwyżej

wielomianowej złożoności, i to niskiego stopnia.

3. Użyteczne i prawdziwe rezultaty.

Źródłowe dane mają określony stopień wiarygodności, algorytmy wprowadzają pewne uogól-

nienia i przybliżenia, w wyniku czego powstająca wiedza ma określony stopień niepewności,

który należy oszacować poprzez pomiar jakości, użyteczności i wartości pozyskanej wiedzy.

4. Różne sposoby prezentacji rezultatów.

Ostatecznym odbiorcą i cenzorem wyników eksploracji danych jest człowiek, i aby maksymalnie

mu ułatwić, a czasami umożliwić odkrycie nowej wiedzy, winno mu się umożliwić otrzymanie

wyników w różnej postaci (głównie w tym miejscu myśli się o postaci graficznej (wykresy) w

miejsce tabelarycznej - ale nie tylko). Z uwagi na ograniczone możliwości percepcyjne człowieka,

każda technika ułatwiająca przyswojenie rezultatów jest jak najbardziej wskazana.

5. Eksploracja na różnych poziomach abstrakcji.

Ponieważ trudno a priori określić oczekiwaną postać wyników, co właściwie ma być odkryte,

eksploracja danych winna umożliwiać dynamiczne zmiany poziomu abstrakcji, szczegółowości

przetwarzania, aspektów podlegających analizie.

Page 26: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

26 Eksploracja danych

1.3 Ocena jakości eksploracji danych

Pozyskiwanie wiedzy i eksploracja danych są zagadnieniami trudno definiowalnymi. Trudność

objawia się poprzez brak jednoznacznej funkcji oceny uzyskiwanych wyników. Jak już wspomnia-

no, celem jest pozyskanie nowej wiedzy. Przy obecnym stanie nauki nie istnieją formalne definicje

pozwalające na pomiar (ocenę, bądź identyfikację) stopnia pozyskania wiedzy. Natomiast można

dokonać pośredniej oceny jakości technik eksploracyjnych. Dokonuje się tego doświadczalnie, wycho-

dząc z dostępnych informacji na temat sposobów tworzenia nowej wiedzy przez człowieka, takich jak

zdolność uczenia się, możliwości percepcji, wnioskowanie itd. W procesie oceny bada się zdolność

człowieka do przyswojenia, uzyskanych danymi technikami eksploracji danych, rezultatów oraz oceny

wytworzonych przez człowieka na tej podstawie wniosków. Oceny jakości wiedzy również dokonuje

człowiek, na podstawie rezultatów podejmowanych decyzji bądź w oparciu o własną wiedzę i do-

świadczenie. Jak pokazano powyżej, w procesie oceny jakości wiedzy, główną rolę odgrywa człowiek,

przy pomocy swojego rozumu, który to proces jest całkowicie (albo prawie całkowicie) nieznany.

Powoduje to powstawania znaczących błędów oceny, z uwagi na zbyt dużą zależność jej wyników od

wiedzy, doświadczenia oraz innych cech, które w różnym stopniu posiada człowiek.

Biorąc pod uwagę powyższe spostrzeżenia trudno jest obiektywnie oceniać jakość poszczególnych

technik i metod. Należy oddzielić wpływ człowieka na ocenę, aczkolwiek jest to duży problem. Propo-

zycją autora niniejszej pracy jest posługiwanie się w procesie oceny jakości eksploracji następującymi

kryteriami:

1. Redukcja ilości danych do poziomu percepcji człowieka, ale w takim zakresie, aby nie zostawały

pominięte istotne własności (trendy, atrybuty); należy dodać, że termin „istotne”’ nie odnosi

się do liczebności czy udziału, gdyż nawet pojedyncze wystąpienia elementów, uwzględnione

w procesie eksploracji, mogą przysłużyć się pozyskaniu wiedzy.

2. Różnorodność form prezentacji – jest powszechnie znana prawda, że stopień absorbcji informa-

cji przez człowieka ściśle zależy od formy jej prezentacji, w tym zakresie spotyka się prezentacje

wyników w formach: tablicy przykładów, wzorców, podziału na podzbiory, zbioru hipotez, listy

reguł, przedstawienia funkcji analitycznych i zależności funkcjonalnych; wiele z wymienionych

postaci jest przekształcalne w inne, natomiast część jest uzyskiwana jedynie w wyniku zasto-

sowania odpowiedniej metody eksploracji.

3. Różnorodność form uzyskiwanych wyników – podobne z nazwy kryterium do powyższego, acz-

kolwiek ocenia się w nim stopień elastyczności otrzymywanych form do reprezentacji; wiele z

metod posiada ograniczenia w zakresie reprezentacji form, ograniczenia takie to przykłado-

wo reprezentacja tylko w postaci obszarów wypukłych, analiza funkcjonalna tylko w zakresie

funkcji liniowych itd.

Page 27: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

1.4 Techniki eksploracji danych 27

4. Zgodność z funkcją kryterium – wiele z metod posługuje się funkcją kryterium, w celu zna-

lezienia rozwiązania. Przyjmuje się, że funkcja ta stanowi przybliżenie funkcji oceny jakości

podziału. O ile kryterium samodzielnie nie stanowi o jakości metody, to wykorzystuje się je do

porównywania poszczególnych metod, a w szczególności ich implementacji. Osiąganie lepszych

wartości funkcji kryterium w procesie eksploracji ograniczone być może innymi własnościa-

mi metody eksploracji, które stanowią o jej przewadze. Dodatkowo funkcja kryterium tylko

w przybliżonym stopniu realizuje funkcję oceny, co również w niektórych przypadkach skutku-

je pogorszeniem otrzymywanych wyników. Aczkolwiek, pomijając wpływ wymienionych zja-

wisk, wyniki funkcji kryterium są istotnym elementem w procesie porównywania jakości metod

eksploracji, a co ważniejsze: funkcja kryterium umożliwia porównanie poprzez pomiar, czyli z

pominięciem udziału człowieka.

5. Uwzględnianie wiedzy w procesie eksploracji – każda metoda, która potrafi wykorzystać in-

formacje spoza badanej bazy danych czy też kontekst danych, potencjalnie otrzymuje lepsze

wyniki (bardziej odpowiadające rzeczywistości), dlatego też o jakości metody stanowi zdolność

do przyjmowania danych z innych źródeł.

Powyższa klasyfikacja nie obejmuje wszystkich zagadnień związanych z oceną jakości, nie stano-

wi również ogólnej definicji jakości, którą należało by stosować. Celem autora jest przedstawienie

istotnych kryteriów, które pozwolą na właściwe i możliwie pełne ocenianie metod eksploracji, a

w szczególności metod grupowania danych symbolicznych. W trakcie badań autor wielokrotnie oce-

nia badane algorytmy (patrz podrozdziały 3.8, 4.6).

1.4 Techniki eksploracji danych

Techniki i metody służące eksploracji danych wywodzą się głównie z obszaru badań nad sztuczną

inteligencją. Główne przykłady stosowanych rozwiązań należą do następujących zakresów:

— metody statystyczne,

— sieci neuronowe,

— metody uczenia maszynowego,

— metody ewolucyjne,

— zbiory rozmyte,

— zbiory przybliżone.

W eksploracji danych rozwijane są różne modele przetwarzania, różniące się zakresem zastosowań,

stosowanymi algorytmami rozwiązań, sposobem prezentacji wyników. Wśród nich wyróżnia się:

1. streszczanie,

Page 28: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

28 Eksploracja danych

2. poszukiwania asocjacji,

3. analiza funkcjonalna,

4. klasyfikacja,

5. grupowanie.

Ad.1 – Streszczanie

Kolejną techniką stosowaną w DM jest uogólnianie (ang. summarization tools, data generaliza-

tion). Dla danego zbioru przykładów proces streszczania polega na wydobyciu wspólnych elementów

zawartych w przykładach, ich wspólnych właściwości. Rezultatem ma być skoncentrowany opis infor-

macji zawartych w danych, między innymi stosowane są w tym zakresie techniki takie jak indukcja

reguł, tablice koincydencji. Technika ta wykorzystuje różne metody agregacji danych, zmiany pozio-

mów abstrakcji, analizę danych w różnych wymiarach [25].

Ad.2 – Poszukiwania asocjacji

Reguły asocjacyjne reprezentują w najbardziej ogólnym ujęciu wiedzę o tym, że pewne wartości

niektórych atrybutów występują łącznie z innymi wartościami innych atrybutów w pewnej istotnej

częstotliwości.

Definicja 2. Asocjacjami nazywamy reguły (warunkowe zależności, zdania) postaci A → B, gdzie

A i B są zbiorami elementów występującymi w bazie przykładów P [27]:

A→ B, gdzie A ∈ P, B ∈ P, A ∩B = ∅. (1.3)

Poszukiwania asocjacji dokonuje się najczęściej w transakcyjnych bazach danych. W przy-

padku bazy dla firmy handlowej, oznaczonej jako D każda transakcja zawiera zbiór elementówT ⊆ I = i1, . . . , is. Każdy element zbioru I reprezentuje sprzedawany produkt. Ważnym za-gadnieniem w ramach DM jest poszukiwanie wszystkich podzbiorów T takich, że ilość transakcji,

które zawiera analizowany podzbiór T jest większa od pewnego minimum, będącego współczynni-

kiem odcięcia (ang. threshold min-support).

Reguły asocjacyjne, jako szczególny przypadek hipotez, można zapisywać przy pomocy komplek-

sów, dopuszczając w nich jednak wyłącznie selektory pojedyncze i uniwersalne. Reguła asocjacyjna

składa się z dwóch list wartości: warunkujących i warunkowanych.

Definicja 3. Regułą asocjacyjną jest dowolne wyrażenie postaci r = p ⇒ q, gdzie p i q są kom-pleksami zawierającymi wyłącznie selektory pojedyncze i uniwersalne odpowiadające atrybutom okre-

ślonym na rozważanej dziedzinie, przy czym dla żadnego atrybutu selektor pojedynczy nie występuje

jednocześnie w p i q.

Page 29: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

1.4 Techniki eksploracji danych 29

W celu scharakteryzowania reguły asocjacyjnej stosuje się liczbowe wskaźniki reprezentujące

zakres i dokładność reguły oznaczane terminami nośnik (ang. support) i wiarygodność (ang. confi-

dence). W literaturze polskiej zamiennie do terminu nośnik stosuje się termin wsparcie.

Definicja 4. Nośnik reguły r = p ⇒ q na zbiorze przykładów D jest określony jako stosunekliczby przykładów ze zbioru P pokrywanych jednocześnie przez kompleksy p i q do liczby wszystkichprzykładów w tym zbiorze, czyli

σr(P) =|Pp∧q||P|

. (1.4)

Definicja 5. Wiarygodność reguły r = p⇒ q na zbiorze przykładów P jest określona jako stosunekliczby przykładów ze zbioru P pokrywanych jednocześnie przez kompleksy p i q do liczby przykładówpokrywanych przez kompleks p

ρr(P) =|Pp∧q||Pp|

. (1.5)

Problem poszukiwania asocjacji sprowadza się do wygenerowania wszelkich możliwych hipotez

i selekcji tych, które posiadają wymaganą wiarygodność oraz nośnik (występują odpowiednio wiele

razy).

Inną metodą selekcji asocjacji jest stosowanie testów statystycznych. Stosowane jest to z dwóch

powodów. Po pierwsze ilość dostępnych danych jest zawsze ograniczona, a nawet gdy jest bardzo

obszerna to ilość przypadków potwierdzających daną hipotezę może być niewielka. Dlatego jest

potrzebna technika skalująca współczynnik odcięcia do rozmiarów bazy danych. Po drugie liczba

możliwych do wystąpienia hipotez rośnie wykładniczo wraz ze wzrostem liczby zmiennych oraz

wzrostem dozwolonych wartości, które te zmienne mogą przyjmować.

W wielu zastosowaniach potencjalnie istotne asocjacje istnieją na dość wysokim poziomie abs-

trakcji. Niestety bazy danych, a co za tym idzie proste algorytmy poszukiwania asocjacji, mogą nie

doprowadzić do ich odkrycia. Transakcyjne bazy danych zazwyczaj zawierają jedynie identyfikatory

towarów (np. kod paskowy EAN), wystarczające do jednoznacznej identyfikacji. Na potrzeby poszu-

kiwania asocjacji należałoby przeanalizować bazę wstępnie poddaną pewnemu uogólnieniu, a w miej-

sce unikalnych identyfikatorów podstawić pewne uogólnione produkty pod względem rodzaju, marki,

gramatury czy opakowania (zamiast „chleba tostowego” tylko „chleb”). Problem poszukiwania aso-

cjacji na wielu poziomach abstrakcji został przedstawiony w [60].

Informacje o poziomach abstrakcji mogą bezpośrednio wynikać z danych, przykładowo można

dokonać uogólniania „dzień” „miesiąc” „rok”. Innym sposobem jest wykorzystanie dostępnejwiedzy, jednak nie zawartej bezpośrednio w bazie. Przykładowo przynależność danego miasta do

konkretnego kraju, czy regionu („Warszawa” „Polska”), chociaż oczywista dla człowieka, abybyła odpowiednio spożytkowana przez komputer musi być najpierw do niego wprowadzona.

Podstawą realizacji analizy na różnych poziomach abstrakcji jest posiadanie właściwej hierarchii

Page 30: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

30 Eksploracja danych

(lub innej uporządkowanej struktury) atrybutów opartej o wiedzę o środowisku, które jest reprezen-

towane przez bazę danych. Przykładowo zbiór atrybutów postaci adres (numer, ulica, miejscowość,

gmina, powiat, województwo, państwo) posiada naturalną hierarchię wywodzącą się z semantyki

poszczególnych terminów. Strukturę hierarchii można automatycznie pozyskać bezpośrednio z bazy

danych poprzez analizę koincydencji i częstości występowań poszczególnych wartości atrybutów [59].

Można również wiedzę o strukturze bazy pozyskać od eksperta, lecz może się zdarzyć że wybrana

hierarchia nie będzie optymalna dla danego zadania eksploracji danych. Z tego powodu systemy DM

winny posiadać możliwość dynamicznej modyfikacji zależności pomiędzy atrybutami, na podsta-

wie różnych technik, tak aby możliwa była analiza danych w przekrojach odpowiadających różnym

poziomom abstrakcji ze względu na sposób postrzegania.

Ad.3 – Analiza funkcjonalna

Drugim, jeszcze bardziej zawężonym podejściem do DM jest analiza funkcjonalna. Zależności

funkcjonalne mogą być liniowe jak i nieliniowe. Podstawową cechą odróżniającą analizę funkcjo-

nalną od asocjacyjnej jest to, że zależność funkcjonalna zakłada istnienie kierunku zależności, tzn.

która zmienna jest implikowana przez którą. Reguły asocjacyjne natomiast zakładają jednoczesne

występowanie niektórych zbiorów wartości. Funkcje zawsze przekształcają jedne zmienne w inne,

natomiast w przypadku asocjacji ten kierunek zwykle nie jest możliwy do stwierdzenia. Istotnym

zagadnieniem w ramach analizy funkcjonalnej jest predykcja, której celem jest estymacja przyszłych

wartości atrybutów obiektów.

Pewną odmianą analizy funkcjonalnej jest stosowanie modeli opierających się na przybliżeniu

zależności pomiędzy zmiennymi funkcjami liniowymi, dotyczy zadań aproksymacji i estymacji i po-

dobnych technik statystycznych.

Z punktu widzenia technicznego najlepiej rozpocząć od poszukiwania asocjacji, a następnie

przejść do analizy funkcjonalnej [67].

Ad.4 – Klasyfikacja

Klasyfikacja jest procesem, służącym odkryciu reguł i właściwości, dzięki którym obiekty są kla-

syfikowane do poszczególnych kategorii. Dokonuje się tego na podstawie zbioru trenującego, którego

przykłady posiadają przypisane kategorie (najczęściej przez człowieka). Po przeprowadzeniu ana-

lizy, otrzymane rezultaty służą klasyfikacji przyszłych lub pozostałych danych do poszczególnych

kategorii.

Dzielenie zbioru obiektów na grupy (podzbiory) stanowi podstawową czynność dokonywaną przez

człowieka w celach poznawczych. Klasyfikacja jest jednym z procesów wchodzących w skład myślenia,

postrzegania, uczenia się, podejmowania decyzji. Jest techniką ułatwiającą poznanie rzeczywistości

Page 31: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

1.5 Wykorzystywanie zewnętrznej wiedzy 31

poprzez redukcję entropii. Obszarów stosowania klasyfikacji jest wiele, można ją spotkać w ekonomii,

medycynie, antropologii, archeologii, socjologii, lingwistyce, psychologii, biologii.

W zależności od rodzaju dostępnej informacji w ramach klasyfikacji można wyodrębnić dwa

zagadnienia:

• klasyfikację wzorcową, zwaną również analizą dyskryminacyjną, gdy struktura klas jest znanatzn. istnieje charakterystyka klas, do których należy przypisać poszczególne obiekty. Zagadnie-

nie to określa się również jako uczenie lub rozpoznawanie z nauczycielem,

• klasyfikację bezwzorcową, inaczej taksonomia, analiza skupień albo grupowanie występuje wów-czas gdy nic nie wiadomo o strukturze klas, na podstawie obserwacji należy dopiero odkryć

reguły klasyfikacji. W konsekwencji grupowanie określa się mianem uczenia lub rozpoznawania

bez nauczyciela.

Ad.5 – Grupowanie

Jak już powiedziano grupowanie (ang. clustering) wywodzi się z szerszego pojęcia jakim jest

klasyfikacja bezwzorcowa.

Grupowanie powszechnie traktuje się jako uczenie bez nadzoru, w którym uczeń otrzymuje zbiór

trenujący, zawierający przykłady bez określania ich kategorii (przykłady nieetykietowane). Wła-

ściwe kategorie uczeń musi zaproponować samodzielnie na podstawie pewnej zasady grupowania,

wbudowanej w algorytm lub częściowo definiowanej przez użytkownika [27].

Poprzez grupowanie można również rozwiązać problemy z gatunku odkrywania struktury w da-

nych oraz dokonywanie uogólniania.

1.5 Wykorzystywanie zewnętrznej wiedzy

W procesie eksploracji danych, oprócz stosowania różnego rodzaju metod umożliwiających anali-

zę, można również korzystać z wiedzy i informacji, co prawda nie zawartej w samej, źródłowej bazie

danych, ale dostępnej i odnoszącej się do badanego środowiska i zbioru obiektów. Wiedza taka po-

maga w dobraniu odpowiednich metod, przyspiesza proces analizy, umożliwia właściwą interpretację

wyników. Posiadana wiedza może być wykorzystana na każdym etapie eksploracji danych:

• na etapie przygotowania danych, zbiór wartości i atrybutów może zostać rozszerzony i uzupeł-niony na podstawie posiadanych informacji,

• wiedza o źródle danych umożliwia dobranie odpowiednich metod, funkcji wartościujących i oce-niających, mechanizmów przeszukujących obszar rozwiązań,

Page 32: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

32 Eksploracja danych

• poprzez implementację i dobór współczynników wartościujących, parametryzujących, zmie-niających charakterystyki funkcji porównujących i oceniających (np. stosowane miary podo-

bieństwa) można wpływać na otrzymywane wyniki. Doboru tych parametrów dokonuje się na

podstawie posiadanej wiedzy,

• wiedza umożliwia dobranie adekwatnych heurystyk, wynikających z możliwych do przepro-wadzenia uogólnień i uproszczeń, a prowadzących do zwiększenia wydajności i efektywności

procesu eksploracji,

• walidacja i interpretacja wyników bez wiedzy o badanym środowisku jest niemożliwa.

1.6 Eksploracja danych lingwistycznych

Jeżeli przytoczymy definicję przetwarzania danych jako pewne określone manipulacje na liczbach

lub symbolach to analogicznie, przez przetwarzanie danych lingwistycznych rozumie się manipula-

cje na słowach z języka naturalnego. Zakłada się przy tym, że podczas przetwarzania wykorzystuje

się znaczenia, jakie zostały poszczególnym słowom (terminom) przypisane w danym języku. Prze-

twarzanie słów (ang. computing with words) [130] jest wzorowane na szczególnej ludzkiej zdolności

rozwiązywania zadań bez jakiegokolwiek pomiaru jak również obliczeń. Zdolności te grają kluczowe

role w umiejętności rozpoznawania i wnioskowania. Najbardziej znamiennym przykładem może tu

być umiejętność napisania streszczenia z danego tekstu. Podstawową różnicą pomiędzy ludzką per-

cepcją a pomiarem jest to, że pomiar ma charakter punktowy, natomiast to co człowiek postrzega ma

charakter rozmyty, nieprecyzyjny. Z drugiej jednak strony określenia słowne mimo swej nieprecyzyj-

ności, w odróżnieniu od danych liczbowych, oddają istotę sprawy. Pojęcie wiek może być określone

numerycznie w latach. Można stwierdzić, że ktoś ma 21 lat i będzie to fakt absolutnie prawdziwy,

dla każdego i w każdej sytuacji, natomiast bez innych informacji nie można dokonać żadnego wnio-

skowania z tym związanego. Korzystając ze słów ktoś może powiedzieć, że dana osoba jest młoda. I

tu następuje szereg niejasności, wątpliwości a nawet sprzeczności. Słowo „młody” można przypisać

do każdej osoby będącej w określonym przedziale wiekowym. Niestety nie ma jednolitej definicji tego

przedziału. Co więcej, może się zdarzyć że osoba „młoda” dla jednych, dla innych jest już „stara”.

Ale jednocześnie można wysnuć następujące wnioski z określenia danej osoby jako „młodej”. Po

pierwsze określenie „młody” nie odnosi się wyłącznie do bezwzględnego wieku danej osoby mierzo-

nego jednostką czasu, może również określać doświadczenie, siły witalne, nastawienie do życia. Taka

wieloznaczność jest powszechna w języku naturalnym. Po drugie można wnioskować o istniejących

relacjach pomiędzy osobą określającą a określaną, można również wysnuć pewne wnioski na temat

osoby określającej. Po trzecie: określenie słowne bardzo często zawiera pewien pierwiastek oceny. Za-

zwyczaj opisu obiektu (sprawy, itp.) dokonuje się w celu późniejszej oceny, dokonania wnioskowania

Page 33: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

1.6 Eksploracja danych lingwistycznych 33

czy też podjęcia działań. W podanym przykładzie, jeżeli znany jest charakter zadania, do którego

dobierane są osoby, to podanie określenia, że dany kandydat jest „młody” implikuje jego nadawanie

się bądź nie.

W świecie nauki, odwrotnie niż w życiu codziennym, najczęściej posługujemy się danymi nume-

rycznymi. Istnieją jednak dwa podstawowe wskazania, które mogą zdecydować o użyciu przetwa-

rzania danych lingwistycznych w miejsce numerycznych. Po pierwsze jest to konieczne tam, gdzie

dostępna informacja jest zbyt nieprecyzyjna aby ją zapisać w postaci numerycznej. Po drugie tam,

gdzie w wyniku przetwarzania danych lingwistycznych można otrzymać bardziej reprezentatywne

rozwiązania, lepiej korespondujące z rzeczywistością, przy niższym koszcie obliczeniowym.

Podstawowe zalety stosowania przetwarzania lingwistycznego są następujące:

1. Przetwarzanie lingwistyczne jest najbliższe człowiekowi, najbardziej naturalne. Człowiek naj-

swobodniej wyraża swoje myśli (czyli również zadania, oczekiwania, pragnienia) w formie ję-

zyka naturalnego, który jest równocześnie najbardziej swobodną, dającą najmniej ograniczeń

formą komunikacji.

2. Model lingwistyczny elastycznie dopasowuje się do poziomu ważności. Wynika to bezpośrednio

z ziarnistości informacji, w zależności od wagi poszczególne elementy można przypisać do

większej bądź mniejszej ilości zbiorów. Wskaźnik ilości zbiorów jest charakterystyczny dla

przetwarzania danych reprezentowanych poprzez zbiory. Zwiększając go model ujmuje więcej

detali, staje się bardziej wyraźny, szczegółowy. Natomiast zmniejszając, detale są ukrywane,

co może pomóc w odkryciu głównych elementów rozwiązania. Można określić dowolny poziom

abstrakcji w prezentacji zarówno zapytań jak i odpowiedzi.

3. Tryb modelowania lingwistycznego stawia projektanta na bardziej aktywnej pozycji. Wynika

to z dwóch faktów. Po pierwsze warstwa specyfikacji ziarnistości pomaga w ujęciu problemu

w odpowiedniej perspektywie tak, aby była najlepsza do dalszego używania modelu. Znając

charakter i potrzeby przyszłego użytkownika można dopasować stopień ziarnistości do ocze-

kiwanego stopnia szczegółowości. Po drugie ta sama ziarnistość pomaga w skupieniu się na

pewnych, określonych lingwistycznie przez użytkownika obszarach. Skupienie to może się wy-

razić poprzez zwiększenie stopnia podziału na grupy. Co więcej, taka zmiana rozdzielczości

może nastąpić niezależnie od oczekiwanych danych wejściowych, a tylko kierując się potrzeba-

mi rozwiązania.

4. Model lingwistyczny daje możliwość szybkiego tworzenia prototypu. Model ten nie wymaga

optymalizacji czyli jakiegokolwiek określania parametrów wewnętrznych. Od momentu okre-

ślenia stopnia ziarnistości informacji model jest gotowy do realizacji. Model lingwistyczny nie

Page 34: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

34 Eksploracja danych

wymaga wprowadzania tak ograniczających założeń co do przyszłych danych, jak to się często

spotyka z numerycznych modelach przetwarzania.

5. Z uwagi na swój dyskretny charakter rezultatem stosowania modelu lingwistycznego jest ob-

szar obejmujący dopuszczalne wyniki wraz ze stopniem preferencji. Postać taka jest stosunkowo

przyjazna dla człowieka. Dodatkowym atutem jest możliwość wizualizacji wyników, co znako-

micie pomaga w zrozumieniu charakteru i właściwości rozwiązania.

Dane postaci lingwistycznej mają postać słów lub termów, będących elementami języka natural-

nego. Język naturalny to środek komunikowania się ludzi między sobą, służy do opisu otaczającego

świata, własnych przemyśleń, odczuć, wiedzy. Język naturalny powstał na drodze ewolucji. Istnieją

również języki sztucznie wytworzone, zaprojektowane do określonego zastosowania ale wykorzystu-

jące niektóre zasady języka naturalnego przykładowo terminologię, gramatykę. Język sztuczny jest

podzbiorem języka naturalnego i w dalszych rozważaniach nie będzie rozróżniane pochodzenie, sto-

pień zaawansowania czy też inne cechy języka. Najistotniejszą właściwością języka jest możliwość

reprezentacji wiedzy i informacji, również nieprecyzjyjnej, niepewnej. Nie do przecenienia jest moż-

liwość znacznie prostszego opisu danej rzeczywistości (obiektu badań) niż przy pomocy wyłącznie

liczb i to w postaci łatwo przyswajalnej dla człowieka. Człowiek dysponuje aparatem pojęciowym, do

przetwarzania danych lingwistycznych, dzięki któremu łatwo przeprowadza analizy sytuacji,dokonuje

wnioskowania. I wykonuje to bardzo skutecznie tzn. w akceptowalnym czasie i z dużą wiarygodno-

ści. Wiarygodność jest rozumiana jako prawdopowobieństwo, że rzeczywisty wynik (możliwy do

uzyskania/zweryfikowania w toku dalszych badań czy testów) mieści się w ramach proponowanego

rozwiązania. Mimo działania na danych niepewnych i nieprecyzyjnych, przetwarzanie lingwistyczne

utrzymuje swą wiarygodność. Wprowadzenie błędnej danej do algorytmu numerycznego zazwyczaj

powoduje załamanie się jego działania, lub, co gorsza, podanie błędnych wyników. W przypadku da-

nych lingwistycznych informacja w nich zawarta może posłużyć również do weryfikacji uzyskiwanych

wyników. Przykładowo wyniki t = 0 lub t = −10 wyglądają równie prawdopodobnie, natomiast je-żeli zapis obserwacji lodowe kryształki trudno rozpuszczają się we wrzątku przeczyta osoba

znająca prawa fizyki, to winna zauważyć niskie prawdopodobieństwo wystąpienia takiego zdarzenia.

Dane lingwistyczne mogą zawierać informacje o stopniu niepewności i nieprecyzyjności, to należy

do ich natury, dzięki czemu mimo, że rezultaty przetwarzania są nieprecyzyjne, to stosunkowo łatwo

ustala się ich wiarygodność. W wielu sytuacjach nie jest wymagana bardzo precyzyjna informacja,

natomiast winna być ona pewna: na przykład nie jest ważne czy dany człowiek ma 25 czy 30 lat,

ważne że jest dorosły.

Zazwyczaj, w zależności od problemu, wybrany zbiór słów służy do opisania pewnej wiedzy.

Każdy termin posiada określony stopień nieokreśloności i rozmycia. Z drugiej strony semantyka

zbioru rozmytego, służącego reprezentacji zmiennej lingwistycznej jest następująca. Przyjmuje się że

Page 35: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

1.6 Eksploracja danych lingwistycznych 35

jest dana funkcja przynależności zwracająca wartości z przedziału [0, 1]. Daną lingwistyczną można

reprezentować przy pomocy zmiennej rozmytej przyjmując, że odzwierciedla ona sposób określania

rzeczywistości. Omówione to zostanie na przykładzie zdania w języku naturalnym:

p = „Jan jest młody”. (1.6)

W zdaniu tym poszczególne słowa mają następujące znaczenie. Słowo „Jan” określa obiekt pod-

legający opisowi. Słowo „jest” określa relację określania, natomiast słowo „młody” jest terminem

niosącym dwa rodzaje informacji. Po pierwsze zawarta jest informacja o rodzaju określanej wła-

ściwości obiektu, w tym przypadku określany jest wiek (długość życia osoby). Po drugie ustalony

zostaje przedział, w którym ten wiek jest zawarty. W zależności od kultury, środowiska czy też

samego wypowiadającego się przedział ten jest różny, przykładowo można przyjąć że jest to wiek

mniejszy niż 25 lat.

Ziarnistość informacji

Granular computing jest terminem określającym te wszystkie techniki służące reprezentowaniu i

przetwarzaniu informacji, które opierają się o ziarnistość informacji (ang. granular – ziarnisty). Idea

granulacji pomaga w gromadzeniu, wyrażaniu i wykorzystaniu wiedzy, ułatwia eksplorację danych,

pozwala na lepszy kontakt pomiędzy maszyną a człowiekiem. Jak wiadomo sposób myślenia w dużej

mierze opiera się na ziarnistej reprezentacji rzeczywistości, więc zarówno podczas wprowadzania da-

nych jak i prezentacji wyników przez komputer posłużenie się modelem wykorzystującym ziarnistość

ułatwia człowiekowi zadanie.

Idea granulacji nie jest nowa, istnieje od początku istnienia cyfrowej techniki obliczeniowej. Kom-

puterowa reprezentacja liczb rzeczywistych jest tylko przybliżeniem wynikającym z dyskretyzacji

takiej liczby na postać cyfrową. Cyfrowe przetwarzanie sygnałów rozpoczyna się od przetworze-

nia sygnału analogowego w cyfrowy (przetwornik A/C) zapis będący skończonym szeregiem liczb o

skończonej liczbie dopuszczalnych wartości odpowiadających wartości sygnału w skończonej ilości

momentów czasowych. W przypadku przetwornika A/C pojedyncze ziarno odpowiada uśrednionej

wartości sygnału przez pewien jednostkowy odcinek czasu o długości większej od zera. Tracona

jest informacja o dokładnej wartości sygnału (znana jest wartość przybliżona o zadanej dokładno-

ści) oraz informacja o zmianach w obrębie jednostkowego odcinka. Siła digitalizacji, a generalniej

przetwarzania opartego o granulację, polega na tym że tracona jest informacja nieistotna z punktu

widzenia dalszego przetwarzania. Oczywiście istotnym zagadnieniem jest takie dobranie mechanizmu

granulacji, który pozwoli na oddzielenie informacji istotnych od nieistotnych.

Page 36: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

36 Eksploracja danych

1.7 Eksploracja danych biznesowych

Podrozdział ten poświęcony jest omówieniu zakresu i możliwości stosowania eksploracji baz w

obszarze danych biznesowych. Przedstawione zostaną podstawowe założenia wykorzystania pozyska-

nej z baz danych Wiedzy do podejmowania optymalnych decyzji biznesowych. Następnie dokonany

zostanie przegląd wybranych zadań analizy z uwzględnieniem merytorycznych źródeł takich działań,

możliwości technicznych oraz prawdziwości i realności uzyskiwanych rezultatów. Wśród nich przed-

stawiona zostanie propozycja autora szczególnego zainteresowania się katalogiem towarów zarówno

w perspektywie źródła wiedzy jak i tworzenia lub adaptacji technik analizy odpowiednich dla takiej

klasy zagadnień.

Jak już powiedziano w podrozdziale 1.2 eksploracja danych zajmuje się poszukiwaniem intere-

sujących wzorców w zgromadzonych danych. W definicji 1.2 szczególnie trudne staje się precyzyjne

określenie znaczenia terminu »interesujące«. W tym celu tworzone są kryteria takie jak nośnik czy

wiarygodność [1], mówi się o zawartości informacyjnej [118], nie trywialności, nieoczekiwanych i nie-

spodziewanych rezultatach [87]. W zakresie wykorzystania eksploracji danych w biznesie, w szeroko

pojętym zarządzaniu termin „interesujący” nabiera jeszcze jednego znaczenia. Wzorzec pozyskany z

danych jest interesujący jeżeli można go wykorzystać w trakcie podejmowania decyzji biznesowych.

Dodatkowe kryterium weryfikujące rezultaty zostało określone następująco:

Samo znalezienie wzorca nie wystarcza, należy być zdolnym do wykrywania sytuacji

pasujących do tego wzorca, wykorzystania go, podjęcia na tej podstawie decyzji zwięk-

szającej wartość przedsiębiorstwa [11].

Założenia do zastosowania eksploracji danych w biznesie zostały przedstawione w [77]. Według

tych założeń sprzedawca podejmuje decyzje biznesowe w celu maksymalizacji zysku. W tym kontek-

ście mówi się, że zysk jest funkcją, którą należy maksymalizować:

Z(D, f) = maxx∈D

f(x), (1.7)

gdzie: D jest zbiorem wszystkich możliwych do podjęcia decyzji (strategii marketingowych, celówstrategicznych, planów rozwoju), f(x) jest użytecznością decyzji x odzwierciedlającą trwałość (ist-

nienie) przedsiębiorstwa oraz wielkość możliwego do osiądnięcia zysku, a Z jest całkowitą (globalną)

wartością zysku uzyskiwaną przez przedsiębiorstwo. Równanie 1.7 stanowi sformułowanie problemu

optymalizacji, który leży u podstaw zarządzania każdym przedsiębiorstwem.

W równaniu 1.7 występują dwa obszary. Pierwszy D, obszar podejmowanych decyzji, obejmu-je wnętrze przedsiębiorstwa, decyzje dotyczą tylko tych elementów, na które przedsiębiorstwo ma

bezpośredni wpływ: wielkość produkcji, jakość, cena, nakłady badawczo-rozwojowe, na marketing

i reklamę. Drugi obszar, oznaczony jako f(x) jest funkcją interakcji przedsiębiorstwa z klientami[91].

Page 37: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

1.7 Eksploracja danych biznesowych 37

Każdy z klientów ma swój odrębny wpływ na uzyskiwaną wartość zysku, suma zysków uzyskiwanych

w ramach kontaktów z poszczególnymi klientami.

W zależności od ustalonej strategii kontaktów z poszczególnymi klientami globalny zysk przed-

siębiorstwa oblicza się następująco:

f(x) =∑y∈Y

f ′y(x), (1.8)

gdzie: Y jest zbiorem klientów wchodzących w interakcję z przedsiębiorstwem, f ′y(x) jest użyteczno-ścią decyzji x w stosunku do klienta y.

Powyższy problem w postaci formalnej przedstawiamy: zbiór klientów jako zbiór agentów Y orazzbiór strategii marketingowych jako zbiór decyzji D. Wartość funkcji zależy teraz również od podjętejdecyzji, więc otrzymujemy:

Z(D, f) = maxx∈D

∑y∈Y

f ′y(xy). (1.9)

Ponieważ każdy klient ma swój niezależny wkład w zysk, globalny zysk przedsiębiorstwa jest

sumą wkładów uzyskanych od każdego klienta w wyniku podejmowanych decyzji biznesowych. Po-

dejmując jednakową decyzję dla wszystkich klientów (każdego obsługując według takich samych

reguł) nie otrzyma się optymalnych rezultatów, zysk nie będzie maksymalny. Dobre rezultaty otrzy-

muje się indywidualnie podejmując decyzje dla każdego klienta osobno. Wadą takiego podejścia jest

koszt samego procesu podejmowania decyzji, który obciąża każdego klienta indywidualnie oraz koszt

zastosowania decyzji, który maleje wraz ze wzrostem liczby klientów do niego stosowanych (maleje

koszt jednostkowy stosowania). Lepszym rozwiązaniem jest zastosowanie segmentacji portfela klien-

tów. Polega to na podziale klientów na k grup, w której dla każdego klienta podejmuje się tą samą

decyzję, dla różnych grup są różne decyzje. Inaczej mówiąc podejmuje się k decyzji biznesowych

i każdego klienta obsługuje się zgodnie z tą decyzją, która daje najlepszy wynik.

1.7.1 Segmentacja bazy klientów

Ponieważ ilość klientów jest zazwyczaj znacznie większa od liczby możliwych strategii Y >> Dto do części z klientów będzie przypisana ta sama strategia marketingowa. Oprócz ustalenia możli-

wych do zastosowania strategii, podstawowym problemem jest podzielenie bazy klientów na zbiory

przypisane do różnych strategii, w literaturze zwany jako zagadnienie segmentacji bazy klientów [46].

Samo zagadnienie segmentacji ma wiele aspektów, jednak jako problem optymalizacyjny jest ściśle

związane z zagadnieniem grupowania, będącym zagadnieniem algorytmicznym z zakresu eksploracji

danych [70].

W marketingu segmentacja bazy klientów należy do jednej z kluczowych technik, w których mo-

że mieć zastosowanie grupowanie. Segmentacja ma zastosowanie podczas analizy zachowań klientów

Page 38: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

38 Eksploracja danych

[79, 116]. Do grupowania stosuje się zarówno techniki z podziałem ostrym, jak i rozmytym. Jednak

lepsze odzwierciedlenie rzeczywistości daje postać rozmyta. W realnym świecie granica pomiędzy

poszczególnymi segmentami klientów, a nawet granica pomiędzy klientami, dostawcami czy konku-

rentami jest rozmyta [23, 69]. To oznacza, że poszczególne grupy zachodzą na siebie, istnieje pewien

stopień niepewności co do przynależności obiektu do grupy.

1.7.2 Grupowanie w transakcyjnych bazach danych

Na posiadanej bazie transakcyjnej można dokonać różnego rodzaju grupowania. Po pierwsze

można grupować elementy obecne w poszczególnych transakcjach. Jeżeli możliwe jest pogrupowanie

elementów w takie grupy, których elementy należące do jednej grupy często razem występują, to po-

zyskana zostanie wiedza, którą można wykorzystać do optymalizacji promocji, gospodarki regałami

[2] [57]. Wykorzystuje się także grupowanie klientów na podstawie rodzaju przeprowadzonych trans-

akcji. Jest to możliwe tam, gdzie klient przestaje być anonimowy, a więc przy sprzedaży wysyłkowej

czy sektorze B2B. Również sektor handlu detalicznego zauważa potrzebę posiadania imiennej bazy

zakupów poszczególnych klientów. Stosując różnego rodzaju rozwiązania techniczne i psychologicz-

ne (identyfikacja poprzez kratę kredytową, kartę stałego klienta, kupony rabatowe) przedsiębiorstwa

gromadzą szczegółowe bazy danych o swoich klientach. Istnienie takich baz z jednej strony, a po-

trzeba pozyskania wartościowej wiedzy z drugiej wytwarzają dużą presję na rozwijanie eksploracji

danych.

1.7.3 Analiza koszyka zakupów

Przykładem zagadnienia będącego w kręgu zainteresowania DM jest analiza zachowań klientów

w oparciu o technikę marketingową znaną jako analiza koszyka zakupów (ang. market basket ana-

lysis MBA). Celem tej techniki jest identyfikacja asocjacji i reguł leżących pomiędzy konsumentami

kupującymi różne produkty w sklepie samoobsługowym. Sklepy samoobsługowe, szczególnie duże,

są bardzo zainteresowane odkryciem reguł, którymi kierują się konsumenci. Do dyspozycji jest baza

danych zawierająca wszystkie transakcje dokonane przez konsumentów w danym okresie czasu oraz

prowadzona polityka cenowa (dokonane w tym czasie promocje oraz inne działania mające wpływ na

sprzedaż). Przykładowo celem może być odkrycie, które pary produktów są często razem kupowane.

Takie odkrycie może być podstawą decyzji biznesowych o rozmieszczeniu tych produktów w bliskim

sąsiedztwie, lub o odpowiedniej promocji. Wiadomo bowiem, że dla produktów skojarzonych, promo-

cja dotycząca tylko jednego z nich skutkuje wzrostem sprzedaży dla obu [54]. Problem odkrywania

reguł i zależności w oparciu o koszyk zakupów (na podstawie baz danych sklepu samoobsługowego)

został zaprezentowany w [1]. W tym zakresie zostaje uszczegółowiony cel stosowania analizy aso-

cjacji z poszukiwania powtarzających się szablonów [106] na poszukiwanie reguł typu:„Jeżeli klient

Page 39: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

1.7 Eksploracja danych biznesowych 39

kupuje towar X to prawdopodobnie kupi również towar Y” [18].

1.7.4 Wysyłanie katalogów reklamowych

Inne zastosowanie zagadnienia segmentacji wywodzi się z problemu plecakowego. Przy założeniu,

że przedsiębiorstwo sprzedaje pewien zbiór wyrobów do n swoich klientów i pragnie wydać katalog

zawierający r wyrobów spośród całości problemem jest jak należy tak dobrać wyroby, aby zmak-

symalizować przyszłą sprzedaż. Ponieważ jest to szczególny przypadek problemu plecakowego to

rozwiązanie jest trywialne: wystarczy wybrać r najbardziej popularnych (najlepiej sprzedających

się) wyrobów.

Jeżeli jednak przyjmiemy, że wydawane są dwa katalogi, każdy z r wyrobami, a do każdego

klienta wysyłany jest jeden albo drugi, to problem się znacznie komplikuje. Jeszcze trudniej jest,

gdy nie jest znana całkowita liczba katalogów oraz liczba wyrobów zawartych w każdym z katalogów.

Problem optymalizacji wyznaczają dwie funkcje. Koszt druku katalogu jest proporcjonalny do liczby

rodzajów katalogów. Wartość katalogu dla klienta odpowiada ilości wyrobów, które mu się „podobają”

w otrzymanym katalogu. Problem optymalizacyjny można zapisać następująco:

Z(D, f) =

(n∑i=1

max1¬j¬k

fi(xj)

)− γ ‖D‖ , (1.10)

gdzie:

Z całkowity zysk uzyskany poprzez wysyłkę katalogów

n liczba klientów,

γ koszt druku katalogu,

fi funkcja wartościująca katalog dla klienta i,

xj ∈ D decyzja wysłania katalogu j,

D zbiór wszystkich możliwych do utworzenia katalogów,

‖D‖ liczba katalogów.

W równaniu 1.10 jako składnik wymieniono funkcję wartościującą katalog dla klienta. Podczas

konstruowania takiej funkcji natrafia się na wiele problemów, wynikających z wielu ograniczeń i nie-

wiadomych. Funkcja wartościująca wykorzystuje dostępne informacje o kliencie. Przede wszystkim

są to dostępne informacje statystyczne takie jak wiek, płeć, przynależność do określonej grupy de-

mograficzne. Skuteczność w tym wypadku jest mocno ograniczona poprzez wysoki koszt pozyskania

wymienionych danych oraz poprzez słabą korelację wymienionych danych oraz skłonności do zakupu.

