Metoda per partes

82
Metoda per partes Robert Mar ˇı ´k a Lenka Pr ˇibylova ´ 28. c ˇervence 2006 ⊳⊳ ⊲⊲ c Lenka Pr ˇibylova ´, 2006 ×

Transcript of Metoda per partes

Page 1: Metoda per partes

Metoda per partes

Robert Marık a Lenka Pribylova

28. cervence 2006

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 2: Metoda per partes

Obsah

Metoda per partes 4∫

(x + 1) ln x dx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4∫

x sin x dx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12∫

(x − 2) sin(2x) dx . . . . . . . . . . . . . . . . . . . . . . . . . . . 18∫

x arctg x dx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25∫

ln x dx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Vıcenasobna per partes 37∫

(x2 + 1) sin x dx . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37∫

(x2 + 1)e−x dx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47∫

ln2 x dx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 3: Metoda per partes

x3 sin x dx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64∫

(x3 + 2x)e−x dx . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Resenı pomocı rovnice 72∫

ex cos x dx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 4: Metoda per partes

Metoda per partes

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 5: Metoda per partes

Vypoctete∫

(x + 1) · ln x dx

(x + 1) ln x dx =

u = ln x u′ =1

x

v′ = x + 1 v =x2

2+ x

= ln x

(

x2

2+ x

)

1

x

(

x2

2+ x

)

dx

=

(

x2

2+ x

)

ln x −

(

1

2x + 1

)

dx

=

(

x2

2+ x

)

ln x −

(

1

x2

2+ x

)