Istnieje drugi rodzaj danych, gromadzonych niemal automatycznie przez każde przedsiębiorstwo.

Są to dane o sprzedaży. Szczególnie tam, gdzie klient nie jest anonimowy, lub przynajmniej jest

Page 40: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

40 Eksploracja danych

możliwy do wyodrębnienia zbiór transakcji dokonanych przez pojedynczego klienta, ma się do czy-

nienia z informacją personalną, nieomal osobistą: co dany klient kupił. Ponieważ zgromadzone dane

to dopiero reprezentacja elementarnych zdarzeń, należy dokonać pewnej analizy i przetworzenia na

postać, dzięki której łatwiejsze będzie podjęcie właściwych decyzji i skonstruowanie odpowiedniej

funkcji wartościującej z równania 1.10. W tym zakresie istotną pomoc stanowią techniki eksploracji

danych i grupowania w szczególności.

1.8 Analiza zachowań internautów

Środowiska, których istotą działania ogólnie rzecz nazywając, jest dystrybucja informacji, również

są zainteresowane technikami eksploracji danych. Wszelkiego rodzaju internetowe portale informacyj-

ne, systemy biblioteczne (zarówno klasyczne jak i elektroniczne), systemy pomocy dla użytkownika

itd. gromadzą informacje, najczęściej w postaci elektronicznych dokumentów, które dystrybuowane

są poprzez internet.

W tym zakresie istnieją dwie kategorie zadań dla DM. Pierwsza wynika z problemu odszukania

interesującego dokumentu, tj. zawierającego określoną treść czy wiadomości. Tu pomocne są techniki

odkrywania znaczeń (ang. information retrieval) czy porównywania dokumentów. Drugie zadanie to

optymalne zaprojektowanie systemu dystrybucji, tak aby użytkownik mógł dotrzeć do odpowied-

niej informacji. Dotyczy to zarówno dużych systemów, takie jak główne portale typu Yahoo, Onet,

jak i każdego mniejszego serwisu, zawierającego kilkanaście, kilkadziesiąt stron hipertekstu. Wła-

śnie hipertekst, który mimo że umożliwia łatwe i natychmiastowe przejście z jednego dokumentu

do drugiego, powoduje powstanie nowego problemu. Z uwagi na swą nieliniowość i niejednorodność

może zostać utrudniony dostęp do określonych informacji, użytkownik skłonny będzie do pomijania

pewnych fragmentów. Właściwe zrozumienie sposobu oglądania stron WWWmoże pomóc we właści-

wym ich zaprojektowaniu (dobór odpowiednich powiązań, odpowiedni projekt graficzny). Istniejące

środki techniczne pozwalają śledzić poczynania użytkownika i rejestrować jego zachowanie. Ale gro-

madzenie tych informacji może również bezpośrednio służyć podejmowaniu decyzji biznesowych.

Na podstawie zarejestrowanych zachowań można dokonać klasyfikacji i na tej podstawie przedsta-

wić odpowiednią ofertę klientom, umieścić reklamę, dokonać analizy reakcji. Rejestrację zachowań

internauty jako podstawę jego analizy zaproponowano w [22].

1.9 Zagadnienie grupowania w katalogu towarów

O ile segmentacja bazy klientów jest powszechnie znanym zagadnieniem zarówno marketingowym

jak i w ramach eksploracji danych, to baza towarów/produktów stosunkowo rzadko jest przedmiotem

badań. Ponieważ to właśnie towary są atrybutami, według których dokonuje się porównywania, oceny

Page 41: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

1.9 Zagadnienie grupowania w katalogu towarów 41

i grupowania kontrahentów, to autor niniejszej rozprawy przedstawił własne wyniki badań w tym

obszarze oraz przykłady ich wykorzystania do głównego zagadnienia jakim jest segmentacja bazy

klientów.

Grupowanie w katalogu towarów jest istotnym ogniwem w trakcie eksploracji bazy danych przed-

siębiorstwa. W rzeczywistych środowiskach można spotkać katalogi liczące kilkaset lub wiele tysięcy

pozycji. Szczegółowa analiza pojedynczych pozycji, aczkolwiek możliwa, jest nieskuteczna z punktu

widzenia eksploracji danych. Minimalne różnice pomiędzy towarami, skutkujące odrębnym sposo-

bem rejestracji transakcji (różne identyfikatory) są nieistotne w toku poszukiwania wiedzy. Wiele

technik takich jak uogólnianie, streszczanie, agregacja, OLAP opartych jest na klasyfikacji kata-

logu towarów. Dzięki klasyfikacji można dokonywać przetwarzania na wielu poziomach abstrakcji

[67]. Wiele katalogów towarów posiada informacje o klasyfikacji poszczególnych pozycji. Dane te są

wprowadzane ręcznie zgodnie z przyjętą w przedsiębiorstwie systematyką katalogu towarów. Taka

klasyfikacja posiada szereg wad. Poniżej wymieniono kilka z nich:

1. Wpisy o klasyfikacji towaru są uzupełniane z opóźnieniem.

2. Klasyfikacja odzwierciedla tylko podstawowe cechy towaru.

3. Klasyfikacja tworzona jest ręcznie, przez co trudno dokonywać na niej znaczących modyfikacji.

4. Wprowadzanie nowych rodzajów towarów winno skutkować modyfikacją istniejącej systema-

tyki, co czasami jest bardzo długotrwałe.

5. Klasyfikację tworzy się indywidualnie dla danego przedsiębiorstwa, w oparciu o bieżące potrze-

by, co może skutkować uniemożliwieniem realizacji przyszłych wymagań.

Alternatywą może być utworzenie automatycznego systemu klasyfikowania towarów. Poniżej za-

proponowano sposób tworzenia takiego systemu. Opiera się on na grupowaniu przy wykorzystaniu

funkcji podobieństwa opartej na informacji zawartej w nazwach towarów. Wykorzystuje również

teorię granular computing. Takie podejście omija część ograniczeń ręcznej klasyfikacji:

1. System zapewnia sklasyfikowanie każdej pozycji towarowej.

2. System opiera się na wiedzy ekspertów z danej dziedziny, istnieje możliwość wprowadzania

nowych informacji.

3. Istnieje możliwość modyfikacji parametrów klasyfikacji, co przekłada się na otrzymywane re-

zultaty.

4. Brak ograniczeń w ilości analizowanych pozycji.

W dalszej części pracy autor przedstawi swoje propozycje metod i algorytmów grupowania w

katalogu towarów.

Page 42: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

Rozdział 2

Dane

Dane przechowywane w postaci zbiorów, w pamięciach komputerów mają różną postać. Jest ona

determinowana charakterem reprezentowanych obiektów, formą pozyskania danych oraz założonymi

metodami przetwarzania danych. W niniejszym rozdziale omówiono pewne własności danych, które

są istotne w zakresie doboru metod odpowiednich do przetwarzania danych. Informacje tu przedsta-

wione posłużą w zakresie przygotowania samych danych oraz przygotowania metod do badań, które

przedstawiono w rozdziale 5 i 6.

2.1 Rodzaje danych

Ważnym zagadnieniem są różne rodzaje danych gromadzone w BD. Do charakteryzowania danych

należy się posłużyć dwoma pojęciami typ i rozmiar. Rozmiar najczęściej jest określany poprzez

określenie liczby obiektów reprezentowanych w bazie oraz ilości atrybutów przypisanych do danego

obiektu. Natomiast określenie typu danych następuje na kilku poziomach.

Typy danych występujące w zbiorach:

numeryczne — powstają w procesie rejestrowania wyników pomiarów bądź liczebności reprezen-

towanego zbioru, można do ich przetwarzania stosować metody ilościowe. Przykładem może

być:

— wektor liczb rzeczywistych X ∈ Rs, co daje s-wymiarową przestrzeń,

— dane całkowitoliczbowe,

— dane „pseudonumeryczne” – w tym cykliczne, mające tylko niektóre właściwości danych

numerycznych, przykładem może być atrybut określający czas (np. 24 godzinny zegar),

42

Page 43: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

2.2 Porównywanie danych 43

kolor RGB itd., dla których w pewnym sensie dopuszczalne są operacje dodawania i mno-

żenia,

symboliczne — powstają w wyniku przypisywania określonych wyrażeń symbolicznych poszcze-

gólnym właściwościom obiektu (działania, transakcji, zjawiska). Można wyróżnić następujące

podtypy:

— Etykiety – symbole należące do skończonego lub nieskończonego zbioru dopuszczalnych

symboli. Celem takiego symbolu jest identyfikacja obiektu lub wartości atrybutu. Symbol

etykiety jest tworzony sztucznie na podstawie ustalonego regulaminu. Oprócz wartości

identyfikacyjnej dodatkowa informacja jest dopuszczalna tylko w zakresie ustalonym w

regulaminie (poprzez wyliczenie dodatkowych atrybutów związanych z danym symbolem).

— Zdania w języku naturalnym. Symbole tej postaci są tworzone poprzez użycie wszelkich

elementów języka naturalnego: słowa, składnia, kontekst, znaczenia. Informacja zawarta

w danych tej postaci umieszczona jest na wielu poziomach abstrakcji. Dane tej posta-

ci cechują się najmniejszymi ograniczeniami w stosunku do możliwości rejestracji i od-

zwierciedlania realnego świata. W rzeczywistych zastosowaniach niektóre elementy języka

naturalnego mogą zostać wykluczone (np. ograniczona długość wypowiedzi, limitowany

zakres słownictwa), lecz zawsze jest to jawne uregulowane ograniczenie.

Wewnętrzna reprezentacja danych (zapisana w pamięci komputera) zawsze ma postać liczby. To,

co odróżnia poszczególne rodzaje danych, to zbiór operacji dopuszczalnych do wykonywania nad

tymi danymi. Wykonywanie innych operacji (np. dodanie kodów reprezentujących litery) powoduje,

że otrzymane wyniki tracą jakikolwiek sens i znaczenie.

2.2 Porównywanie danych

Z punktu widzenia porównywania danych istotne są ich właściwości wymieniane w teorii pomiaru.

W teorii pomiaru wymienia się cztery skale pomiaru [122]:

• skala nominalna, zwana również skalą nazw, najczęściej stosowana do pomiaru cech opiso-wych. Poszczególnym wartościom atrybutu nadawane są symboliczne nazwy. Jedyną operacją

dostępną dla tej skali jest operacja równości, tj. czy dane obiekty mają jednakową wartość

atrybutu

Aj(xk) = Aj(xl) lub Aj(xk) 6= Aj(xl), (2.1)

• skala porządkowa (rangowa) występuje wtedy, gdy zbiór wartości jest liniowo uporządkowany(ustalona jest kolejność wartości w zbiorze). Dostępna jest więc operacja porównania „większy”

Page 44: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

44 Dane

– „mniejszy”.

Aj(xk) = Aj(xl) lub Aj(xk) < Aj(xl) lub Aj(xk) > Aj(xl), (2.2)

Typowe zastosowanie tej skali to zmienne opisujące ocenę (np. umiejętności, rozmiaru, jakości).

W zbiorze wartości A, który spełnia warunki skali porządkowej zachodzi relacja przechodniości:

a1 > a2 ∧ a2 > a3 ⇒ a1 > a3 (2.3)

oraz asymetrii:

a1 > a2 ∨ a2 < a1, (2.4)

gdzie: A = a1, a2, . . . oraz A(x) ∈ A.

• skala interwałowa (przedziałowa) należy do skal mocnych. Dostępne są operacje dodawaniai odejmowania,

• skala ilorazowa (stosunkowa) to druga skala mocna, w stosunku do poprzedniej różni się moż-liwością wykonania operacji mnożenia i dzielenia.

Nieco odrębną formułą prezentacji rezultatów pomiarów są wyniki w postaci przedziałów lub ob-

szarów. Przykładowo może to dotyczyć określania odcinków czasu trwania danego zjawiska. Istnieje

wiele postaci zapisu wyników tej postaci. Przykładowo mogą to być określenia granic przedziałów

lub wykorzystuje się inne parametry charakteryzujące przedział. Z uwagi na mnogość kształtów

przedziałów i obszarów istnieje duża trudność w znalezieniu prostych formuł je opisujących.

Podstawą działania metod grupowania, jak i klasyfikacji jest istnienie funkcji określającej bliskość

obiektów. Funkcja ta może mieć charakter:

- miary podobieństwa,

- miary odległości,

- miary konicydencji

- miary asocjacji.

Podczas analizy różnych miar bliskości można zauważyć następujący podział: funkcje obliczające

„bliskość” wyłącznie na podstawie danych o obiektach oraz funkcje używające do tego informacji

o pozostałych obiektach, jak również wiedzy o ich otoczeniu i środowisku. Do pierwszej kategorii

należą miary odległości i podobieństwa, natomiast do drugiej funkcje oparte o obliczenia wiązań,

asocjacji, korelacji.

Page 45: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

2.2 Porównywanie danych 45

2.2.1 Miary odległości

Funkcja będącą miarą odległości między dwoma obiektami ma postać:

d : X× X→ R+ (2.5)

i spełnia warunki dla metryk.

Definicja 6. Niech X jest zbiorem obiektów oraz d jest miarą odległości obiektów należących do

X[100]. Miarę d nazywa się metryką jeżeli spełnione są następujące warunki dla każdej pary obiektów

x,y ∈ X:

1. d(x,y) = 0, ⇔ x = y, (2.6a)

2. d(x,y) ­ 0, (2.6b)

3. d(x,y) = d(y,x), (2.6c)

4. d(x, z) ¬ d(x,y) + d(y, z). (2.6d)

Dla pewnych dziedzin powyższa definicja może być trudna do spełnienia. Lecz istnieje możliwość

osłabienia pierwszego i czwartego warunku w ten sposób, aby pozbyć się warunków nieistotnych w

procesie grupowania. I tak warunek zerowej odległości wyłącznie dla obiektów identycznych można

zamienić na:

1′. d(x,x) = 0, (2.7)

co oznacza, że mogą istnieć dwa różne obiekty, dla których wyznaczana odległość jest równa zero.

Należy to tłumaczyć tym, że z danego punktu widzenia te dwa obiekty są nierozróżnialne (i mogą

należeć do tego samego klastra).

Z kolei reguła zwana nierównością trójkąta, zapisana w równaniu jest czasami wykorzystywa-

na do optymalizacji. Przykładowo jeżeli mamy trzy obiekty x, y, z i wiemy że para x, y jest sobie

bliska, a para y, z daleka to możemy wnioskować, że para x, z jest również sobie daleka i pominąć

pewne analizy. Dla części dziedzin ten warunek jest trudny do spełnienia i można zastosować miarę

spełniającą następujący warunek [36]:

4′, d(x, z) ¬ α · (d(x,y) + d(y, z)), (2.8)

gdzie α jest stałą większą niż 1 lecz nie zbyt dużą (wartość stałej zależy od grupowanej dziedziny).

Odległość euklidesowa

d2e(x,y) , (x− y)T (x− y), ∀x, y ∈ Ω. (2.9)

Page 46: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

46 Dane

Przyjęcie odległości euklidesowej związane jest z niedogodnościami wynikającymi z dużego wpły-

wu zmian skal współrzędnych dla poszczególnych atrybutów na wyniki grupowania obiektów. Dla

uniknięcia tego wpływu zaleca się znormalizować przestrzeń wartości atrybutów, tak aby zbiory

wartości posiadały zerową wartość średnią i jednostkowe odchylenie standardowe. Ponadto dla unie-

zależnienia wyników porównania od wyboru układu współrzędnych można dokonać obrotu układu

współrzędnych, ustalając takie jego położenie, które pokrywać się będzie z kierunkami osi głów-

nych dla rozpatrywanego zbioru obiektów przestrzeni R. Kierunki te odpowiadać będą kierunkomwektorów własnych kowariancji współrzędnych elementów v.

Odległość Sebestyena

Dla zróżnicowania wpływu poszczególnych współrzędnych na odległości pomiędzy obiektami

można wprowadzić wagi współrzędnych. W przestrzeni wartości atrybutów wagi współrzędnych są

wagami kolejnych atrybutów. Prowadzi to do odległości Sebestyena:

d2S(x, y) , (x− y)TW(x− y) ∀x, y ∈ R, (2.10)

gdzieW jest diagonalną macierzą wag.

W =

w1 0 . . . 0

0 w2 . . . 0....... . .

...

0 0 . . . wm

Odległość Mahalanobiusa

Jeżeli przeprowadza się obrót układu współrzędnych R do położenia wyznaczonego przez osiegłówne, a następnie normalizuje współrzędne w tak obróconym układzie, to dla wyznaczenia odległo-

ści euklidesowej w tej nowej przestrzeni G można wykorzystać bezpośrednio współrzędne przestrzeni

R i na ich podstawie wyznaczyć tzw. odległość uogólnioną (Mahalanobiusa):

d2M (x, y) , (x− y)TC−1(x− y) ∀x, y ∈ R, (2.11)

C =1n

n∑j=1

(xj − x)T (xj − x), xj ∈ R, (2.12)

x =1n

n∑j=1

xj (2.13)

gdzie:

Page 47: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

2.2 Porównywanie danych 47

C−1 — odwrotna macierz kowariancji,

n — liczba elementów rozpatrywanego zbioru w przestrzeni R,v — średni element rozpatrywanego zbioru,Odległość uogólniona uwzględnia korelację współrzędnych.

Odległość Manhattan

dMn ,1s

s∑i=1

|x[i]− y[i]| ∀x, y ∈ Rs, (2.14)

gdzie: s oznacza ilość wymiarów przestrzeni Rs.

Odległość Canbera

dC ,s∑i=1

|x[i]− y[i]||x[i] + y[i]|

∀x, y ∈ Rs, (2.15)

Uogólniona postać metryki Lp

Oprócz miary euklidesowej, zwanej również jako miara L2, istnieje wiele metryk ogólnie określa-

nych miarą odległości Lp.

dLp ,

(s∑i=1

|x[i]− y[i]|p) 1p

. (2.16)

2.2.2 Miara podobieństwa

W niektórych algorytmach w miejsce miary odległości można bezpośrednio zastosować miarę

podobieństwa zdefiniowaną następująco:

p : X× X→ R+ (2.17)

i spełnia następujące warunki:

p(x, y) = 1, gdy x = y, (2.18a)

p(x, y) ∈ [0, 1], (2.18b)

p(x, y) = p(y, x). (2.18c)

Funkcja podobieństwa jest komplementarna do funkcji odległości. Wyraża się to stwierdzeniem:

im obiekty są bliżej siebie tym są bardziej do siebie podobne. Pod względem wartości funkcji zerowa

odległość odpowiada wartości 1 dla funkcji podobieństwa, natomiast zero dla funkcji podobieństwa

Page 48: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

48 Dane

to nieskończona odległość. Istnieją formuły pozwalające przekształcić funkcję odległości w funkcję

podobieństwa.

W przypadku analizy obiektów z atrybutami binarnymi wskaźnik podobieństwa powinien zależeć

od ilości atrybutów, których wartości się zgadzają bądź nie. Bada się jednoczesność występowania

poszczególnych wartości atrybutów – jest to analiza koincydencji. Dla porównania dwóch obiek-

tów, z których każdy opisany jest jednym atrybutem binarnym, zachodzą cztery możliwe przypadki

zapisane w tabeli koincydencji dla atrybutów binarnych 2.1 [50].

Tabela 2.1. Tabela koincydencji dla atrybutów binarnych.

obiekt y1 0

obiekt x 1 a11 a100 a01 a00

Współczynniki aµv = aµv(x, y) oznaczają liczbę przypadków, w których:

aµv = a ∈ A | a(x) = µ, a(y) = v. (2.19)

Przy pomocy tych współczynników można opisać współczynnik podobieństwa. Istnieje kilka miar,

które różnią się między sobą sposobem traktowania kombinacji określonych współczynnikami a01

i a10. Są to [70]:

wskaźnik Jaccarda , jako stosunek wartości zgodnych do wszystkich

p(x, y) =a00 + a11

a00 + a11 + a01 + a10, (2.20)

wskaźnik Sokal and Sneath , w którym zmniejszona jest waga wartości niezgodnych

p(x, y) =a00 + a11

a00 + a11 + 12 (a01 + a10), (2.21)

wskaźnik Rogers and Tanimoto , w którym wartości niezgodnych jest zwiększona [31]

p(x, y) =a00 + a11

a00 + a11 + 2(a01 + a10). (2.22)

Powyżej wymienione funkcje spełniają warunki miary podobieństwa. Analogicznie, w pewnych

zastosowaniach stosowane są wskaźniki (funkcje które nie spełniają warunku symetryczności):

wskaźnik prosty [86]

p(x, y) =a11

a00 + a11 + a01 + a10(2.23)

Page 49: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

2.2 Porównywanie danych 49

wskaźnik Jaccarda [70]

p(x, y) =a11

a00 + a11 + a01(2.24)

wskaźnik Dice [70]

p(x, y) =a11

a11 + 12 (a01 + a10)(2.25)

Powyższe funkcje utworzone zostały poprzez analogię do wzorów (2.20),(2.21),(2.22). Nie speł-

niają warunku symetryczności (2.18c), aczkolwiek w pewnych warunkach pełnią rolę funkcji podo-

bieństwa.

2.2.3 Miary asocjacji

Kolejną miarę bliskości tworzy się poprzez zliczenie wszystkich wspólnych sąsiadów dla danej pary

obiektów. Otrzymuje się wskaźnik wiązań (ang. links). Takie podejście opiera się na następującym

założeniu: im więcej wspólnych sąsiadów mają dane obiekty, tym bardziej są sobie bliskie [53]. Pojęcie

sąsiedztwa ściśle zależy od dziedziny, w której dokonuje się grupowania. W zakresie transakcyjnych

baz danych sąsiednie są każde transakcje, które wspólny mają przynajmniej jeden element wchodzący

w skład transakcji. W przypadku obiektów określonych atrybutami opisowymi sąsiedztwo zachodzi

wówczas, gdy co najmniej jeden z atrybutów przyjmuje tą samą wartość dla obu obiektów.

2.2.4 Miary odległości dla grup danych

Oprócz szeregu miar bliskości definiowanych dla par obiektów, w niektórych zastosowaniach

konieczne jest posiadanie miar bliskości zdefiniowanych dla klastrów (grup). Najczęściej mówi się

o odległości pomiędzy klastrami:

Dist(A,B), gdzie A,B ⊂ X. (2.26)

Miary odległości pomiędzy klastrami wykorzystywane są w samym procesie grupowania (przy-

kładowo w hierarchicznym grupowaniu aglomeracyjnym) jak i na etapie walidacji, czy też oceny

jakości grupowania.

Pierwsze dwie metody obliczania odległości pomiędzy klastrami polegają na znalezieniu, odpo-

wiednio, najdalszej lub najbliższej sobie pary obiektów, należących do przeciwnych klastrów. Reguła

najbliższego sąsiada ma następującą formułę:

Dist(A,B)Min = minxi∈A,yj∈B

d|xi, yj |. (2.27)

Page 50: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

50 Dane

Analizując właściwości takiej miary można zauważyć, że prowadzi ona do tworzenia jednego lub

kilku dużych klastrów i szeregu jednoelementowych, odizolowanych od siebie. Wynika to z algorytmu

obliczeniowego: im większy klaster tym większe prawdopodobieństwo, że jeden z elementów znajdzie

się blisko dołączanego. Małe klastry przegrywają w „konkurencji” do dużych, a te stają się jeszcze

większe. Drugą istotną cechą jest to, że nie nadaje się ona do porównywania klastrów nakładających,

czy też zachodzących na siebie.

Reguła najdalszego sąsiada jest tworzona analogicznie:

Dist(A,B)Max = maxxi∈A,yj∈B

d|xi, yj |. (2.28)

Dokonując analogicznej analizy jak powyżej, dochodzi się do wniosku, że cechą charakterystyczną

tej reguły jest tworzenie możliwie równolicznych klastrów. Przyczyna jest podobna: średnia odległość

najdalszego sąsiada w stosunku do klastra małego jest mniejsza niż w stosunku do klastra dużego.

Tym samym małe klastry rosną aż się staną równe pozostałym.

Rozwiązaniem pośrednim jest użycie jako miarę średniej odległości pomiędzy obiektami należą-

cymi do obu klastrów:

Dist(A,B)sr =1na

1nb

∑xi∈A

∑yj∈B

d|xi, yj |. (2.29)

Podana reguła minimalizuje wpływ liczebności klastra na uzyskiwany wynik. Wadą jest natomiast

znaczny koszt obliczeniowy.

Uogólnioną postać zawierającą powyższe wzory zaprezentowano w [35]:

Distα(A,B) =

1na

1nb

∑xi∈A

∑yj∈B

d|xi, yj |α( 1α ) , (2.30)

gdzie α ∈ [−∞,∞] jest parametrem, który decyduje o specyficznych właściwościach poszczegól-nych reprezentantów:

α→ −∞ – reguła najbliższego sąsiada

α = −1 – średnia harmoniczna,

α = 0 – średnia geometryczna,

α = 1 – średnia arytmetyczna,

α = 2 – średnia euklidesowa,

α→∞ - reguła najdalszego sąsiada.

2.3 Dane symboliczne

Określenie dane symboliczne należy traktować jako antonim terminu „numeryczny”. W literatu-

rze spotyka się się również pojęcie „dane jakościowe”, ale wydaje się, że termin „symboliczne” lepiej

Page 51: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

2.3 Dane symboliczne 51

odzwierciedla różnice i odrębność stosowanych metod. Dane symboliczne obejmują cechy jakościowe

obiektów. Do reprezentacji tych cech najlepiej wykorzystać symbole z języka naturalnego. Ponieważ

z każdym takim symbolem skojarzona jest określona wiedza, można ją wykorzystać na różnych eta-

pach przetwarzania i analizy do osiągnięcia zakładanych celów. Dane symboliczne również nadają

się do reprezentacji niskiej jakości pomiarów, lub wszędzie tam gdzie nieznana jest charakterysty-

ka skali, jednostka pomiarowa, występują braki wartości. Istnieje możliwość przekształcenia danych

symbolicznych na postać numeryczną co zostanie przedstawione poniżej. Należy jednak pamiętać,

że w niektórych przypadkach takie przekształcenie powoduje powstanie całkowicie sztucznego po-

rządku, oderwanego od rzeczywistego znaczenia poszczególnych symboli, co skutkuje uzyskiwaniem

wyników bez praktycznej użyteczności [117].

Metody symboliczne zostały utworzone z myślą o przetwarzaniu danych symbolicznych bez prze-

kształcania na postać numeryczną. Większość metod wykorzystuje teorię informacji oraz algorytmy

heurystyczne. Opierają się na badaniach nad postrzeganiem świata przez człowieka ze szczególnym

odniesieniem podstawowego ludzkiego narzędzia służącego klasyfikacji i wyrażaniu wiedzy jakim jest

język. Do tego należy dodać przewagę metod symbolicznych z uwagi na postać wyniku, który jest

bardziej przyswajalny dla człowieka, może posiadać krótszy zapis, odnosić się do właściwości obiek-

tów. Metody symboliczne nie stawiają żadnych wymagań w odniesieniu do danych podlegających

analizie. Grupowanie danych symbolicznych dokonywane jest wieloma metodami, które, ze względu

na sposób traktowania danych symbolicznych, można następująco sklasyfikować:

1. metody przystosowane do danych symbolicznych,

2. metody przekształcające dane symbolicznych na postać numeryczną,

3. metody powstałe poprzez adaptację metod numerycznych np.: w wyniku zamiany funkcji od-

ległości na funkcję opartą o podobieństwo dystrybuant.

Poniżej opisano sposoby stosowane przez metody wymienione w punktach 2 i 3. Natomiast me-

tody wymienione w punkcie 1 będą opisane w dalszych rozdziałach.

Ad. 2 Przekształcenie danych symbolicznych na postać numeryczną

Jak już powiedziano wiele atrybutów, służących reprezentacji obiektów, ma postać nienumerycz-

ną, opisanych na skalach słabych czyli nominalnych lub porządkowych. W rzeczywistych bazach

danych atrybuty te sąsiadują z atrybutami numerycznymi. Przykładowo tabela zawierająca katalog

samochodów może zawierać atrybut symboliczny «kolor»=’czerwony’,’biały’,’czarny’ jak i nume-ryczny «cena» ∈ R+.Wiele atrybutów symbolicznych służy do reprezentacji pewnych zjawisk fizycznych, które mo-

gą zostać zmierzone. Można więc dokonać zabiegu przekształcenia skali pomiarowej, niejako jej

Page 52: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

52 Dane

wzmocnienia. Przykładowo dla zapisu koloru można dokonać podstawienia w miejsce atrybutów no-

minalnych wektorowy zapis składowych RGB. Wiadomo bowiem, że każdy kolor można rozłożyc

na 3 składowe. W miejsce zapisu symbolicznego otrzymuje się postać punktu w przestrzeni trójwy-

miarowej. Dla innych atrybutów można dokonać analogicznej analizy. Aczkolwiek metoda ta daje

dobre wyniki z punktu widzenia inżynieryjnego, natomiast z punktu widzenia przetwarzania wiedzy,

sposobu postrzegania świata przez człowieka może stanowić o uzyskaniu błędnych wyników. Jest to

spowodowane nieliniowością percepcji zmysłów człowieka i różnym wpływie poszczególnych wartości

atrybutów w zależności od otoczenia. Przykładem może być paleta barw stosowana w drukarstwie:

wyróżnionych odcieni koloru białego jest znacznie więcej niż innych kolorów, czyli jeden kolor jest

ważniejszy a nie wynika to reprezentacji koloru w postaci RGB.

Ad.3 Funkcje podobieństwa tworzone na podstawie dystrybuant atrybutów

Prawdopodobieństwa dla dwóch podanych rodzajów atrybutów, wartości atrybutów przy znanej

kategorii oraz kategorii przy znanych wartościach atrybutów, pozwalają na mierzenie podobieństwa

przykładów w danej kategorii i zróżnicowania pomiędzy kategoriami. Analiza prawdopodobieństw

występowania poszczególnych wartości atrybutów, prawdopodobieństwa warunkowego i innych za-

leżności statystycznych może dać wiele interesujących informacji o atrybutach bez wnikania w rze-

czywiste znaczenie poszczególnych atrybutów. Przykłady można znaleźć w pracach związanych z

poszukiwaniem asocjacji w bazach danych [1, 2, 19, 30].

Jeżeli dla przykładów należących do tej samej grupy prawdopodobieństwa Prx∈X(ai(x) = v |c(x) = d) mają podobne wartości dla poszczególnych v ∈ Ai, w szczególności, gdy dla niektórychwartości argumentów są duże (bliskie 1) a dla reszty małe (bliskie 0), to pozwala to przewidywać

wartości tych argumentów. Przynależność do tej samej grupy jest poszukiwana na podstawie podo-

bieństwa dystrybuant atrybutów.

Analogicznie, gdy dla przykładów należących do różnych kategorii wartości prawdopodobieństw

Prx∈Ω(c(x) = d | ai(x) = v) są duże jednocześnie dla kilku kategorii dla wielu wartości argumentów,to kategorie te mają więcej wspólnych atrybutów, czyli są mniej zróżnicowane.

Podobieństwo dwóch obiektów x i x′ należących do skończonego zbioru X może być oszacowanejako podobieństwo pomiędzy dystrybuantami g(y) , P (y | x) oraz g(y) , P (y | x′). Istnieje wielemożliwych do zastosowania funkcji podobieństwa, powszechnie stosowane są wymienione w tabeli

2.2. Warunkowe prawdopodobieństwa obliczane są następująco:

g(y) , P (y | x) = fxy∑y∈Y fxy

(2.31)

gdzie: fxy jest ilością jednoczesnych wystąpień x i y.

Page 53: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

2.3 Dane symboliczne 53

Tabela 2.2. Funkcje podobieństwa stosowane dla dystrybuant zmiennej losowej.

KL dywergencja D(q | r) =∑y q(y)

(log q(y)− log r(y)

)

Jensen-Shannon JS(q, r) = 12

[D(q | avg(q, r)

)+D

(r‖avg(q, r)

)]

Skew dywergencja sα(q, r) = D(r‖αq + (1− α)r

)

Euclidesowa euc(q, r) =(∑

y(q(y)− r(y))2) 12

kosinusowa cos(q, r) =

∑yq(y)r(y)√∑

yq(y)2

∑yr(y)2

L1 - manhattan L1(q, r) =∑y|q(y)− r(y)|

confusion conf(q, r, P (x′)) = P (x′)

∑yq(y)r(y)

P (y)

Tau τ(q, r) =

∑y1,y2

sign[(q(y1)−q(y2))(r(y1)−r(y2))](2(|V |2

))

W tabeli 2.2 przedstawione są przykładowe funkcje, stosowane do tworzenia funkcji oceny podo-

bieństwa wykorzystującej dystrybuanty atrybutów [83]. Posiadając funkcje podobieństwa warunko-

wego g(y) i r(y) obliczone ze wzoru (2.31) na podstawie jednego z wzorów z tabeli 2.2 otrzymuje się

funkcję podobieństwa. Doboru stosowanej funkcji dokonuje się doświadczalnie, na podstawie anali-

zowanej dziedziny.

Page 54: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

54 Dane

2.4 Dane lingwistyczne

2.4.1 Lingwistyka formalna

Lingwistykę można w przybliżeniu zdefiniować jako badania nad przekazywaniem komunikatów

werbalnych [72]. Lingwistyka jest osadzona w ramach działu nauki zwanym semiotyką.

Semiotyka jest ogólną teorią znaku związaną z logiką i lingwistyką. Semiotyka, jako nauka o prze-

kazywaniu wszelkiego rodzaju komunikatów, jest najbliższym kręgiem otaczającym koncentrycznie

lingwistykę, której pole badań ogranicza się do komunikatów werbalnych, następnym szerszym krę-

giem o wspólnym środku jest zintegrowana nauka o komunikacji. Współczesna postać semiotyki

pochodzi od Ch. Morrisa, który uznał, że powinna ona stanowić podstawę badań nad związkami

między wszelkimi działaniami ludzkimi i ich odzwierciedleniem w systemie znaków. Semiotyka dzieli

się na:

1. Semantykę (w węższym sensie), czyli naukę o znaczeniowej stronie języka, o tym, jakie relacje

zachodzą między znakami i ich znaczeniem (sensem).

2. Syntaktykę rozpatrującą związki zachodzące między znakami i między systemami znaków.

3. Pragmatykę badającą warunki użycia określonych znaków.

Do powyższego podziału czasami dodaje się jeszcze zagadnienie socjalne, zajmujące się proble-

matyką osób używających dany język.

Podstawowe pojęcia stosowane w lingwistyce to:

Alfabet Alfabetem nazywa się dowolny, skończony zbiór znaków (symboli) A = a1, a2, . . . ...anzwanych literami. Rodzaj tych symboli oraz ich postać fizyczna są dowolne. Istotne jest tylko,

aby litery miały charakter dyskretny (różniły się między sobą), a rozpatrywany alfabet był

skończony. Napisem (N) lub słowem (S) w alfabecie A będzie dowolny skończony ciąg literw przyjętym alfabecie. Na ogół wyróżniony jest pewien znak dzielący napisy (N) na słowa

(S). Znakiem tym często są odstępy. Często wyróżnia się również pewne środki syntaktyczne

(składniowe) dzielące dłuższe napisy na podzbiory słów zwane zdaniami. Zbiór wszystkich

możliwych napisów nad alfabetem A jest oznaczony jako A∗. Można w nim wyróżnić pewienpodzbiór napisów, które uznaje się jako napisy (wyrażenia) poprawne. Podzbiór ten będziemy

oznaczać symbolem R.

Gramatyka Zbiór reguł (G) określających strukturę napisów poprawnych, a tym samym okre-

ślających zbiór R, jest nazywany gramatyką języka. Od reguł gramatyki nie zawsze wymaga

się, aby wszystkie utworzone według nich napisy były sensowne. Dziedzina języka (D) jest to

zbiór informacji, którego elementy są oznakowane przez napisy poprawne języka. Znaczenie

Page 55: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

2.4 Dane lingwistyczne 55

języka (Z), czyli znaczenie napisów poprawnych jest wyznaczone przez relację wiążącą napisy

poprawne i elementy dziedziny języka. Reguły wyznaczające te relacje są nazywane regułami

znaczeniowymi lub semantycznymi języka. Przez język rozumie się zbiory A,G,D,Z.

Zmienna lingwistyczna Aby skonstruować narzędzia służące przetwarzaniu danych lingwistycz-

nych należy dobrać odpowiednią metodę przetwarzania takich danych. Metoda ta winna trakto-

wać słowa języka naturalnego jako etykiety oparte na ludzkich możliwościach percepcji. Czym

jest zmienna lingwistyczna? Jest po prostu symbolicznym przedstawieniem danego obiektu,

jego cechy, właściwości bądź działania związanego z tym obiektem. Co więcej, pod danym

słowem-symbolem kryje się grupa obiektów (właściwości itd.) nierozróżnialna ze względu na

istotę przedstawianej informacji. Na przykład pod słowem „drzewo” rozumie się rośliny o

pewnych cechach. Zdolność słów do grupowania może być postrzegana jako swoista forma

granulacji czy ziarnistości (ang. granulation) i wykorzystana podczas kwantyzacji do zbiorów

rozmytych. Na tej podstawie zbudowany jest mechanizm translacji słów do postaci zbiorów

rozmytych.

Definicja 7. Zmienna lingwistyczna X jest charakteryzowana przez pięć argumentów (H,-

T (H), U,G,M). H jest nazwą zmiennej czyli słowem ją identyfikującą. T określa zbiór słów,

etykiet, do których należy H, z których każdy określony jest w świecie mowy U . G określa

reguły gramatyczne związane ze zmienną, czyli syntaktykę. M to reguły semantyczne związane

ze znaczeniem zmiennej H.

Słowo (wyraz) jest elementarną jednostką reprezentacji informacji w zakresie lingwistycznej postaci

danych. Każde słowo reprezentuje rozmyty lub ostry zbiór znaczeń określony w świecie realnym

D [127].

2.4.2 Wyrażenia symboliczne i lingwistyczne

Wyrażenia symboliczne mogą być tworzone sztucznie, tylko na potrzeby danej lokalizacji bez

związku ze znaczeniem w języku naturalnym. Najczęściej jednak stosuje się określenia bezpośrednio

stosowane przez ludzi w komunikacji interpersonalnej, między sobą.

Przenoszenie terminów z języka naturalnego do systemu informatycznego implikuje szereg pro-

blemów, wynikających bezpośrednio z pewnych właściwości ludzkiej mowy:

synonimy – różne słowa i frazy mogą wyrażać to samo pojęcie, mieś to samo znaczenie. Przykła-

dowo słowa „robić”,„wytwarzać”,„produkować” mimo, że wyglądają zupełnie różnie to znaczą

mniej więcej to samo,

Page 56: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

56 Dane

wieloznaczność – słowa mogą mieć wiele znaczeń. Przykładowo słowo „klucz” występuje w znacze-

niach jako: „klucz do zamka w drzwiach”, „klucz do rozwiązania zagadki”, „klucz do otwarcia

szyfru”,

złożenia słów – niektóre słowa tworzą frazy, o znaczeniu daleko różnym od znaczenia słów wcho-

dzących w skład. Przykładowo termin „odszedł w pokoju” dotyczy osoby zmarłej, czyli w

niczym się nie kojarzy ze znaczeniem słów użytych niezależnie,

kontekst lokalny – znaczenie słów silnie zależy od otoczenia w jakim zostały obe użyte.

Dane lingwistyczne cechuje szereg zalet, które ujawniają się w następujących przypadkach:

• potrzeby rejestrowania danych w formie przyjaznej dla człowieka,

• ograniczonej możliwości rejestracji zapisu rzeczywistości wyłącznie przy pomocy liczb, dotyczyto szczególnie przypadków, w których „obiektem” dokonującym pomiaru jest człowiek,

• faktu, że nie wszystkie zjawiska poddają się ocenie liczbowej,

• potrzeby zapisu wiedzy, posiadanej przez ekspertów i możliwej do wyrażenia jedynie w postacijęzyka naturalnego.

Dane lingwistyczne nie wymagają stosowania określonej struktury formalnej, dzięki czemu w ła-

twy sposób dają się adaptować i rozszerzać w miarę potrzeb objęcia nowych obszarów, dziedzin,

kierunków czy stopnia szczegółowości [105].

Podczas przetwarzania informacji, szczególnie tej wyrażonej w postaci lingwistycznej, należy

szczególnie zwrócić uwagę na kontekst, czyli środowisko i otoczenie w jakim dane powstały i ja-

kie obiekty dane opisują. Pełne znaczenie wyrażenia w języku naturalnym ujawnia się dopiero w

momencie interpretacji w określonym kontekscie użycia (mówimy wtedy o wypowiedzi) np. zja-

wiska referencji (odniesienia do elementów rzeczywistości), anafory (relacji pomiędzy elementami

kolejnych wypowiedzi) czy też presupozycji (warunków nakładanych na stan kontekstu). Od wie-

lu lat ugruntowaną pozycję standardowego formalizmu opisu znaczenia wielozdaniowej wypowiedzi

w języku naturalnym ma „Discourse Representation Theory” [74]. W zakresie eksploracji danych

wyróżnia się kilka rodzajów kontekstu:

• źródłowy (ang. generic) - w zakresie danych lingwistycznych obejmuje podstawowe, leksykalneznaczenie poszczególnych słów,

• logiczny – obejmuje modyfikację znaczenia danego opisu poprzez użycie operatorów logicznychi modyfikatorów leksykalnych (np. „nie”,„lub”,„większość”,„około”),

Page 57: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

2.4 Dane lingwistyczne 57

• relacyjny – wynikający z zapisanych relacji do innych obiektów i pojęć (np. „produkt a jesttańszy niż produkt b”),

• regresji – obejmujący właściwości, a w szczególności odchylenie, od zastosowanego modeluliniowego.

Aby rozpocząć omawianie modeli przetwarzania danych lingwistycznych należy sobie zdać sprawę

z ich charakteru. Chodzi mianowicie o to, że pod każdym terminem lingwistycznym (słowem, wyraże-

niem) rozumie się pewną grupę, zbiór obiektów nierozróżnialnych ze względu na swoje podobieństwo,

funkcjonalność, właściwości.

Najważniejsza cecha odróżniająca model numeryczny od symbolicznego wynika ze sposobu otrzy-

mywania wyników [65]. Model numeryczny przekształca wejściowy zbiór danych numerycznych w

zbiór wyjściowy. Natomiast w modelu lingwistycznym otrzymujemy pewne obszary rozwiązań. Wa-

runki wskazujące na przetwarzanie danych lingwistycznych w miejsce numerycznych:

1. Brak wystarczającej precyzji w danych źródłowych, dane nie są wystarczająco wiarygodne.

2. Brak potrzeby dokładnych obliczeń - wystarczą przybliżone, otrzymane niższym kosztem.

3. Brak możliwości rozwiązania problemu tradycyjnymi metodami, nie przekraczając racjonalne-

go kosztu przetwarzania.

4. Problem zbyt skomplikowany aby zdefiniować go w sposób akceptowalny do rozwiązania me-

todami numerycznymi.

2.4.3 Rozpoznawanie znaczeń w dokumentach tekstowych

Pojęcie dokumentu tekstowego należy rozumieć szeroko. Oprócz typowego określania tym termi-

nem wypowiedzi w języku naturalnym zapisanej w postaci tekstu (czyli artykuł, notatka, książka —

forma liniowa), są nimi również strony internetowe (HTML, XML — forma hipertekstowa, nielinio-

wa) oraz wszelkiego rodzaju tabele, formularze posiadające sformalizowaną strukturę ale zawartość

w postaci symbolicznej, w tym elementy języka naturalnego (karty biblioteczne, niektóre rekordy w

bazach danych).

Zagadnienie rozpoznawania znaczeń w dokumentach w dużej mierze polega na określaniu podo-

bieństwa par dokumentów. Jedno z pierwszy podejść do automatycznej analizy tekstu dokonał Luhn.

Zasugerował on oparcie się o porównanie zawartości dwóch identyfikatorów reprezentujących zarów-

no posiadany dokument jak i pytanie użytkownika [88]. Sposoby tworzenia identyfikatorów mogą być

różne, najczęściej powstają w wyniku ekstrakcji pewnych wyselekcjonowanych z dokumentu i zapy-

tania słów, tak by najlepiej odpowiadały zawartej w tekstach informacji. Ekstrakcja słów może być

dokonywana ręcznie, bądź automatycznie w trakcie fazy uczenia, w której są tworzone identyfikatory

Page 58: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

58 Dane

na podstawie zbioru treningowego dokumentów. Można również założyć, że w skład identyfikatorów

wchodzą wszystkie występujące słowa, wtedy nie potrzebny jest etap selekcji.

Porównywanie dokumentów jest techniką pozwalającą na rozwiązanie następujących problemów:

kategoryzacja poprzez ocenę do którego dokumentu wzorcowego dany tekst jest najbardziej po-

dobny,

poszukiwanie informacji , które dokonuje się poprzez zadanie pytania, będącego również formą

dokumentu; rozwiązaniem jest dokument najbardziej podobny.

Analiza dokumentów tekstowych może być prowadzona różnymi technikami. Możliwości są na-

stępujące:

1. Statystyczna analiza jednoczesnego występowania poszczególnych słów w danym zbiorze do-

kumentów. Opiera się na założeniu, że samo występowanie słów jest wystarczającą informacją

do porównania tekstów.

2. Selekcja fraz, składających się z kilku słów, i dalszej analizie prowadzonej jak dla pojedynczych

słów. Dzięki takiemu podejściu uwzględnia się niektóre zasady składni i unika się wieloznacz-

ności niektórych słów.

3. Użycie słownika, zgodnie z którym określa się zależności pomiędzy poszczególnymi słowami.

Dzięki czemu możliwe jest rozpoznanie podobieństwa dokumentów w których użyto w takim

samym znaczeniu różnych słów (słowa te są synonimami). Możliwe jest również wstępne grupo-

wanie słów, podobnych pod względem znaczeniowym i na tej podstawie dokonanie rozpoznania

znaczenia dokumentu.

4. Konstruowanie bazy wiedzy oraz użycie metod sztucznej inteligencji do rozpoznania rzeczywi-

stej informacji zawartej w dokumencie, dokonanie porównania dokumentu w sposób analogicz-

ny i na tym samym poziomie abstrakcji, jak to dokonuje człowiek.

2.5 Tematyczne bazy danych

Celem stosowania bazy danych jest przechowywanie zdań. Według Arystotelesa, twórcy logiki ze

starożytnej Grecji, zdanie jest po prostu „reprezentacją czegoś”. Może reprezentować obiekt rzeczy-

wisty, jego właściwość lub cokolwiek innego, dającego się wyrazić w języku naturalnym. Baza danych

musi realizować dwie funkcje: kodowanie i dekodowanie, czyli przekształcenie zdania na swą postać

wewnętrzną oraz proces odwrotny. Z uwagi na to, że świat reprezentowany jest poprzez pojęcia

logiczne, w tabeli 2.3 umieszczono pewne analogie pomiędzy pojęciami.

Page 59: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

2.5 Tematyczne bazy danych 59

Tabela 2.3. Semantyka składników elementarnych [63].

logika rzeczywistość język naturalnyargument obiekt rzeczownikfunkcja relacja czasownikwartość właściwość przymiotnik

Działanie bazy danych wynika z interakcji z użytkownikiem, który nią steruje przy pomocy pew-

nego sztucznego języka (zależnego od programu realizującego funkcje bazodanowe), zawierającego

komendy uruchamiające poszczególne procedury programu.

W interakcji z komputerem rozumienie języka naturalnego jest ograniczone wyłącznie do czło-

wieka. Przykładowo jeżeli życzeniem użytkownika jest odnalezienie obiektu „czerwonego”, to tylko

on rozumie to pojęcie jako coś co „odbija światło o określonej długości fali”. We wnętrzu komputera

„czerwony” jest zamieniany na symbol, który jest przetwarzany bez znajomości i interpretacji jego

znaczenia.

To, że komputer nie myśli jest oczywistą prawdą, aczkolwiek możliwe jest skonstruowanie takiego

programu, który wykona polecenia człowieka, jeżeli forma tych poleceń będzie ściśle określonego,

wstępnie zaprogramowanego typu. W zależności od tego, jakie zadania maszyna jest zdolna wykonać,

to można mówić, że potrafi zrozumieć język naturalny na pewnym poziomie, lub też posiada coś

odpowiadającego umiejętnościom poznawczym człowieka.

Kolekcja danych umieszczonych w określony sposób w strukturach odpowiadająca schematowi

jest powszechnie nazywana bazą danych. W niniejszym opracowaniu termin baza danych rozumiany

jest w następującym znaczeniu:

Definicja 8. Bazą danych nazywamy zbiór danych o określonej strukturze, zapisany na zewnętrznym

nośniku pamięciowym komputera, mogący zaspokoić potrzeby użytkowników korzystających z niego w

sposób selektywny w dogodnym dla siebie czasie. W bazie danych są zapisywane fakty i zdarzenia, po

to, aby możliwe były ich odtworzenie i analiza w dowolnej chwili [32].

Gromadzenie informacji w bazie danych oparte jest na następującej definicji elementarnej krotki

w modelu danych [32]:

Definicja 9. Reprezentacja pozyskanej informacji odnośnie obserwowanego zjawiska wyraża się jako:

< „obiekt”, „atrybut obiektu”, „wartość atrybutu”, „moment obserwacji” >, (2.32)

i wyraża zaobserwowaną wartość atrybutu dla danego obiektu.

Istnieje wiele sposobów reprezentowania i powiązania wymienionych aspektów danych – wiele

modeli danych. Częstą modyfikacją jest pomijanie aspektu czasu, szczególnie w stosunku do atry-

butów wolno zmiennych (lub stałych takich jak „data urodzenia”). Przykładami modeli danych jest

Page 60: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

60 Dane

model sieciowy, hierarchiczny, jak również relacyjny.

Istnieje niewątpliwa potrzeba grupowania obiektów na podstawie ich właściwości. Grupowanie,

jako jedna z technik eksploracji danych bezpośrednio wpisuje się w to zagadnienie. Równie ważny

jest problem identyfikacji obiektu na podstawie jego właściwości.

Zagadnienia poruszane w niniejszym opracowaniu związane są z wieloma obszarami. Na przykład

dotyczą biznesu, w szczególności z segmentacją portfela klientów - jako jedną z kluczowych technik

marketingowych. Do tego celu stosowane jest grupowanie na podstawie dostępnych informacji o

klientach, a w szczególności na podstawie dokonanych przez nich transakcji zakupu. Cel stosowania

takich technik wynika z potrzeb marketingowych takich jak: selekcja grupy docelowej, dopasowanie

oferty, benchmarking, badanie efektywności kampanii marketingowych, sposobu prezentacji towarów.

Istnieje jednak wiele miejsc, w których problem może być analogicznie sformułowany.

Drugi obszar zastosowań obejmuje problem grupowania osób odwiedzających dany serwis WWW.

Przepisy dotyczące ochrony prywatności, a może przede wszystkim coraz większa świadomość użyt-

kowników w tym zakresie powodują, że bezpośrednie metody identyfikacji (np. numer procesora,

cookies, numer IP) są nieskuteczne jako element identyfikacji, gdyż przykładowo są wyłączane.

Szczegółowej rejestracji mogą podlegać wszelkie działania internauty : przesłane zapytania, wywo-

łania innych stron WWW, sposób nawigacji. Informacje te mogą posłużyć do identyfikacji wzorców

zachowań. Celem jest profilowanie przedstawianej zawartości czy też prezentowanych reklam [98].

Również w medycynie można znaleźć informacje posiadające strukturę opisaną w definicji 9.

Przykładowo może to być baza postaci:

< „pacjent”, „lekarstwo”, „objawy” > . (2.33)

Takich danych można się spodziewać w badaniach nad nowymi lekami czy też nieznanymi chorobami.

Cechą wspólną przedstawionych zagadnień jest objęcie przetwarzaniem danych postaci zarów-

no numerycznej jak i symbolicznej. W każdym przypadku, niezależnie czy są to klienci, internauci

czy pacjenci, występują wszelkie rodzaje atrybutów: wartości liczbowe, wyliczeniowe, symbole języ-

ka naturalnego lub sztucznego, opisowe (teksty w języku naturalnym). Człowiek dokonując oceny

i wartościując pozyskane dane korzysta z całej dostępnej mu wiedzy o środowisku, w którym dane

powstały, sposobach ich rejestracji, znaczeniach przypisywanych poszczególnym symbolom.

2.6 Wiarygodność danych

W kontekście eksploracji danych czy też pozyskiwania wiedzy niewątpliwe znaczenie ma aspekt

wiarygodności. W opracowaniu przyjęto, że dane są opisem jakiegokolwiek zdarzenia lub pojęcia war-

tego zapamiętania i przetwarzania. Z punktu widzenia systemu informatycznego dane są to liczby i

Page 61: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

2.6 Wiarygodność danych 61

teksty wprowadzane do systemu informatycznego na podstawie przyjętego schematu organizacyjne-

go, mające za zadanie reprezentować zachodzące procesy[91].

Dane są źródłem pozyskiwania informacji o danym obiekcie czy procesie, na rzecz którego wy-

korzystywany jest system informatyczny. Aby jednak informacja ta była prawdziwa i rzetelna musi

opierać się o wiarygodne dane. Poprzez wiarygodność danych określa się stopień w jakim dane

wprowadzone do komputera odpowiadają stanowi rzeczywistemu. Zmniejszenie wiarygodności jest

powodowane wieloma czynnikami, począwszy od błędów w sposobie modelowania i reprezentacji w

komputerze a skończywszy na błędach występujących podczas przetwarzania danych na informacje.

Page 62: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

Rozdział 3

Grupowanie

3.1 Wstęp

Grupowanie jako jedna z metod pozyskiwania wiedzy, a tym samym eksploracji danych jest ściśle

uwarunkowana źródłem danych oraz oczekiwaną postacią rezultatów. W niniejszym rozdziale przed-

stawiono podstawowe aspekty klasyfikacyjne metod grupowania, ze szczególnym uwzględnieniem

tych aspektów, które mają wpływ na przydatność stosowania danej metody w procesie eksploracji

danych. Zwrócono uwagę na sposób przetwarzania danych, przez poszczególne metody, szczególnie

w kontekście danych symbolicznych, omówionych w podrozdziale 2.3.

Grupowanie polega na wyodrębnianiu grup (klas, podzbiorów) na podstawie następująco sfor-

mułowanego zadania:

identyfikacja naturalnych grup, w których obiekty podobne do siebie mają zostać umiesz-

czone w jednej grupie, natomiast obiekty znacznie się różniące w różnych grupach [71].

Wybrane cele dokonywania grupowania są następujące:

• uzyskanie jednorodnych przedmiotów badania, ułatwiających wyodrębnienie ich zasadniczychcech,

• zredukowanie dużej liczby danych pierwotnych do kilku podstawowych kategorii, które mogąbyć traktowane jako przedmioty dalszej analizy,

• zmniejszenie nakładu pracy i czasu analiz, których przedmiotem będzie uzyskanie klasyfikacjiobiektów typowych,

• odkrycie nieznanej struktury analizowanych danych,

62

Page 63: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

3.1 Wstęp 63

• porównywanie obiektów wielocechowych.

W zakresie analizy przydatności poszczególnych metod grupowania do eksploracji danych zwró-

cono uwagę na następujące aspekty:

• sposób ujęcia danych,

• sposób określania podobieństwa i niepodobieństwa, zgodnie z którym łączy się obiekty w grupy,

• metody poszukiwania rozwiązań

• forma prezentacji danych.

Grupowanie często jest pierwszym krokiem w procesie poznawania danego zjawiska na podstawie

zbioru obserwacji. Jest to forma maszynowego uczenia bez nadzoru a celem jest uzyskanie hierarchii

pojęć opisujących dane zjawisko. Grupowanie wywodzi się z taksonomii numerycznej oraz anali-

zy skupień i w swym podstawowym ujęciu zajmuje się otrzymywaniem zapisu podziału obiektów

na grupy przy pomocy metod algorytmicznych. Jakkolwiek jest to główne zadanie grupowania, to

jednak z powodu braku lub słabego wykorzystywania różnych aspektów wiedzy dotyczących zbioru

obiektów, ich atrybutów i środowiska, uzyskiwane rezultaty mogą odbiegać od oczekiwań. Kolejnym

problemem jest uzyskiwanie wyników w postaci trudno przekształcalnej na pojęcia służące charak-

teryzacji danego zjawiska. Ideę grupowania pojęciowego (ang. conceptual clustering) przedstawiono

w [121]. W tym celu stosuje się odpowiednie algorytmy grupowania, których wyniki łatwo dają się

przedstawić w formie pojęć czy koncepcji, oraz które umożliwiają uwzględnienie dostępnej wiedzy

np. poprzez stosowanie miary bliskości odzwierciedlającej zależności pomiędzy atrybutami.

Podstawowym kryterium „uczenia się” jest zdolność do autonomicznego pozyskiwania nowej,

nieznanej wiedzy. Otrzymywany w wyniku działania algorytmu grupowania podział reprezentuje

pewne kategorie, czyli pojęcia arbitralnie zdefiniowane przez algorytm, więc wystarczy zapewnić,

że otrzymywane kategorie mają charakter wiedzy i odnoszą się do rzeczywiście istniejących pojęć

opisanych danym zbiorem przykładów. Ponieważ jednak przynależność do danej kategorii opiera się

na podobieństwie przykładów, a podobieństwo umożliwia wnioskowanie to bez wątpienia ma się do

czynienia z wiedzą [27].

3.1.1 Podział metod grupowania

Wykorzystując zadany sposób określania bliskości (podobieństwa, odległości) obiektów w wielo-

wymiarowej przestrzeni cech można podzielić zbiór X na podzbiory (grupy). Ze względu na sposóbprzetwarzania danych stosowane procedury można zaliczyć w większości to jednej z poniższych tech-

nik [70]:

Page 64: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

64 Grupowanie

• optymalizacyjno-iteracyjnych, za pomocą których dokonuje się podziału zbioru na m podzbio-rów, przy czym wartość parametru m jest zadawana, algorytmy te polegają na minimalizacji

funkcji kryterium,

– K-średnich (ang. K-means) - grupy reprezentowane są przez „środek ciężkości”

– K-mediana (ang. K-medoids) - grupy reprezentowane są przez jeden z obiektów

• hierarchicznych, w ramach których skupienia tworzą drzewa, gdzie liście reprezentują poszcze-gólne obiekty, a węzły — ich grupy. Skupienia wyższego poziomu zawierają skupienia niższego

poziomu. W ramach metod hierarchicznych, w zależności od sposobu konstruowania hierarchii

klas można wyodrębnić:

– metody aglomeracyjne, w których początkowo każdy element jest traktowany jako odrębna

klasa. Klasy te następnie, na podstawie zadanej funkcji podobieństwa, stopniowo łączy

się, aż do momentu w którym wszystkie obiekty utworzą jeden zbiór. Schemat łączenia

poszczególnych klas tworzy poszczególne poziomy skupień reprezentujących odpowiednie

podziały na grupy,

– metody podziałowe (deglomeracyjne) jest niejako procesem odwrotnym do powyższego.

Rozpoczyna się od pojedynczego zbioru, zawierającego wszystkie obiekty, a następnie

dokonuje się jego sekwencyjnego podziału. Problem określania kryterium podziału jest

oparty o porównywanie wartości cech obiektów, z których wybiera się te najlepiej speł-

niające kryterium dyskryminacji,

• metody grupowania obiektów, których niektóre elementy (atrybuty) są identyczne, wykorzy-stują założenie, że im więcej elementów jest powtórzonych (ang. co-occurence) tym bardziej

obiekty są do siebie podobne,

• metody analizy skupień polegające na identyfikacji regionów o dużej „gęstości” obiektów,

• metody oparte o teorię grafów, traktujące obiekty jako węzły a krawędzie z wagami jako re-prezentacja danego kryterium, wg którego odbywa się grupowanie. Przykładem są algorytmy

Minimum Spanning Tree (MST) oraz Lin-Kernighan Exchange,

• metody oparte o algorytmy genetyczne

• metody oparte o sieci neuronowe,

Inny podział metod grupowania wynika z klasyfikacji postaci otrzymywanych wyników. Wyróżnia

się algorytmy tworzące:

• skupienia rozłączne, w których każdy obiekt należy tylko do jednego zbioru,

Page 65: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

3.1 Wstęp 65

• skupienia nierozłączne, w których niektóre obiekty mogą być przypisane do dwu lub więcejzbiorów. W szczególności wyniki tej postaci otrzymywane są przez techniki oparte o zbiory

rozmyte,

• struktura hierarchiczna, jako wielopoziomowa hierarchia, w której poszczególne poziomy sąodwzorowaniem kolejnych podziałów.

Obiekty są grupowane poprzez zastosowanie odpowiedniej metody grupowania zgodnie z za-

łożonym kryterium. Tradycyjne kryterium grupowania wykorzystuje pewne miary bliskości (ang.

distance based), najczęściej wywodzące się z miary odległości czy podobieństwa. Posiadając ma-

tematyczną funkcję bliskości określoną dla każdej pary obiektów można zastosować algorytm do

dokonania grupowania.

Matematycznie metody grupowania oparte są o poszukiwanie takiego podziału na grupy, w wyni-

ku którego zadana funkcja kryterium osiąga minimum. Poszczególne metody różnią się drogą dojścia

do takiego minimum. I tak wśród metod hierarchicznych metody aglomeracyjne poszukują takiego

minimum poprzez łączenie mniejszych grup. Metody podziałowe poszukują takiego podziału, który

zmniejszy entropię. Natomiast metody iteracyjne opierają się na poszukiwaniu pewnych wzorców,

które następnie wyznaczają poszczególne klastry. Możliwość stosowania poszczególnych metod ściśle

zależy od postaci i rodzaju atrybutów opisujących poszczególne obiekty. Szczególnie chodzi o to, czy

mają one dziedzinę ciągłą czy dyskretną i jaką miarą można posłużyć się do ich porównywania.

Drugie podejście oparte jest o rozkład prawdopodobieństw występowań poszczególnych wartości

atrybutów opisujących grupowane obiekty (ang. probability based). Przyjmuje się w założeniu, iż

występujące prawdopodobieństwa są niezależne, poszczególne atrybuty są nieskorelowane ze sobą.

Założenie leży u podstaw części algorytmów hierarchicznych podziałowych, w których podziału zbio-

ru na grupy dokonuje się w celu obniżenia entropii informacji z punktu widzenia jednego atrybutu.

Zupełnie inne podejście do problemu występuje w grupowaniu koncepcyjnym (ang. conceptual

clustering) [21]. Tam obiekty są łączone w klastry jeżeli reprezentują to samo pojęcie (koncep-

cję, znaczenie, interpretację). Dokonuje się tego na podstawie opisu w języku naturalnym (termów

lingwistycznych) związanym z danym obiektem.

Grupowanie jako przeszukiwanie

W większości algorytmów grupowania można doszukać się analogii do pewnego rodzaju uczenia

się, opartego na przeszukiwaniu przestrzeni hipotez w celu znalezienia hipotezy spełniającej pewne

kryteria. Z tej perspektywy można wyróżnić cztery aspekty procesu grupowania, które to charakte-

ryzują poszczególne algorytmy grupowania:

– reprezentacja grupowania, czyli postać wyniku,

Page 66: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

66 Grupowanie

– operatory używane do poruszania się w przestrzeni rozwiązań, umożliwiające sprawdzenie in-

nych, również lepszych rozwiązań,

– heurystyczna funkcja oceny grupowania, używana do kierowania procesem przeszukiwania,

– strategia przeszukiwania, czyli opis sposobu wykorzystania operatorów i funkcji heurystycznej

do poszukiwania najlepszego rozwiązania.

Każdy z wymienionych aspektów posiada wiele rozwiązań. Dobór poszczególnych wariantów ściśle

zależy od dziedziny grupowania oraz charakteru oczekiwanych wyników.

Grupowanie nie wymagające miary odległości

Dla wielu dziedzin trudno jest skonstruować odpowiednią miarę odległości. Dotyczy to w szczegól-

ności baz danych zawierające dane opisowe, symboliczne, dla których trudno o ustalenie właściwych

relacji pomiędzy poszczególnymi atrybutami, a co za tym idzie, o policzenie odległości pomiędzy

obiektami. Same metody grupowania winny być oparte na kilku zasadach. Zakłada się, że obiekty

podobne do siebie (czyli takie które winny należeć do tej samej grupy) posiadają te same wartości

niektórych atrybutów. Samo dobranie atrybutów, które decydują o przyłączeniu obiektu do danej

grupy, jest bardzo trudnym zadaniem. Najlepiej, gdy dostępna jest szczegółowa wiedza na temat

szczegółowej klasyfikacji atrybutów, pozwalająca na ustalenie hierarchii ich ważności. Najczęściej

jednak wiedza taka nie jest kompletna, można w takim przypadku posiłkować się pewnymi wskaź-

nikami statystycznymi, pozyskanymi z posiadanej bazy danych o występowaniu, charakterystyce

poszczególnych atrybutów. Wskaźniki takie, przykładowo współczynniki korelacji, częstotliwość wy-

stępowania, pomagają w zdobyciu pewnych reguł pozwalających na ocenę przedstawianego podzia-

łu. Dla algorytmów grupowania nie wymagających miary odległości kluczowym staje się dobranie

właściwej funkcji kryterium jakości grupowania. Sam algorytm polega na generowaniu kolejnych

podziałów, weryfikowaniu ich przy pomocy funkcji kryterium i wybraniu najlepszego rozwiązania.

3.1.2 Zastosowanie grupowania

Grupowania dokonuje się na zbiorze nieetykietowanym, tj. takim, dla którego nie jest znany (nie

jest wykorzystywany podział w trakcie analizy) podział na grupy. Gdy nie ma skojarzonej macierzy

przynależności U(X), to zbiór danych X nazwa się nieetykietowanym (ang. unlabeled) [13].Dziedzina. Dziedziną grupowania jest skończony zbiór obiektów:

X = x1, . . . , xn.

Mogą to być przedmioty, osoby, wydarzenia, sytuacje, zjawiska, stany itd.

Atrybuty.Atrybuty służą do opisywania obiektów. Synonimem atrybutu jest termin „cecha”.

Atrybutem nazywa się dowolną funkcję określoną na dziedzinie grupowania. Niech A1, . . . , An jest

Page 67: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

3.1 Wstęp 67

-

-

przygotowanieI?

szacowanie tendencjiII?

analiza skupieńIII?

walidacjaIV?

6

Rys. 3.1. Etapy algorytmu grupowania.

zbiorem atrybutów z dziedzinami odpowiednio A1, . . . ,An. Przyjmuje się, że opis każdego obiektuxi ∈ X składa się z n ­ 1 wartości atrybutów.

Ak : xi → Ak, l ¬ k ¬ n, xi ∈ X .

W zależności od dziedzin poszczególnych atrybutów można wyodrębnić następujący podział atry-

butów [16]:

– kwantytatywne, będące liczbami rzeczywistymi, uzyskanymi w wyniku pomiaru lub liczbami

całkowitymi otrzymanymi w wyniku policzenia. Inaczej zwane cechami ilościowymi,

– opisowe, których wartości są wyrażane poprzez różnego rodzaju symbole, w tym słowa w języku

naturalnym.

Wykorzystując grupowanie na potrzeby eksploracji danych można posłużyć się następującym

schematem. Na rysunku 3.1 zaprezentowano algorytm grupowania składający się z czterech etapów:

przygotowanie – jest etapem mającym na celu przekształcenie bazy danych na formę właściwą

dla stosowanych narzędzi,

szacowanie tendencji – ma za zadanie odgadnąć czy dany zbiór obiektów posiada wewnętrzną

strukturę i to bez szczegółowej analizy danych [70],

analiza skupień — właściwe grupowanie, stosowany w tym etapie jest szereg metod opisanych w

literaturze: grupowanie twarde, rozmyte, oparte o teorię możliwości czy prawdopodobieństwa,

Page 68: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

68 Grupowanie

walidacja – polega na sprawdzeniu czy otrzymany podział na grupy realnie odzwierciedla strukturę

wejściowego zbioru danych; udostępnia narzędzia służące do porównywania różnych podziałów,

w celu wyboru optymalnego.

3.2 Formalny zapis problemu

Przedmiotem grupowania jest skończony zbiór X składający się z n obiektów oraz skończony

zbiór A zawierający m atrybutów opisujących właściwości obiektu x ∈ X poprzez przyjmowanieokreślonych wartości xy, gdzie Ay jest oznaczeniem konkretnego atrybutu, którego dziedziną jest

zbiór wartości Ay:

X = xyy∈Y . (3.1)

Zbiór X również nazywany jest populacją.

Przedmiotem analizy dokonywanej w trakcie grupowania jest zbiór klastrówC = C1, C2, . . . , Cc– będący zbiorem podzbiorów X . Klastrem (grupą, segmentem, klasą) nazywamy podzbiór X ⊇ Ci.

X = x1, . . . ,xn =c⋃j=1

Cj (3.2)

Jeżeli spełniony jest warunek opisany równaniem 3.2 pełnego pokrycia całego zbioru X, to takizbiór nazywamy podziałem (ang. partition) lub segmentacją P(X ) (3.3).

P(X) = C1, . . . , Cc. (3.3)

Zbiory Ci określa się mianem grupa, segment, klaster.

Podziału dokonuje się zgodnie z pewnym kryterium grupowania. Kryterium to jest funkcjonałem

określonym na zbiorze wszystkich podzbiorów zbioru X i mierzy stopień wewnętrznej jednorodności

klas oraz międzyklasową heterogeniczność.

Ogólna liczba wszystkich kombinacji, jakie można utworzyć przy grupowaniu n obiektów w m

rozłącznych grup, jest do obliczenia na podstawie wzoru na liczbę Stirlinga drugiego rzędu [4]:

S(m)n =1m!

m∑k=0

[(−1)m−k

(n

k

)kn].

Dla n = 25,m = 5, S525 = 2′436′684′974′110′751. Jak widać złożoność tego problemu jest bardzo

duża, rosnąca jeszcze szybciej, gdy zostanie dopuszczona wielokrotna lub częściowa przynależność

do zbioru. Również liczba grup nie jest zazwyczaj podana a priori, co powoduje, że aby obliczyć

właściwy wynik należy zsumować kilka liczb Stirlinga dla sprawdzanych podziałów.

Page 69: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

3.2 Formalny zapis problemu 69

Posiadając nieetykietowany zbiór obiektów w przestrzeni wielowymiarowej postaci xi ∈ Rs, 1 ¬i ¬ n problem grupowania C polega na rozdzieleniu obiektów na podzbiory zwane grupami. Innymisłowy należy znaleźć macierz przynależności każdego elementu xi do poszczególnych grup:

Cc =U ∈ Rc×n | ∀i, k : uik ∈ [0, 1];n∑i=1

uik = 1; 0 <n∑k=i

uik < n, (3.4)

gdzie:n liczba obiektów,

Rc×n oznacza przestrzeń wszystkich macierzy rozmiaru (c× n),U = uik macierz przynależności obiektów do poszczególnych grup,

∀k∈1,c∑ni=1 uik = 1.

Wśród różnych technik grupowania można wyróżnić podział na grupowanie tzw. zwykłe lub

twarde, w którym każdy element jest przydzielony tylko do jednego zbioru, tym samym każdy zbiór

ma wyraźnie oznaczone granice. Formalnie można to zapisać następująco:

uik =

1, xi ∈ Ck,0, xi /∈ Ck.

(3.5)

W tym przypadku funkcja przynależności przyjmuje jedynie dwie wartości zbioru 0, 1 (ang. hardclustering) . Jeżeli funkcja przynależności przyjmuje dowolne wartości z przedziału [0, 1] mówimy o

grupowaniu rozmytym (ang. fuzzy clustering).

Algorytmy znajdujące macierze przynależności polegają na znajdowaniu ekstremum (minimum

lub maksimum) funkcji kryterium będącej wskaźnikiem jakości podziału zbioru elementów na grupy.

Jednym z przykładów takiej minimalizacji funkcji celu jest minimalizacja błędu kwantyzacji zdefi-

niowana następująco (ang. quantization error)[43]:

Eqe =1n

n∑i=1

∥∥xi − vw(i)∥∥2 , (3.6)

gdzie:Eqe błąd kwantyzacji,

n liczba przetwarzanych obiektów,

xi przetwarzany obiekt,

V = vj zbiór elementów wzorcowych ,

vj ∈ Rs j ∈ 1, c,w(i) ∈ 1, c indeks najlepszego dopasowania (numer grupy, do której xi należy),

vw(i) wektor wzorcowy dla grupy w(i).

Page 70: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

70 Grupowanie

Minimalizacja wartości Eqe jest znana jako grupowanie oparte o funkcję kryterium i może wy-

stępować również w wersji dla grupowania rozmytego [8].

Bardziej uogólnioną formą równania 3.6 zwaną ważona odległościami suma kwadratów błędu

kwantyzacji (ang. distance-weighted sum-of-squares quantization error), której minimum może rów-

nież być poszukiwane metodami uczenia bez nauczyciela jest następująca:

Eqen =n∑i=1

c∑h=1

kh(xi,Ch), (3.7)

gdzie:kh(xi,Ch) funkcja jądra (ang. kernel function), odpowiada odległości pomiędzy

obiektem xi a grupą Ch,

Funkcja jądra kh(xi,Ch) odpowiada intuicyjnemu przeświadczeniu, że informacja o podziale na

grupy pochodzi od całego układu elementów wzorcowych, a nie wyłącznie od jednego, najbliższego.

Zazwyczaj spełnia następujące warunki:

kh(x,C) ­ 0 jest dodatnia, (3.8a)

kh(x,C) = max⇐ x ∈ Ch osiąga maksimum dla własnej grupy, (3.8b)

(3.8c)

Alternatywną formułą funkcji kosztu jest oparcie się o odległość między klastrami (ang. interc-

luster) [48]. Optymalizacja polega na znalezieniu takiego podziału aby zminimalizować klaster o

największej wartości funkcji kosztu, którą jest największy rozmiar klastra:

Ei = maxi=1,...,c

k(Ci) (3.9)

dla:

k(Ci) = maxxir,xis∈Ci

d(xir,xis). (3.10)

gdzie: d(·) jest symbolem miary odległości pomiędzy obiektami.

Warunek zbieżności

Konieczny warunek gwarantujący znalezienie aproksymacyjnego minimum funkcji 3.7 jest nastę-

pujący:

∂Egen∂Vj

= −n∑i=1

(xi − vj) = kj(d(xi,Cj)), j = 1, . . . , c, (3.11)

Page 71: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

3.3 Grupowanie iteracyjne 71

Wzór na obliczenie prototypu v ma postać iteracyjną:

v(e+1)j =∑ni=1 xikj(d(xi,Cj

(e)))∑ng=1 kj(d(xg,Cj

(e))), (3.12)

gdzie: zmienna e reprezentuje numer kolejnej iteracji.

3.3 Grupowanie iteracyjne

Grupowanie iteracyjne oparte jest o funkcję jądra. Polega ono na iteracyjnym poszukiwaniu

zbioru elementów wzorcowych reprezentujących poszczególne klastry. W każdej iteracji poszukuje

się kolejnych przybliżeń wzorców wyliczając je korzystając z zadanych metod. W zależności od

przyjętych założeń elementem wzorcowym może być jeden z elementów populacji X lub należeć dopewnego uniwersum U ⊇ X. W przestrzeniach metrycznych element wzorcowy może być obliczanyjako średnia arytmetyczna i reprezentuje on odpowiednio środek ciężkości klastra.

W ogólności k-klastering algorytm na wejściu ma zbiór obiektów X oraz oczekiwaną liczbę kla-

strów k, a na wyjściu podział na podzbiory C1, C2, . . . , Ck. Najczęściej algorytmy k-klasteringunależą do kategorii algorytmów optymalizacyjnych. Algorytmy optymalizacyjne przyjmują że istnieje

funkcja kosztu typu k : x|X ⊆ S → R+ określona dla każdego podzbioru S. Celem jest znalezieniepodziału z uwagi na minimalizację sumy kosztów:

Eq =k∑i=1

k(Ci) (3.13)

W celu zastosowania algorytmu iteracyjnego należy określić miarę odległości stosowaną w procesie

grupowania, które zostały omówione w rozdziale 2 a ogólny zarys algorytmu w 3.3.1.

Zamiast miediany można zastosować punkt, będący wypadkowym punktem dla danego klastra

(elementem reprezentacyjnym) wyliczonym np. jako średnia geometryczna czy arytmetyczna. Wtedy

mamy do czynienia z algorytmami typu k-średnich (ang. k-means).

k(Ci) =|Ci|∑r=1

d(xi,xir). (3.14)

gdzie: xi średnia arytmetyczna (lub geometryczna) klastra

Tak zdefiniowany problem jest trudno rozwiązywalny, gdyż należy do klasy NP. Istnieją jed-

nak pewne uproszczenia w stosunku do funkcji kosztu. Przykładowo algorytm PAM (Partitioning

Around Medoids) oparty jest o znajdowanie mediany dla każdego klastra Si. Funkcja kosztu dla

algorytmu PAM wygląda następująco [37]:

k(Si) =|Ci|∑r=1

d(xi,xir), gdzie: xi ∈ Ci (3.15)

Page 72: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

72 Grupowanie

gdzie: xi mediana klastra

3.3.1 grupowanie K-średnich

Grupowanie K-średnich (ang. K-means) posiada następującą funkcję kryterium:

J1(U,V) =c∑i=1

n∑k=1

(uik)d2ik, (3.16)

gdzie:

V = [vi] macierz wzorców,

vi ∈ Rm wzorzec i-tej grupy,

uik przynależność xk do i-tej grupy, uik ∈ 0, 1dik miara odległości pomiędzy xk,

a elementem wzorcowym grupy vi,

U = [uik] macierz podziału.

Algorytm 3.1. Algorytm grupowania k-średnich

Wejście ≡X = x ; zbiór obiektówc;oczekiwana liczba klastrów

funct g(V,U); znajdowanie nowego wzorca V .

funct d(x, x); odległość pomiędzy obiektami.

funct h(x,C); obliczenie przynależności x do klastra C..

etap 1 ≡wybierz początkowy zbiór wzorców

np. drogą losowania.

etap 2 ≡for i := 1 to |X| dofor j := 1 to c do

znajdź odległości wzorców dla elementu xi

uij := h(xi, j)

od

od.

etap 3 ≡for j := 1 to c do

Page 73: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

3.3 Grupowanie iteracyjne 73

oblicz nowe wzorce vj = g(yj , U)

od.

Wyjście ≡zwróć macierz podziału U .

3.3.2 Grupowanie metodą najbliższego sąsiada

Algorytm najbliższego sąsiada (ang. Nearest-neighbourhood-type) został zaproponowany przez Lu

i Fu w 1978 [70] zaprezentowano w tablcy 3.2. Grupowanie metodą najbliższego sąsiada jest prostym

i szybkim algorytmem. Złożoność obliczeniowa jest rzędu O(n(c + 1)) Poprzez dobór progu można

sterować ilością otrzymywanych klastrów. Również w miejsce funkcji odległości można zastosować

funkcję podobieństwa, wystarczą jedynie drobne modyfikacje w implementacji. Do wad należy bardzo

duża zależność otrzymywanych wyników od kolejności ułożenia grupowanych obiektów. Rozrzut

i przypadkowość otrzymywanych wyników jest tak duża (w stosunku do innych algorytmów), że

wyklucza to stosowanie tego algorytmu w większości zastosowań.

Algorytm 3.2. Grupowanie metodą najbliższego sąsiada

dane wejściowe : grupowany zbiór obiektów X

funkcja odległości d(x,C)

próg podziału g

c=1 // liczba klastrów

C_1= // ustaw klaster początkowy na pusty

for i:= 1 to n do begin

for j:= 1 to c do begin

if d(x_i,C_j)<g then begin

//dopisz element do klastra

C_j += x_i

continue

end;

end;

// jeżeli nie dopisano to utwórz nowy klaster

c =c + 1

C_c= x_j

end;

Page 74: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

74 Grupowanie

Grupowanie metodą k-mediana

Grupowanie, w którym obiekty reprezentujące poszczególne klastry wywodzą się spośród gru-

powanego zbioru obiektów, należy do klasy algorytmów k-mediana (ang. k-medoids). Istnieje wiele

algorytmów należących do tej klasy: algorytm PAM [70], CLARA [70], CLARANS [99]. Celem tej

techniki grupowania jest wybranie c elementów v1, . . . , vc spośród n elementów populacji X stano-wiących zbiór wzorców (mediany). Podział otrzymuje się poprzez przypisanie obiektów do klastrów

reprezentowanych przez poszczególne mediany zgodnie z regułą:

Cp = xm : d(xm, vp) ¬ d(xm, vr), p, r ∈ 1, . . . , c. (3.17)

W algorytmach k-mediana funkcja kosztu jest sumą odległości pomiędzy obiektami a reprezentu-

jącymi ich klaster medianami. W algorytmie PAM poszukiwanie rozwiązania dokonuje się iteracyjnie

poprzez zamianę obiektu z odpowiadającą mu medianą. Jeżeli funkcja kosztu się zmniejszy to da-

ny przykład staje się podstawą dalszych poszukiwań, jeżeli nie to się go pomija. Zapis algorytmu

przestawiono w (3.3).

Algorytm 3.3. Algorytm PAM

Wejście : zbiór obiektów X=x

oczekiwana liczba klastrów c

funkcja d(x,x) ; odległość pomiędzy obiektami

funkcja EE(V) ; obliczenie sumy odległości - funkcja kosztu

etap 1. wybierz początkowy zbiór wzorców

np. drogą losowania

etap 2. dla każdej możliwej zamiany obiektu z medianą oblicz

nową wartość funkcji kosztu Dn

etap 3. jeżeli Dn<Ds to przyjmij przykład jako nowe rozwiązanie,

przypisz Ds:=Dn

etap 4. jeżeli od ostatniego przypisania sprawdzono wszystkie możliwości

zamian to zakończ inaczej powróć do etapu 2.

Złożoność obliczeniowa algorytmu PAM wynosi O((1 + β)c(n − c)2), gdzie β jest liczbą sku-tecznych zamian (takich, które zmniejszyły wartość funkcji kosztu). Tak wysoka złożoność stanowi o

przydatności tego algorytmu jedynie do niewielkich zbiorów danych. Algorytm CLARA (ang. Cluste-

ring LARge Applications) redukuje koszt obliczeniowy poprzez zastosowanie algorytmu PAM jedynie

do próby losowej całego zbioru. Następnie wielokrotnie powtarza się tą procedurę, dla uzyskanych

median oblicza się sumę odległości dla całej populacji i wybiera najlepsze rozwiązanie. Nieco inne

rozwiązanie zastosowano w algorytmie CLARANS [99]. Zamiany obiektów z medianami ogranicza

Page 75: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

3.3 Grupowanie iteracyjne 75

się jedynie do r najbliższych sąsiadów, przeszukiwanie kończy się znalezieniem lokalnego minimum.

Następnie wielokrotnie powtarza się tą procedurę dla nowo wylosowanych elementów startowych i

wybiera najlepsze rozwiązanie.

Algorytmy grupowania iteracyjnego oparte o metody optymalizacyjne funkcji kryterium są dobre

do rozwiązywania tylko pewnej klasy zagadnień grupowania. Ponieważ algorytmy te znajdują lokalne

ekstrema funkcji, to cała metoda staje się bardzo czuła na dobór punktów startowych poszukiwanego

wektora wzorcowego.

3.3.3 Grupowanie rozmyte

Grupowanie rozmyte jest pomocne w przypadku, gdy nie istnieje wyraźna, ostra granica roz-

dzielająca naturalne grupy obiektów. W rzeczywistym świecie często obserwowane jest zjawisko

wielokrotnego bądź częściowego należenia danego obiektu do grupy.

Można wyróżnić dwa rodzaje grupowania rozmytego [128]: pierwsze korzysta z rozmytych relacji

do dokonania grupowania; drugi rodzaj oparty jest o funkcję kryterium, na podstawie której tworzy

się rozmyte grupy.

Jeżeli funkcja jądra ze wzoru (3.7) przyjmuje postać:

kh(xi,C) = k(d(xi,vh)), (3.18)

to przyjmuje ona postać funkcji przynależności charakterystycznej dla zbiorów rozmytych:

(uih)m = k(d(xi,vh)). (3.19)

Ma się wtedy do czynienia z częściową przynależnością do zbioru (grupy). Przykładową funkcję

kryterium dla grupowania rozmytego zaproponował Bezdek [12]:

Jm(U,V) =c∑i=1

n∑k=1

(uik)md2ik, (3.20)

gdzie:

Page 76: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

76 Grupowanie

m > 1 współczynnik rozmycia,

c liczba grup,

n liczba obiektów,

V = [vi] macierz wzorców,

vi ∈ R wzorzec i-tej grupy,

uik przynależność xk do i-tej grupy,

dik miara odległości pomiędzy xk,

a elementem wzorcowym grupy vi,

U = [uik] macierz przynależności.

Oprócz miary euklidesowej stosowane są miary L1 zaproponowane w [76], analizę uogólnionej

postaci algorytmu k-średnich dla miary Lp przedstawiono w [62].

Algorytm FCM

Algorytm znajdujący rozwiązanie równania 3.20 można zapisać w następujący sposób [12]:

Krok 1. Ustal parametry wejściowe algorytmu, takie jak ilość przedziałów c, kryterium zakończenia

E, współczynnik rozmycia , inicjalizacja macierzy współczynników przynależnościU(0), indeks

cyklu t = 1.

Krok 2. Obliczenie wektora wzorcowego V(t) i macierzy U(t) zgodnie ze wzorami:

vi =

∑Ni=1(u

(t−1)ij )mxi∑N

i=1(u(t−1)ij )m

, (3.21)

uij =1∑c

j=1

(∥∥xi−v(t)a ∥∥∥∥xi−v(t)j ∥∥) 2m−1

, (3.22)

gdzie t oznacza numer iteracji.

Krok 3. Jeżeli nowa macierz podziału nie różni się o więcej niż o ε oraz nie został osiągnięty limit

iteracji wróć do kroku 2.

Inny wzór na obliczenie macierzy współczynników podziału:

(uik)m =exp−βdik∑cj=1 exp−βdik

. (3.23)

Można również zastosować teorię możliwości [80]:

Page 77: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

3.3 Grupowanie iteracyjne 77

uik =1

1 + dikηi(3.24)

lub

uik = exp(−dikηi

). (3.25)

gdzie η, β określają współczynnik rozmycia.

FCMdd – grupowanie rozmyte dla rozwiązań w przestrzeni dyskretnej

W przypadku gdy przestrzeń rozwiązań jest dyskretna (przykładowo jeżeli w skład zbioru pro-

totypów (V ) mogą wchodzić wyłącznie elementy ze zbioru wejściowego X) nie można stosować

typowych technik minimalizacji funkcji kryterium stosowanych dla przestrzeni ciągłych. W miejsce

metod gradientowych użyto funkcji sprawdzającej możliwość wykorzystania poszczególnych obiek-

tów jako wzorca (analogicznie do metod k - mediana). Zapis algorytmu przedstawiono w algorytmie

3.4.

Page 78: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

78 Grupowanie

Algorytm 3.4. Grupowanie rozmyte FCMdd

dane wejściowe : liczba klastrów c

grupowany zbiór obiektów X

generuj zbiór prototypów V spośród losowo wybranych elementów X

iter=0

repeat

// obliczanie macierzy przynależności U

for i = 1 to c do begin

for j = 1 to n do begin

u[i,j]=fu(x,v)

end;

end;

Vold = V; //zapamietaj poprzednią wartość wektora wzorcowego

for i = 1 to c do begin

q = szukajmin(X,U)

v[i]=x[q]

end;

iter = iter + 1;

until (Vold=V) or (iter=MAX_ITER);

Ponieważ nie można nowego wektora wzorcowego obliczyć, to poszukuje się go wśród obiektów

wybierając ten, dla którego funkcja kryterium, przy uprzednio obliczonej macierzy przynależności,

osiąga minimum. Niestety podejście to skutkuje kwadratową złożonością obliczeniową algorytmu z

uwagi na konieczność sprawdzenia w każdej iteracji każdego obiektu w roli wzorca. W praktyce naj-

częściej właściwy obiekt należy to tego samego klastra co poprzedni wzorzec, więc można ograniczyć

poszukiwanie tylko do danego klastra, lub bardziej szczegółowo, tylko do k obiektów najbardziej

bliskich w stosunku do poprzedniego wzorca. Wtedy szacowana złożoność algorytmu obniży się do

poziomu O(kn), czyli jest liniowa, w szczególności gdy k jest niewielką liczbą całkowitą.

3.4 Aglomeracyjne grupowanie hierarchiczne

Hierarchiczne grupowanie aglomeracyjne jest jedną z metod grupowania [34, 126]. W metodzie

tej klastry budowane są poprzez łączenie istniejących klastrów, bazując na ich odległości (czy też

innej stosowanej miary bliskości). Algorytmiczny zapis tej metody jest przedstawiono w alg:3.5.

Page 79: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

3.4 Aglomeracyjne grupowanie hierarchiczne 79

Algorytm 3.5. Grupowanie aglomeracyjne

1) wybierz początkowy zbiór klastrów

2) znajdź najbliższą sobie parę klastrów i połącz je w jeden

3) powtarzaj krok 2 do osiągnięcia reguły zakończenia

Analizując pracę algorytmu można dojść do kilku wniosków. Po pierwsze: wykonanie każdego

cyklu skutkuje redukcją ilości klastrów o jeden. Drugi wniosek jest następujący: jeżeli dwa obiekty xi i

xj przynależą do tego samego klastra w cyklu k, to również będą przynależały do tego samego klastra

w każdym następnym cyklu pracy algorytmu. Kolejny wniosek mówi, że podziały otrzymywane w

wyniku pracy tego algorytmu tworzą rozłączne podziały, żadna para klastrów istniejących na danym

etapie obliczeń nie ma ze sobą części wspólnej.

Formuły każdego z trzech kroków algorytmu są bardzo ogólne i dają znaczną swobodę w możliwo-

ści ich implementacji oraz możliwością wpływania na osiągane rezultaty. I tak pierwszy krok, mówiąc

o początkowym podziale, nie narzuca dodatkowych wymagań. W najprostszym układzie dane inicju-

jące mają postać jednoelementowych zbiorów (każdy element tworzy samodzielną grupę), ilość grup

jest równa liczebności obiektów. W innym wariancie można wykorzystać, pochodzące z uprzedniego

przetwarzania, informacje odwzorowujące pewną zdobytą już wiedzę o strukturze. Z uwagi na to, że

układ początkowy przenosi się na końcową postać grupowania, możliwość decydowania o układzie

początkowym jest metodą na wykorzystanie posiadanej wiedzy w procesie grupowania.

Drugi krok algorytmu wymaga zdefiniowania miary bliskości, i to na dwóch płaszczyznach. Po

pierwsze w stosunku do pary obiektów, po drugie w stosunku do pary klastrów. Dobór odpowiedniej

miary bliskości ściśle zależy od przedmiotu grupowania.

W ostatnim kroku następuje testowanie warunku zakończenia. Warunek zakończenia może mieć

różnoraką postać. Przykładowo może to być osiągnięcie określonego limitu iteracji lub określonej

liczby grup (te dwa warunki są ze sobą ściśle powiązanie). Również osiągnięcie pewnej maksymalnej

liczebności klastra może stanowić warunek zakończenia grupowania. Kolejna postać warunku za-

kończenia to stan, w którym najmniejsza odległość pomiędzy klastrami przekracza pewną ustaloną

wartość. Również dopuszczalne jest użycie kombinacji logicznej kilku warunków.

Złożoność obliczeniowa powyższego algorytmu jest następująca. Liczba operacji wykonywanych w

każdej iteracji jest rzędu n2, gdyż przeszukiwana jest macierz odległości pomiędzy poszczególnymi

obiektami (liczba obiektów maleje o 1 w każdej iteracji, co nie zmienia rzędu złożoności). Liczba

samych iteracji jest różnicą pomiędzy początkową liczbą obiektów (która wynosi n) i końcową liczbą

klastrów (która jest znacznie mniejsza od n). Reasumują złożoność obliczeniowa jest rzędu O(n3).

W literaturze istnieją algorytmy oparte o metody hierarchiczne o znacznie lepszej złożoności,

przez to lepiej nadające się do przetwarzania dużych zbiorów danych – na przykład algorytm BIRCH

[133] składający się dwóch etapów.

Page 80: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

80 Grupowanie

Algorytm CURE

Kolejnym omawianym algorytmem jest CURE [52], stosujący grupowanie hierarchiczne w oparciu

o próbę losową (ang. random sample). Dzięki zmniejszeniu liczebności zbioru grupowanie hierarchicz-

ne dokonuje się w akceptowalnym czasie, następne pozostałe elementy są przypisywane do uprzednio

uzyskanych klastrów zgodnie z przyjętym kryterium (ang. Label data). Użycie próbkowania pozwala

na redukcję liczby elementów podlegających grupowaniu. Jeżeli wielkość próby jest wystarczająco

duża, a układ elementów bardzo źle usytuowany, to otrzymywane wyniki nie odbiegają od wyników

otrzymywanych podczas przetwarzania całego zbioru.

Algorytm ROCK

Kolejny algorytm grupowania zwany ROCK (ang. RObust Clustering using linKs) również używa

metody aglomeracyjnej [53]. Dla zwiększenia skalowalności stosuje grupowanie oparte o próbę loso-

wą. Podstawowym zagadnieniem, które wyróżnia algorytm ROCK, jest użycie w funkcji kryterium

wiązań w miejsce klasycznych miar podobieństwa [53]:

El =c∑i=1

∑pq,pr∈Ci

link(pq, pr)

n1+2f(θ)i

(3.26)

gdzie:

El minimalizowana funkcja kryterium,

c liczba grup,

Ci grupa i,

ni liczba elementów w grupie Ci,

pq, pr grupowane elementy,

link(pq, pr) ilość wiązań (wspólnych sąsiadów) pomiędzy elementamipq, pr,

n1+2f(θ)i oczekiwana liczba wiązań dla zbioru ni elementowego.

Szczegółowe omówienie miary bliskości jaką jest liczba istniejących wiązań pomiędzy poszczegól-

nymi elementami zawarte jest w podrozdziale 2.2.3. Wzór (3.26) jest miarą jakości klastra, stanowi

funkcję kryterium. W algorytmie aglomeracyjnym jest potrzebna funkcja, która uszereguje pary kla-

strów w kolejności do łączenia. W algorytmie ROCK zaproponowaną następującą funkcję bliskości

klastrów:

g(Ci, Cj) =link(Ci, Cj)

(ni + nj)(1+f(θ)) − n(1+f(θ))i − n(1+f(θ))j

(3.27)

gdzie:

Page 81: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

3.5 Grupowanie podziałowe 81

Ci, Cj grupy i, j,

ni, nj liczebność grup i, j,

link(Ci, Cj) liczba wiązań pomiędzy klastrami i, j.

3.5 Grupowanie podziałowe

Proces grupowania w ramach metod podziałowych przebiega w odwrotnym kierunku niż w meto-

dach aglomeracyjnych. Rozpoczyna się od jednego zbioru obejmującego wszystkie obiekty a następnie

dzieli się go w kolejnych krokach na podzbiory, aż do uzyskania żądanej liczby podzbiorów. Problem

określania kryterium podziału jest znacznie trudniejszy niż przy łączeniu. Należy bowiem rozważyć

wszystkie możliwe podziały, uwzględniając wszystkie atrybuty obiektów. Najczęściej jednak, z uwagi

na prostotę implementacji, stosuje się metody oparte o podział względem tylko jednej zmiennej w

danym kroku. Ogólną postać algorytmu podziałowego zapisuje się następująco:

Algorytm 3.6. Grupowanie podziałowe

1) Utwórz jeden zbiór (klaster) zawierający wszystkie obiekty.

2) Wygeneruj wszystkie możliwe podziały klastra na dwa lub więcej podzbiory.

3) znajdź najlepszy podział zgodnie z funkcją kryterium i zrealizuj go;

otrzymane podzbiory stają się nowymi klastrami w miejsce źródłowego.

4) Jeżeli każdy z obiektów znajduje się w oddzielnej klasie, zakończ;

w przeciwnym wypadku wykonuj rekurencyjnie kroki 2-4 dla każdego klastra.

Algorytmy oparte o metody podziałowe lepiej nadają się do grupowania obiektów opisanych atry-

butami symbolicznymi niż numerycznymi. Natomiast ograniczeniem jest duża złożoność pamięciowa

i obliczeniowa algorytmów tej klasy, która jest większa od złożoności metod aglomeracyjnych i itera-

cyjnych. Osiągane przez metody podziałowe rezultaty zazwyczaj są gorsze od osiąganych metodami

aglomeracyjnymi [50].

3.6 Grupowanie dokumentów tekstowych

Wstępem do zagadnienia grupowania dokumentów tekstowych jest przyjęcie hipotezy przedsta-

wionej przez van Rijsbergena [110] mówiącej o tym, że podobne do danego pytania dokumenty mogą

stanowić stosowną odpowiedź na to samo pytanie (ang. closely associated documents tend to be

relevant to the same request). Jeżeli dokumenty odnoszą się do tego samego zagadnienia to są do

siebie bardziej podobne. Zagadnienie określania podobieństwa dokumentów, które ma wyrażać po-

dobieństwo tematyki zawartej w dokumencie, realizowane jest na wiele sposobów. Pierwszy sposób

Page 82: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

82 Grupowanie

opiera się na spostrzeżeniu, że podobieństwo dokumentów jest ściśle skorelowane z bibliografią czy

też cytowaniami użytymi w tekście. Im więcej „wspólnych” cytowań mają dokumenty, tym są do

siebie bardziej podobne (z punktu widzenia istoty grupowania). Niestety jedynie niewielka ilość do-

stępnych dokumentów posiada bibliografię, znakomita większość jej nie zawiera. Drugą metodą jest

określenie słów kluczowych reprezentujących dany dokument. Tu również podstawową przeszkodą

jest brak takiego zbioru przynależnego do każdego dokumentu. Można oczywiście ręcznie uzupełniać

dokument o słowa kluczowe, ale dla dużych, szybko rozrastających się baz danych może to stanowić

duży wysiłek zarówno finansowy jak i organizacyjny. Najbardziej „niezależny” jest sposób opierający

się wyłącznie na tekście dokumentu. Mówiąc w dużym uproszczeniu polega on na selekcji szeregu

słów ze zbioru źródłowego, które mają stanowić „słowa kluczowe” dla tego dokumentu. Automa-

tyzacja tego procesu jest obarczona dużym ryzykiem. Słowa kluczowe winny reprezentować główne

tezy i zagadnienia przedstawione w dokumencie, coś w rodzaju streszczenia czy podsumowania. Nie

należy ujmować w nim zagadnień związanych z wprowadzeniem, dygresjami, wątkami pobocznymi.

Aby się przed tym ustrzec należy dysponować dodatkową wiedzą na temat struktury dokumentu.

Przykładowo polega to na ograniczeniu się tylko do pierwszych akapitów tekstów, jak to skutecznie

zastosowano przy grupowaniu artykułów z Wall Street Journal, czy też ograniczeniu się do tytułów i

nagłówków [84]. Tego typu zabiegi, aczkolwiek skuteczne, to jednak są ograniczone tylko do danego

źródła dokumentów. Wiedza na temat semantyki, struktury, terminologii danej grupy dokumentów

znakomicie ułatwia, a co za tym idzie przyspiesza oraz zwiększa dokładność prowadzonych analiz.

Zasady grupowania lingwistycznego

Grupowanie danych określonych lingwistycznie bazuje na upodobnieniu do sposobu myślenia

przez człowieka, przede wszystkim wykorzystuje informację zawartą w termach lingwistycznych. Na

drodze budowy narzędzi wzorujących się na człowieku ważne jest opracowanie właściwej metody

grupowania wykorzystującej granulację jako właściwość informacji zapisanej lingwistycznie. W trak-

cie tworzenia odpowiedniego algorytmu grupowania należy rozwiązać szereg problemów. Pierwszy

wynika ze sposobu określenia brzegów przedziałów, które wyznaczają poszczególne grupy. Klasyczne

teorie zbiorów oparte są o ostre krawędzie. Algorytmy na tym oparte wprowadzają znaczący błąd

w przetwarzanie, spowodowany zupełnie różnym traktowaniem elementów bliskich sobie lecz ułożo-

nych po przeciwnych stronach granicy rozdzielających przedziały. Sposób ten również nie odpowiada

intuicyjnemu podejściu do grupowania odpowiedniemu dla ludzkiej percepcji.

Drugi problem grupowania wynika z aspektu częściowej przynależności do zbioru. Teorie klasycz-

ne nie przewidują takiego przypadku. Element może należeć do zbioru bądź nie należeć. Świat realny

wymaga jednak bardziej elastycznego podejścia. Typowe są przykłady określania wzrostu człowieka:

Page 83: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

3.6 Grupowanie dokumentów tekstowych 83

osoby określa się mianem „trochę niski”, „prawie wysoki” itd. Idąc dalej można oczekiwać jedno-

czesnego przynależenia do kilku zbiorów. W oparciu o poprzedni przykład oba cytowane określenia

mogą dotyczyć tej samej osoby, a z tego wynika, że przynależy ona jednocześnie do zbioru wysokich

jak i do zbioru niskich.

Zadanie to może być rozwiązane poprzez jawne wprowadzenie takich funkcji przez użytkowni-

ka bądź eksperta lub też poprzez zastosowanie technik grupowania dokonanej na wskazanej bazie

danych. Stosowanie funkcji wprowadzanych jawnie ma pewne ograniczenia. Wynikają one z kilku

czynników. Aby dobrze skonstruować funkcję przynależności należy dobrze znać charakter opisy-

wanych obiektów. Warunek ten jest spełniony dla obiektów z bezpośredniego otoczenia człowieka,

takich, które powszechnie są opisywane i grupowane. Wielkości takie jak wzrost człowieka, tempera-

tura otoczenia przy podaniu dodatkowych parametrów (np. obszar czy środowisko) stosunkowo łatwo

poddają się podziałowi na grupy określone lingwistycznie, a reguły tym rządzące są dla większości

oczywiste. Analogicznie sprawa się przedstawia dla danych, których charakter znany jest grupie

ekspertów. Takie środowisko dysponuje również własnymi terminami lingwistycznymi, dla których

skonstruowanie funkcji przynależności jest możliwe. Natomiast w stosunku do pozostałych obiektów

sprawa się komplikuje. Oczywiście możliwe jest, aby użytkownik przeanalizował bazę danych, odpo-

wiednio pogrupował obiekty i określił funkcje przynależności. Podejście to jest jednak pracochłonne.

Można to próbować dokonać automatycznie, korzystając z technik grupowania.

Zbiór słów – etykiet składających się na zmienną lingwistyczną zależy od opisywanej wielkości

i celu stosowania zmiennej. W zależności od potrzeb można dobierać stopień granulacji wpływa-

jąc tym samym na stopień niepewności, dokładności czy też rozmycia. Jednostkowy przedział [0, 1]

w najprostszym przypadku można „pokryć” trzema słowami: „mało”, „połowa”, „dużo”. Doda-jąc kolejne określenia przechodzimy do bardziej precyzyjnych opisów: „nic”, „mało”, „połowa”,„dużo”, „wszystko” „nic”, „prawie nic”, „mało”, „prawie połowa”, „połowa”, „dużo”, „prawiewszystko”, „wszystko”. Powyższy przykład pokazuje w jaki sposób można wpływać na stopień gra-nulacji zapisywanej informacji.

Reprezentacja dokumentu

Formalny zapis dokumentu ma postać wektora słów [115]:

D = ti, tj , . . . , tp, (3.28)

w którym każde tk reprezentuje słowo zawarte w danym dokumencie D. Zazwyczaj przedmiotem

analizy jest zbiór dokumentów. Zapis 3.28 uogólnia się w następujący sposób: elementami zbioruD są

pary, z których każda składa się ze słowa mogącemu wystąpić w dokumencie oraz wagi odpowiadające

Page 84: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

84 Grupowanie

założonej asocjacji pomiędzy danym słowem tk a dokumentem Dd:

Dd = t1, wd1; t2, wd2; . . . ; tt, wdt. (3.29)

W najprostszym przypadku wdk może binarnie oznaczać występowanie wdk = 1 bądź brak wdk = 0

słowa tk w dokumencie Dd.

Miara odległości dla danych postaci lingwistycznej

Większość algorytmów grupowania bazuje na mierze odległości. Odległością nazywamy funkcję

przekształcającą dwa dane obiekty w dodatnią liczbę rzeczywistą zgodnie ze wzorem (2.5). Dla

części danych numerycznych stosuje miary odległości w przestrzeni metrycznej, np. euklidesowa

miara odległości. Dla danych postaci lingwistycznej formuła ta się nie sprawdza. W tym wypadku

należy się odwołać do istoty informacji ukrytej w słowach (termach) lingwistycznych. Na przykład,

jeżeli dany obiekt zawiera adres administracyjny, to można skonstruować algorytm, korzystający

z odpowiedniego słownika, który obliczy odległość geograficzną. Przykładowo dla bazy z trzema

instancjami I = i1 = „KATOWICE”, i2 = „KRAKÓW”, i3 = „WARSZAWA” przyjmuje siędL(i1, i2) = 70km, dL(i1, i3) = 300km (dL jako oznaczenie funkcji liczącej odległość geograficzną

pomiędzy miejscowościami). Obok funkcji odległości pomiędzy obiektami do grupowania stosuje

się również funkcje określające podobieństwo. Przykładem funkcji podobieństwa jest współczynnik

Jaccarda [70].

Aby jednak właściwie obliczyć współczynnik Jaccarda należy odpowiednio przekształcić badane

obiekty tak, aby móc zdefiniować funkcje sumy i iloczynu. Przykładowo podczas porównywania tek-

stów w języku naturalnym dokonuje się przekształcenia tekstu na postać zbioru, którego elementami

są poszczególne słowa. Zakłada się, że podobieństwo dwóch tekstów w języku naturalnym głównie

zależy od jednoczesnego występowania pewnych słów w obu tekstach. Takie założenie dość dobrze

sprawdza się w przypadku przetwarzania dokumentów typu publikacje naukowe, prasowe, katalogo-

wanie stron internetowych. Jednak w wielu zastosowaniach stosuje się inne, bardziej zaawansowane

funkcje obliczania podobieństwa uwzględniające takie czynniki jak: fleksja, wieloznaczność, seman-

tyka i syntaktyka języka.

Zastosowanie zbiorów rozmytych do danych lingwistycznych

Zbiory rozmyte są jedną z form reprezentacji obiektów danej rzeczywistości [67]. Poprzez przyjęcie

koncepcji oraz mechanizmów z dziedziny zbiorów rozmytych ujmuje się niepewną i niedefiniowalną

czasami istotę obiektów i zdarzeń obserwowanych w rzeczywistym świecie. Koncepcyjnie zbiory roz-

myte są rodzajem łącznika pomiędzy niepewną i niepełną wiedzą człowieka, a zdolnością do algoryt-

micznego przetwarzania danych o ostro zaznaczonych granicach (np.danych punktowych).Stanowią

Page 85: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

3.6 Grupowanie dokumentów tekstowych 85

również rozwiązanie problemu częściowej przynależności do zbioru, faktu powszechnie występującego

w stosowanych w realnym świecie klasyfikacjach, a niezwykle trudnego do wyrażenia w klasycznej

teorii zbiorów. Należy również podkreślić inną istotną właściwość zbiorów rozmytych. W odróżnieniu

od zbiorów klasycznych, które są nieróżniczkowalne, zbiory rozmyte mają charakter ciągły. Dzię-

ki czemu możliwe jest stosowanie niektórych form optymalizacji gradientowych niedostępnych dla

zbiorów klasycznych. Kolejnym aspektem są narzędzia wprowadzone w ramach zbiorów rozmytych,

a stosowane w realnym świecie. Są to: modyfikatory lingwistyczne (np. bardzo, niewiele), przybliże-

nia lingwistyczne (np. około, więcej niż). Zalete te stanowią o użyciu teorii zbiorów rozmytych jako

podstawy w wielu aplikacjach używanych w realnym świecie [66].

Z uwagi na to, że informacja zawarta w danych lingwistycznych (w termach lingwistycznych)

ma charakter ziarnisty to sposób jej reprezentacji winien odwzorowywać tę postać. Wydaje się, że

zbiory rozmyte najlepiej spełniają ten postulat. Aby wprowadzić miarę odpowiadania reprezentacji

rzeczywistemu obiektowi poprzez zbiór rozmyty potrzeba jest skonstruowania wskaźnika niezdecydo-

wania (ang. hesitation)[67]. Wskaźnik ten ma za zadanie określić, czy dany element jest odpowiednim

reprezentantem zbioru rozmytego. Istnieją dwa graniczne przypadki dotyczące wartości wskaźnika

niezdecydowania:

• jeżeli zbiór rozmyty zawiera wyłącznie jeden element, F = x0, to brak jest niezdecydowaniaco do właściwego reprezentanta,

• jeżeli F obejmuje prawie całą dziedzinę i większość elementów ma stopień przynależności równy1, to wybranie tylko jednego reprezentanta, mającego najlepiej określać cały zbiór F , jest

bardzo trudne, stopień niezdecydowania jest najwyższy.

Te dwa skrajne przypadki wyznaczają granice określające stopień granulacji informacji. Jest to o

tyle istotne, gdyż zazwyczaj stosuje się do reprezentacji danego pojęcia rodzinę zbiorów rozmytych.

W wielu zastosowaniach używa się kilka zbiorów rozmytych, również określanych poprzez etykie-

ty lingwistyczne, które mają za zadanie stać się punktami referencyjnymi podczas przetwarzania

informacji. Poprzez użycie postaci lingwistycznej do opisu danego systemu ułatwione zostanie obej-

ście problemu strukturalnej sprzeczności pomiędzy pełnią znaczeń a precyzją opisów. Zazwyczaj

im model bardziej szczegółowy tym trudniej z niego uzyskać ogólną wiedzę, w przypadku utraty

szczegółowości zwiększa się niebezpieczeństwo pominięcia istotnych przesłanek co prowadzi do uzy-

skania nieprawdziwych wniosków. Przetwarzanie lingwistyczne daje prosty mechanizm wpływania

na stopień szczegółowości danych poprzez regulację stopnia granulacji.

Z formalnego punktu widzenia dana jest rodzina zbiorów rozmytych, określona na dziedzinie X:

F = F1, F2, . . . , Fc (3.30)

gdzie:

Page 86: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

86 Grupowanie

Fi zbiór rozmyty,

F rodzina zbiorów rozmytych,

c liczba elementów w rodzinie zbiorówo następujących właściwościach:

1. Pokrycie – F pokrywa tak X, że każdy element X należy przynajmniej do jednego zbioru, coformalnie zapisuje się następująco:

∀x∈X∃i=1,2,...,cFi(x) > 0 (3.31)

gdzie:

X = x zbiór obiektów,

Fi etykieta zbioru rozmytego,

Fi(x) współczynnik przynależności obiektu x do zbioru Fi,

c liczba etykiet,

F rodzina zbiorów rozmytych.

2. Suma współczynników przynależności dla każdego elementu wynosi 1, wtedy model określany

jest jako podział rozmyty (ang. fuzzy partition):

∀x∈Xc∑i=1

Fi(x) = 1. (3.32)

Jednym z zastosowań zbiorów rozmytych jest reprezentacja znaczeń słów języka naturalnego.

Poszczególne zbiory rozmyte stanowią reprezentację znaczeń danego słowa, które to słowo jednocze-

śnie stanowi etykietę lingwistyczną zbioru rozmytego. Istnieją zalecenia, wynikających z analogii do

języka naturalnego, pomagające we właściwym „tłumaczeniu” elementów na etykiety:

1. każda para Ai i Aj są wystarczająco rozdzielne, im lepiej to wymaganie jest spełnione, tym

łatwiej przypisać poszczególne obiekty do etykiet, podział jest bardziej znaczący,

2. liczba elementów A winna być niewielka, zazwyczaj wynosi 7 ± 2 co wynika z pewnych psy-chologicznych właściwości człowieka. Spotyka się również zalecenia do stosowania reguły 4± 2w zakresie gdy do czynienia się ma z pamięcią wzrokową [65].

Zbiory rozmyte stanowią rozwiązanie problemu reprezentacji niepełnych i nieostrych znaczeń

słów języka naturalnego.

Page 87: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

3.7 Grupowanie genetyczne 87

3.7 Grupowanie genetyczne

Omówienie zagadnień algorytmów genetycznych i ewolucyjnych w zakresie ich zastosowań w

eksploracji danych i pozyskiwania wiedzy znajduje się w [42].

Algorytmy genetyczne (GA), zaproponowane i rozwinięte przez Hollanda [68] oraz ich rozszerze-

nie: algorytmy ewolucyjne (EA), stanowią próbę przeniesienia naturalnych procesów zachodzących

w świecie organizmów żywych – ewolucji i związanej z nią naturalnej selekcji, do rozwiązywania

problemów polegających na poszukiwaniu rozwiązań optymalnych. Z racji zaczerpnięcia idei pod-

stawowych mechanizmów rządzących systemami biologicznymi, wiele z terminów zapożyczono z

dziedziny genetyki. Podstawowe pojęcia związane z algorytmami ewolucyjnymi:

• osobnik – struktura zawierająca zakodowane istotne parametry zadania,

• populacja – zbiór osobników,

• gen – pojedynczy element genotypu, zawierający jeden z zakodowanych elementów rozwiązania,

• chromosom – uporządkowany ciąg genów (łańcuch kodowy),

• genotyp – zespół chromosomów danego osobnika (zakodowane rozwiązanie),

• fenotyp – zestaw wartości rozwiązania odpowiadających danemu genotypowi (zdekodowanerozwiązanie),

• przystosowanie – jakość osobnika, z punktu widzenia zastosowanego kryterium oceny,

• pokolenie – generacja, iteracja algorytmu,

• rodzice – wybrane do reprodukcji osobniki.

Algorytmy ewolucyjne realizują podstawowe założenia teorii ewolucji: reprodukcję, mutację i

selekcję, tworzą szeroką dziedzinę algorytmów przeszukiwania i optymalizacji. Wspólnymi cechami

algorytmów ewolucyjnych, odróżniającymi je od innych, tradycyjnych metod optymalizacji, są:

• stosowanie operatorów genetycznych, które dostosowane są do postaci rozwiązań,

• przetwarzanie populacji rozwiązań, prowadzące do równoległego przeszukiwania przestrzenirozwiązań z różnych punktów,

• w celu ukierunkowania procesu przeszukiwania wystarczającą informacją jest jakość aktualnychrozwiązań,

• celowe wprowadzenie elementów losowych.

Page 88: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

88 Grupowanie

Algorytmy genetyczne zapewniają skuteczne mechanizmy przeszukiwania dużych przestrzeni roz-

wiązań. Ponieważ grupowanie należy do tej kategorii zadań to oczywiste jest, że algorytmy genetycz-

ne stosowane są w grupowaniu. Algorytmy genetyczne są bardziej niezależne od wstępnej inicjalizacji

oraz mniej skłonne do znajdowania lokalnych rozwiązań w miejsce optymalnych. Technika grupowa-

nia genetycznego obejmuje kilka zagadnień potrzebnych do ustalenia:

• ustalenie genomu jako reprezentanta wyniku grupowania

• ustalenie funkcji przystosowania/dopasowania

• ustalenie operatorów przeszukiwania

Tworzenie genomu jest dokonywane w ścisłym skojarzeniu z wybraną metodą grupowania. Naj-

bardziej oczywiste jest utworzenie genomu z tablicy podziału na grupy. Każdy obiekt jest reprezen-

towany w genomie przez określony ciąg bitów, w których zapisana jest przynależność obiektu do

określonej grupy.

Dla metod podziałowych k-means oraz c-means genom reprezentuje wektor wzorcowy względem

którego dokonuje się podziału. Dla obiektów będącymi punktami w przestrzeni wielowymiarowej

genom tworzony jest poprzez „sklejenie” poszczególnych współrzędnych, zapisanych w wybranej no-

tacji binarnej, w jeden ciąg bitów. Funkcja przystosowania wzięta jest bezpośrednio z wymienionych

metod odpowiednio J1 (3.16) i Jm (3.20).

Aby stosować algorytmy genetyczne nie muszą być spełnione żadne specjalne warunki i ograni-

czenia co do danych. Musi tylko istnieć funkcja kryterium (funkcja przystosowania), którą najczęściej

jest sama miara jakości podziału.

Poszczególne algorytmy grupowania, oparte o ideę genu, różnią się od siebie technikami modyfi-

kacji „genu”. Najbardziej rozpowszechnione operatory to:

• krzyżowanie – wymiana „materiału genetycznego” pomiędzy dwoma osobnikami w populacji.W wyniku krzyżowania tworzone są dwa nowe osobniki,

• mutacja – modyfikacja rozwiązania, poprzez zmianę jednego lub więcej genu, poprzez co po-wstaje nowy osobnik. Współczynnik mutacji określa liczbę osobników podlegających mutacji

w danym pokoleniu.

Inne stosowane operatory genetyczne to operator inwersji, duplikacji, delacji, translokacji, segre-

gacji [120].

Page 89: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

3.8 Ocena jakości grupowania 89

3.8 Ocena jakości grupowania

Problem oceny jakości dokonanego grupowania jest trudny i wydaje się nie mieć uniwersalnego

rozwiązania. Szczegółową analizę tego problemu w sensie ogólnym, dotyczącym całości zagadnień

eksploracji danych przedstawiono w podrozdziale 1.3. Niniejszy podrozdział omawia zagadnienie

oceny jakości grupowania, w kontekście eksploracji danych. Poniżej wymieniono podstawowe cechy

grupowania, które przyjmuje „dobry” podział [97]:

• prostota — prosta reprezentacja grupowania, czystość reguł podziału, proste zasady przypi-sywania obiektów do grup, chociaż może prowadzić do trywialnych wyników, jednak zawsze

stanowi istotny argument w procesie pozyskiwania wiedzy,

• dopasowanie — rozwiązanie lepiej odzwierciedlające charakter danych ma bardziej skompliko-wany zapis, co rodzi konflikty z kryterium prostoty,

• spójność — określane poprzez dwa wskaźniki: spójność wewnątrz grupową (poszukiwane maksi-mum) i spójność międzygrupową (poszukiwane minimum), spójność zależy od sumy odległości

pomiędzy obiektami w ramach klastra lub klastrów,

• rozłączność — mierzona jako suma wskaźników rozłączności, które definiowane są dla każdejpary klastrów, jako liczba selektorów definiujących te klastry, dla których zbiory wartości

atrybutów są rozłączne,

• wskaźnik dyskryminacji — jest to liczba atrybutów, które samodzielnie stanowią o przypisaniuobiektu do klastra, tj. dla różnych klastrów wartości tych atrybutów są różne.

Jak widać z powyższego wyliczenia kryteria jakości podziału mają formę zaleceń, nieprecyzyjnych

reguł, często prowadzących do konfliktu w procesie wyboru rozwiązania. Ale wynika to z faktu że

problem oceny jakości grupowania leży w zakresie oceny jakości wiedzy, obszaru w którym człowiek

z wielką trudnością formułuje zasady, reguły czy algorytmy postępowania.

Ponieważ nie istnieje jedynie słuszna metoda grupowania, dająca idealne wyniki, to należy skon-

struować kryteria oceny, według których można będzie oceniać otrzymane wyniki. Posiadając odpo-

wiednią funkcję oceny dokonuje się doboru i optymalizacji metod i algorytmów grupowania. Poniżej

wymieniono szereg kryteriów, których spełnienie powinna oceniać funkcja oceny jakości grupowania

[27]:

• dopasowanie grup do przykładów trenujących, mierzone jako łączne rozproszenie wszystkichkompleksów wyznaczających grupowanie,

• złożoność opisu grupy, mierzona jako liczba występujących we wszystkich kompleksach selek-torów nieuniwersalnych,

Page 90: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

90 Grupowanie

• zróżnicowanie grup, reprezentowanych przez kompleksy rozłączne, mierzone przez łączne roz-proszenie koniunkcji wszystkich par kompleksów,

• stopień pokrycia zbioru, mierzony przez liczbę nie pokrywanych przez grupowanie przykładów.

Do porównywania poszczególnych metod grupowania zastosowano następujące miary jakości po-

działu:

• miara jednorodności,

• miara utraty informacji,

• miara względnej spójności.

Aby właściwie móc porównywać różne metody grupowania obiektów należy dysponować odpo-

wiednią funkcją oceny podziału. Zgodnie z ideą grupowania, która polega na gromadzeniu obiektów

podobnych w tym samym zbiorze, a obiektów niepodobnych w różnych, funkcja oceny grupowania

winna oceniać spójność wewnątrz grupy oraz spójność między daną grupą a resztą. W przypadku

danych reprezentujących obiekty rzeczywiste funkcja oceny winna odwoływać się do tych samych

zasad kategoryzacji, jaki jest wykorzystywany przez człowieka. Takie „nastawienie” na człowieka

wynika z dwóch przesłanek. Po pierwsze człowiek w ramach rozwoju cywilizacyjnego wykształcił

zaawansowany aparat kategoryzowania wszelkiego rodzaju obiektów, zjawisk, które znajdowały się

w jego otoczeniu. Służą mu do tego takie narzędzia, jak: język (jako środek opisu), wiedza którą

posiada, a nawet elementy tak nieuchwytne jak mądrość czy intuicja. Po drugie najczęściej człowiek

występuje w pewnej relacji z kategoryzowanymi obiektami, jest twórcą, użytkownikiem, decydentem.

Przykładowo jednym z ogólnych zadań eksploracji danych jest przewidywanie przyszłych zachowań

konsumentów na podstawie informacji dotychczas zgromadzonej. Po trzecie to człowiek jest osta-

tecznym odbiorcą wyników grupowania.

W toku badań nad procesem grupowania dokonywanym przez człowieka poznano kilka jego

aspektów [95]:

• każdą kategorię (grupę) tworzy się w oparciu o kontrast, przeciwstawienie jej pozostałym,

• każda grupa ma zwykle jeden lub kilka obiektów „najlepszych”, wzorcowych, będących jejreprezentantami,

• grupy zawierają obiekty, których cechy nie są konieczne lub wystarczające do określenia ichprzynależności do nich,

• grupy mogą być reprezentowane przez współzależność atrybutów obiektów, przy czym siła tejwspółzależności może zostać wykorzystana do oceny ich spójności,

Page 91: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

3.8 Ocena jakości grupowania 91

• znając cel grupowania człowiek pewnym atrybutom nadaje większą wagę, tj. atrybuty te mająwiększy wpływ na ostateczną postać grupowania.

Wiele miar jakości podziału zakłada niezależność atrybutów i w ten sposób łączy predyktywność

dla wszystkich atrybutów i wszystkich grup. W świecie rzeczywistym obiekty często opisywane są

atrybutami, które nie są od siebie niezależne. W takim przypadku stosowanie niektórych miar może

prowadzić do wypaczeń. Człowiek w swym procesie klasyfikacji wręcz wykorzystuje współzależność

atrybutów. Zakłada się że podobieństwo obiektów jest funkcją współzależności atrybutów w zbiorze

obiektów [112].

3.8.1 Podstawowe definicje związane z pomiarami jakości grupowania

Jednym z problemów grupowania jest określenie optymalnej ilości grup, na które ma zostać

dokonany podział. Jak już powiedziano poszukiwany jest podział, według którego grupy są dobrze

odseparowane od siebie, a poszczególne elementy w grupach są blisko siebie. Wiele algorytmów

wymaga albo jawnego zadania oczekiwanej liczby grup, albo określenia jednego z kryteriów (np.:

minimalna gęstość), którego spełnienie zakończy poszukiwanie podziału.

Podstawowe definicje związane z pomiarami jakości grupowania:

Definicja 10. Wariancja atrybutu A obiektów ze zbioru X = x1, . . . , xin oznaczana jako σ2(X) ∈R :

σ2(X) =1n

n∑j=1

(A(xj)− x)2, (3.33)

gdzie A(x1), . . . , A(xn) są wartościami atrybutu A obiektów ze zbioru X a x wartością średnią:

x =1n

n∑j=1

A(xk). (3.34)

Definicja 11. Wariancja klastra Ci zawierającego elementy Ci = x1, . . . , xin jest definiowananastępująco:

σ2(Ci, vi) =1ni

n∑j=1

(A(xij )− vi)2, (3.35)

gdzie vi oznacza wzorzec klastra Ci.

Definicja 12. Średnia spójność (ang. scattering) dla c klastrów:

Scat(X,V) =∑ci=1 σ

2(Ci, vi)σ2(X)

(3.36)

gdzie V jest zbiorem elementów wzorcowych.

Page 92: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

92 Grupowanie

Tabela 3.1. Tablica koincydencji dla grupy j.

prawidłowoTAK NIE

przypisano TAK aj bjNIE cj dj

Scat(X,V ) jest wskaźnikiem średniej wariancji dla wszystkich klastrów. Małe wartości tego

wskaźnika oznaczają że poszczególne klastry są bardzo spójne (poszczególne klastry grupują obiekty

o dużym podobieństwie).

Definicja 13. Globalna separacja (ang. total separation)pomiędzy klastrami:

Dis(V ) =DmaxDmin

c∑i=1

(1∑c

j=1|vi − vj |

)(3.37)

gdzie Dmax oznacza maksimum a Dmin oznacza minimalną odległość pomiędzy wektorami wzor-

cowymi.

Definicja 14. Wskaźnik dobroci dla zbioru klastrów wyodrębnionych w ramach zbioru X:

G(X,V ) = α · Scat(X,V ) +Dis(R). (3.38)

Jakość podziału zależy zarówno od separacji pomiędzy klastrami jak i spójności wewnątrz grup.

Należy dbać o równoległe polepszanie obu wskaźników. Współczynnik α ma za zadanie wyrównanie

różnicy zakresów dla obu wskaźników tak aby ich wpływ na wartość ostateczną wskaźnika dobroci był

jednakowy [55].

Wskaźniki skuteczności Jeżeli grupowaniu poddawane są zbiory danych o znanej klasyfikacji to

potrzeba oszacowania skuteczności tych działań. Przykładowo podczas rozdzielania zbioru obiektów

na dwie części mogą wystąpić następujące przypadki błędów: nie przypisano elementu, który po-

winien być przypisany oraz przypisano element, który nie powinien być przypisany. W tablicy 3.1

określono możliwe do uzyskania rezultaty. Najlepszy wynik uzyskuje się wówczas gdy bj i cj są równe

0.

Można zdefiniować dwa wskaźniki mierzące skuteczność grupowania:

dokładność (ang. r — recall)

r =a

a+ c, (3.39)

Page 93: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

3.8 Ocena jakości grupowania 93

precyzja (ang. p — precision)

p =a

a+ b. (3.40)

Dokładności i precyzja zależy od sposobu grupowania i parametrów wejściowych. Niestety naj-

częściej zmiany danych wejściowych powodują zmiany wymienionych wskaźników w przeciwnych

kierunkach, polepszając jeden pogarsza się drugi. Posiadając dwa wskaźniki trudno jest również wy-

znaczyć optimum. W tym celu można się posłużyć wskaźnikiem F-measure zaproponowanym prze

Van Rijsbergena [110]:

Fβ(r, p) =(β2 + 1)prβ2p+ r

. (3.41)

Często spotykaną postacią wzoru (3.41) jest przypadek dla β = 1. Wtedy:

F1(r, p) =2prp+ r

. (3.42)

Kolejnym zagadnieniem jest podział na wiele grup. Wzory na dokładność i precyzję dotyczą

podziału na dwie grupy (parametry drugiego zbioru są takie same tylko lustrzanym odbiciu roz-

mieszczenia w tablicy 3.1), natomiast w przypadku większej ilości grup można zastosować dwie

techniki zwane: mikro uśrednianie (ang. micro average) oraz makro uśrednianie (ang. macro ave-

rage). Dla makro uśredniania wskaźniki skuteczności (3.40) i (3.39) są indywidualnie obliczane dla

każdej grupy, a następnie uśredniane. Dla mikro uśredniania tablica konicydencji 3.1 jest obliczana

poprzez jednoczesne zsumowanie odpowiednich wartości dla wszystkich grup i w ten sposób oblicza-

ne są wskaźniki skuteczności grupowania. W zależności od przyjętego sposobu obliczania wykazuje

się różny wpływ wyników poszczególnych grup na wynik ostateczny. W przypadku mikro uśred-

niania faworyzuje się większe grupy, natomiast dla makro uśredniania wpływ wszystkich grup jest

jednakowy.

3.8.2 Miara jednorodności

Do oceny jakości podziału stosuje się miary jednorodności albo zróżnicowania (ang. impurity

measure). W zależności od wybranej funkcji poszukuje się jej minimum albo maksimum. Jeżeli dany

jest zbiór obiektówX, które zostały rozdzielone do grup C = C1, . . . , Cc to można utworzyć wektorprawdopodobieństw przynależności do klas postaci:

p = (p1, p2, . . . , pc) =(|C1||X|

,|C2||X|

, . . . ,|Cc||X|

), (3.43)

c∑i=1

pi = 1, (3.44)

Page 94: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

94 Grupowanie

gdzie:

pi prawdopodobieństwo przynależności do grupy i,

p wektor prawdopodobieństw przynależności,

c liczba grup,

|Ci| liczebność grupy i,|X| liczebność grupowanych obiektów.

Definicja 15. Funkcję

ϕ : [0, 1]k → R (3.45)

taką, że ϕ(p) ­ 0 dla każdego wektora p, nazywa się funkcją zróżnicowania, jeśli ma następującewłaściwości:

1. ϕ(p) = max ⇒ ∃1¬i¬k pi = 1,

2. ϕ(p) = min ⇒ ∀1¬i¬k pi = 1k ,

3. jest funkcją symetryczną.

Przykładami funkcji zróżnicowania są miara entropii [27], wskaźnik zróżnicowania Giniego [17],

statystyka χ2 [47].

Ponieważ podział zbioru obiektów dokonuje się w oparciu o wartości atrybutów, kryterium wy-

boru powinno być miarą porównującą stopień zróżnicowania ze względu na wartości poszczególnych

argumentów. Dokonuje się tego obliczając średnią ważoną funkcji zróżnicowania ϕ(p) w oparciu o

warunkowe prawdopodobieństwa względem poszczególnych wartości atrybutów:

ψ(C,A) =m∑j=1

|Cj ||X|

ϕ(Cj). (3.46)

3.8.3 Reguła podziału na 2 części

Przykładem miary jakości podziału może być funkcja stosowana w algorytmie CART [17] reguła

podziału na 2 części (ang. twoing rule):

T (X,XA, XB) =pApb

(∑ki=1|pAi − pBi |)2

, (3.47)

gdzie:

XA, XB podział X na dwa podzbiory X = XA ∪XB ,pA, pB prawdopodobieństwo że obiekt należy do podzbioru, odpowiednio, XA XB ,

pAi , pBi prawdopodobieństwo że obiekt należący do XA należy do grupy Ci.

Page 95: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

3.8 Ocena jakości grupowania 95

3.8.4 Test χ2

Standardowym testem określającym niezależność zmiennych w tablicach koincydencji jest staty-

styka χ2:

χ2 =r∑i=1

c∑j=1

(Oij − Eij)2

Eij, (3.48)

gdzieOij obserwowana częstotliwość wystąpień w komórce ij,

Eij oczekiwana częstotliwość wystąpień w komórce ij

Eij =

∑j Oij

∑iOij

N, (3.49)

gdzie N jest globalną liczbą obserwacji.

Test χ2 określa czy dane dwa kryteria podziału są zależne czy też nie. Jeżeli kryteria są nieza-

leżne to funkcja przybiera wartość zero. Określenie stopnia zależności kryterium ma istotną wartość

dla szacowania jakości podziału, jako że niezależność kryteriów dowodzi rozdzieleniu obiektów nie-

podobnych do różnych klastrów.

Na mierze χ2 jest opartych wiele wskaźników, przytoczyć można współczynnik Youl‘a, Czuprowa,

Cramera, współczynnik kontygencyjności Pearsona czy współczynnik τ Kendalla.

3.8.5 Przyrost informacji

Niektóre ze sposobów określania miary podobieństwa wywodzą się z teorii informacji. Zakłada

się, że takie grupowanie, które daje największy przyrost informacji jest optymalne, gdyż odpowiada

to małemu zróżnicowaniu kategorii w podzbiorach. Entropia jako miara zróżnicowania wydaje się

być bardzo uniwersalną funkcją, niezależną od charakteru zmiennych.

Informację zawartą w zbiorze etykietowanych przykładów P można wyrazić następująco:

I(P ) =∑d∈D

−|Pd||P |log|P d|P

, (3.50)

gdzie:

|P | liczebność zbioru przykładów,

|P d| liczebność podzbioru przykładów zbioru P należących do kategorii d,D zbiór kategorii możliwych do wyznaczenia w zbiorze przykładów P ,przy czym logarytm może mieć dowolną podstawę, lecz konsekwentnie tę samą.

Entropię przykładów P ze względu na wynik r testu t oblicza się następująco:

Etr(P ) =∑d∈D

−|Pdtr||Ptr|log|P dtr||Ptr|

. (3.51)

gdzie:

Page 96: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

96 Grupowanie

|Ptr| liczebność podzbioru przykładów, dla których test t daje wynik r,|P dtr| liczebność podzbioru przykładów zbioru P d, dla których test t daje wynik rD zbiór kategorii możliwych do wyznaczenia w zbiorze przykładów P ,Entropia zbioru przykładów P ze względu na test t jest definiowana jako średnia ważona entropia

dla poszczególnych testów:

Et(P ) =∑r∈Rt

|Ptr||P |

Etr(P ). (3.52)

Przyrost informacji (ang. information gain) jest określony jako różnica:

gt(P ) = I(P )− Et(P ). (3.53)

Ponieważ jednak informacja I(P ) ma wartość niezależną od ocenianego testu i właściwą dla zbioru

przykładów P , jako kryterium wystarczy zastosować minimalizację entropii Etr(P ).

Dla zbioru przykładów przyrost informacji obliczany jest następująco:

gt(P ) =−∑d∈C

(c(x) = d) · log(c(x) = d)

+∑d∈C

(c(x) = d | ai(x) = v) · log(c(x) = d | ai(x) = v)

+∑d∈C

(c(x) = d | ai(x) 6= v) · log(c(x) = d | ai(x) 6= v).

(3.54)

.

Entropia przyjmuje maksymalne wartości wtedy gdy rozkład wartości atrybutów jest równomier-

ny, natomiast osiąga minimum gdy obiekty posiadające atrybuty o danej wartości zgromadzone są w

jednej grupie. Obiekty są do siebie podobne wtedy gdy posiadają równe wartości swych atrybutów.

Tym samym stosowanie funkcji oceny przyrostu informacji jako poszukiwania podziału spełniającego

warunek maksymalizacji wartości tej funkcji pokrywa się z celem grupowania.

argmaxtgt(P ) (3.55)

3.8.6 Wskaźnik Xie - Beni

Do szacowania jakości podziału pozyskanego w wyniku grupowania rozmytego można zastosować

wskaźnik zaproponowany w [125]:

s =∑ci=1

∑nk=1(u

2ik)(vi − xi)

nmini,k

d2(vi − xi)(3.56)

Im mniejsza jest wartość s, tym lepsza jest spójność i separacja. Celem jest minimalizacja wartości

s w zależności oz założonej ilości grup c. Wskaźnik Xie-Beni może służyć jako kryterium doboru

ilości grup, na które dokonuje się podziału.

Page 97: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

Rozdział 4

Metody oparte o listy decyzyjne

Wstęp

Rozwój algorytmów indukcji reguł ukierunkowany był przede wszystkim na perspektywę klasy-

fikacji. Zbiór reguł traktowany jest jako klasyfikator, ale jednocześnie jako opis zbioru danych w

perspektywie pozyskiwania wiedzy. Algorytmy grupowania wykorzystujące reguły to powszechnie

znane algorytmy deglomeracyjne. Nowością zaproponowaną przez autora jest zastosowanie zbioru

reguł w formie listy decyzyjnej w procesie grupowania. Dzięki takiemu ujęciu polepszyła się ja-

kość prezentacji wyników grupowania z punktu widzenia ludzkiej percepcji i łatwości przyswojenia.

Zmiana formy zapisu podziału umożliwiła skonstruowanie nowej metody grupowania danych.

Drugą propozycją jest wykorzystanie wyżej wymienionej metody opartej na listach decyzyjnych

do skonstruowania i zaimplementowania nowych algorytmów grupowania. Autor przedstawia w swo-

jej pracy własne propozycje algorytmów pełnego przeglądu, heurystycznego i genetycznego, których

praktyczną implementację oraz weryfikację poprawności przedstawiono w rozdziałach następnych.

Rozdział zakończono dyskusją na temat zalet przedstawionej metody.

4.1 Wprowadzenie list decyzyjnych

Listy decyzyjne stanowią istotny element maszynowego uczenia się. Zostały zaproponowane po

raz pierwszy w [111]. Listy decyzyjne są formą zbioru reguł decyzyjnych, w którym ustalono porzą-

dek, czyli kolejność w jakiej reguły mają być wykorzystane do klasyfikowania przykładów. Hipoteza

reprezentowana przez taki zbiór reguł przyporządkowuje klasyfikowanemu przykładowi kategorię

związaną z pierwszą w kolejności regułą, która ten przykład pokrywa. Listy decyzyjne można rów-

nież traktować jak zdegenerowane drzewo decyzyjne, dla którego z każdego węzła wychodzą dwie

97

Page 98: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

98 Metody oparte o listy decyzyjne

gałęzie, z których przynajmniej jedna dochodzi do liścia a ewentualnie pozostała do innego węzła.

Reguły stosowane są do reprezentacji wiedzy o pojęciach klasyfikujących przykłady. Reguły skła-

dają się dwóch elementów: części warunkowej i części decyzyjnej w zapisie:

JEŚLI warunek TO kategoria (4.1)

lub matematycznie:

warunek⇒ kategoria (4.2)

Składnik warunki jest formułą logiczną nałożoną na atrybuty opisujące zbiór obiektów, nato-

miast kategoria stanowi proste przypisanie obiektu do określonej kategorii. Można to przedstawić

następująco:

(∀x ∈ X)(α[a1(x), a2(x), . . . , ar(x)]⇒ h(x) = d). (4.3)

gdzie:ai(x) atrybutów obiektu x,

α(x) formuła logiczna odwołująca się do wartości

atrybutów obiektu,

h(x) funkcja wyznaczająca przypisanie obiektu do danej kategorii,

d ∈ D etykieta konkretnej kategorii.

Jeżeli dany jest zbiór formuł logicznych αi → αi ∈ Θ, w oparciu o które tworzy się reguły ri =α1(x) → dα1 , to mając uporządkowany zbiór takich reguł r1, r2, . . . , rm tworzy się listę decyzyjną.

Wyznaczanie przypisania obiektu do kategorii dokonuje się następująco:

1. dla danego obiektu x sprawdzane jest spełnienie waruneku α1,

2. jeżeli tak, to obiekt x zostaje przypisany do kategorii dα1 ,

3. w przeciwnym przypadku dokonuje się analogicznej analizy przy pomocy następnej reguły.

Zapis algorytmiczny można przedstawić przy pomocy zagnieżdżonej instrukcji warunkowej przed-

stawiono w 4.7, zapis procedury w pseudokodzie w algorytmie 4.8.

Algorytm 4.7. Przypisywanie obiektów do grup na podstawie listy decyzyjnej

IF α1(x) THEN h(x) = dα1ELSE IF α2(x) THEN h(x) = dα2

. . .

. . .

ELSE IF αm(x) THEN h(x) = dαm

Page 99: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

4.1 Wprowadzenie list decyzyjnych 99

Lista decyzyjna LD jest listą reguł na rys 4.1, ale często zapisuje się ją w postaci listy par <

warunek,kategoria> czyli:

DL = (α1, dα1), (α2, dα2), . . . , (αm, dαm). (4.4)

R

war 1

A

R

war 2

B

R

war3

A

R

war 4

C B

Rys. 4.1. Lista reguł.

4.1.1 Tworzenie formuł warunku

Formuły warunku można zapisywać przy pomocy kompleksów. Kompleks jest zbiorem selektorów

k =< k1, k2, . . . , km >, poszczególne selektory odpowiadają kolejnym atrybutom opisującym

obiekt. Każdy selektor określa zbiór wartości dozwolonych.

Definicja 16. Selektor odpowiadający atrybutowi a : X → A pokrywa przykład x ∈ X, jeśli α(x) ∈Vs, przy czym Vs oznacza zbiór wartości dozwolonych dla selektora s. Piszemy wówczas s . x [27].

Definicja 17. Kompleks k = 〈s1, s2, . . . , sm〉 pokrywa przykład x ∈ X jeśli każdy selektor si, gdzie1 ¬ i ¬ m pokrywa przykład x.

W niniejszym opracowaniu, na potrzeby przedstawionego algorytmu, używany jest tylko jeden,

specyficzny rodzaj kompleksów, zwanych kompleksami atomowymi. Formalna definicja jest

następująca:

Page 100: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

100 Metody oparte o listy decyzyjne

Definicja 18. Kompleksem atomowym nazywa się każdy kompleks zawierający dokładnie jeden se-

lektor pojedynczy lub dysjunkcyjny a pozostałe selektory są selektorami uniwersalnymi

Inaczej rzecz ujmując, formuła logiczna składa się z prostego testu wartości dla pojedynczego

atrybutu. Takie ograniczenie pozwala znacząco zmniejszyć ilość reguł poddawanych analizie.

Proponowana metoda grupowania wymaga znalezienia takiego ułożenia reguł w liście, dzięki

któremu uzyska się najlepszy wynik funkcji kryterium.

Algorytm 4.8. Procedura przypisywania obiektów do grup na podstawie listy reguł

var

tabp tablica przynależności obiektów do grup

grupa grupy odpowiadające spełnionym warunkom reguł

proc PrzypiszGrupy(obiekt)

var

i : integer;

zmienna sterująca pętlą do przeglądania listy reguł

przypisany := false;

begin

while notprzypisany do

inc(i); przejdź do kolejnej reguły

if warunek(obiekt, i) then tabp[obiekt] := grupa[i] fi

jeżeli warunek spełniony przypisz obiekt do grupy

end

end.

4.2 Zasada działania metody grupowania

Autor proponuje zastosowanie list decyzyjnych w metodzie grupowania. Wstępnie omówienie

propozycji użycia list decyzyjnych do grupowania autor niniejszej pracy przedstawił we własnej

publikacji [94].

Proponowana metoda opiera się na następujących założeniach:

1. Brak konieczności kwantyzacji danych symbolicznych.

2. Brak konieczności stosowania funkcji odległości, wystarcza zastosowanie funkcji oceniającej

jakość podziału (na podstawie podrodzału 3.8).

Page 101: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

4.2 Zasada działania metody grupowania 101

3. Rozwiązaniem jest lista decyzyjna, z której wprost wyprowadza się macierz przynależności

(wzór 4.9).

4. Obszar rozwiązań to zbiór wszystkich permutacji listy decyzyjnej.

5. Poszukiwane jest rozwiązanie najlepiej spełniające funkcję kryterium.

4.2.1 Analogia do metod hierarchicznych

W algorytmach hierarchicznych rozwiązanie tworzył graf w postaci odwróconego drzewa (dendo-

gramu). W takim drzewie liście reprezentują poszczególne obiekty a gałęzie wyznaczają poszczególne

grupy. Liczba grup zależy od wysokości drzewa, grupy wyznaczają wszystkie gałęzie na danym po-

ziomie. Liście należące do różnych gałęzi reprezentują obiekty należące do różnych grup.

W omawianej metodzie zaproponowano istotną zmianę: graf zostanie utworzony na podstawie

listy decyzyjnej, analogicznie jak to zostało zaproponowane w algorytmie klasyfikacyjnym CN2 [29].

Jak już wspomniano uzyskiwane rozwiązanie ma postać uporządkowanej listy reguł decyzyjnych.

Pojęcie reguł zostało zaczerpnięte z dziedziny symbolicznej klasyfikacji wzorcowej. Reguły te mają

formę:

Dj ::> Ki, (4.5)

gdzie: 0 < j < |D| jest indeksem reguły w liście reguł, |D| liczbą reguł w liście, Dj to warunekopisujący, Ki oznacza klasę, a ::> operator przypisania.

Reguły interpretuje się następująco: Jeżeli dany obiekt spełnia opis Dj to należy do klasy Ki.

W celu adaptacji pojęcia reguł do grupowania zbiorów tekstowych przyjęto następujące założenie.

Reguła będzie miała postać występowania określonego słowa (termu) w tekście, tj. jeżeli słowo użyte

w regule Dj występuje w tekście obiektu Xn to znaczy to, że obiekt Xn zostaje przypisany do klasy

Ki. Reguły w tym przypadku mają postać uporządkowanej listy.

4.2.2 Tworzenie macierzy przynależności

Macierz przynależności (algorytm 4.9) jest ostatecznym rezultatem grupowania. W procesie gru-

powania opartego o listy decyzyjne wymagane jest dokonanie dodatkowego etapu, polegającego na

przypisaniu obiektów do grup na podstawie danej listy decyzyjnej. W wielu zastosowaniach etap ten

jest pomijany, gdyż do dalszego przetwarzania wystarcza sama lista decyzyjna. Natomiast etap ten

jest wymagany w przypadku konieczności uzyskania podziału zbioru. Proces przypisywania obiektów

do grup przedstawiono algorytmem 4.9[29].

Algorytm 4.9. Rekurencyjne przypisywanie obiektów do grup na podstawie listy reguł

Page 102: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

102 Metody oparte o listy decyzyjne

dla każdego obiektu

jeżeli reguła umieszczona w głowie listy jest spełniona

to przypisz obiekt do wskazanej grupy

w przeciwnym wypadku powtórz obliczenie dla ogona listy

W proponowanym algorytmie lista przeglądana jest tak długo, aż zostanie znaleziona odpowia-

dająca reguła. Wynika też z tego, że lista powinna zawierać odpowiednią ilość reguł tak, aby każdy

obiekt mógł zostać przypisany. Listę tą można traktować jako gen będący przedmiotem przetwarza-

nia w algorytmach genetycznych. Otrzymana postać grupowania to graf w postaci zdegenerowanego

drzewa, w którym z każdego węzła wychodzi tylko jedna gałąź oraz jeden lub więcej liści. Liście repre-

zentują obiekty przypisane do danej grupy, przy czym grupa obejmuje obiekty obecne w jednym lub

więcej węźle. Jest to istotny element odróżniający od metod hierarchicznych. Algorytmy oparte na

liście decyzyjnej polegają na poszukiwaniu listy reguł najlepiej odpowiadającej funkcji dopasowania

(dającej najlepszy wynik).

4.2.3 Funkcja kryterium

Metody grupowania oparte o listy decyzyjne, analogicznie jak metody deglomeracyjne, wymaga-

ją istnienia funkcji kryterium do porównywania i selekcji kolejnych rozwiązań w toku przetwarzania.

Jako funkcje kryterium często wykorzystuje się wzory zaczerpnięte z teorii informacji. Zakłada się, że

takie grupowanie, które daje największy przyrost informacji jest optymalne, gdyż odpowiada to ma-

łemu zróżnicowaniu kategorii w podzbiorach. Reguły obliczania przyrostu informacji przedstawiono

w podrozdziale 3.8.5.

Własności testu opartego o przyrost informacji

Entropia przyjmuje maksymalne wartości wtedy gdy rozkład wartości atrybutów jest równomier-

ny, natomiast osiąga minimum gdy obiekty posiadające atrybuty o danej wartości zgromadzone są w

jednej grupie. Obiekty są do siebie podobne wtedy gdy posiadają równe wartości swych atrybutów.

Tym samym stosowanie funkcji oceny przyrostu informacji jako poszukiwania podziału spełniającego

warunek maksymalizacji wartości tej funkcji pokrywa się z celem grupowania.

4.3 Algorytm grupowania wykorzystujący pełny przegląd

Pierwszym z algorytmów grupowania zaproponowanych przez autora niniejszej pracy jest algo-

rytm oparty o zasadę pełnego przeglądu [15].

Page 103: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

4.3 Algorytm grupowania wykorzystujący pełny przegląd 103

Najprostszym i najpewniejszym sposobem możliwym do zastosowania do grupowania opartego o

listy decyzyjne jest procedura pełnego przeglądu. Ponieważ znana jest liczba reguł wchodzących w

skład listy decyzyjnej wystarczy dokonać przeglądu wszystkich kombinacji ułożenia reguł w liście,

a następnie wybrać takie ułożenie, które daje najlepsze dopasowanie funkcji kryterium. Największą

wadą takiego podejścia jest wysoka złożoność obliczeniowa, już dla kilkunastu reguł czas obliczeń

przestaje być akceptowalny. Natomiast w przypadku mniejszych zbiorów algorytm pełnego przeglą-

du może stanowić model referencyjny, do weryfikacji innych algorytmów. Referencyjne właściwości

niniejszego algorytmu wynikają z właściwości „pełnego przeglądu”. Ponieważ sprawdzane są wszyst-

kie możliwe warianty rozwiązań, to na pewno będzie wśród nich rozwiązanie optymalne – najlepsze

do uzyskania metodą opartą na listach decyzyjnych.

Twierdzenie 1. Algorytm pełnego przeglądu zastosowany do znalezienia optymalnego rozwiązania

grupowania opartego o listy decyzyjne daje zawsze najlepsze rezultaty, spośród możliwych do osią-

gnięcia wymienioną metodą.

Dowód 1. Algorytm pełnego przeglądu polega na wybraniu najlepszego rozwiązania spośród wszyst-

kich istniejących permutacji listy decyzyjnej, więc nie istnieje lista decyzyjna, która by nie była nie

sprawdzana, co dowodzi pewnosci znalezienia rozwiązania optymalnego.

W przypadku omawianego algorytmu procedura pełnego przeglądu dotyczyć będzie przeglądu

listy reguł L, która zawiera w kolejnych węzłach wszystkie możliwe kombinacje reguł i przypisań

do poszczególnych grup to ostatecznym rezultatem grupowania jest jedna (lub wiele równoważnych)

permutacji takiej listy wynikających ze zmiany ułożenia kolejności węzłów. Jeżeli przez |D| oznaczy-my całkowitą liczbę reguł a |K| oczekiwaną liczbę grup, to długość listy reguł |L| wynosi:

|L| = |D||K| (4.6)

gdzie liczbę reguł dyskryminacyjnych można wyznaczyć następująco:

|D| =m∑i=1

|Ai| (4.7)

gdzie:Ai – atrybut opisujący i-ty obiekt

m – ilość atrybutów

|Ai| – liczebność dziedziny atrybutu Ai

Liczba reguł dyskryminacyjnych w przypadku krytycznym może osiągnąć wartość iloczynu liczby

obiektów i liczby atrybutów opisujących, natomiast liczba permutacji wynosi (|L|)! to przeszukiwanyobszar rozwiązań może wydawać się bardzo duży. Należy więc wykorzystać istniejące właściwości,

Page 104: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

104 Metody oparte o listy decyzyjne

które pozwolą na uniknięcie dokonywania niepotrzebnych (np. powtarzających się) obliczeń i zwięk-

szenie wydajności algorytmu.

Implementacja algorytmu pełnego przeglądu może zostać zrealizowana w analogii do metod sys-

tematycznego przeszukiwania grafów lub przy pomocy algorytmu wyznaczającego wszystkie permu-

tacje danego ciągu elementów w zależności od zastosowanej reprezentacji listy. W niniejszej pracy

zaprezentowano jeden przykład implementacji algorytmu pełnego przeglądu w zastosowaniu do gru-

powania opartego o listy decyzyjne.

Szczegółowa analiza pokazuje, że można znacząco ograniczyć złożoność obliczeniową prezento-

wanej metody z uwagi na jej następujące właściwości :

• Rzeczywista ilość reguł jest znacznie mniejsza od wspomnianego powyżej przypadku krytycz-nego, aby mówić o grupowaniu to jednak wiele wartości atrybutów musi się powtarzać (obiekty

muszą mieć cechy wspólne, być do siebie „podobne”).

• Część listy reguł jest nieaktywna, gdyż podczas procesu przypisywania brane są pod uwagętylko czołowe reguły i można określić, która z nich jako ostatnia dzieli listę na dwie części.

Kolejność reguł w drugiej części, nieaktywnej nie ma znaczenia dla procesu przypisywania gdyż

reguły te nigdy nie biorą udziału w procesie.

• Istnienie reguł nieistotnych w danym kontekście, tj. takich których możliwe do spełnieniaprzypisania są w pełni pokryte przez wcześniejsze reguły (czyli dany kontekst). Zjawisko to

występuje wtedy, gdy wszystkie obiekty objęte kompleksem z danej reguły zostały wcześniej

(przez reguły umieszczone bliżej głowy listy) przypisane do grup. Tym samym ułożenie takich

reguł pozostaje bez znaczenia na rezultat.

Wykorzystywanie takich właściwości pozwala na uniknięcie dokonywania niepotrzebnych obliczeń

i zwiększenie wydajności algorytmu.

Twierdzenie 2. Niektóre reguły z listy decyzyjnej nie biorą udziału w procesie tworzenia macierzy

podziału.

Dowód 2. W skład listy decyzyjnej wchodzą wszystkie kombinacje reguł i klas (wzór 4.5). Użycie

reguły Dj ::> Ki powoduje, że wszystkie nie przypisane jeszcze obiekty spełniające warunek Dj

zostaną przypisane do grupy Ki. Więc dla każdej z występujących później reguł Dj ::> Kk, gdzie

i 6= k nie nie pozostanie żaden z obiektów mogących podlegać przypisaniu.

4.4 Algorytmy oparte na przeszukiwaniu heurystycznym

Najlepszym algorytmem, pod względem jakości uzyskiwanych wyników (dających najlepsze war-

tości zastosowanej miary jakości) jest algorytm pełnego przeglądu. Natomiast algorytm ten posiada

Page 105: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

4.5 Algorytm wykorzystujący mechanizm genetyczny 105

bardzo dużą złożoność obliczeniową. Zasadne jest więc poszukiwanie innego algorytmu, o niższej

złożoności obliczeniowej przy akceptowalnej jakości uzyskiwanych wyników.

Ponieważ proces grupowania polega na poszukiwaniu najlepszego rozwiązania w ramach dopusz-

czalnej przestrzeni rozwiązań, to można do tego wykorzystać metody przeszukiwania heurystycznego

[15]. Poszczególne algorytmy różnią się od siebie strategią przeszukiwania przestrzeni rozwiązań oraz

sposobem wykorzystywania informacji o dziedzinie rozwiązywanego problemu. Zaproponowana przez

autora niniejszej pracy strategia, określona jako liniowe przeszukiwanie, polega na podstawianiu ko-

lejnych reguł na danej pozycji, po znalezieniu najlepszej następuje zmiana pozycji modyfikowanej.

Proponowany algorytm stanowi uproszczoną wersję pełnego przeglądu. Z uwagi na liczbę dopusz-

czalnych kombinacji pełny przegląd nie jest możliwy do zrealizowania już dla stosunkowo niewielkich

baz. Wykorzystano więc metodę doboru reguły niezależnego dla każdej pozycji.

Algorytm 4.10. Heurystyczny metoda liniowa

dla każdej reguły

utwórz nowalista=reguła|poprzednialista

oblicz wskaźnik jakości

zapamiętaj najlepszy wariant

dla najlepszego wariantu

podstaw poprzednialista=najlepszywariant

powtarzaj do momentu aż przestawienie żadnej z reguł nie przynosi

polepszenia wskaźnika jakości

W opisywanym algorytmie strategia przeszukiwania przestrzeni rozwiązań polega na sekwencyj-

nym sprawdzaniu kolejnych wariantów listy. Dla każdego elementu z listy początkowej reguł dokonuje

się generacji nowej listy poprzez przestawienie wybranego elementu na początek listy. Jeżeli tak skon-

struowana lista daje lepsze wyniki, to staje się ona podstawą do dalszego przetwarzania (staje się

listą początkową), a sprawdzania kolejnych reguł dokonuje się od początku. Jak można zauważyć w

powyższym zapisie, przeszukiwanie polega na dokładaniu kolejnych reguł na początek listy.

4.5 Algorytm wykorzystujący mechanizm genetyczny

Na podstawie podrozdziału 3.7 autor wykorzystał techniki genetyczne do opracowania algorytmu

grupowania opartego o listy decyzyjne. Inicjalizacja polega na wygenerowaniu listy reguł. Długość

listy równa jest iloczynowi wszystkich występujących słów i ilości oczekiwanej listy grup. Wynika to

Page 106: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

106 Metody oparte o listy decyzyjne

z postaci reguły. W wyniku tej generacji powinna zostać uzyskana lista, w oparciu o którą funkcja

przypisywania podzieli zbiór na wymaganą ilość grup.

Kolejnym elementem algorytmu jest dobranie metody modyfikacji genu. Zaproponowano wpro-

wadzenie pewnej odmiany mutacji. Mianowicie wybierane są losowo dwa elementy z listy i zamieniane

miejscami ze sobą. W trakcie badań zauważono, że wiele tak dokonanych operacji zamiany nie ma

żadnego wpływu na otrzymywany podział na grupy. Dzieje się tak dlatego, gdyż część z listy reguł

jest nieaktywna, nie bierze udziału w procesie przypisywania obiektów do grup. Własność tę wyko-

rzystano w celu zwiększenia szybkości działania algorytmu poprzez unikanie takich niepotrzebnych,

nic nie wnoszących mutacji. Podczas procesu przypisywania brane są pod uwagę tylko czołowe regu-

ły i można określić, która z nich jako ostatnia dzieli listę na dwie części. Kolejność reguł w drugiej

części, nieaktywnej, nie ma znaczenia dla procesu przypisywania, gdyż reguły te nigdy nie biorą

udziału w procesie. W celu wykorzystania tej właściwości zagwarantowano, aby w funkcji mutacji

zawsze jeden z wybieranych elementów pochodził z części aktywnej listy.

Druga propozycja funkcji mutacji różni się od poprzedniej tym, że zamiast zamiany elementów

w liście dokonuje się następującej operacji:

1. Losowanie reguły A z części aktywnej listy.

2. Losowanie reguły B z części nieaktywnej listy.

3. Przeniesienie reguły B i wstawienie bezpośrednio przed regułę A.

Wynika to z następującej właściwości: wstawienie dodatkowej reguły do listy powoduje mniejsze

zmiany układu grup niż zamiana reguł.

4.6 Dyskusja na temat zalet grupowania opartego o listy de-

cyzyjne

Grupowanie oparte o listy decyzyjne korzysta z istotnych cech, które są przypisane regułom. Re-

guły decyzyjne w zakresie pozyskiwania wiedzy odgrywają bowiem istotną rolę. Najprostsza definicja

reguły to wyrażenie logiczne postaci :

Jeżeli spełniony warunek to określona decyzja (o przynależności do określonego po-

jęcia czy klasy),

w którym część warunkowa zawiera koniunkcje warunków elementarnych (inaczej selektor), nato-

miast część decyzyjna określa przynależność obiektu spełniającego warunek (objętego przez selektor)

do danej grupy.

Page 107: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

4.6 Dyskusja na temat zalet grupowania opartego o listy decyzyjne 107

Reprezentacja wiedzy w postaci reguł uznawana jest za czytelniejszą dla człowieka niż inne

reprezentacje [28, 29, 97]. Podkreśla się jej modularność i przydatność do analizy przez eksperta.

Reguły decyzyjne są wykorzystywane w wielu pomyślnych zastosowaniach uczenia maszynowego i

odkrywania wiedzy [38, 27].

Proponowane przez autora grupowanie za pośrednictwem atrybutów wnosi szereg zmian jako-

ściowych w zakresie interpretacji i dalszej analizy wyników grupowania. W miejsce długiej tablicy

przypisań obiektów (o długości równej ilości obiektów) otrzymuje się stosunkowo krótką listę reguł.

Samo zmniejszenie zapisu wyniku ma pozytywny wpływ na możliwość dalszego przyswojenia wyniku

przez człowieka. Dodatkowo lista ta jest w określony sposób uporządkowana, co umożliwia nadanie

poszczególnym regułom pewnych cech ważności. Właściwość tą można znakomicie wykorzystać do

porównywania rezultatów grupowania niewiele się od siebie różniących zbiorów. Przykładem takie-

go zagadnienia jest porównywanie tego samego zjawiska ale w różnych momentach czasu. Zbiory

obiektów reprezentujące dane zjawisko podlegają zmianom i modyfikacjom w miarę upływu cza-

su. Do zagadnień eksploracji danych należy poznanie i wyjaśnienie istoty tych zmian. Propozycją

autora niniejszej pracy jest użycie grupowania opartego o listę decyzyjną do objaśniania zmian,

trendów w bazach danych. Wykorzystać do tego celu należy formę prezentacji wyniku grupowa-

nia, jakim jest lista decyzyjna. Kolejność ułożenia reguł w takiej liście jest bowiem bardzo czułym

wskaźnikiem istotności poszczególnych wartości atrybutów, co szczególnego wymiaru nabiera pod-

czas analizy zmian w bazie danych. Objaśnianie takich zmian poprzez przykłady wzorcowe, które są

wynikiem grupowania iteracyjnego, jest utrudnione, gdyż ukryta jest przyczyna i charakter zmian

(brak informacji o własnościach obiektów, które zaważyły na zmianie przykładu wzorcowego).

Metody oparte o listy decyzyjne mogą stanowić alternatywę w stosunku do pozostałych metod

grupowania. Aby w pełni wydobyć ich możliwości należy skonstruować odpowiednie algorytmy. Autor

zaproponował modyfikację trzech rodzajów algorytmów: pełny przegląd, proste wstawianie i gene-

tyczny. Algorytm pełnego przeglądu jest najbardziej dokładny ale zarazem najbardziej kosztowny, w

sensie złożoności obliczeniowej. Drugi algorytm wykorzystuje zaproponowaną strategię heurystycz-

ną. Strategia ta polega na poszukiwaniu położenia danej reguły w liście odrębnie dla każdej reguły.

Przeszukiwanie trwa do momentu, aż przestawienie żadnej z reguł nie powoduje polepszenia wyniku.

Stosowanie heurystyk okupione jest ryzykiem otrzymania rozwiązania tylko lokalnie optymalnego na-

tomiast znaczącym atutem jest znacznie lepsza złożoność od algorytmu pełnego przeglądu. Trzecia

propozycja algorytmu wykorzystuje ideę genomu, w który to przekształcono listę decyzyjną. Z uwa-

gi na nieco inne właściwości listy należało zmodyfikować operatory przeszukiwania. Zrezygnowano

z operatora krzyżowania, a operator mutacji realizuje operację zamiany miejscami dwóch losowo

wybranych elementów.

Page 108: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

108 Metody oparte o listy decyzyjne

W dalszych rozdziałach zostaną przedstawione wyniki działania tych algorytmów i porównanie

z innymi metodami. W tym miejscu można wskazać dalsze kierunki prac. Będzie to poszukiwa-

nie nowych algorytmów oraz poszukiwanie i wykorzystywanie ukrytych właściwości pozwalających

zwiększyć wydajność i skuteczność metody.

Page 109: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

Rozdział 5

Badanie algorytmów grupowania

na danych symbolicznych

Niniejszy rozdział ma na celu weryfikację założenia o przydatności niektórych algorytmów do

grupowania danych symbolicznych. Spośród metod przedstawionych w rozdziale 3 wybrano te poten-

cjalnie przydatne do grupowania danych symbolicznych, i po dokonaniu adaptacji do analizowanych

zbiorów danych, zaimplementowano i poddano je badaniu. Jednocześnie dokonano algorytmizacji i

implementacji metod przedstawionych w rozdziale 4. Zbadane zostały wybrane algorytmy, funkcje

kryterium oraz funkcje odległości. Oprócz celów szczegółowych, jakimi było wybranie najlepszych

wariantów metod, istotne również stało się poszukiwanie zagadnień, które z jednej strony byłyby

rozwiązywalne metodami grupowania, natomiast z drugiej nadawały się do adaptacji w obszarze

eksploracji danych symbolicznych.

Końcową weryfikację oraz wycenę wartości danej metody eksploracji, a metody grupowania w

szczególności, przynosi wykorzystanie, pozyskanej z jej pomocą, nowej Wiedzy w świecie realnym

(na podstawie naturalnie pozyskanych danych i rzeczywistą lub doświadczalną weryfikacją wyni-

ków). Wiedza jest trudno definiowalna, niesformalizowana, praktycznie niemierzalna. To jest główna

przyczyna, która powoduje, że nie istnieje jedna, uniwersalna funkcja oceny jakości grupowania. Zna-

ne i proponowane metody nadają się tylko do wybranych dziedzin, wymagając spełnienia szeregu

warunków.

W niniejszych badaniach przyjmuje się, że stosowana funkcja kryterium wystarczająco dobrze

przybliża miarę jakości dokonanego podziału. W toku badań poszukiwana jest metoda, która znaj-

dzie lepszy wynik funkcji kryterium, zakłada się bowiem, że w przypadku znalezienia lepszej funkcji

kryterium znaleziona metoda również będzie lepiej działać. Oprócz zdolności do uzyskiwania najlep-

szych wyników oceniana jest również stabilność działania, czyli zdolność do powtórnego uzyskiwania

109

Page 110: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

110 Badanie algorytmów grupowania na danych symbolicznych

tak samo dobrych wyników niezależnie od ułożenia danych i kolejności przetwarzania. Kolejnym

badanym przez autora elementem jest wydajność (złożoność obliczeniowa i pamięciowa) metody. W

przypadku biznesowych baz danych rzeczywiste rozmiary mogą być dość znaczne.

5.1 Program wspomagający eksplorację danych

Założenia

Ważnym wynikiem niniejszej pracy jest zaprojektowany i zaimplementowany program kompute-

rowy, wspomagający eksplorację danych. Podstawowym zastosowaniem jest utworzenie stanowiska

pomiarowego. Program ma za zadanie badanie różnych technik i algorytmów grupowania w oparciu

o dane pochodzące z różnych środowisk. Zaimplementowano wszystkie metody grupowania zapro-

ponowane przez autora oraz inne, wybrane w celach porównawczych.

Wszystkie obliczenia i wyniki zaprezentowane w następnych rozdziałach zostały dokonane przy

pomocy tego programu.

Program został napisany w środowisku Delphi 6.0 i przeznaczony dla systemu operacyjnego Win-

dows. Wybór tego środowiska został podyktowany jego dużymi możliwościami w zakresie budowy

i obsługi baz danych, interfejsu użytkownika oraz możliwościami wykonywania i optymalizacji ob-

liczeń. Przeniesienie programu na inne platformy jest możliwe z wyjątkiem utrudnień w zakresie

implementacji konwerterów do niektórych źródeł danych.

Dane wejściowe

Format danych wejściowych ściśle zależy od źródła ich pochodzenia. Program przetwarzający wi-

nien posiadać odpowiedni konwerter obsługujący dany format. Do programy wbudowano możliwość

odczytu danych w formacie tekstowym, DBF i DAT (formaty bazodanowe). Pochodzenie danych

jest dwojakiego rodzaju. Pierwszą część stanowią zbiory z repozytorium UCI [14] powszechnie wy-

korzystywane do badań w obszarze eksploracji baz danych. Drugą część stanowią zbiory pozyskane

z rzeczywistych baz danych przedsiębiorstw. Dokonano w nich jedynie niewielkich przekształceń w

celu zapewnienia tajemnicy i prywatności właścicieli baz, dokonane zmiany są na tyle nieznaczące,

że pozostają bez wpływu na elementy i właściwości istotne z punktu widzenia badań.

W procesie przekształcania danych wejściowych na postać wewnętrzną dokonywana jest również

transformacja wiedzy. Przykładowo może to mieć formę dodawania kolejnych atrybutów i wartości w

oparciu o zewnętrzną bazę wiedzy. Taka dodatkowa wiedza o grupowanych obiektach i ich środowisku

może mieć formę słownika czy też tabeli wag, przypisywanych poszczególnym atrybutom.

Page 111: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

5.2 Testowe zbiory danych 111

Obsługa programu

Obsługa programu sprowadza się do wybierania poszczególnych opcji. Wyboru dokonuje się na

trzech poziomach. Po pierwsze należy wybrać źródło danych - czyli zbiór poddany analizie. Dodatko-

wo na tym etapie można dokonać wyboru słownika, jako formy wprowadzenia dodatkowej informacji

i wiedzy. Po drugie należy wybrać stosowany algorytm. Po trzecie dokonuje się wyboru parametrów

szczegółowych takich jak przykładowo: ilość grup na którą dokonywany jest podział, stosowaną miarę

odległości czy funkcję oceny jakości grupowania.

Dane wyjściowe

Rezultatem działania algorytmów grupowania jest przede wszystkim otrzymany podział. Jed-

nocześnie, w przypadku gdy znana jest rzeczywista klasyfikacja obiektów (jak to ma miejsce w

przypadku zbiorów z repozytorium), dołączana jest statystyka błędów. Obliczane są również wskaź-

niki jakości otrzymanego podziału. Do porównywania wydajności poszczególnych metod mierzone są

czasy obliczeń, zliczane ilości iteracji bądź wywołań kluczowych, z punktu widzenia metody, funkcji

(np. ilość wywołań funkcji obliczania odległości).

Moduł prezentacji należało tak opracować, aby uzyskiwane wyniki przedstawiane były w formie

akceptowalnej dla człowieka, dużym utrudnieniem był fakt dużej rozbieżności w zakresie badanych

danych, w szczególności rozbieżności dotyczyły liczby elementów i liczby atrybutów.

Struktura programu

Program został napisany w technice obiektowej. Podstawowe obiekty wynikają z naturalnego

podziału funkcjonalnego programu: konwerter wczytujący dane, moduł obliczeniowy i moduł pre-

zentacji. W obiektach konwertera i prezentacji w szerokim zakresie wykorzystywane są biblioteki

funkcji firm Microsoft, Borland, Madar [90]. Główny i kluczowy jest moduł obliczeniowy, zbudowa-

ny w formie pojedynczego obiektu. Metodami tego obiektu są implementacje poszczególnych algo-

rytmów grupowania, wraz z funkcjami towarzyszącymi, implementacje różnych miar jakości, funk-

cji obliczania wskaźników jakości grupowania. Wśród atrybutów obiektu można wyróżnić tablicę

przechowującą reprezentację wczytanego zbioru danych, której wiersze odzwierciedlają poszczególne

obiekty i składają się z pól binarnych bądź liczbowych, co wystarcza do reprezentacji atrybutów

symbolicznych.

5.2 Testowe zbiory danych

Dane pozyskiwane do badań przechowywane są w zbiorach tekstowych, w postaci ciągu znaków,

w którym wyróżnia się linie reprezentujące posczególne obiekty oraz słowa kodowe reprezentujące

Page 112: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

112 Badanie algorytmów grupowania na danych symbolicznych

wartości argumentów. Drugą formą zapisu są relacyjne bazy danych, gdyż ta forma najczęsciej

występuje w obszarze baz danych. Nie stosowano innych formatów, gdyż w zakresie niniejszych

badań forma zapisu danych ma znaczenie drugorzędne, najważniejsza jest znajomość interpretacji

poszczególnych symboli i zdolność przekształcenia ich na formę akceptowalną przez poszczególne

metody przetwarzania (na podstawie rodziału 2).

Do badania algorytmów grupowania wykorzystano dwa zbiory danych. Pierwszy z nich, to stan-

dardowo wykorzystywana do badań baza głosowań w kongresie. Drugi to mała, składająca się z kilku

obiektów baza, zaprojektowana przez autora, mająca na celu zbadanie na prostym przykładzie sku-

teczności niektórych algorytmów. Wartości atrybutów w tej bazie mają celowo nietypowy rozkład, co

skutkuje błędnymi rozwiązaniami uzyskiwanymi podczas grupowania za pomocą niektórych metod.

Baza danych „głosowanie w kongresie”

Baza danych „głosowanie w kongresie” (ang. Congresional Votes) zawiera rezultaty głosowań

pozyskane z [14]. Jest to zapis głosowań w Kongresie Stanów Zjednoczonych w roku 1984. Każdy

rekord koresponduje z jednym senatorem i zawiera jego 16 głosowań w poszczególnych sprawach

(wydatki na edukację, wojsko itd.). Atrybuty mają wartości TAK lub NIE, a część wartości jest

nieznana. Zbiór zawiera 168 Republikanów i 267 Demokratów, zgodnie z ówczesnym stanem Kon-

gresu. Dodatkowego wyjaśnienia wymagają brakujące wartości, których interpretacja ściśle zależy

od analizowanej dziedziny. Stosuje się następujące interpretacje dla wartości brakujących:

1. traktowanie danej nieznanej jako kolejnej dopuszczalnej wartości dla danego atrybutu (co było-

by zgodne z powszechną interpretacją „nieobecności na głosowaniu” jako wyrażenie sprzeciwu

wobec danej sprawy),

2. przyjęcie w takim przypadku, że głosujący jednocześnie oddał głos TAK i NIE, co skutkuje

upodobnieniem przykładu do wszystkich pozostałych.

W niniejszym badaniu przyjęto drugie rozwiązanie, którego podstawową zaletą jest nie zwięk-

szanie liczby analizowanych wartości atrybutów.

Mała baza danych

W tabeli 5.1 przedstawiono sztucznie wygenerowaną przez autora bazę, którą poddano testom.

Baza zawiera 6 obiektów, z których każdy opisany jest sześcioma atrybutami binarnymi (przyjmują-

cych wartości 0− brak i 1− obecny). Celem grupowania jest znalezienie najlepszego podziału zbioruobiektów na dwie grupy. Zbiór został sztucznie spreparowany, posiada on specyficzny rozkład warto-

ści atrybutów. W trakcie analizy podanego przykładu można zauważyć, że atrybut a występuje (ma

wartość 1) w 3 obiektach, a atrybut b w pozostałych trzech. Są to najliczniej występujące atrybuty,

Page 113: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

5.3 Badanie wrażliwości algorytmów 113

zupełnie rozdzielone – więc w prosty sposób można na ich podstawie dokonać podziału na dwie

grupy x1, x2, x3, x4, x5, x6. Dokładna analiza wskazuje, że pozostałe atrybuty też są ułożonewg określonego porządku. Dokonanie następującego podziału x1, x2, x4, x3, x5, x6 powodujeże żaden z pozostałych atrybutów (atrybuty c, d, e, f) nie występuje w obu grupach jednocześnie.

Tabela 5.1. Testowa mała baza obiektów.

ob opis a b c d e f g t u v w zx1 acdf 1 0 1 1 0 1 0 0 0 0 0 0x2 adec 1 0 1 1 1 0 0 0 0 0 0 0x3 awtv 1 0 0 0 0 0 1 0 0 1 1 0x4 befg 0 1 0 0 1 1 1 0 0 0 0 0x5 btwz 0 1 0 0 0 0 0 1 0 0 1 1x6 bvzu 0 1 0 0 0 0 0 0 1 1 0 1

Z takiego rozkładu wartości atrybutów wynika następujący wniosek: przyjęcie, że najliczniej

występujące wartości atrybutów decydują o dokonaniu podziału na grupy powoduje, że otrzymany

podział nie respektuje optymalnego rozkładu względem pozostałych wartości atrybutów.

5.3 Badanie wrażliwości algorytmów

5.3.1 Cel i zakres badań

Celem przeprowadzonego badania jest weryfikacja wrażliwości poszczególnych algorytmów na sto-

sowaną funkcję odległości do grupowania danych postaci symbolicznej. Badań dokonano dla dwóch

różnych algorytmów grupowania:

— algorytmu grupowania rozmytego adaptowanego do przestrzeni argumentów symbolicznych

(oznaczanego jako FCMdd),

— algorytmu aglomeracyjnego z warunkiem minimalizacji odległości pomiędzy najodleglejszymi

obiektami.

Algorytm aglomeracyjny, tak jak wszystkie metody hierarchiczne, dobrze nadaje się do grupo-

wania danych symbolicznych, jedynie stosowana funkcja porównująca obiekty i grupy winna być do-

stosowana do danej dziedziny. Dokonane modyfikacje przedstawiono poniżej w punkcie „Adaptacja

algorytmu aglomeracyjnego”. Natomiast w przypadku metod iteracyjnych (gradientowych) potrzeb-

ne jest dokonanie kilku modyfikacji. Po pierwsze należy zrezygnować z obliczania obiektu „średniego”

na rzecz mediany. Po drugie nie jest możliwe korzystanie z metod gradientowych podczas poszukiwa-

nia elementów wzorcowych. Do niniejszego badania użyto algorytm grupowania rozmytego FCMdd,

a dokonane adaptacje przedstawiono w punkcie „Adaptacja algorytmu iteracyjnego”.

Page 114: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

114 Badanie algorytmów grupowania na danych symbolicznych

Istnieje wiele funkcji mogących pełnić rolę miary odległości w algorytmach grupowania. Część z

nich opisano w rozdziale 2. Do niniejszego badania użyto czterech – arbitralnie wybranych funkcji

spośród wielu prezentowanych w literaturze. Badania przeprowadzono dla następujących funkcji

odległości:

A Wskaźnik Jaccarda (wzór (2.20)).

B Miara kosinusowa (w tabeli 2.2).

C KL dywergencja (w tabeli 2.2).

D Euklidesowa miara odległości L2 (wzór(2.9)).

E Odległość Manhattan L1 (wzór (2.14)).

Miara euklidesowa jest funkcją odległości pomiędzy obiektami w zwykłej wielowymiarowej prze-

strzeni. Odległość Manhattan często stosowana jest do porównywania obiektów z atrybutami zapisa-

nymi w formacie binarnym. Miara kosinusowa jest funkcją stosowaną do porównywania dokumentów

tekstowych [114]. Wskaźnik Jaccarda stosowany jest do porównywania zbiorów. Wszystkie wymie-

nione funkcje można zastosować jako funkcję odległości w algorytmach grupowania, różnią się one

przede wszystkim charakterystyką. Może się zdarzyć, że dla danych dwóch par jedna funkcja wskaże

pierwszą jako bliższą sobie, inna że to obiekty w drugiej parze są umieszczone bliżej siebie. Wyboru

funkcji dokonano tak, aby maksymalnie się od siebie różniły charakterystyką i właściwościami.

Funkcja kryterium

W niniejszym badaniu rolę funkcji kryterium pełni funkcja przyrost informacji opisana wzorem

(3.54).

Adaptacja bazy danych

Poszczególne funkcje obliczające odległość (lub podobieństwo) wymagają danych o odpowied-

nich właściwościach. Dla baz danych symbolicznych trudno jest o naturalne funkcje porównywania

obiektów, w większości stosowane miary opierają się na przyjęciu pewnych uproszczeń. Jednocze-

śnie należy dokonać przekształcenia danych. Najczęściej polegają one na umownym przekształceniu

występującej skali nominalnej na skalę mocną. Przykładowy schemat kodowania zaprezentowano w

tabeli 5.2. Dla skali nominalnej jedyną funkcją porównującą wartości atrybutów jest relacja identycz-

ności. Jest to wystarczające dla funkcji opartych o wskaźnik Jaccarda, czy wskaźnik kosinusowy. W

przypadku miar opartych o metrykę Euklidesową wymagana jest zdefiniowanie relacji posiadanych

przez skale mocne opisane w podrozdziale (2.2).

Page 115: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

5.3 Badanie wrażliwości algorytmów 115

Tabela 5.2. Przykład tabeli kodowania danych symbolicznych.

wartość symboliczna skala nominalna skala mocnagłosowanie TAK a 1głosowanie NIE b -1

głosowanie nieokreślone c 0

Adaptacji również wymaga sama forma reprezantacji bazy danych. W zależności od technik

implementacji algorytmu wymagane są różne formaty danych wejściowych. W przypadku danych

symbolicznych jest to o tyle istotne, że w niektórych przypadkach symbole posiadają wiele znaczeń,

które mogą zostać utracone w procesie konwersji. Proces przygotowania danych w znacznym wpływa

na jakość uzyskiwanych wyników.

Adaptacja algorytmu grupowania rozmytego

W badaniu wykorzystano i zaimplementowano algorytm grupowania rozmytego FCMdd (3.3.3).

Kluczowe dla tego typu algorytmów jest dobranie funkcji odległości odwzorowujących podobieństwo

obiektów. W trakcie badań okazało się, że algorytm może być niestabilny. Podstawowe modyfikacje

związane z adaptacją algorytmu iteracyjnego do grupowania danych symbolicznych są zmiany w czę-

ści poszukiwania elementów wzorcowych. Po pierwsze nie można zezwolić na poszukiwanie elementu

średniego, gdyż dla nie zawsze takowy istnieje. Operacja uśredniania nie jest możliwa do zdefiniowa-

nia dla danych określanych na skalach słabych, a dane o takim charakterze występują w zbiorach.

Dlatego też w miejsce średniej wybiera się medianę albo testu dokonuje się dla każdego z wystę-

pujących obiektów. Po drugie niemożliwe jest skorzystanie z metod gradientowych do poszukiwania

pubktu opimum, gdyż nie jest spełniony warunek ciągłości dla danych.

Warunek końca iteracji jest stosunkowo prosto dobrać. Należy sprawdzać, czy w danym cyklu

nie zmieniły się elementy wzorcowe, co spowodowałoby zmianę przypisania obiektów do grup. Jeżeli

zmiana nie nastąpiła, to należy zakończyć obliczenia, gdyż w następnej iteracji i każdej następnej

otrzymamy te same wyniki. Zdarza się bowiem, że dla danego układu danych algorytm jest niesta-

bilny i cyklicznie podaje kilka podobnych do siebie rozwiązań. W takim przypadku przyjęty warunek

zakończenia jest nieskuteczny i należy go wspomóc wspomnianym ograniczeniem. W tym celu do

głównej pętli obliczającej wprowadzić górne ograniczenie ilości iteracji.

Adaptacja algorytmu aglomeracyjnego

Algorytm aglomeracyjny do swego działania potrzebuje funkcji odwzorującej odległość pomiędzy

grupami. Jeżeli grupy są jednoobiektowe to jest to wprost funkcja odległości pomiędzy obiektami. W

przypadku większych grup stosuje się wybrane techniki (2.2.4). W niniejszym badaniu wykorzystano

regułę najdalszego sąsiada, na podstawie podrozdziału 2.2.4.

Page 116: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

116 Badanie algorytmów grupowania na danych symbolicznych

5.3.2 Otrzymane rezultaty

Badaniu poddano wymienione dwa algorytmy, stosując sześć funkcji odległości. Badanie prze-

prowadzono na dwóch zbiorach danych, „mała baza” i „baza głosowań w kongresie” opisanych w

podrozdziale 5.2. Badanie polegało na uzyskaniu podziału zadanych zbiorów danych dla każdego

wariantu wynikającego ze stosowanych algorytmów, funkcji odległości i zbioru danych. W trakcie

badania mierzono następujące rezultaty:

• trafność – liczona jako stosunek elementów prawidłowo przypisanych do wszystkich, zgodnieze wzorem (3.8.1),

• przyrost informacji – funkcja mierząca jakość podziału opisana wzorem (3.54).

• czas obliczeń – czas, jaki upływa od momentu startu do uzyskania podziału.

W tabelach (5.3) do (5.12) przedstawiono uzyskiwane podziały dla poszczególnych miar odległo-

ści.

Tabela 5.3. Grupowanie FCMdd dla różnych funkcji odległości dla małej bazy.

funkcja odległości przyrost informacji czas obliczeńA jaccadr 1,2455 00:00:22B cosine 1,2455 00:00:22C KL dywergencja 1,2455 00:00:27D L1 manhattan 1,2455 00:00:23E L2 euklidesowa 0,961 00:00:22

Tabela 5.4. Podział dla grupowania FCMdd dla różnych funkcji odległosci dla małej bazy.

metodaobiekt A B C D Ea c d f 1 1 1 1 1a d e c 2 1 2 1 1a w t v 1 2 1 2 1b e f g 1 1 1 1 1b t z w 1 1 1 1 1b v z u 1 1 1 1 2

Zbadano dwa algorytmy grupowania, każdy dla pięciu funkcji porównywania (odległości). Pierw-

szy zbiór wyników, przedstawiony w tabeli 5.3, dotyczy badań z wykorzystaniem małej bazy opisanej

w podrozdziale 5.2. Jak już powiedziano jest to niewielki zbiór obiektów o sztucznie przypisanych

wartościach atrybutów. Wyniki uzyskane przy udziale drugiego algorytmu przedstawiono w tabeli

5.6. Wymienione tabele przedstawiają macierze podziału uzyskane poszczególnymi algorytmami dla

badanych funkcji odległości.

Page 117: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

5.3 Badanie wrażliwości algorytmów 117

Tabela 5.5. Trafność dla grupowania FCMdd dla różnych funkcji odległości dla małej bazy.

algorytm QQ QQ PP PP trafnośćTAK NIE TAN NIE %

A jaccadr 3 0 1 3 66,67B cosine 3 0 1 3 66,67C KL dywergencja 2 1 0 2 33,33D L1 manhattan 3 0 1 3 66,67E L2 euklidesowa 3 0 1 3 66,67

Tabela 5.6. Podział dla grupowania aglomeracyjnego mała baza.

metodaobiekt A B C D Ea c d f 1 2 1 1 1a d e c 1 2 1 1 1a w t v 1 1 1 1 1b e f g 1 1 1 1 1b t z w 1 2 1 1 1b v z u 2 2 2 2 2

Tabela 5.7. Trafność dla grupowania aglomeracyjnego dla małej bazy.

funkcja odległości QQ QQ PP PP trafnośćTAK NIE TAN NIE %

A jaccard 2 1 1 2 50,00B cosine 3 0 1 3 66,67C KL dywergencja 3 0 1 3 66,67D L1 manhattan 3 0 1 3 66,67E L2 euklidesowa 3 0 1 3 66,67

Page 118: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

118 Badanie algorytmów grupowania na danych symbolicznych

Tabela 5.8. Jakość grupowania aglomeracyjnego dla małej bazy.

funkcja odległości przyrost informacji czas obliczeńA jaccard 1,1056 00:00:22B cosine 0,961 00:00:39C KL dywergencja 0,961 00:00:49D L1 manhattan 0,961 00:00:39E L2 euklidesowa 0,961 00:00:22

W tabelach 5.5 oraz 5.7 zamieszczono uzyskane liczebności uzyskanych podzbiorów w podza-

le ze względu na zgodność z podziałem referencyjnym. Dla umownie nazwanych grup QQ i PP

wyznaczono liczby elementów zgodnych i błędnych oraz wyznaczono wartości trafności.

Należy zauważyć, że miara Jaccarda dała najlepsze wyniki i to zarówno dla algorytmu FCMdd jak

i dla grupowania aglomeracyjnego. Powyższy przykład obrazuje, że w pewnych przypadkach dobór

funkcji porównywania jest bardziej istotny od samej metody grupowania. Potwierdza to wnioski

innych badaczy, którzy poszukując optymalne funkcje porównywania dla różnych dziedzin danych

proponowali różne miary [115, 61, 124].

Kolejną serię badań przeprowadzono ze zbiorem danych baza głosowań opisanego w podrozdiale

5.2. Dla tych samych algorytmów: FCMdd i aglomeracyjnego, oraz tych samych miar odległości po-

wtórzono badania. Celem jest porównanie zachowania algorytmu dla zmienionego zbioru danych przy

tych samych funkcjach porównywania obiektów. Z uwagi na obszerność materiału nie zamieszczono

macierz przypisań, trafność przedstawiono odpowiednio w tablicach 5.10 oraz 5.11.

Tabela 5.9. Grupowanie FCMdd dla różnych funkcji odległości dla bazy głosowań

funkcja odległości przyrost informacji czas obliczeńA jaccadr 1,0507 09:20:00B cosine 0,801 15:06:40C KL dywergencja 0,624 15:06:40D L1 manhattan 0,740 12:26:40E L2 euklidesowa 0,660 07:33:20

Badanie algorytmu algomeracyjnego potwierdziło dużą wrażliwość uzyskiwanych wyników na za-

stosowaną miarę podobieństwa. Wyniki uzyskiwanej trafności, przedstawione w tabeli 5.12 ukazują

dość dużą zbieżność w stosunku do wyników przedstawionych w tablicy 5.10, w szczególności jeże-

li zostaną porównane względne zmiany pomiędzy wynikami dla poszczególnych miar podobieństwa.

Zgodnie z przypuszczeniami, najsłabsze wyniki uzyskała miara euklidesowa. Odległość geometryczna

stanowi dość słabe przybliżenie funkcji podobieństwa badanych obiektów z bazy głosowań. Zgodnie

z charakteryką przedstawioną w podrozdziale 2.2.4, na wynik porównania obiektów miarą euklide-

sową bardziej wpływają atrybuty różne. A zgodnie z przyjętą klasyfikacją w danym zastosowaniu,

Page 119: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

5.3 Badanie wrażliwości algorytmów 119

Tabela 5.10. Trafność dla grupowania FCMdd dla różnych funkcji odległości dla bazy głosowań

funkcja odległości demokraci demokraci republikanie republikanie trafnośćTAK NIE TAN NIE %

A jaccadr 242 25 46 222 86,21B cosine 215 52 67 197 71,61C KL dywergencja 207 60 61 207 61,61D L1 manhattan 141 126 74 148 53,57E L2 euklidesowa 266 1 100 166 41,15

bardziej „liczą” się atrybuty wspólne – czyli jednakowe decyzje w głosowaniach. Miara euklidesowan

natomiast dobrze przybliża obiekty opisywane atrybutami ilościowymi, takimi jak wymiary płatków

w zbiorze IRYS [56].

Tabela 5.11. Dla grupowania aglomeracyjnego dla bazy głosowań

funkcja odległości przyrost informacji czas obliczeńA jaccard 1,120 09:46:40B cosine 0,962 08:26:39C KL dywergencja 0,962 12:26:40D L1 manhattan 0,730 12:13:20E L2 euklidesowa 0,690 11:20:00

Tabela 5.12. Trafność dla dla grupowania aglomeracyjnego dla bazy głosowań

funkcja odległości demokraci demokraci republikanie republikanie trafnośćTAK NIE TAN NIE %

A jaccard 257 10 1 267 81,49B cosine 240 27 64 203 75,61C KL dywergencja 206 61 60 207 61,61D L1 manhattan 140 127 75 147 49,61E L2 euklidesowa 147 120 75 147 51,03

Page 120: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

120 Badanie algorytmów grupowania na danych symbolicznych

Wnioski

Dokonana analiza dowodzi dużej wrażliwości metod grupowania na rodzaj danych źródłowych.

W poszczególnych badaniach, w zależności od przetwarzanego zbioru danych różne funkcje okazy-

wały się być optymalne. Np.: wskaźnik Jaccarda dla „bazy głosowań” dał najgorsze wyniki, gdy

dla „małej bazy” należał do najlepszych. Krytyczne dla prawidłowych wyników jest skonstruowa-

nie właściwych funkcji odległości (podobieństwa), na których opierają się przedstawione metody.

Kolejnym problemem jest skłonność niektórych algorytmów (w szczególności algorytmów podziało-

wych) do znajdowania rozwiązań lokalnych. Z uwagi na brak ustaleń co do wymagań i ograniczeń

dotyczących charakterystyki danych symbolicznych, to należy się spodziewać źle uwarunkowanych

zadań, co może skutkować otrzymywaniem znacząco błędnych wyników. Podana właściwość znaczą-

co utrudnia konstruowanie odpowiednich narzędzi grupowania. Z uwagi na brak wystarczającego

aparatu formalnego do opisu właściwości każdego rodzaju danych symbolicznych, dla wielu zastoso-

wań wymagane jest doświadczalne dobranie odpowiedniech funkcji odwzorowujących podobieństwo

pomiędzy obiekami.

5.4 Badanie algorytmów nie wymagających funkcji odległo-

ści

Istnieje grupa algorytmów nie wymagających istnienia funkcji odległości pomiędzy grupowanymi

obiektami, wykorzystuje się w nich mianowicie funkcję oceny jakości grupowania, której wartość jest

testowana w toku kolejnych etapów przeszukiwania przestrzeni rozwiązań. Najczęściej stosowane

są miary oparte o teorię informacji jak przykładowo przyrost informacji. Ponieważ funkcja oceny

jakości grupowania całościowo ujmuje zagadnienie podziału to jest bardziej odporna na powstanie

dużego błędu systematycznego występującego w błędnie skonstruowanych funkcjach odległości.

Celem przeprowadzonego badania jest porównanie takich właśnie algorytmów grupowania nie

wymagających stosowania funkcji odległości w zastosowaniu do danych symbolicznych. Wśród po-

równywanych algorytmów umieszczono algorytmy zaproponowane przez autora w rozdziale 4 oparte

o listy decyzyjne. We wszystkich badanych algorytmach użyto tej samej funkcji jakości, a celem było

wybranie algorytmu znajdującego najlepsze rozwiązania z punktu widzenia wymienionej funkcji.

5.4.1 Cel i zakres badań

Celem przeprowadzonego badania jest weryfikacja przydatności do grupowania danych symbo-

licznych algorytmów nie wymagających stosowania funkcji odległości.

Page 121: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

5.4 Badanie algorytmów nie wymagających funkcji odległości 121

Badane algorytmy

Do badania użyto baz danych opisanych w podrozdziale 5.2. W przypadku braku potrzeby defi-

niowania funkcji odległości przestaje być również potrzebne przekształcanie danych symbolicznych

na atrybuty określone na skalach mocnych.

Badane algorytmy:

A algorytm hierarchiczny podziałowy,

B algorytm grupowania z zastosowaniem pełnego przeglądu,

C algorytm pełnego przeglądu oparty o listy decyzyjne,

D algorytm przeszukiwania heurystycznego oparty o listy decyzyjne.

E algorytm genetyczny prosty,

F algorytm genetyczny oparty o listy decyzyjne.

Algorytmy hierarchiczne z natury swej dobrze nadają się do grupowania danych symbolicznych.

Algorytm deglomeracyjny, opisany w podrozdziale 3.5, polega na przeszukiwaniu kolejnych podzia-

łów i wyborze tych, które dają najlepsze wartości wskaźnika jakości. Podziału dokonuje się poprzez

ustalenie kryterium podziału, którym jest przyjmowanie określonych wartości przez określone atry-

buty. Dla tak otrzymanych podzbiorów, jako rezultat podziału, dokonuje się kolejnego wyboru kry-

terium, odrębnie dla każdego podzbioru. W przyjętym rozwiązaniu zastosowano zasadę tworzenia

kryterium na podstawie wartości pojedynczego atrybutu. Ponieważ dokonuje się podziału na dwie

grupy wystarcza znalezienie jednego kryterium. Algorytm grupowania z zastosowaniem pełnego prze-

glądu, w niniejszym badaniu wyznacza poziom referencyjny dla pozostałych algorytmów. Algorytm

ten umożliwia znalezienie najlepszego istniejącego w danych warunkach rozwiązania. Pozostałe al-

gorytmy co najwyżej osiągają taki sam rezultat. Algorytmy genetyczne posiadają znany mechanizm

poszukiwania rozwiązań. W niniejszym badaniu dokonano analizy dwóch wariantów zastosowania al-

gorytmu genetycznego, które odróżniały formuły reprezentacji zadania przez chromosom. Algorytm

genetyczny prosty przedstawiono w podrozdziale 5.4.1, a oparty o listy decyzyjne, będący propozy-

cją autora w podrozdziale 4.5. Algorytm przeszukiwania heurystycznego opary o listy decyzyjne jest

również propozycją autora zaprezentowaną w podrozdziale 4.4.

Adaptacja algorytmu grupowania genetycznego prostego

Najbardziej trywialna implementacja algorytmu genetycznego do grupowania jest następująca:

chromosom odpowiadający rozwiązaniu składa się z genów, które reprezentują poszczególne obiekty.

Wartość zapisana w każdym z genów odpowiada przypisaniu danego obiektu do odpowiedniej grupy.

Page 122: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

122 Badanie algorytmów grupowania na danych symbolicznych

Długość chromosomu równa jest więc ilości grupowanych obiektów, a ilość wartości przyjmowanych

przez geny równa docelowej ilości grup. To również tłumaczy przyjęte określenie „grupowanie gene-

tyczne poste”, gdyż przyjęto bezpośrednie przekształcenie zapisu grupowania na chromosom. Rolę

funkcji przystosowania pełni funkcja określająca jakość dokonanego podziału na grupy. Populację

początkową wybierano w sposób losowy. Stosowane zostały operatory mutacji i inwersji. Kryterium

zakończenia działania algorytmu genetycznego było następujące: jeżeli przez dłuższy czas nie docho-

dziło do odkrycia lepszego rozwiązania to zakończ działanie. Kryterium takie wynikało z przyjętego

założenia, że głównym zadaniem jest znalezienie optymalnego rozwiązania, bez względu na potrzeb-

ny do tego czas (w akceptowalnym, liczonych w godzinach, limicie czasowym). Z uwagi na brak

realnych limitów czasowych i brak potrzeby optymalizacji czasowej działania algorytmu badanie dla

różnych wartości parametrów (rozmiar populacji, prawdopodobieństwo zastosowania konkretnych

operatorów genetycznych) jest bezprzedmiotowe.

Adaptacja algorytmów grupowania opartych o listy decyzyjne

Algorytmy oparte o listy decyzyjne zostały zaprezentowane w rozdziale 4. Podczas badania za-

chowano te same warunki, jakie użyto do badania algorytmów deglomeracyjnego i genetycznego

prostego. W szczególności chodzi o zastosowaną funkcję kryterium oraz losowanie układu początko-

wego

Implementacja algorytmu wykorzystującego przeszukiwanie heurystyczne

Poniżej przedstawiono fragment implementacji algorytmu grupowania, obejmujący główną pętlę

przeszukiwania.

Algorytm 5.11. Grupowanie wykorzystujące przeszukiwanie heurystyczne

funct szukajPoziomS(pz : integer) : integer;

var

pzz,

j, k,

i, io : integer;

begin

pzz := poz;

maxJ := poz;

for i := maxJ to pz do

Page 123: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

5.4 Badanie algorytmów nie wymagających funkcji odległości 123

tabS[i+ 1] := tabS[i];

end

inc(maxJ);

inc(poz);

e2 := przyrostInf(nrb, kk);

yo := 0;

for j := 1 to slowaCount do

for k := 1 to kk do

tabS[pz] := (kshl16) + j;

if ustawUklad(nrb) = 0 then continue fi

e1 := przyrostInf(nrb, kk);

if e1 < e2 then

e2 := e1;

yo := tabS[pz];

fi

end

end

if yo <> 0 then

tabS[pz] := yo;

ustawUklad(nrb);

result := 1;

else

poz := pzz;

maxJ := pzz;

for i := pz to pzz do

tabS[i] := tabS[i+ 1];

end

ustawUklad(nrb);

e1 := przyrostInf(nrb, kk);

if e2 = e1 then

result := −2else

result := −1;fi

fi

Page 124: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

124 Badanie algorytmów grupowania na danych symbolicznych

end

begin

var j,

repeat

j := 0;

repeat

inc(j);

until szukajPoziomS(j) < 0;

jeżeli znaleziono lepsze rozwiązanie potwórz pętlę

until j = 1;

end.

Funkcja szukajPoziomS jest odpowiedzialna za przeszukiwanie przestrzeni rozwiązań. Polega

ono na sekwencyjnym dopisywaniu reguł do „głowy” listy. Jeżeli po takim dostawieniu nowej reguły

otrzymana lista daje lepszy wynik, to staje się ona podstawą do dalszego przeszukiwania.

Algorytm pełny przegląd

Procedura pełnego przeglądu polega na sprawdzeniu wszystkich permutacji listy decyzyjnej, skła-

dającej się ze wszystkich reguł. W tablicach 5.16 i 5.19 przedstawiono otrzymaną listę reguł dla małej

bazy.

Algorytm 5.12. Grupowanie dokonujące pełnego przeglądu

proc pelnyprzegladA;

var

wj,

l, j, i : integer;

a, b,

c1, c2 : integer;

ee : array[0..22]ofdouble;

begin

result := false;

ee[1] := przyrostInf(nrw, kk);

ee[2] := ee[1];

Page 125: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

5.4 Badanie algorytmów nie wymagających funkcji odległości 125

for i := 1 to nn do

wj := wyniki[i, nrw];

for j := 1 to kk do

if j = wj then continue fi

wyniki[i, nrw] := j;

ee[3] := przyrostInf(nrw, kk);

if ee[3] < ee[1] then

wj := wyniki[i, nrw];

ee[1] := ee[3];

fi

end

wyniki[i, nrw] := wj;

end

if ee[1] = ee[2] then result := true fi

end

Page 126: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

126 Badanie algorytmów grupowania na danych symbolicznych

5.4.2 Otrzymane rezultaty

Badaniu poddano wymienione dwa algorytmy, stosując sześć funkcji odległości. Badanie prze-

prowadzono na dwóch zbiorach danych, „mała baza” i „baza głosowań w kongresie” opisanych w

podrozdziale 5.2. Badanie polegało na uzyskaniu podziału zadanych zbiorów danych dla każdego

wariantu wynikającego ze stosowanych algorytmów, funkcji odległości i zbioru danych. W trakcie

badania mierzono następujące rezultaty:

• trafność – liczona jako stosunek elementów prawidłowo przypisanych do wszystkich, zgodnieze wzorem (3.8.1),

• przyrost informacji – funkcja mierząca jakość podziału opisana wzorem (3.54).

• czas obliczeń – czas, jaki upływa od momentu startu do uzyskania podziału.

W tabelach (5.16) do (5.23) przedstawiono uzyskiwane macierze podziału dla poszczególnych

miar odległości. Następnie przedstawiono otrzymane listy reguł dla obliczeń metodą opartą o listy

decyzyjne, są to tablice 5.16, 5.17, 5.18. Reguły przedstawione są w postaci par atrybut, grupa. Dlamałej bazy atrybut reprezentuje pojedyncza litera, natomiast w przypadku bazy głosowań atrybut

jest zakodowany: obejmuje numer głosowania (liczbowo) oraz oddany głos (T lub N), symbol S

dodany jest ze względów technicznych i nie ma znaczenia w procesie interpretacji wyników.

Tabela 5.13: Przyrost informacji dla różnych algorytmów grupowania bez użycia funkcji odległościdla małej bazy

algorytm przyrost informacji czas obliczeńgenetyczny prosty 0,3312 04:26:40deglomeracyjny 0,4815 16:40:00proste szukanie heurystyczne 0,3312 00:00:00Decision List pełny przegląd 0,3312 20:26:40Decision List heurystyczne 0,3312 13:06:40Decision List genetyczny 0,3312 18:00:00

Wyniki badań nad „małą bazą” służą przede wszystkim potwierdzeniu słuszności założenia, że

wybrane algorytmy grupowania bez użycia funkcji odległości nadają się grupowania danych symbo-

licznych. Potwierdzono prawidłowość konstrukcji algorytmów oraz prawidłowość ich implementacji.

Przedstawione algorytmy są na początkowym etapie badań i nie przeprowadzono bardziej zaawan-

sowanych technik związanych z analizą algorytmów, takich jak dowód o poprawności algorytmu,

obliczenie złożoności itd. Badania w tym zakresie autor na tym etapie przeprowadził empirycznie,

poprzez sprawdzenie na wybranych przez siebie zbiorach danych.

W porównaniu do algorytmów wykorzystujących funkcję odległości widać wyraźnie znacznie lep-

sze wyniki. Prawie wszytkie metody (oprócz metody deglomeracyjnej) odgadły prawidłowy podział

Page 127: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

5.4 Badanie algorytmów nie wymagających funkcji odległości 127

Tabela 5.14. Podział dla algorytmów grupowania bez użycia funkcji odległości dla małej bazy

atrybuty ilość przypisańobiektów dla algorytmu

A B C D E Fa c d f 2 2 2 2 2 1a d e c 2 2 2 2 2 1a w t v 1 1 1 1 1 2b e f g 2 1 2 2 2 1b t z w 1 1 1 1 1 2b v z u 1 1 1 1 1 2

Tabela 5.15: Trafność uzyskanego grupowania dla różnych algorytmów grupowania bez użycia funkcjiodległości dla małej bazy

algorytm QQ QQ PP PP trafnośćTAK NIE TAN NIE %

genetyczny 3 0 3 3 100,00deglomeracyjny 2 1 3 2 83,33proste szukanie heurystyczne 3 0 3 3 100,00Decision List pełny przegląd 3 0 3 3 100,00Decision List heurystyczne 3 0 3 3 100,00Decision List genetyczny 3 0 3 3 100,00

(patrz tabele 5.14 i 5.15). Jest to argument za tym, że dla niektórych baz danych, dla których trud-

no jest wskzać odpowiednią funkcję podobieństwa (odległości) lepiej do grupowania jest zastosowań

metodę opartą o wskaźnik porządku w danej strukturze (w tym przypadku jest nim wskaźnik przy-

rostu informacji). Sposób obliczenia i przedstawienia trafności jest analogiczny jak dla poprzedniego

badania.

Page 128: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

128 Badanie algorytmów grupowania na danych symbolicznych

Tabela 5.16. Lista reguł decyzyjnych pełny przegląd dla małej bazy

jeżeli atrybut to grupaV 1C 2W 1B 2

Tabela 5.17. Lista reguł decyzyjnych algorytm heurystyczny dla małej bazy

jeżeli atrybut to grupaC 2F 2C 1F 1T 1Z 1

Tabela 5.18. Lista reguł decyzyjnych algorytm genetyczny dla małej bazy

jeżeli atrybut to grupaZ 1C 2D 2A 1A 1A 1A 1A 1A 1V 1F 2

Tabela 5.19. Lista reguł decyzyjnych algorytm pełny przegląd dla bazy głosowań

jeżeli atrybut to grupaS8N 1S5N 2S4T 1S14N 2S7T 2S10N 2S2N 2S1N 1S2T 1

Page 129: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

5.4 Badanie algorytmów nie wymagających funkcji odległości 129

Tabela 5.20. Lista reguł decyzyjnych algorytm heurystyczny dla bazy głosowań

jeżeli atrybut to grupaS8N 1S5N 2S4T 1S14N 2S7T 2S10N 2S2N 2S1N 1S2T 1

Tabela 5.21. lista reguł decyzyjnych algorytm genetyczny dla bazy głosowań

jeżeli atrybut to grupaS8N 1S8N 1S8N 1S8N 1S8N 1S8N 1S8N 1S8N 1S8N 1S8N 1S8N 1S8N 1S8N 1S8N 1S8N 1S8N 1S8N 1S8N 1S8N 1S8N 1S8N 1S5N 2S14N 2S3N 1S6T 1S6T 2S7T 2

Page 130: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

130 Badanie algorytmów grupowania na danych symbolicznych

Tabela 5.22. Przyrost informacji dla algorytmów bez użycia funkcji odległości dla bazy głosowań

algorytm przyrost informacji czas obliczeńgenetyczny 1,4413 01:46:40deglomeracyjny 1,0383 00:00:00proste szukanie heurystyczne 1,0147 19:59:59Decision List pełny przegląd 1,0237 21:46:40Decision List heurystyczne 1,0237 15:06:40decision list genetyczny 1,0252 18:13:20

Tabela 5.23: Trafność uzyskanego grupowania dla algorytmów bez użycia funkcji odległości dla bazygłosowań

algorytm demokraci republikanie trafnośćTAK NIE TAK NIE %

genetyczny 137 130 82 137 50,35deglomeracyjny 212 55 157 212 84,83proste szukanie heurystyczne 216 51 162 216 86,90Decision List pełny przegląd 213 54 161 213 85,98Decision List heurystyczne 213 54 161 213 85,98Decision List genetyczny 211 56 161 211 85,52

Dla badań w zakresie przetwarzania „bazy głosowań” ważnym wskaźnikiem jest trafność (na pod-

stawie rozdziału 3.8.1). Porównywane zostaje podział otrzymany w wyniku grupowania i faktycznie

zapisany w bazie. Należy jednak pamiętać, że baza przedstawia rzeczywisty obraz głosowań, który

to daleki jest od podziału idealnego (np. zgodnego z liniami programowymi poszczególnych partii).

Aczkolwiek potwierdza się reguła o związku pomiędzy wartościami atrybutów (w tym przypadku

są to decyzje w poszczególnych głosowaniach) a przynależnością do partii. Trafność przedstawiono

w tabeli 5.23 natomiast czas obliczeń oraz wynikowy przyrost informacji w tabeli 5.22. W tabelach

5.19, 5.20 oraz 5.21 przedstawiono otrzymane podziały w postaci reguł. Dodatkowym argumentem

za taką postacią przedstawienia grupowania jest informacja o kluczowych atrybutach, skutkujących

przypisaniem do danej grupy. Pozostałe sposoby przedstawienia grupowania, w postaci podzbiorów

oraz elementów wzorcowych nie dają takiej możliwości.

Najlepszy wynik dało proste przeszukiwanie, ale zarazem najdłużej trwało. Podobne wyniki dał

algorytm oparty o listy decyzyjne i nieco gorsze algorytm hierarchiczny. Również metoda wykorzy-

stująca algorytmy genetyczne w swej bezpośredniej, prostej postaci nie daje najlepszych wyników.

Należy zauważyć wskaźnik jakości, który odzwierciedla ilość popełnionych błędów w grupowaniu.

Omówienie wyników metody pełnego przeglądu

Metoda pełnego przeglądu dała najlepsze rezultaty (z punktu widzenia ninimalizacji funkcji kry-

terium). Jest to oczekiwane działanie tego algorytmu. Ponieważ sprawdza on każdy wariant podziału

Page 131: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

5.4 Badanie algorytmów nie wymagających funkcji odległości 131

znajduje więc rozwiązanie optymalne. Wadą tej metody jest natomiast duży koszt obliczeniowy co

potwierdziły wyniki pomiaru czasu obliczeń.

Omówienie wyników metody deglomeracyjnej

Metoda grupowania algorytmem deglomeracyjnym jest najszybszą z testowanych metod. Wyni-

ka to z charakteru poszukiwanej formuły, dzięki której dokonywane jest grupowanie. W niniejszym

badaniu sprowadza się to do poszukiwania kryterium składającego się z testu wartości pojedynczego

atrybutu. Dla zbioru mała baza metoda deglomeracyjna uzyskała najgorszy wynik. Jest to spo-

wodowane specyficzną charakterystyką danych: dwie najliczniej reprezentowane wartości atrybutów,

mimo dzielenia zbioru obiektów na dwa równoliczne podzbiory, wskazują na niewłaściwy rezultat po-

działu. Ponieważ przedstawiona metoda korzysta z kryteriów zawierających wartości pojedynczego

atrybutu, to zbiory wymagające kryteriów bardziej skomplikowanych dzielone są niewłaściwie.

Omówienie właściwości algorytmu genetycznego

Algorytmy genetyczne, mimo swych niewątpliwych zalet w ramach przeszukiwania dużych prze-

strzeni rozwiązań posiadają istotną ułomność prowadzącą do niemożności znalezienia rozwiązania

najlepszego. Czynności modyfikujące gen na kolejnych etapach, takie jak krzyżowanie czy muta-

cja, chociaż dobrze sprawdzają się w początkowych etapach poszukiwania rozwiązania, to jednak

prowadzą do znalezienia rozwiązań lokalnie optymalnych. Porównując otrzymane innymi metodami

rozwiązanie (wystarczy, że jest lepsze od uzyskanego algorytmem genetycznym) i rozwiązanie uzy-

skane algorytmem genetycznym można zauważyć następujący problem. Aby algorytm genetyczny

znalazł lepsze rozwiązanie musiałby w jednym etapie zmutować na wielu pozycjach, czyli zmienić

przypisanie wielu obiektów do grup jednocześnie. Nie można tego wykonać na „raty”, gdyż roz-

wiązania pośrednie są znacznie gorsze. Problem ten wynika z samej istoty obliczania wskaźnika

przyrostu informacji. Najlepszy wynik otrzymuje się, gdy dany atrybut albo w całości zawiera się

w jednej z grup albo nie występuje wcale. W rzeczywistości, w podanej klasie danych, takie rozło-

żenie obiektów aby wszystkie atrybuty były rozłożone optymalnie jest niemożliwe. Wiele atrybutów

ma rozkład wykluczający taką możliwość. Następuje więc próba znalezienia porządku w zbiorze

atrybutów. Zbiór obiektów grupuje się ze względu na niektóre atrybuty „kosztem” innych. Algorytm

genetyczny znajduje takie rozwiązania. W celu znalezienia kolejnego, lepszego rozwiązania należało

by wybrać i „przegrupować” pewną ilość obiektów wg jednego atrybutu kosztem innego. W tym celu

zaproponowano algorytm opisany w kolejnym punkcie.

Autor zaproponował w niniejszej pracy odpowiednią modyfikację metody ewolucyjnej tak aby

ominąć niepożądane właściwości. Propozycja polega na wykorzystaniu metod grupowania opartych

o listy decyzyjne w połączeniu z algorytmem genetycznym jako funkcją przeszukiwania (patrz 4.5).

Page 132: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

132 Badanie algorytmów grupowania na danych symbolicznych

Atuty algorytmu decision list opartego o algorytm genetyczny

W porównaniu do algorytmu genetycznego z bezpośrednim przypisywaniem obiektów do grup

algorytm „Proste Decision List” ma następujące zalety:

• jest szybszy, wymaga mniejszej liczby iteracji w celu otrzymania tego samego wyniku,

• daje dokładniejsze rozwiązania, rzadziej zatrzymuje się na rozwiązaniach lokalnych.

Większa wydajność wynika z faktu, że pomimo iż całkowita długość listy reguł zazwyczaj jest

dłuższa od tablicy przypisań, to samo rozwiązanie w postaci części aktywnej listy reguł jest znacznie

krótsze od rozwiązania w postaci tablicy przypisań. Kolejnym aspektem jest to, że wiele reguł jest

od siebie niezależnych (całkowicie lub tylko w danym lokalnym zakresie), ich względny układ nie ma

wpływu na ostateczny wynik. Ostateczne więc rozwiązanie może występować w wielu permutacjach,

co ułatwia jego znalezienie.

Omówienie właściwości algorytmu heurystycznego

Algorytmy heurystyczne dokonują przeszukiwania zadanego obszaru zgodnie z pewnymi założo-

nymi regułami. Przeszukiwania dokonuje się w pewnym ustalonym porządku, pomijając w procesie

przetwarzania pewne obszary, co skutkuje przyspieszeniem działania algorytmu w stosunku do algo-

rytmu pełnego przeglądu. Przyjmuje się założenie, że w obrębie pomijanych obszarów nie znajduje

się szukane rozwiązanie. W przyjętym rozwiązaniu zastosowano następujące zasady przeszukiwania

heurystycznego opisanego algorytmem 4.10. Potwierdzono jego przydatność do grupowania metodą

opartą o listy decyzyjne. Uzyskane rezultaty potwierdziły jego mniejszą złożoność od metody pełnego

przeglądu przy porównywalnej skuteczności znajdowania rozwiązania optymalnego. Przewiduje się

możliwość zastosowania bardziej zaawansowanych technik heurystycznych w celu polepszenia wydaj-

ności algorytmu. Wymagane są również dalsze prace formalne nad określeniem obszaru stosowalności

przedstawionej metody (danych, dla których znajdowane jest rozwiązanie optymalne).

5.5 Wnioski

Grupowanie danych symbolicznych wymaga wielu adaptacji stosowanych metod, począwszy od

ustalenia sposobu interpretacji i normalizacji danych wejściowych po modyfikacje stosowanych algo-

rytmów. W zależności od grupowanej dziedziny i oczekiwanych rezultatów należy dobrać odpowied-

nią metodę grupowania.

W niniejszym rozdziale autor zbadał własności kilku metod grupowania dla kilku wybranych

baz zawierających dane symboliczne. Potwierdziła się silna zależność jakości uzyskiwanych wyników

od użycia odpowiedniej metody w stosunku do analizowanego zbioru danych. Najbardziej wrażliwe

Page 133: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

5.5 Wnioski 133

są metody wymagające stosowania miary odległości pomiędzy obiektami. Konieczność dobierania

funkcji odległości do rodzaju przetwarzanych danych w zakresie eksploracji stanowi istotną wadę

gdyż zmiana źródła danych wymaga dokonania testów, w celu doboru optymalnych warunków gru-

powania. Natomiast zaletą takich metod jest duża wydajność obliczeniowa.

Pod względem jakości uzyskiwanych wyników lepiej sprawują się algorytmy nie wymagające sto-

sowania miary odległości. Jedyną metodą dającą wyraźnie gorsze wyniki pod względem jakości po-

działu, jest metoda deglomeracyjna, co wynika z prostoty metody – nie jest ona w stanie odwzorować

bardziej skomplikowanej struktury podziału. Natomiast dzięki swej prostocie jest to metoda bardzo

szybka, co również potwierdziły wyniki pomiarów. W zakresie grupowania bez udziału funkcji odle-

głości autor dokonał badania własnej metody grupowania opartej o listy decyzyjne w postaci trzech

algorytmów grupowania. Otrzymane wyniki są poprawne oraz potwierdzają możliwość wykorzysta-

nia proponowanych metod do grupowania danych symbolicznych. Należy dodać, że przedstawione

metody są dopiero na początkowym etapie rozwoju, do skutkuje pewnymi niedoskonałościami. Przy-

kładem jest wielokrotnie powtórzona reguła w liście reguł utworzonych przez algorytm genetyczny

(tabela 5.21), nie wpływa to na ostateczny podział i uzyskane wskaźniki trafności i przyrostu infor-

macji, natomiast bardzo utrudnia dalszą interpretację wyniku.

Interesującym spostrzeżeniem z badań było odkrycie przyczyny słabości metody grupowania

opartego o algorytmy genetyczne wykorzystujące bezpośrednie zapis obiektów w genomie (podroz-

dział 3.7). Pomijając fakt słabej efektywności (czas znajdowania rozwiązania znacznie przewyższał

pozostałe z badanych metod), to również jakość pozyskanych wyników budziła wątpliwości. Wynika-

ło to z faktu znajdowania przez tą metodę rozwiązań jedynie lokalnie optymalnych. Podczas badań

okazało się, że dla pewnych danych algorytm genetyczny nie znajduje rozwiązania optymalnego, bez

względu na przeznaczony czas. W trakcie przetwarzania algorytm „wpada” w lokalne optimum i w

zasadzie nie „potrafi” z niego wyjść. Dzieje się tak wówczas, gdy genom reprezentował wszystkie gru-

powane obiekty (każdy fragment odrębny obiekt). Dokładna analiza ujawniła przyczyny tego faktu.

Różnica pomiędzy rozwiązaniem podanym przez algorytm genetyczny, a optymalnym dotyczy kilku

(kilkunastu) obiektów, które mają zmienione przynależności do grup. Dla wszystkich rozwiązań po-

średnich wartość funkcji kryterium jest większa, więc „przeniesienie” tylko kilku obiektów powoduje

uzyskanie gorszego wyniku, co jest eliminowane z populacji. Prawdopodobieństwo przejścia od roz-

wiązania lokalnego do rozwiązania optymalnego jest minimalne, gdyż operatory przeszukujące nie

potrafią dokonać takiego „przeskoku” w pojedynczym cyklu.

W podrozdziale 5.4.1 przedstawiono przykład, w jaki sposób prezentacja wyniku grupowania w

postaci reguł wpływa na dalsze możliwości wnioskowania. Dla przykładu grupowania „bazy głoso-

wań” wynik zawiera informację o kluczowych atrybutach (w tym przypadku głosowaniach) skutku-

jących identyfikacją przypidania do danej grupy (partii politycznej).

Page 134: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

134 Badanie algorytmów grupowania na danych symbolicznych

W trakcie prac nad tworzeniem programu komputerowego natknięto się na szereg problemów wy-

magających rozwiązania. Pojawiały się one we wszystkich tworzonych modułach. W module importu

i przygotowania danych należało skonstruować odpowiednie mechanizmy czytające dane o określo-

nym formacie, a następnie, w szczególności dla danych symbolicznych, dostosowanie do wewnętrz-

nych wymagań reprezentacyjnych. W zakresie implementacji poszczególnych algorytmów trudniejsze

prace dotyczyły zwiększenia wydajności algorytmu poprzez jego optymalny zapis, zmniejszenia wy-

magań na zasoby systemu takie jak pamięć operacyjne oraz zapewnieniu poprawnego działania dla

źle uwarunkowanych danych (w jednym przypadku oryginalny algorytm „zapętlał się”). Wymienione

zagadnienia rozwiązano w sposób doświadczalny. Wymagane są dalsze prace, szczególnie w zakre-

sie formalnym, które dadzą pełniejszy obraz co do możliwości i zakresu stosowania poszczególnych

metod.

Page 135: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

Rozdział 6

Selekcja i grupowanie danych

lingwistycznych

Dane lingwistyczne obejmują olbrzymi obszar informacji, które łączy forma gromadzenia, mia-

nowicie wyrażone są przy użyciu języka naturalnego lub wykorzystują pewne elementy tego języka.

Aby mówić o eksploracji danych lingwistycznych należy wybrać takie bazy, które potencjalnie

zawierają interesujące informacje, a następnie dobrać odpowiednie metody analizy tych danych.

W tym rozdziale autor dokonuje analizy pewnego rodzaju danych lingwistycznych występujących w

bazach biznesowych, ze szczególnym uwzględnieniem rodzaju informacji w nich ukrytych, możliwości

odkrycia nowej wiedzy oraz wymagań i ograniczeń stawianych przed stosowanymi metodami analizy

[93].

Propozycja autora obejmuje zastosowanie grupowania katalogu towarów jako przedmiot eksplora-

cji danych. Jak już wskazano w podrozdziale 1.9 grupowanie w katalogu towarów jest istotnym ogni-

wem w trakcie eksploracji bazy danych przedsiębiorstwa. Baza zawierająca katalog istnieje niemal

we wszystkich systemach informacyjnych przedsiębiorstw. Nazwy katalogowe towarów w naturalny

sposób odzwierciedlają podobieństwo poszczególnych towarów.

Na podstawie dotychczasowych doświadczeń z grupowaniem danych symbolicznych oraz przed-

stawionych założeń eksploracji danych autor dokonuje adaptacji niektórych metod do sformułowane-

go powyżej zagadnienia. Wstępnego omówienia problemu dokonano w podrozdziałach 1.9 i 6.1.3 oraz

publikacji własnej autora [92]. W niniejszym rozdziale autor analizuje strukturę informacji zawartych

w katalogu towarów, zarówno pod względem syntaktycznym jak i semantycznym, następnie przedsta-

wia wyniki działania algorytmów grupowania na dwóch katalogach: sztucznie spreparowanym oraz

rzeczywistym. Badaniu zostaną poddane te same algorytmy, których przydatność do grupowania

danych symbolicznych stwierdzono w rozdziale 5.

135

Page 136: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

136 Selekcja i grupowanie danych lingwistycznych

6.1 Zagadnienie uwzględniania dostępnej wiedzy procesie

grupowania

Podstawą konstrukcji systemów informatycznych „rozumiejących” język naturalny jest metoda

formalnej interpretacji jego znaczenia. Metoda taka musi obejmować dwa elementy: język sztuczny

o precyzyjnie zdefiniowanej semantyce oraz algorytm translacji pomiędzy wyrażeniami języka natu-

ralnego i sztucznego. Siła ekspresji wyrażeń języka sztucznego wyznacza granice zjawisk językowych

możliwych do opisu.

W pracy [108] zaprezentowano przykłady warstw informacyjnych zawartych w zbiorach HTML

na stronach internetowych portali, możliwych do wykorzystania w procesie grupowania:

• treść tekstowa, na podstawie wektora częstości występowania poszczególnych słów,

• struktura hipertekstowa: liczba odsyłaczy do których prowadzi strona i liczba stron zawiera-jących odsyłacze do strony badanej,

• miara popularności danej strony wyrażona w liczbie odwiedzin (wejść) danej strony.

Powyższe wyliczenie ukazuje różnorodność informacyjną zawartą w dokumencie. Dowodzi rów-

nież potrzeby analizy dostępnych danych związanych z dokumentami i możliwego wykorzystania tych

danych w procesie eksploracji. Przykładem jest skojarzenie liczby wejść na stronę z miarą popularno-

ści, szczegółowa analiza korelacji liczby wejść z powiązaniami i treścią stron wykorzystywana jest w

wielu zagadnieniach, przykładowo analizie ergonomii serwisu czy też identyfikacji profilu internauty.

6.1.1 Wykorzystanie wiedzy zawartej w słowach

Wposzczególnych słowach, które składają się na opis obiektu, zawarta jest pewna ilość informacji.

Ponieważ atrybuty lingwistyczne człowiek przypisuje do obiektów w celu opisania danego obiektu,

to opisują one wiernie charakter obiektu, w szczególności właściwości istotne z punktu widzenia

danego zastosowania. Wiedza o znaczeniu poszczególnych słów posłużyć może do skonstruowania

funkcji obliczającej podobieństwo poszczególnych obiektów.

Ogólnie rzecz ujmując każdy grupowany obiekt opisany jest szeregiem symboli w postaci słów

i liczb, których znaczenie wynika z kilku elementów. Po pierwsze znaczenie danego symbolu jest jakby

absolutne, gdy dane słowo istnieje w języku naturalnym i zastosowano go w takim samym znacze-

niu. Takie słowa to przykładowo: „samochód”, „czerwony”. Kolejne symbole nabierają znaczenia,

gdy zostaną skojarzone ze znaczeniami jakie im przypisano. Znaczenia poszczególnych symboli de-

finiowane są poprzez książkę kodową, słownik, treść normy itd. Wtedy znaczenia nabierają symbole

postaci „E40”, „V70”, „XT”, czy chociażby marki poszczególnych produktów, nie będące słowami

Page 137: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

6.1 Zagadnienie uwzględniania dostępnej wiedzy procesie grupowania 137

języka naturalnego, ale dla znawców danej dziedziny stają się terminami o określonym znaczeniu.

Natomiast symbole postaci numerycznej tylko wtedy są nośnikami informacji, o ile znany jest ich

kontekst.

6.1.2 Słownik

Słownik jest zbiorem elementów (słów lub wyrażeń symbolicznych) wraz ze zbiorem relacji po-

między tymi elementami. W pewnych wypadkach słownik w systemach pozyskiwania wiedzy określa

się mianem bazy wiedzy. Ze słownikiem związane są następujące trzy aspekty. Pierwszy to sposób

konstruowania. Wyróżnia się sposoby ręczne, automatyczne oraz pozyskiwane z zewnątrz (np. bazy

typu WordNet dostępne w Internecie). Należy odróżnić słowniki pozyskiwane z zewnątrz, gdyż ich

właściwości znaczącą odbiegają od możliwych do uzyskania samodzielnie. Dzieje się tak z powodu

stosowania do ich konstruowania różnorakich metod i technik. Mimo ich niewątpliwej wartości ich

przydatność w danym zastosowaniu jest ograniczona z uwagi na nie pokrywanie się dziedziny słow-

nika z dziedziną zastosowania. Drugim aspektem jest metoda korzystania, szczegółowy algorytm

umożliwiający uzyskiwanie odpowiedzi na zadane pytanie. Trzeci aspekt jest związany z jakością

słownika. Jak wspomniano powyżej zależy to od sposobu konstrukcji, lecz z uwagi na doniosłe

znaczenie słownika w dalszym procesie pozyskiwania wiedzy, dbanie o jego doskonalenie owocuje

lepszymi rezultatami.

Elementy, które może zawierać słownik (do każdego terminu w słowniku można przypisać) [73]:

— znaczenie, w zarówno w wąskim zakresie (ang. NT - Narrow Term) jak i szerokim (ang. BT -

Broader Term),

— relacje do innych słów (ang. RT - Related To): antonimy i synonimy,

— sposób użycia (ang. UF - Used For),

— genezę słowa, pochodzenie.

Badania związane z zastosowaniem słownika do rozpoznawania znaczeń datują się od prac Spark

Jones nad automatycznym klasyfikowaniem słów [73], Saltona nad automatycznym konstruowaniem

słownika [114].

Zagadnienia, do rozwiązania których pomocny jest słownik :

— poszczególne części mowy mają różny wpływ na zawartość tematyczną danego dokumentu;

nawet rozpoznanie podstawowego podziału na rzeczowniki, przymiotniki, czasowniki itd. zna-

komicie ułatwia proces analizy,

— niektóre ze znaczeń wynikają z układu słów w zdaniu; słownik może zawierać wybrane wyrazy,

będące niejako węzłami struktury zdania, stanowiące o możliwości rozpoznania danego układu

i dalej rozpoznaniu znaczenia,

Page 138: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

138 Selekcja i grupowanie danych lingwistycznych

— możliwość wyodrębnienia elementów relewantnych — tj. istotnych dla komunikacji językowej

od tych które nie mają takiego znaczenia,

— z uwagi na możliwość zastosowania różnych słów w danym kontekście, na opisanie tego sa-

mego znaczenia, wykrycie podobieństwa znaczeń na odstawie identyczności użytych słów, ma

ograniczona skuteczność; słownik umożliwia oszacowanie relacji pomiędzy słowami i dalej roz-

poznanie jednakowego znaczenia w tekstach, w których użyto różnych słów.

6.1.3 Zasady grupowania nazw towarów

Wśród wielu danych opisujących daną pozycję towarową na potrzeby niniejszych rozważań istot-

ny jest słowny zapis nazwy danej pozycji towarowej. Dzięki analizie tej nazwy można dokonać porów-

nania nazw poszczególnych towarów i dalej dokonać grupowania. Grupowanie może zautomatyzować

bądź wspomóc tworzenie nowych i polepszanie starych klasyfikacji towarów.

Na podstawie konsultacji z ekspertami i potencjalnymi użytkownikami przyjęto następujące za-

łożenia grupowania:

— towary są łączone na podstawie posiadanych wspólnych wartości atrybutów,

— nie dokonuje się wstępnej kwantyzacji atrybutów symbolicznych,

— podobieństwo zależy od atrybutów porównywanych obiektów, ale również korelacji z innymi

obiektami,

— poszczególne atrybuty mają różną wagę, którą należy oszacować na podstawie dostępnych

danych,

— zakłada się istnienie dodatkowych, możliwych do wykorzystania informacji.

Propozycją autora jest, aby nazwy towarów traktować jako bardzo krótkie teksty, więc do ich ana-

lizy można zastosować mechanizmy opracowane na potrzeby pozyskiwania informacji z dokumentów.

Należy jednak wziąć pod uwagę pewne różnice, które stanowią o ich odrębności i wymagają zmiany

podejścia. W systemach grupowania dokumentów poszczególne dokumenty są reprezentowane jako

następujące wektory słów [115]:

x = x1, . . . , xn (6.1)

gdzie: n jest liczbą wszystkich słów i termów występujących w bazie dokumentów, a xi współ-

czynnikiem zależnym od częstości i sposobu występowania danego słowa.

W postaci określonej wzorem (6.1) często odrzuca się informacje o wzajemnym ułożeniu słów,

pozostawiając jedynie informacje o częstości występowania. Takie uproszczenie jest stosowane do

wielu rodzajów tekstów i nie wpływa znacząco na pogorszenie jakości otrzymywanych wyników.

Wydaje się więc, że na potrzeby nazw towarów również można je wykorzystać. Ponieważ reguły

Page 139: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

6.2 Badanie 139

gramatyczne i formalne stosowane podczas tworzenia nazw towarów są bardzo proste, same nazwy

są tak konstruowane, aby maksymalnie zminimalizować mogące wystąpić niejednoznaczności. Za-

zwyczaj znaczenie danego terminu nie jest zależne od jego położenia w nazwie, a w przypadkach

gdy jednak pozycja ma znaczenie, to jest to uwarunkowane ścisłymi regułami formalnymi, co można

wykorzystać do skonstruowania tzw. parsera tłumaczącego nazwy do postaci bezkontekstowej.

Podobieństwo dwóch tekstów zależy od każdego elementu w nich występującego. Zmiana tylko

jednego słowa bądź drobna zmiana kolejności może diametralnie wpłynąć na znaczenie (opisywane

pojęcia) danego tekstu, a tym samym na podobieństwo do innych dokumentów. Jednak szczegółowa

i kompletna analiza jest niemożliwa do zrealizowania z powodu niemożności uwzględnienia wszyst-

kich aspektów wpływających na znaczenie tekstu. Aby jednak móc grupować dokumenty tekstowe

stosuje się pewne uproszczenia pozwalające na utworzenie funkcji porównującej teksty z pewnym

dopuszczalnym błędem. Zakłada się, że dokumenty są do siebie bardziej podobne, gdy więcej słów

powtarza się w obu dokumentach. Jednak dokładna analiza takiego podejścia ujawnia, że nie należy

jednakowo traktować wszystkich słów. W języku naturalnym wyróżnia się różnego typu słowa, które

spełniając różne funkcje. Przykładowo na potrzeby porównywania tekstów należy pomijać słowa, któ-

re mogą wystąpić w każdym kontekście takie jak łączniki „i”, „oraz”. Można również przeprowadzić

analizę statystyczną występowania poszczególnych słów i na tej podstawie ustalić wpływ występo-

wania poszczególnych słów na znaczenie całego dokumentu. Salton w swej pracy [115] przeanalizował

kilka takich wskaźników i doszedł do wniosku, że najlepszym wskaźnikiem (oddającym najwierniej

podobieństwo dwóch tekstów) jest wskaźnik TF-IDF (ang. Term frequency inverse document frequ-

ency). W tym wskaźniku znaczenie słowa zwiększa się gdy słowo więcej razy występuje w danym

dokumencie a zmniejsza, gdy często występuje w całej analizowanej zbiorowości dokumentów.

Podczas przeprowadzania badań zauważono, że w przypadku katalogu towarów stosowanie wskaź-

nika TF-IDF prowadziłoby do błędnych wyników. W analizowanym przykładzie hipotetycznego ka-

talogu wyrobów piekarniczych słowo „chleb” będzie występować w połowie nazw, a słowo „tostowy”

tylko w niewielkiej części. Wg wskaźnika TF-IDF słowo „chleb” miało by niższą wagę, co kłóci się

ze zdrowym rozsądkiem. Dzieje się tak, gdyż nazwy towarów są tworzone inaczej, w innym celu.

Katalog towarów gromadzi w sobie zbiór bardzo podobnych do siebie dokumentów tekstowych (są-

siadujące pozycje zazwyczaj niewiele się od siebie różnią). Dlatego też zupełnie inne są rozkłady

statystyczne występowania poszczególnych słów. Należy więc przyjąć inną zasadę przypisywania

wag poszczególnym słowom.

6.2 Badanie

Celem eksperymentu jest opracowanie metodologii grupowania rekordów w bazie danych zawiera-

jącej nazwy katalogowe produktów. Wychodząc z ogólnej definicji grupowania, w przypadku katalogu

Page 140: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

140 Selekcja i grupowanie danych lingwistycznych

towarów celem jest więc znalezienie naturalnych grup gromadzących wybrane pozycje z katalogu.

Mimo że dla części istniejących katalogów została zdefiniowana klasyfikacja, to jednak wielokrotnie

obserwowano zjawisko nieadekwatności klasyfikacji katalogu towarów do dalszej analizy danych biz-

nesowych. Przyczyny tego stanu mogą być różnorakie: klasyfikacja się zdezaktualizowała, stała się

niereprezentatywna, pomijała nowo powstałe kwestie itd. Przykładowo „samochód” i „benzyna” sto-

ją w ściślejszej relacji niż para „samochód” i „rower”, chociaż ta ostatnia para jest bardziej do siebie

podobna [109]. Natomiast sama powszechność stosowania klasyfikacji towarów dowodzi potrzeby jej

stosowania.

6.2.1 Analiza danych wejściowych

Towarem nazywa się obiekt podlegający transakcji sprzedaży. W transakcyjnych bazach da-

nych, rejestrujących przebieg procesów biznesowych w przedsiębiorstwie, rejestracja faktu dokonania

transakcji sprzedaży jest ważnym elementem. I z uwagi na istotę faktu dokonania sprzedaży różne

przedsiębiorstwa stosują wiele metod rejestracji, jednak można wyróżnić kilka elementów wspólnych.

Takim wspólnym elementem jest rejestracja sprzedawanego obiektu: towaru, produktu, usługi. W

niniejszym opracowaniu rozpatruje się tylko takie bazy danych, w których towary zgromadzone są

w postaci katalogu towarów.

Na potrzeby niniejszej analizy towarem nazywa się każdy obiekt będący przedmiotem transakcji,

niekoniecznie rzecz, może to być usługa, licencja bądź cokolwiek innego. Z tym identyfikatorem sko-

jarzona jest baza zawierająca pewne katalogowe informacje dotyczące poszczególnych produktów.

Każdy identyfikator jednoznacznie wskazuje na daną pozycję katalogową, a podstawową informacją

zawartą w takiej bazie jest nazwa i opis produktu, zapisana w formie zrozumiałej dla człowieka. Każ-

dy towar na swoje identyfikatory, których może być jeden lub więcej. Identyfikator może mieć postać

symboliczną, czy też sztucznie wygenerowaną na podstawie wewnętrznych ustaleń. Najczęściej jest

to ciąg znaków alfanumerycznych. Inna postać to nazwa, którą tworzy się w oparciu o wiedzę o

towarze, jego właściwościach, relacjach w stosunku do innych towarów w tym samym katalogu. W

nazwie tej zawarta jest informacja o położeniu danego towaru w pewnej, przyjętej do stosowania w

przedsiębiorstwie, systematyce. W nazwach stosuje się terminy i zwroty stosowane w języku natural-

nym, stosowane w danej dziedzinie, dopuszcza się również stosowanie skrótów oraz symboli, których

znaczenie definiowane jest przez wewnętrzne ustalenia. W zależności od realizacji może zawierać

informacje opisowe (powszechnie stosowane określenia, czasami ich skróty), kodowe (symboliczny

zapis poszczególnych właściwości produktu na podstawie słownika i reguł stworzonych na potrzeby

danej realizacji) oraz liczbowe, reprezentujące określone wielkości danych parametrów.Rozróżnienie

rodzajów identyfikatorów nie jest przedmiotem rozważania, istotne natomiast jest wskazanie istnienia

pewnych faktów, które mogą być wykorzystane w trakcie przetwarzania danych.

Page 141: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

6.2 Badanie 141

Analizując zbiór danych, składający się z nazw towarów, zauważono następujące właściwości:

— duża ilość powtórzeń poszczególnych słów,

— ograniczona liczebność występujących słów,

— możliwość występowania wyrazów i symboli istniejących i nieistniejących w języku naturalnym,

— nazwy można traktować jako dokumenty tekstowe,

— nazwy zawierają tylko kilka słów,

— występują szczególne przypadki, gdy nazwy różnią się tylko jednym słowem.

Podane właściwości należy uwzględnić w procesie grupowania. Część z nich wykorzystuje się w

celu polepszenia uzyskiwanych rezultatów, część w celu zwiększenia efektywności działania algoryt-

mów.

6.2.2 Konstrukcja nazwy w katalogu towarów

Konstrukcja nazwy zazwyczaj jest następująca: nazwa towaru składa się z niewielkiego ciągu zna-

ków, rzadko przekracza on długość kilkuset znaków, a zazwyczaj jest mniejszy niż 100. W strukturze

nazwy można wyróżnić słowa. Występuje jedno lub więcej słów, które ustalają rodzaj produktu, jego

podstawową klasyfikację. Często są to powszechnie znane słowa występujące w języku naturalnym.

Pozostałe terminy mogą odpowiadać za poszczególne właściwości towarów. Cechą charakterystyczną

katalogu towarów jest stosowanie ograniczonego zbioru słów i symboli stosowanych w zapisie nazw

towarów. Poszczególne elementy nazwy służą identyfikacji bądź do opisu właściwości towaru, więc

oczekuje się od takich symboli ustalonego znaczenia, określonego poprzez praktykę stosowania. W

typowym katalogu zaleca się stosowanie tych samych symboli dla oznaczenia tych samych właściwo-

ści. Należy jednak pamiętać, że katalogi tworzą ludzie, przy użyciu języka naturalnego, więc można

się spodziewać wszelkich utrudnień jakie towarzyszą przetwarzaniu języka naturalnego, takich jak

wieloznaczności, niedomówienia, synonimy, aczkolwiek w dość ograniczonym zakresie.

Analizując nazwy poszczególnych produktów można zauważyć następującą właściwość: jeżeli

potraktujemy nazwę produktu jako ciąg słów:

litera = „a” . . . „Z” ,słowo = letter,[litera],nazwa = słowo,[słowo]to wiele par produktów posiada podobne nazwy, tzn. jedno lub więcej słów występuje w obu

nazwach produktów. Wykorzystując znajomość faktu, że człowiek tworząc nazwy dla nowych pro-

duktów stara się aby były one podobne do innych podobnych produktów i tylko zmienia lub dodaje

jedno lub więcej słów tak, aby nowa nazwa wystarczająco identyfikowała nowy produkt, można

przyjąć, że w pewnym zakresie i z pewną dokładnością badając stopień podobieństwa nazw pro-

duktów otrzymuje się współczynniki określające podobieństwo samych produktów. Z drugiej jednak

Page 142: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

142 Selekcja i grupowanie danych lingwistycznych

strony istnieje tendencja do maksymalnego skracania poszczególnych nazw, jeżeli tylko da się unik-

nąć powstawania niejednoznaczności. Przykładowo w analizowanym katalogu wyrobów hipotetycznej

piekarni pomija się oznaczenie wyrobu jako „pieczywo”, pomimo iż nie wszystkie wyroby należą do

tej kategorii. Informacja że dany wyrób należy do kategorii „pieczywo” może wynikać z użycia ter-

minu „chleb”. Jedną z wielu informacji, którą można odkryć analizując różne znaczenia ukryte pod

tym terminem, jest to że produkt „chleb” należy do kategorii pieczywo.

6.2.3 Metoda wykorzystania słownika do porównywania bardzo krótkich

tekstów

Porównywanie dokumentów tekstowym pod względem znaczeniowym opiera się o właściwość

wyznaczania podobieństwa na podstawie jednoczesnego występowania niektórych wyrazów w obu

tekstach. Metody stosujące tą właściwość bezpośrednio, do niemodyfikowanych tekstów dają dobre

rezultaty dla dokumentów dłuższych. W przypadku, gdy analizowane dokumenty są bardzo krótkie,

stosowany jest szeroki zasób słów i znaczenia nabiera każdy wyraz metoda ta jest zbyt ogólna, pomija

bowiem podobieństwo znaczeniowe różnych wyrazów. Szczególnie jest to widoczne w przypadku

grupowania tekstów jakimi są nazwy towarów (patrz 6.1.3).

Wykorzystanie funkcji porównywania tekstów opisanej w podrozdziale 6.1.3 wymaga dokona-

nia pewnych modyfikacji. Autor zaproponował odpowiednio przekształcić napis nazwy produktu.

Przekształcenie to dokonuje się na podstawie uprzednio zgromadzonej wiedzy. Wiedza ta obejmuje

zbiór prostych formalnie reguł opisujących relacje pomiędzy niektórymi ze stosowanych terminów. W

szczególności chodzi o relacje zawierania się znaczeniowego, od terminów szczegółowych do bardziej

ogólnych. W niniejszej pracy zaproponowano następującą metodę zapisu i późniejszego wykorzysta-

nia reguł: zastosowano słownik, w którym występują „tłumaczone” terminy oraz skojarzone z nimi

inne terminy określające bardziej ogólną informację. Korzystając z już przytaczanego przykładu

słownik będzie przypisywał znaczenia zgodnie z przykładem pokazanym w tablicy 6.1.

Tabela 6.1. Przypisywanie znaczeń na podstawie słownika

słowo źródłowe termin uzupełniający„chleb” → „pieczywo”„bułka” → „pieczywo”

Tłumaczone są terminy „chleb” i „pieczywo”, termin „pieczywo” stanowi bardziej ogólne obja-

śnienie. Funkcje porównujące dokumenty opierają się na przeliczeniu stosunku występowań danego

słowa w danych dwu tekstach. Korzystając z tu zaproponowanego słownika dopisuje się do nazwy

produktu szereg słów określających pewne ogólne właściwości danego produktu, które „wyprowa-

dza” się z właściwości szczegółowych, wynikających ze znaczeń poszczególnych słów. Operację taką

Page 143: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

6.2 Badanie 143

wykonuje się automatycznie na podstawie zgromadzonych reguł. Opierając się na tak „rozwiniętych”

nazwach dokonuje się porównania tekstów. Następuje tu wykorzystanie następującej właściwości: im

bardziej produkty do siebie są podobne, tym mają więcej cech wspólnych, co winno się objawiać

większą ilością powtórzeń w „rozwiniętych” nazwach produktów. Większa ilość słów jednocześnie

występująca w analizowanych nazwach skutkuje wyższym współczynnikiem podobieństwa otrzyma-

nym z funkcji porównującej teksty.

Tworzenie funkcji porównującej teksty wymaga rozwiązania jeszcze jednego problemu. Znaczenie

i wpływ poszczególnych słów na końcowy wynik nie jest bowiem jednakowy dla wszystkich słów. Dla

dokumentów nie związanych ze sobą (np. artykuły, abstrakty itd.) zapisanych tekstem naturalnym

przyjmuje się następujące zasady przypisywania wag. Słowa, które występują tylko w pojedynczych

dokumentach otrzymują wagę zero z uwagi na znikomy wpływ na klasyfikację. Jednocześnie taką

samą wagę przypisuje się słowom, które występuję w dużej części dokumentów. Jest to spowodowa-

ne następującym faktem. W języku naturalnym istnieje wiele słów mających charakter pomocniczy,

przykładowo są nimi spójniki. Słowa te, mimo iż występują bardzo często nie wpływają na klasyfi-

kację tekstu. W niniejszym opracowaniu dokument jaki powstaje z rozwinięcia nazwy towaru przy

pomocy słownika na inny charakter. Tutaj każde słowo ma istotne znaczenie dla klasyfikacji. Wy-

stępują również te słowa, które zwyczajowo się pomija w z uwagi na pozostałe występujące słowa w

tekście. Korzystając z takiego sztucznego rozwijania nazw uzyskujemy następujący efekt. Niektóre

ze słów występują znacznie częściej niż inne, ale można zauważyć że częstość występowania zależy od

stopnia szczegółowości danego terminu, słowa będące bardzo ogólnymi terminami występują częściej

a te szczegółowe rzadziej. Wynika to ze sztuczności zabiegu rozwijania nazw. W mowie naturalnej

jeżeli użyje się terminu szczegółowego dotyczącego danej właściwości to terminy ogólne się pomija. W

niniejszej analizie, gdzie sztucznie uzupełniane są poszczególne opisy takie terminy ogólne są zawsze

obecne, albo były od początku, albo zostały dodane na podstawie analizy terminów bardziej szcze-

gółowych. Wracając do przykładu: albo słowo „pieczywo” było w nazwie, albo zostanie dodane gdy

w nazwie znajdzie się słowo z grupy („chleb”, „bułka”). Człowiek intuicyjnie wie, że słowo „pieczy-

wo” jest bardziej ogólnym określeniem niż słowo „chleb”, niestety komputer musi otrzymać liczbowe

dane na ten temat. Trudno jest wprowadzać takie dane ręcznie, np. zasięgając opinii eksperta gdyż

wiązało by się to ze znacznym kosztem przygotowania bazy słownika. Wystarczy jednak policzyć

ilość wystąpień danego słowa we wszystkich nazwach produktów. Zgodnie z zasadami tworzenia i

uzupełniania nazw dany termin pojawi się wszędzie tam, gdzie towar należy do grupy określanej

przez ten termin, tym samym stopień ogólności terminu jest proporcjonalny do ilości wystąpień.

Idąc dalej tym tokiem rozumowania można obliczyć stopień podobieństwa dwóch nazw produktów.

Page 144: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

144 Selekcja i grupowanie danych lingwistycznych

6.2.4 Przebieg badania

Wzięto do analizy zestaw nazw 6 produktów, są to nazwy występujące w rzeczywistej bazie da-

nych. Wybrano tylko 6 nazw, aby sprawdzić przydatność proponowanej metody grupowania. Dla tak

małej liczby elementów weryfikacja jest możliwa do przeprowadzenia przez człowieka. Wykorzystano

do tego wiedzę ekspertów z danej dziedziny, którzy przedstawili własne propozycje macierzy podzia-

łu oraz macierzy podobieństw. Nazwy obiektów przedstawiono w tablicy 6.2, łącznie z przykładem

rozwinięcia nazw i uzyskanymi współczynnikami podobieństwa.

Nie przeprowadzono badania bez uwzględniania znaczenia poszczególnych wyrazów z powodu

braku możliwości określania postępowania dla nazw towarów nie mających wspólnych elementów.

Dla obiektów „rogal” i „bułka kajzerka” stopień podobieństwa wyznaczony jedynie na podstawie

zakodowanych nazw powinien wynosić 0, co jest błędnym założeniem. Co więcej, obiekt „rogal” jest

równie niepodobny (zgodnie z przyjętymi założeniami) do wszystkich pozostałych obiektów. Więc

oczekiwany na tej podstawie podział na dwie grupy to: „rogal” – pierwsza grupa a w drugiej –wszystkie pozostałe obiekty.

Tabela 6.2. Mały katalog towarów

nazwa w bazie nazwa po wzorzecuzupełnieniu ROGAL CHLEB RAZOWY

BUŁKA KAJZERKA Pieczywo, białe, małe 1.000 0.000BUŁKA WIEJSKI Pieczywo białe, małe 0.935 0.065ROGAL Pieczywo białe, małe 1.000 0.000CHLEB RAZOWY Pieczywo, podłużne 0.000 1.000CHLEB WIEJSKI Pieczywo, podłużne 0.065 0.935CHLEB TOSTOWY Pieczywo, podłużne 0.000 1.000

Wykonano podział na dwie grupy. Tak jak oczekiwano podział nastąpił pomiędzy bułki a chleby.

Na powyższym przykładzie można przeanalizować wpływ słownika na obliczanie funkcji podobień-

stwa. Atrybut „wiejski” ma stosunkowo niewielką wagę, dzieje się tak z następującego powodu.

Atrybuty „białe”, „bułka”, „chleb” występują w większej ilości nazw, tym samym wagi im przypi-

sane są większe.

Dla większej ilości danych można oczekiwać że różnica występowania słów „chleb”, „bułka” a słów

„wiejski”, „tostowy” będzie jeszcze większa, co spowoduje przypisywanie odpowiednio większych

wag, co będzie zgodne z regułami panującymi w rzeczywistym świecie.

Kolejną serię pomiarów dokonano na bazie towarów, pozyskanej z rzeczywistego przedsiębior-

stwa. Zawartość bazy przedstawiono w tabeli 6.7 przy okazji przedstawionych wyników grupowania.

Na takiej rzeczywistej bazie widocznych jest wiele wtrąceń, w postaci nazw towarów niezupełnie pa-

sujących do zasadniczej części bazy. W świecie realnym takie zdarzenia mają miejsce nader często,

mówi się o szumie informacyjnym. Problem polega natomiast na tym, aby algorytmy eksploracji, a

Page 145: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

6.2 Badanie 145

Tabela 6.3. Tablica wag

Słowo Ilość wystąpieńCHLEB 3PIECZYWO 6JEDZENIE 6PODŁUŻNE 3DUŻE 3BUŁKA 3BIALE 3MALE 3WIEJSKI 2

Tabela 6.4. Lista reguł decyzyjnych heurystyczny dla bazy towarów

jeżeli atrybut to grupaMALE 32421-22 22421-23 1SREDNIE 1CIASTKO 42421-21 2RAZOWY 1Z 4

CHALKA 3SUROWIEC 4GRAHAM 3TOSTOWY 2SNIADANIOWY 2CHLEB 12421-41 4

w tym przypadku algorytmy grupowania, „poradziły” sobie z takimi danymi. Przedstawione poniżej

tabele pokazują, że jest to możliwe, przedstawione metody i algorytmy dały poprawne wyniki.

6.2.5 Badanie funkcji odległości dla danych lingwistycznych

Warunkiem koniecznym do zastosowania metod iteracyjnych, a w szczególności metody grupo-

wania rozmytego opisanej w podrozdziale 3.3.3 jest skonstruowanie odpowiedniej miary odległości.

Funkcja odległości ma za zadanie odzwierciedlić stopień „niepodobieństwa” poszczególnych obiek-

tów. Punktem wyjścia do eksperymentu jest katalog towarów, w którym nazwy zostały już „rozwinię-

te” przy pomocy słownika. Każda nazwa składa się więc z części oryginalnej oraz słów dopisanych na

podstawie przeprowadzonej analizy. Dla tak skonstruowanej bazy dokumentów należy dobrać odpo-

wiednią funkcję określającą podobieństwo tekstów. Przeanalizowano kilka funkcji (szczegółowy opis

Page 146: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

146 Selekcja i grupowanie danych lingwistycznych

w podrozdziale 2.2.2). W niniejszej pracy zaimplementowano i przetestowano 5 funkcji odległości,

możliwych do zbudowania dla badanego zbioru obiektów.

— Euklidesowa miara odległości L2 (wzór(2.9)).

— Odległość Manhattan L1 (wzór (2.14)).

— Miara kosinusowa (w tabeli 2.2).

— Wskaźnik Jaccarda (wzór (2.20)).

— KL dywergencja (w tabeli 2.2).

Funkcja odległości obliczana jest przy następujących założeniach: zbiór słów i termów występu-

jących w nazwach towarów odwzorowany jest w zbiór [115]:

T = t1, . . . , tp. (6.2)

gdzie:

T - wektor słów reprezentujący nazwę towaru,

ti - liczba wystąpień słowa o indeksie i w reprezentowanej nazwie.Następnie każdą nazwę towaru można odwzorować w wektor T o rozmiarze p, gdzie p jest liczbą

słów występujących we wszystkich nazwach, a poszczególne współczynniki odzwierciedlają występo-

wanie odpowiadających słów. W niniejszej pracy poddano analizie następujące funkcje spełniające

kryteria wymagane przez algorytmy grupowania:

1. Funkcja oparta o wskaźnik Jaccarda 2.24

djac(T1, T2) =a00 + a11 + a01

a11− 1, (6.3)

gdzie:

Ti - porównywany dokument(nazwa towaru) zapisany w postaci wektora słów,

a11 - oznacza liczbę słów jednocześnie występujących w obu towarach,

a10, a01 - oznacza liczbę słów występujących tylko w jednej z nazw.

Wyniki otrzymywanie przy zastosowaniu tej funkcji do porównywania obiektów potwierdzi-

ły przewidywaną jej słabość. Ponieważ funkcja ta jednakowo traktuje wszystkie słowa i nie

rozróżnia ich pod względem ważności, to nie można się spodziewać aby wiernie odtwarzała

rzeczywiste relacje leżące pomiędzy poszczególnymi towarami.

2. Funkcja oparta o wskaźnik Jaccarda przy uwzględnieniu wag ważności poszczególnych słów.

Na podstawie: 3.29

T = (t1, wt1 ; t2, wt2 ; . . . ; tp, wtp). (6.4)

Page 147: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

6.2 Badanie 147

Tabela 6.5. Jakość grupowania FCMdd dla różnych funkcji odległości dla bazy towarów

funkcja odległości przyrost informacji czas obliczeńjaccadr 1,3129 10:02:00cosine 4,4940 20:53:20KL dywergencja 4,8897 10:40:00L1 manhattan 5,0159 07:33:20L2 euklidesowa 0,5633 20:53:20

a11(TA, TB) =p∑i=1

wA(i)wB(i)wti . (6.5)

Użyte przykłady obliczania wartości wag słów:

(a) wti = |ti| – waga jest proporcjonalna do ilości wystąpień słowa ti,

(b) wti = |ti| 1log |ti| – funkcja analogiczna w współczynnika TF-IDF,

(c) wti =|ti|N log

|ti|N – jak powyżej po dokonaniu normalizacji (N oznacza liczbę dokumentów,

a tym samym maksymalną ilość wystąpień słowa ti.

gdzie:

ti słowo występujące w dokumentach,

wA(i) przyjmuje wartość 1 jeżeli słowo ti występuje w TA, 0 w przeciwnym przypadku,

wti waga przypisana do słowa ti.

Rezultaty badań poszczególnych funkcji odległości dla bazy towarów, przy użyciu algorytmu

FCMdd zostały przedstawione w tablicy 6.5.

6.2.6 Badanie skuteczności grupowania danych lingwistycznych

Do grupowania nazwa z katalogu towarów użyto tych samych algorytmów, które zostały poddane

badaniu w rozdziale 5:

1. algorytmu hierarchiczny deglomeracyjny,

2. algorytm genetyczny prosty,

3. algorytm genetyczny oparty o listy decyzyjne,

4. algorytm przeszukiwania heurystycznego oparty o listy decyzyjne.

5. algorytm grupowania rozmytego adaptowanego do przestrzeni argumentów symbolicznych,

Page 148: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

148 Selekcja i grupowanie danych lingwistycznych

Tabela 6.6: Jakość grupowania a różnymi algorytmami bez użycia funkcji odległości dla bazy towarów

funkcja odległości przyrost informacji czas obliczeńgenetyczny 0,5956 03:33:19deglomeracyjny 0,3946 10:40:00proste szukanie heurystyczne 0,4105 15:06:40Decision List pełny przegląd 0,3858 17:46:40Decision List heurystyczne 0,3861 13:20:00decision list genetyczny 0,3868 20:53:19

6. algorytm aglomeracyjnego z warunkiem minimalizacji odległości pomiędzy najodleglejszymi

obiektami.

Wszystkie algorytmy zostały porównane pod względem szybkości uzyskiwania wyników, powta-

rzalności rezultatów oraz uzyskiwanej wartości funkcji kryterium. Rezultaty grupowania, wraz z

czasem obliczeń przedstawiono w tablicy 6.6. Na uwagę zasługują słabe wyniki algorytmu genetycz-

nego (wersja bezpośrednia).

W tabeli 6.7 przestawiono macierz przynależności do poszczególnych grup. Dla sześciu kolumn

z liczbami, które odpowiadają sześciu badaniom dla powyżej wymienionych algorytmów, zawarto

numery grup do których poszczególne obiekty zostały przypisane. Ponieważ w grupowaniu nie ma

wstępnie nazwanych grup, poszczególne algorytmy różnią się od siebie kolejnością „wykorzystywania”

kolejnych podzbiorów. Dopiero dokładniejsza analiza pomaga w porównaniu wyników: grupa 3 dla

algorytmu genetycznego prostego i grupa 4 dla algorytmu genetycznego opartego o listy decyzyjne

stanowią w zasadzie tą samą grupę. Dodatkowym celem przytoczenia tychże wyników, jest ukazanie

jak trudna w wykorzystaniu do eksploracji danych jest postać normalna grupowania, czyli macierz

podziału.

Page 149: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

6.2 Badanie 149

Tabela 6.7. Otrzymany podział dla grupowania algorytmami z tabeli 6.6

metodanazwa towaru 1 2 3 4 5 6CHLEB GRAHAM FOREMKOWY 2421-23 3 2 2 3 2 4CHLEB TOSTOWY 2421-41 3 2 1 3 4 1CHLEB STAROWIEJSKI 2421-22 3 4 4 1 4 1CHLEB POWSZEDNI 2421-22 2 4 4 1 4 1CHLEB TRZY ZIARNA 0.6KG 2421-23 3 2 2 1 4 1CHLEB TOST-żYTNI 1/2 2421-23 1 2 2 3 4 1CHLEB CEBULOWY 2421-21 1 2 1 3 4 1CHLEB śNIADANIOWY 2421-41 3 2 1 3 4 1CHLEB STAROPOLSKI 2421-22 3 4 4 1 4 1CHLEB STAROWIEJSKI KROJONY 2421-22 1 4 4 1 4 1BUłKA STAROPOLSKA 2421-23 3 3 3 4 3 3BUłKA MAŚLANA 2421-41 1 3 3 4 3 3CHLEB RAZOWY KROJONY 2421-24 4 2 2 1 2 4CHLEB RAZOWY 2421-24 3 2 2 1 2 4CHLEB RAZOWY Z SłONECZNIKIEM 2421-24 4 2 2 1 2 4CHLEB DIETETYCZNY 2421-23 3 2 2 3 4 1CHLEB ZDROWIA 2421-23 4 2 2 3 4 1CHLEB SOJOWY 2421-22 1 4 4 1 4 1CHLEB KRóLEWSKI 0.4KG 2421-23 4 2 2 3 4 1CHLEB CHłOPSKI 2421-22 1 4 4 1 4 1CHLEB KRóLEWSKI 0.5KG 2421-23 4 2 2 3 4 1BUłKA GRAHAM żYTNIA PACZKOWANA 2421-23 2 3 3 4 3 3BUłKA MINI GRAHAM PACZKOWANA 2421-23 2 3 3 4 3 3PALUCH GRAHAM 2421-23 2 2 1 3 2 4PALUCH HOT-DOG 2421-4 3 2 1 3 2 4PALUCH LUXUS Z MAKIEM 2421-31 1 2 1 3 2 4PALUCH LUXUS BEZ MAKU 2421-31 3 2 1 3 2 4Pół PALUCH 2421-3 4 2 1 3 2 4BATON LUXUS 2421-3 4 2 1 3 2 4BATON LUXUS KROJONY 2421-3 3 2 1 3 2 4BUłKA HAMBURGER 2421-4 3 3 3 4 3 3BUłKA WIEJSKA Z SEZAMEM 2421-22 2 3 3 4 1 3BUłKA GRAHAM 2421-23 4 3 3 4 3 3BUłKA KAJZERKA 2421-31 1 3 3 4 3 3BUłKA GRAHAM żYTNIA 2421-32 4 3 3 4 3 3MINI GRAHAM żYTNIA 2421-32 3 1 3 4 3 3CHLEB OKRĄGłY 2421-31 1 2 1 3 2 4OBWARZANEK KRUCHY 2421-41 4 1 1 2 3 2

Page 150: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

150 Selekcja i grupowanie danych lingwistycznych

Tabela 6.8. Otrzymany podział dla grupowania algorytmami z tabeli 6.6 cz.2

metodanazwa towaru 1 2 3 4 5 6BAGIETKA FRANCUSKA 2422-31 4 2 1 3 2 4PALUCH KORNSPITZ 2421-32 4 2 1 3 2 4JAGODZIANKA 2422-1 2 1 2 2 1 2CIASTKO 2422-2 4 1 2 2 1 2ROżEK 2422-2 1 3 3 4 3 3ROGAL 2422-2 2 3 3 4 3 3BUŁKA Z CZEKOLADĄ 2422-1 4 3 3 4 1 3BUŁKA FIRMOWA DUżA PACZKOWANA 2421-31 2 3 3 4 3 3BUłKA FIRMOWA 5X0,09 2421-31 1 3 3 4 3 3BUłKA FIRMOWA DUżA 2421-31 1 3 3 4 3 3BUłKA FIRMOWA MAłA 2421-31 3 3 3 4 3 3BUłKA MAX 2421-31 2 3 3 4 3 3CHLEB ZWYKłY 0,50 2421-22 3 4 4 1 4 1CHLEB KROJONY ZWYKłY 2421-22 3 4 4 1 4 1CHLEB MIESZANY DUżY 2421-22 2 4 4 1 4 1CHLEB MIESZANY śREDNI 2421-22 2 4 4 1 4 1CHLEB MIESZANY ZWYKłY 2421-22 4 4 4 1 4 1CHLEB KATOWICKI 2421-23 4 2 2 3 4 1CHLEB KASZUBSKI 2421-22 1 4 4 1 4 1CHLEB ZAKOPIAńSKI 2421-22 4 4 4 1 4 1CHLEB WIEJSKI 2421-22 4 4 4 1 4 1CHLEB KROJONY 0.6KG 2421-22 1 4 4 1 4 1CHLEB KROJONY 0.9KG 2421-22 3 4 4 1 4 1CHLEB WIEJSKI 0.6KG 2421-22 3 4 4 1 4 1CHLEB ZWYKłY FOREMKA 0.85KG 2421-22 4 4 4 1 4 1DROżDżóWKI PAKOWANE 2422-1 2 1 2 2 1 2BUłKA DROżDżOWA Z SEREM 2422-1 4 3 3 4 1 3BUłKA DROżDżOWA Z MARMOLADą 2422-1 2 3 3 4 1 3BUłKA DROżDżOWA Z MAKIEM 2422-1 2 3 3 4 1 3BUłKA DROżDżOWA Z BUDYNIEM 2422-1 3 3 3 4 1 3CHAłKA DUżA MLECZNA 2421-41 2 3 3 4 3 3CHAłKA MAłA MLECZNA 2421-41 4 3 3 4 3 3ROGAL MLECZNY 2421-41 1 3 3 4 3 3BUłKA MLECZNA 2421-41 4 3 3 4 3 3CHAłKA MINI 2421-41 1 3 3 4 3 3MINI ROGAL Z MAKIEM 2421-41 4 3 3 4 1 3PąCZEK 2422-1 4 1 2 2 1 2BUłKA DROżDżOWA 2422-1 3 3 3 4 1 3CHLEB KOłODZIEJ 2421-23 1 2 2 3 4 1CHLEB ZIARNISTY 0.35KG 2421-23 4 2 2 3 4 1CHLEB KANAPKOWY 2421-21 2 2 1 3 4 1CHLEB żYTNI RAZOWY 2421-23 4 2 2 1 2 4CHLEB SIEDEM ZIAREN 2421-23 4 2 2 3 4 1CHLEB ZIEMIACZANY 2421-22 2 4 4 1 4 1

Page 151: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

6.2 Badanie 151

Tabela 6.9. Otrzymany podział dla grupowania algorytmami z tabeli 6.6 cz.3

metodanazwa towaru 1 2 3 4 5 6CHLEB SZWAJCARSKI SEROWY 2421-21 3 2 1 3 4 1CHLEB ZIOłOWY 0.3KG 2421-21 1 2 1 3 4 1CHLEB OWSIANY 2421-22 3 4 4 1 4 1CHLEB OMEGA 2421-23 2 2 2 3 4 1BATON ZWYKłY 2421-31 1 2 1 3 2 4BUłKA CEBULOWA 2421-21 2 3 3 4 3 3CIASTO Z TRUSKAWKAMI 2422-7 3 1 3 2 1 2CIASTO Z JABłKAMI 2422-7 1 1 3 2 1 2CIASTO Z śLIWKAMI 2422-7 2 1 3 2 1 2ROLADA Z MAKIEM 2422-7 1 1 3 2 1 2BABKA DOMOWA Z LUKREM 2422-7 1 1 2 2 1 2CHLEB KANAPKOWY 0.75KG 2421-21 1 2 1 3 4 1BUłKA TARTA 2421-92 3 3 3 4 1 3MAKA 750 2411-229 3 1 4 2 1 2POJEMNIK PIEKARSKI 2 1 4 2 1 2TOREBKI PAPIEROWE 3 1 4 2 1 2CHLEB ZWYKłY 0.6KG 2421-22 3 4 4 1 4 1BUłKA MAśLANA PACZKOWANA 2421-41 2 3 3 4 3 3BUłKA SANDWICH 2421-32 1 3 3 4 3 3

Page 152: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

152 Selekcja i grupowanie danych lingwistycznych

6.3 Wnioski

Mimo wielu analogii i podobieństw do grupowania dokumentów grupowanie w katalogu towa-

rów jest istotnie różne. Po pierwsze wymagane jest skorzystanie z zewnętrznej wiedzy, gdyż dane

zawarte w bazie nie wystarczają do pogrupowania towarów. Po drugie wiele z przesłanek wykorzy-

stywanych podczas grupowania dokumentów (np. wykrywania słów nieznaczących) musi być inaczej

interpretowanych. Po trzecie brak jest optymalnej funkcji oceny jakości podziału. Wydaje się jed-

nak że funkcja entropii, stosowana jako kryterium, stanowi wystarczające przybliżenie funkcji oceny

jakości. Wniosek ten powstał w wyniku konsultacji uzyskiwanych podziałów z ekspertami i porów-

nywaniem z wartością funkcji kryterium. Ważne natomiast jest aby algorytm znajdował najlepsze

rozwiązanie, zatrzymywanie się na minimum lokalnym dowodzi o jego niestabilności.

Podobieństwo dokumentów tekstowych wyznacza się na podstawie analizy statystycznej słów

występujących w dokumentach lub na podstawie analizy strukturalnej opartej na bazie odsyłaczy

oraz innych elementów łączących znaczeniowo dokumenty. Zaproponowana metoda uwzględniania

zewnętrznej wiedzy w procesie porównywania dokumentów wykorzystuje informację strukturalną

zawartą w nazwach towarów a ukrytą w znaczeniach poszczególnych słów. Terminy dopisane do

nazwy na podstawie słownika stają się łącznikami wiążącymi poszczególne nazwy. Dalszej analizy

podobieństwa dokonuje się poprzez porównanie podobieństwa strukturalnego bądź analizy staty-

stycznej występujących słów. W procesie porównywania tekstów istotne znaczenie ma przypisanie

odpowiednich wag poszczególnym słowom. Według badań Saltona [115] najlepszym wskaźnikiem

do określania wag jest wskaźnik TD-IDF. Badanie dotyczyło jednak zwykłych tekstów prasowych.

W badanym przypadku analizie poddano teksty dość znacznie różniące się charakterem od tek-

stów prasowych. Dlatego też, na podstawie wstępnych oszacowań, zaproponowano zmianę sposobu

wyznaczania wag. Uzyskane wyniki potwierdziły przyjęte założenia, otrzymano lepsze wyniki. Do

wyznaczenia optymalnej funkcji naliczania wag dla słów należy bardziej szczegółowych testów.

Skorzystanie z zewnętrznej wiedzy o obiektach i ich właściwościach, daje lepsze wyniki. W niektó-

rych przypadkach, wyniki uzyskiwane bez uwzględniania takiej wiedzy, mogą być całkowicie błędne

(z punktu widzenia możliwości pozyskania nowej wiedzy).

Badanie dokonane na rzeczywistej bazy danych, pozyskanej z działającego przedsiębiorstwa, uwy-

puklają wpływ stosowanych metod na uzyskiwane wyniki. Dobre wyniki dają metody oparte o listy

decyzyjne co potwierdza ich użyteczność. Metody wykorzystujące miarę odległości są bardzo „wraż-

liwe” na stosowaną funkcję. Autor przeprowadził konsultację z ekspertami w zakresie otrzymanych

wyników grupowania. Ekspertyza potwierdziła zgodność otrzymanego podziału z oczekiwaniami.

Również zauważono korelację pomiędzy wartościami stosowanej funkcji kryterium a jakością otrzy-

manego podziału.

Page 153: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

6.3 Wnioski 153

Ciekawe spostrzeżenia wynikają z porównania działania algorytmu genetycznego zwykłego z al-

gorytmem opartym na listach decyzyjnych. W badanych przykładach algorytm zwykły nie potrafił

znaleźć rozwiązania optymalnego, gdyż wpadał w lokalnie optymalne rozwiązanie. Zmiana sposobu

ujęcia danych, poprzez odwzorowanie listy decyzyjnej w postaci genu, spowodowania, że dla podane-

go przykładu uniknięto zagrożenia znalezienia rozwiązania nieoptymalnego. Dalsze badania formalne

natomiast są konieczne, dla wykazania, dla których rodzajów danych przedstawiona metoda daje

lepsze wyniki.

Badania potwierdziły skuteczność i przydatność metod opartych o listy decyzyjne. Poza algoryt-

mem pełnego przeglądu, którego złożoność obliczeniowa nie pozwala na zastosowanie do większych

baz danych, pozostałe dwa (heurystyczny i genetyczny) dały dobre wyniki w akceptowalnym czasie.

W niektórych przypadkach (rzeczywista baza towarów), uzyskany wynik funkcji kryterium był lepszy

niż otrzymany metodami klasycznymi. Również przedstawiono ekspertom różne postacie otrzymy-

wanych wyników, wynikające ze stosowanych metod. Zgodnie z przypuszczeniami, eksperci ocenili,

że potencjalnie lista decyzyjna nadaje się do analizy i wnioskowania, w szczególności do analizy

zmian i trendów

Page 154: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

Rozdział 7

Podsumowanie

W niniejszej pracy autor dokonał szczegółowej analizy możliwości grupowania zbiorów zawierają-

cych dane symboliczne oraz możliwości zastosowania rezultatów grupowania do eksploracji danych.

Badania dotyczyły metod i algorytmów grupowania, technik porównywania i weryfikacji uzyskiwa-

nych rezultatów rezultatów.

Szczegółowe wyniki rozprawy

Najważniejsze szczegółowe wyniki rozprawy są następujące:

1. Omówiono aspekty eksploracji danych, z uwzględnieniem jej usytuowania jako etapu w procesie

pozyskiwania wiedzy oraz formy jej realizacji na przykładzie grupowania danych (rozdział 1).

2. Zaprezentowano krytyczną dyskusję różnych metod analizy danych postaci symbolicznej, szcze-

gólnie w kontekście grupowania danych tej postaci ( rozdziały 2 i 3) oraz w zakresie przeprowa-

dzonych badań (rozdziału 5 i 6). Wykazano szereg warunków (szczegółowo opisanych poniżej)

istotnych w procesie eksploracji danych.

3. Wprowadzono oryginalną metodę grupowania danych w oparciu o listy decyzyjne oraz zapro-

ponowano 3 algorytmy w oparciu o tą metodę (rozdział 4). Metoda ta umożliwia grupowanie

obiektów opisanych atrybutami symbolicznymi oraz umożliwia prezentację wyników w postaci

reguł.

4. Dokonano adaptacji i implementacji wybranych metod do grupowania danych symbolicznych,

oraz porównano ich efektywności w zakresie przetwarzania przygotowanych zbiorów danych

(rozdział 5). Wskazano przypadki, dla których metody nie wymagające stosowania funkcji

odległości dają lepsze wyniki.

154

Page 155: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

155

5. Przedstawiono metodę grupowania dokumentów tekstowych o nietypowej postaci, jakimi są

nazwy występujące w katalogu towarów (rozdział 6). Przedstawiono przykład, w którym dzięki

wykorzystaniu zewnętrznej wiedzy wyniki grupowania były lepsze.

Analiza praktycznych aspektów eksploracji danych wskazuje, że sukces rozwiązania danego pro-

blemu eksploracji danych zależy nie tylko od wyboru specyficznego algorytmu czy metody analizy,

ale także od właściwej realizacji innych etapów całego procesu, począwszy od poprawnego zrozu-

mienia kontekstu i interpretacji zgromadzonych danych, doboru właściwych metod reprezentacji i

przetwarzania a skończywszy na odpowiednich, dla danego zagadnienia, formach prezentacji wyni-

ków.

Grupowanie danych symbolicznych stanowi istotną technikę eksploracji danych. Aby otrzymy-

wane wyniki były wiarygodne, rzetelne, o dużych walorach poznawczych, winny być spełnione na-

stępujące warunki:

1. Źródło danych

Źródło, czyli przetwarzana baza danych, winno być wiarygodne, gdyż wnioski wysnute z nie-

prawdziwych, niepełnych, czy niepewnych danych mogą być błędne. Aby wyniki dokonanej

eksploracji danych były realne i wiarygodne, to musi zostać spełnionych kilka przesłanek:

— znana musi być rzeczywista interpretacja poszczególnych danych i ich miejsce w procesie

odwzorowywania rzeczywistości oraz zależności w stosunku do podejmowanych decyzji;

— zazwyczaj bazy danych reprezentują rzeczywiste obiekty w połączeniu z zewnętrznie okre-

ślonymi regułami i zasadami, pomijanie tej zewnętrznej wiedzy może prowadzić do uzy-

skania nieadekwatnych wyników,

— źródło danych winno być wiarygodne, gdyż posługiwanie się niewiarygodnymi, niepew-

nymi czy niepełnymi informacjami może prowadzić do błędnego wnioskowania, i dalej do

błędnych decyzji.

Potwierdzeniem tezy o konieczności skorzystania z zewnętrznej wiedzy o obiektach i ich atry-

butach jest badanie dotyczące grupowania nazw towarów przedstawione w rozdziale 6. Bez

uwzględnienia znaczenia poszczególnych słów nie jest możliwe dokonanie grupowania, z uwagi

na brak możliwości oznaczenia podobieństwa niektórych towarów.

2. Algorytmy

Analizowane zbiory danych posiadają formę symboliczną, więc niektóre z algorytmów należy

adaptować do takiej dziedziny. Dotyczy to w szczególności algorytmów iteracyjnych (autor

dokonał adaptacji algorytmu FCMdd). Dla tych algorytmów, które przeznaczone są do danych

określonych symbolicznie, jak na przykład algorytmów hierarchicznych, wymagana jest jedy-

nie właściwa implementacja algorytmu w danym środowisku programistycznym. W zakresie

Page 156: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

156 Podsumowanie

algorytmów autor zaproponował własną metodę grupowania opartą o listy decyzyjne (przed-

stawiona w rozdziale 4) wraz z trzema algorytmami ją wykorzystującymi: pełny przegląd,

algorytm heurystyczny metoda liniowa oraz genetyczny.

3. Funkcja kryterium

Praktycznie każdy algorytm grupowania wykorzystuje w toku swej pracy funkcje kryterium,

czy w postaci entropii czy jako suma odległości. Funkcja kryterium winna odzwierciedlać jakość

otrzymanego podziału z punktu widzenia jego oczekiwanych własności. Autor dokonał badań,

przyjmując jako funkcję kryterium miarę entropii, porównanie wyników z wiedzą ekspertów

potwierdziło przydatność takiego rozwiązania.

4. Funkcja odległości

Niektóre z algorytmów wymagają zdefiniowania odległości pomiędzy poszczególnymi obiekta-

mi, w przypadku danych symbolicznych zazwyczaj dokonuje się tego sztucznie, poprzez przyję-

cie pewnych analogii do przestrzeni liczb rzeczywistych. Jak każde uproszczenie czy przybliżenie

może prowadzić otrzymania niewłaściwych wyników. Szczególnie gdy funkcja kryterium opiera

się na funkcji odległości, początkowy błąd może być zwielokrotniony i prowadzić do błędnych

rezultatów.

Zaobserwowano silne rozbieżności dla różnych funkcji, w zależności od badanych danych, z tego

wynika konieczność doboru funkcji kryterium dla badanej dziedziny. Innym rozwiązaniem jest

wykorzystanie metod grupowania nie wymagających stosowania takiej funkcji. Przykładowe

metody omówiono w podrozdziałach 3.5 i 3.7.

5. Ewaluacja wyników

Ostatni etap eksploracji danych, związany z krytyczną analizą uzyskanych rezultatów i możli-

wościami ich użycia do pozyskania nowej wiedzy. Kryteria oceny autor niniejszej pracy przed-

stawił w podrozdziale 1.3 zgodnie z którymi dokonano analizy przydatności. Część badań autor

wykonał w oparciu o rzeczywiste dane przedsiębiorstw, których wyniki porównano ze spostrze-

żeniami i wnioskami ekspertów uprzednio badającymi dane testowe. Dodatkowym atutem me-

tody grupowania opartej o listy decyzyjne jest sposób prezentacji rezultatów w postaci listy

reguł, co jak wiadomo przyczynia się do zwiększenia czytelności i przyswajalności wyników.

W trakcie badań zauważono pewne właściwości grupowania. Podczas przydzielania obiektów do

grup należy kierować się zasadą łączenia obiektów podobnych, czyli posiadających te same wartości

atrybutów, a rozdzielać (przypisywać do różnych grup) obiekty posiadające różne wartości atrybu-

tów. Funkcja kryterium mierzy wewnętrzny porządek wynikający z powyżej opisanego „rozłożenia”

Page 157: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

157

poszczególnych wartości atrybutów. Wartości atrybutów stają się kryterium podziału na grupy. Po-

nieważ podziały dokonywane wg różnych atrybutów, są różne to należy ustalić kolejność (hierarchię)

poszczególnych kryteriów. Przykładem metody wykorzystującej przedstawioną zasadę jest grupo-

wanie podziałowe opisane w podrozdziale 3.5. Metoda ta nie nadaje się do grupowania niektórych

zbiorów danych, jak to przedstawiono w podrozdziale 5.4. Autor zaproponował własną metodę gru-

powania, wykorzystującą właściwości atrybutów jako kryterium podziału. Zaproponowana metoda

nadaje się do grupowania danych postaci symbolicznej i lingwistycznej, co wykazano w rozdziałach

5 i 6. Wykazano to poprzez porównanie do pozostałych metod, wskazując, że przedstawiona metoda

uzyskuje poprawne rezultaty dla każdej z analizowanych zbiorów danych. Uzyskane wyniki stanowią

przesłankę do dalszej pracy nad formalnym zbadaniem przedstawionej metody. Na uwagę zasługuje

nowa forma prezentacji wyniku grupowania poprzez listę reguł. Doświadczenie potwierdza przy-

datność takiej formy prezentacji w procesie eksploracji danych. Analiza wyników wykazała większą

elastyczność form grup w stosunku do tych uzyskiwanych metodami FCMdd oraz hierarchicznymi,

co przekłada się na uzyskaniu lepszych wartości funkcji kryterium.

Szczegółowa specyfikacja różnic pomiędzy proponowaną metodą grupowania a innymi metodami:

• od metod iteracyjnych i aglomeracyjnych różni się oparciem wyłącznie o funkcję kryteriumodwzorowującego jakość podziału, bez konieczności stosowania miary podobieństwa dla poje-

dynczych obiektów czy grup,

• brak konieczności definiowania funkcji jądra i zapewnienia spełnienia kryterium zbieżności, takjak jest to wymagane dla grupowania iteracyjnego,

• prezentacja wyników w postaci listy decyzyjnej, w miejsce dendogramu dla metody hierar-chicznej oraz elementów wzorcowych dla metody iteracyjnej;

• algorytmy genetyczne są stosowane do grupowania poprzez adaptację różnych metod grupo-wania (np. iteracyjnych lub deglomeracyjnych), przedstawiono nowy sposób wykorzystania

algorytmu genetycznego w procesie grupowania, co dało polepszenie otrzymywanych wyników,

• przedstawiona metoda posiada wiele wspólnych cech w stosunku do metody deglomeracyjnej:również jest oparta o funkcję kryterium, reprezentacja w postaci listy decyzyjnej jest szczegól-

nym przypadkiem grafu; natomiast różnice to pewne ograniczenia metody deglomeracyjej: dla

wariantu opartego o selekcję pojedynczego atrybutu według którego dokonuje się podziału, co

stanowi duże ograniczenie w konstruowaniu grup; a w przypadku testowania każdego możli-

wego podziału złożoność obliczeniowa jest porównywalna z algorytmem pełnego przeglądu.

Przedstawione wyniki badań stanowią przesłankę do dalszych prac nad zaproponowanymi me-

todami. Doświadczalnie potwierdzono istnienie zbiorów danych, dla których przedstawiona metoda

Page 158: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

158 Podsumowanie

daje lepsze wyniki niż inne znane metody grupowania. Oprócz doskonalenia samych metod grupo-

wania, co zostało już zaznaczone we wnioskach z rozdziału 4 należy również odszukać dziedziny, dla

których podane metody będą efektywne.

Kierunki dalszych badań

Praca ta nie wyczerpuje całości prezentowanej problematyki. Kierunków do dalszych badań do-

starczają wszystkie etapy prowadzonych prac. W każdym z nich można dokonać pogłębionych lub

zakrojonych na szerszą skalę badań, co sygnalizowano w treści poszczególnych rozdziałów. Główny

kierunek dalszych badań, które autor zamierza prowadzić, związane są z obszarami powiązanymi

z proponowaną metodą grupowania opartą o lisy decyzyjne. Istotne jest przeprowadzenie badań w

zakresie formalnych. Dotyczy to przede wszystkim badań weryfikacją poprawności metody, określe-

niem obszaru zastosowań oraz oszacowaniu złożoności obliczeniowej. Dalsze badania dotyczyć winny

poszukiwania nowych algorytmów wykorzystującymi przedstawioną metodę grupowania.

Drugi obszar badawczy obejmuje prace nad zwiększeniem właściwości użytkowych podanych

metod eksploracji, w tym nad możliwościami wdrożenia proponowanych rozwiązań w rzeczywistych

przedsiębiorstwach. Temu również służą prowadzone prace nad rozwojem programu do grupowania

danych w postaci symbolicznej. Kolejny obszar to badania nad doborem funkcji stosowanych w

algorytmach do porównywania danych symbolicznych, chodzi przede wszystkim o funkcje odległości

i funkcje oceny jakości grupowania. Jak już wspomniano we wnioskach, mają one krytyczny wpływ

na jakość uzyskiwanych wyników, właściwy dobór funkcji stanowi kluczowy punkt w dostosowaniu

metod grupowania do przetwarzania danych z danej dziedziny.

Podziękowania

Panu dr hab. inż. Janowi Kałuskiemu prof. Pol. Śl. promotorowi tej pracy składam serdeczne

podziękowania za wsparcie merytoryczne, nieocenioną pomoc, okazaną życzliwość, zachęcanie do

podejmowania kolejnych wysiłków oraz doprowadzenie do szczęśliwego zakończenia.

Specjalne podziękowania dla prof. dr hab. inż. Jacka Łęskiego za inspirację do pracy i wiele

cennych uwag.

Dziękuję swojej żonie za nieustanne dopingowanie do intensywniejszej pracy i podtrzymywanie

na duchu w chwilach zwątpienia.

Page 159: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

Bibliografia

[1] R. Agrawal, T. Imielinski, A. N. Swami. Mining association rules between sets of items in

large databases. P. Buneman, S. Jajodia, redaktorzy, Proceedings of the 1993 ACM SIGMOD

International Conference on Management of Data, strony 207–216, Washington, 26–28 1993.

[2] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, A. Verkamo. Fast discovery of association

rules. Advances in Knowledge Discovery and Data Mining, strony 307–328, 1996.

[3] R. Agrawal, M. Mehta, J. C. Shafer, R. Srikant, A. Arning, T. Bollinger. The quest data

mining system. E. Simoudis, J. Han, U. M. Fayyad, redaktorzy, Proc. 2nd Int. Conf. Knowledge

Discovery and Data Mining, KDD, strony 244–249. AAAI Press, 2–4 1996.

[4] M. R. Andenberg. Cluster analysis for applications. Academic Press, 1973.

[5] C. Argyris. Reasoning, Learning and Action. Jonssey-Bass, San Francisco, CA, 1982.

[6] J. Bair, J. Fenn, R. Hunter, D. Bosik, E. Brethenoux. Foundations for enterprise knowledge

management. GARTNER, 1997.

[7] G. H. Ball, D. J. Hall. A clustering technique for summarizing multivariate data. Behavioral

Science, 12:153–155, 1967.

[8] A. Baraldi, L. Schenato. Soft-to-hard model transition in clustering: a review. Raport insty-

tutowy TR-99-010, ICSI, Berkeley, CA, 1999.

[9] P. Berkhin. Survey of clustering data mining techniques. Raport instytutowy, Accrue Software,

San Jose, CA, 2002.

[10] A. Bernstein, S. Clearwater, S. Hill, C. Perlich, F. Provost. Discovering knowledge from

relational data extracted from business news. S. Dzeroski, L. D. Raedt, S. Wrobel, redaktorzy,

MRDM 2002, strony 7–20. University of Alberta, Edmonton, Canada, July 2002.

[11] M. J. Berry, G. Linoff. Data Mining Techniques. John-Wiley, New York, 1997.

159

Page 160: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

160 BIBLIOGRAFIA

[12] J. C. Bezdek. Pattern recognition with fuzzy objective algorithms. Plenum Press, 1981.

[13] J. C. Bezdek, N. R. Pal. Some new indexes of cluster validity. IEEE Transaction on Systems,

Man, and Cybernetics, 28:301–315, 1998.

[14] C. L. Blake, C. J. Merz. UCI repository of machine learning databases, 1998.

[15] L. Bolc, J. Cytowski. Metody przeszukiwania heurystycznego. PWN, Warszawa, 1989.

[16] T. Borys. Elementy teorii jakości. PWN, Warszawa, 1980.

[17] L. Breiman, J. H. Friedmann, R. Olshen, C. J. Stone. Classification and regresion trees. 1994.

[18] S. Brin, R. Motwani, C. Silverstein. Beyond market baskets: generalizing association rules

to correlations. ACM SIGMOD International Conference on Management of Data, strony

265–276, 1997.

[19] S. Brin, R. Motwani, J. D. Ullman, S. Tsur. Dynamic itemset counting and implication rules

for market basket data. ACM SIGMOD International Conference on Management of Data,

strony 255–264, 1997.

[20] I. Campbell. Supporting information needs by ostensive definition in an adaptive information

space, 1995.

[21] C. Cardie. Using decision trees to improve case–based learning. Proceedings of the Tenth

International Conference on Machine Learning, strony 25–32. Morgan Kaufmann Publishers,

Inc., 1993.

[22] L. D. Catledge, J. E. Pitkow. Characterizing browsing strategies in the World-Wide Web.

Computer Networks and ISDN Systems, 27(6):1065–1073, 1995.

[23] R. B. Cattell. The Scientific Use of Factor Analysis in the Behavioral and Life-Sciences.

Plenum Press, New York, 1978.

[24] V. D. Chase. Made to Order - IBM makes sense of unstructured data. IBM, 2002.

[25] M.-S. Chen, J. Han, P. S. Yu. Data mining: an overview from a database perspective. IEEE

Trans. On Knowledge And Data Engineering, 8:866–883, 1996.

[26] J. Cheng, R. Greiner, J. Kelly, D. Bell, W. Liu. Learning bayesian networks from data: an

information-theory based approach. Artif. Intell., 137(1-2):43–90, 2002.

[27] P. Cichosz. Systemy uczące się. WNT, Warszawa, 2000.

Page 161: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

BIBLIOGRAFIA 161

[28] K. J. Cios, W. Pedrycz, R. Swiniarski. Data Mining Methods for Knowledge Discovery. Kluwer,

1998.

[29] P. Clark, T. Niblett. The CN2 induction algorithm. Machine Learning, 3:261–283, 1989.

[30] G. Das, H. Mannila, P. Ronkainen. Similarity of attributes by external probes. Knowledge

Discovery and Data Mining, strony 23–29, 1998.

[31] P. M. Dean. Molecular Similarity in Drug Design. Blackie Academic and Profesional, London,

1995.

[32] C. Delobel, M. Adiba. Relacyjne bazy danych. WNT, Warszawa, 1989.

[33] W. Duch, Y. Hayashi. Computational intelligence methods and data understanding. Interna-

tional Symposium on Computational Intelligence, 2000.

[34] R. O. Duda, P. E. Hart. Pattern Classification and Scene Analysis. Wiley, New York, 1973.

[35] H. Dyckhoff, W. Pedrycz. Generalized means as model of compensative connectives. Fuzzy

Sets and Systems, 14:143–154, 1984.

[36] R. Fagin, L. Stockmeyer. Relaxing the triangle inequality in pattern matching. IJCV: Inter-

national Journal of Computer Vision, 30, 1998.

[37] D. Fasulo. An analysis of recent work on clustering algorithms. Raport instytutowy TR-01-

02-02, University of Washington, 1999.

[38] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth. From data mining to knowledge discovery in

databases. Ai Magazine, 17:37–54, 1996.

[39] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy. Advances in Knowledge

Discovery and Data Mining. AAAI/MIT Press, 1996.

[40] D. Fisher. Iterative optimization and simplification of hierarchical clusterings. Journal of

Artificial Intelligence Research, 4:147–180, 1996.

[41] W. J. Frawley, G. Piatetsky-Shapiro, C. J. Matheus. Knowledge discovery in databases - an

overview. Ai Magazine, 13:57–70, 1992.

[42] A. Freitas. A survey of evolutionary algorithms for data mining and knowledge discovery,

2001.

[43] B. Fritzke. Some competitive learning methods, 1997.

Page 162: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

162 BIBLIOGRAFIA

[44] Z. Galil, E. Ukkonen. 6th Annual Symposium on Combinatorial Pattern Matching (CPM 95).

Springer, 1995.

[45] V. Ganti, J. Gehrke, R. Ramakrishnan. CACTUS - clustering categorical data using summa-

ries. Knowledge Discovery and Data Mining, strony 73–83, 1999.

[46] L. Garbarski, I. Rutkowski, W. Wrzosek. Marketing. Polskie Wydawnictwo Ekonomiczne,

Warszawa, 2001.

[47] E. Gatnar. Symboliczne metody klasyfikacji danych. PWN, Warszawa, 1998.

[48] T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. 38:293–306, 1985.

[49] J. Gołuchowski, S. Kędzierski. Zarządzanie wiedzą w zinformatyzowanej organizacji gospodar-

czej. Akademia Informatyczna, Katowice, 1998.

[50] J. Grabmeier, A. Rudolph. Techniques of cluster algorithms in data mining. Data Mining and

Knowledge Discovery, 6:303–360, 2002.

[51] S. Guha, R. Rastogi, K. Shim. Clustering algorithm for categorical attributes. Raport insty-

tutowy, Bell Laboratories, Murray Hill, 1997.

[52] S. Guha, R. Rastogi, K. Shim. CURE: an efficient clustering algorithm for large databases.

strony 73–84, 1998.

[53] S. Guha, R. Rastogi, K. Shim. ROCK: A robust clustering algorithm for categorical attributes.

Information Systems, 25(5):345–366, 2000.

[54] P. Guidici, G. Passerone. Data mining of association structures to model consumer behaviour.

Computational statistic and data analysis, 2002.

[55] A. Gyenesei. Fuzzy partitioning of quantitative attribute domains by a cluster goodness index.

Raport instytutowy TR-00-368, TUCS, 2000.

[56] L. O. Hall, I. B. Ozyurt, J. C. Bezdek. Clustering with a genetically optimized approach.

IEEE Trans. on Evolutionary Computation, 3(2):103–112, 1999.

[57] E. Han, G. Karypis, V. Kumar. Scalable parallel data mining for association rules. Proceedings

of ACM SIGMOD, 1997.

[58] E. Han, G. Karypis, V. Kumar, B. Mobasher. Clustering based on association rule hypergraphs.

Research Issues on Data Mining and Knowledge Discovery, 1997.

Page 163: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

BIBLIOGRAFIA 163

[59] J. Han, Y. Fu. Dynamic generation and refinement of concept hierarchies for knowledge

discovery in databases. KDD Workshop, strony 157–168, 1994.

[60] J. Han, Y. Fu. Discovery of multiple-level association rules from large databases. Proc. of Int’l

Conf. on Very Large Data Bases (VLDB’95), Zurich, Switzerland, strony 420–431, 1995.

[61] R. J. Hathaway, J. C. Bezdek. Nefr c-means: Non-euclidean relational fuzzy clustering. Pattern

Recognition, 27:429–437, 1994.

[62] R. J. Hathaway, J. C. Bezdek, Y. K. Hu. Generalized fuzzy c-means clustering strategies using

lp norm distances. IEEE Trans. on Fuzzy Systems, 8:576–582, 2000.

[63] R. Hausser. Database semantics for natural language. Artifical Intelligence, 130:27–74, 2001.

[64] D. Heckerman. A tutorial on learning with bayesian networks, 1995.

[65] F. Herrera, E. Herrera-Viedma. Aggregation operators for linguistic weighted information.

IEEE Transactions on Systems, Man, and Cybernetics, 1997.

[66] K. Hirota. Industrial Applications of Fuzzy Technology. Springer Verlag, 1993.

[67] K. Hirota, W. Pedrycz. Fuzzy computing for data mining. Proc. of the IEEE, 87, 1999.

[68] J. H. Holland. Adaptation in natural and artificial systems. MIT Press, 1975.

[69] T. Hsu. An application of fuzzy clustering in group-positioning analysis. Proc. National Science

Council ROC(C), 10(2):157–167, 2000.

[70] A. K. Jain, R. Dubes. Algorithms for Clustering Data. Prentice Hall, New Jersey, 1988.

[71] A. K. Jain, M. N. Murty, P. J. Flynn. Data clustering: a review. ACM Computing Surveys,

31(3):264–323, 1999.

[72] R. Jakobson. W poszukiwaniu istoty języka. PIW Warszawa, 1989.

[73] K. S. Jones, R. M. Needham. Automatic term classification and retrieval. Information Pro-

cessing and Management, 4:91–100, 1968.

[74] H. Kamp, U. Reyle. From Discourse to Logic: Introduction to Modeltheoretic Semantics of

Natural Language, Formal Logic and Discourse Representation Theory. Kluwer, Dordrecht,

1993.

[75] K. A. Kaufman, R. S. Michalski. A multistrategy conceptual analysis of economic data.

[76] R. R. Kerstein. The fuzzy median and fuzzy MAD. in Proc. ISUMA-NAFIPS, 1995.

Page 164: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

164 BIBLIOGRAFIA

[77] J. Kleinberg, C. Papadimitriou, P. Raghavan. Segmentation problems. Proceedings of the

ACM Symposium on Theory of Computing, strony 473–482, 1998.

[78] R. E. Korf. Planning as search: a quantitative approach, 1987.

[79] P. Kotler. Marketing Management: Analysis, Planing, Implementation and Control. Prentice

Hall, New Jersey, 1997.

[80] R. Krishnapuram, J. Keller. A possibilistic approach to clustering. IEEE Transactions on

Fuzzy Systems, 1(2):98–110, 1993.

[81] B. Langefors. Information systems theory. Inf. Syst., 2(4):207–219, 1977.

[82] S. Lawrence, C. L. Giles, K. Bollacker. Digital libraries and Autonomous Citation Indexing.

IEEE Computer, 32(6):67–71, 1999.

[83] L. Lee. On the effectiveness of the skew divergence for statistical language analysis. Artificial

Intelligence and Statistics, strony 65–72, 2001.

[84] A. Leouski, W. Croft. An evaluation of techniques for clustering search results, 1996.

[85] C.-S. Li, P. S. Yu, V. Castelli. Hierarchyscan: A hierarchical similarity search algorithm for

databases of long sequences. S. Y. W. Su, redaktor, Proceedings of the Twelfth International

Conference on Data Engineering, February 26 - March 1, 1996, New Orleans, Louisiana, strony

546–553. IEEE Computer Society, 1996.

[86] K.-I. Lin, R. Kondadadi. A word-based soft clustering algorithm for documents. Proceedings

of 16th International Conference on Computers and Their Applications, 2001.

[87] B. Liu, W. Hsu. Post-analysis of learned rules. AAAI/IAAI, Vol. 1, strony 828–834, 1996.

[88] H. Luhn. A statistical approach to then mechanized encoding and searching of literatury

information. IBM Journal of Research and Development, 1:4:509–317, 1957.

[89] H. Mannila. Methods and problems in data mining. ICDT, strony 41–55, 1997.

[90] A. Mazur, D. Mazur. Dokumentacja techniczna Systemu Zintegrowanego MADAR. Zabrze,

2003. http://www.madar.com.pl.

[91] D. Mazur. Wiarygodność danych zawartych w systemach informatycznych przedsiębiorstw.

Elementy wspomagania decyzji w zintegrowanych systemach kierowania produkcją, strony 39–

52. Wydawnictwo Politechniki Śląskiej, Gliwice, 2000.

Page 165: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

BIBLIOGRAFIA 165

[92] D. Mazur. Computing similarity measure based on names of goods for fuzzy clustering.Methods

of Artificial Intelligence, Gliwice, 2002.

[93] D. Mazur. Wykorzystywanie danych określonych lingwistycznie w systemach pozyskiwania

wiedzy. SWO, Ustroń, 2002.

[94] D. Mazur. Clustering algorithm based on a sequence of discriminant rules. Methods of Artificial

Intelligence, Gliwice, 2003.

[95] D. L. Medin, E. E. Smith. Categories and concepts. Jarvard University Press, Cambrige,

Mass., 1981.

[96] R. Michalski. Searching for knowledge in a world flooded with facts. Applied Stochastic Models

and Data Analysis, 1991.

[97] R. S. Michalski, R. Stepp. Automated construction of classifications: Conceptual clustering

versus numerical taxonomy. IEEE Transactions on PAMI, 5(4):396–410, 1983.

[98] B. Mobasher, N. Jain, E. Han, J. Srivastava. Web mining: Pattern discovery from world wide

web transactions, 1996.

[99] R. T. Ng, J. Han. Efficient and effective clustering methods for spatial data mining. J. Bocca,

M. Jarke, C. Zaniolo, redaktorzy, 20th International Conference on Very Large Data Bases,

strony 144–155, Los Altos, USA, 1994. Morgan Kaufmann Publishers.

[100] N. T. Nguyen. Metody wyboru consensusu i ich zastosowanie w rozwiązywaniu konfliktów w

systemach rozproszonych. Oficyna Wydawnicza Politechniki Wrocławskiej, 2002.

[101] I. Nonaka, H. Takeuchi. Then Knowledge-Creating Company. Oxford University Press, NY,

1995.

[102] Z. Pawlak. Data analysis - the rough sets perespective. Zbiory rozmyte i ich zastosowania,

Gliwice, 2001. Wydawnictwo Politechniki Śląskiej.

[103] M. J. Pazzani, D. F. Kibler. The utility of knowledge in inductive learning. Machine Learning,

9:57–94, 1992.

[104] J. M. Pe&#241;a, J. A. Lozano, P. Larra&#241;aga. An improved bayesian structural em

algorithm for learning bayesian networks for clustering. Pattern Recogn. Lett., 21(9):779–786,

2000.

[105] W. Pedrycz, A. V. Vasilakos. Linguistic models and linguistic modeling. IEEE Transaction

on Systems, Man and Cybernetics, strony 745–757, 1999.

Page 166: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

166 BIBLIOGRAFIA

[106] G. Piatetsky-Shapiro, W. J. Frawley. Knowledge Discovery in Databases. AAAI Press/The

MIT Press, Menlo Park, California, 1991.

[107] J. P. Pickett, redaktor. The American Heritage r© Dictionary of the English Language. Ho-ughton Mifflin, 2000.

[108] P. Pirolli, J. Pitkow, R. Rao. Silk from a sow’s ear: extracting usable structures from the

web. Proceedings of the SIGCHI conference on Human factors in computing systems, strony

118–125. ACM Press, 1996.

[109] P. Resnik. Semantic similarity in a taxonomy: An information-based measure and its applica-

tion to problems of ambiguity in natural language. Journal of Artificial Intelligence Research,

11:95–130, 1999.

[110] C. J. V. Rijsbergen. Information Retrieval, 2nd edition. Dept. of Computer Science, University

of Glasgow, 1979.

[111] R. L. Rivest. Learning decision lists. Machine Learning, 2(3):229–246, 1987.

[112] E. Rosch. Principles of categorization. E. Rosch, B. Lloyd, redaktorzy, Cognition and Catego-

rization, Connection Science. Erlbaum, 1978.

[113] E. H. Ruspini. A new approach to clustering. Information and Control, 15(1):22–32, 1969.

[114] G. Salton. Automatic term class construction using relevance - a summary of word in automatic

pseudoclassification. Information Processing and Management, 16(1):1–15, 1980.

[115] G. Salton, C. Buckley. Term weighting approaches in automatic text retrieval. Information

Processing and Management, 24(5):513–523, 1988.

[116] M. Setnes, U. Kaymak. Fuzzy modeling of client preference in data-rich marketing environ-

ments, 2000.

[117] D. A. Simovici, D. Cristofor, L. Cristofor. Generalized entropy and projection clustering of

categorical data. Proceedings of the 4th European Conference on Principles of Data Mining

and Knowledge Discovery, strony 619–625. Springer-Verlag, 2000.

[118] P. Smyth, R. M. Goodman. Rule induction using information theory. Piatetsky-Shapiro, G.

and Frawley, W.J. (Eds.),Knowledge Discovery in Databases, strony 159–176, 1991.

[119] P. L. Spirtes. Data mining tasks and methods: Probabilistic and casual networks: mining for

probabilistic networks. strony 403–409. Oxford University Press, Inc., 2002.

Page 167: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

BIBLIOGRAFIA 167

[120] T. Starkweather, S. McDaniel, K. Mathias, D. Whitley, C. Whitley. A comparison of genetic

sequencing operators. R. Belew, L. Booker, redaktorzy, Proceedings of the Fourth International

Conference on Genetic Algorithms, strony 69–76, San Mateo, CA, 1991. Morgan Kaufman.

[121] R. E. Stepp, R. S. Michalski. Conceptual clustering: Inventing goal oriented classifications

of structured objects. J. G. Carbonell, R. S. Michalski, T. M. Mitchell, redaktorzy, Machine

Learning: An Artificial Intelligence Approach, Volume II, strony 471–498. Morgan Kaufmann,

Los Altos, CA, 1986.

[122] S. S. Stevens. Measurement, Psychophisics, and Utility. Wiley, New York, 1959.

[123] M. Valenti. Data mining – advances in decision support software and services. Frost & Sullivan,

2003.

[124] W. E. Winkler. The state of record linkage and current research problems, 1999.

[125] X. L. Xie, G. Beni. A validity measure for fuzzy clustering. TPAMI, 1991.

[126] R. R. Yager. Intelligent control of the hierarchical agglomerative clustering process. IEEE

Transactions on Systems, Man, Cybernetics – Part B: Cybernetics, 30(6):835–845, 2000.

[127] J. D. Yang. A fuzzy database model for supporting a concept-based query evaluation over

disjunctive fuzzy information, 1998.

[128] M. Yang. On a class of fuzzy classification maximum likelihood procedures. Fuzzy Sets and

Systems, 57(3):365–375, 1993.

[129] L. A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

[130] L. A. Zadeh. From computing with numbers to computing with words — from manipulation

of measurements to manipulations of perception. IEEE Trans. On Circuits and Systems,

45:105–119, 1999.

[131] L. A. Zadeh. From computing with numbers to computing with words-from manipulation

of measurements to manipulation of perceptions. IEEE Transactions on On Circuits and

Systems, strony 105–119, 1999.

[132] O. R. Zaiane, A. Foss, C.-H. Lee, W.Wang. On data clustering analysis: Scalability, constraints,

and validation. M.-S. Cheng, P. S. Yu, B. Liu, redaktorzy, Advances in Knowledge Discovery

and Data Mining, 6th Pacific-Asia Conference, PAKDD 2002, Taipei, Taiwan, May 6-8, 2002,

Proceedings, wolumen 2336 serii Lecture Notes in Computer Science, strony 28–39. Springer,

2002.

Page 168: Metody grupowania i ich implementacja do …Gospodarka, nauka, medycyna, meteorologia oraz każda inna dziedzina tworzą olbrzymie ilości danych, gromadzonych następnie w pamięciach

168 BIBLIOGRAFIA

[133] T. Zhang, R. Ramakrishnan, M. Livny. BIRCH: an efficient data clustering method for very

large databases. ACM SIGMOD International Conference on Management of Data, strony

103–114, 1996.

[134] W. Ziarko. The Discovery, Analysis, and Representation of Data Dependencies in databa-

ses, strony 195–209. MA. AAAI/MIT Press, wydanie Knowledge Discovery in Databases G.

Piatetsky-Shapiro and W. J. Frawley , eds. Cambridge, 1991.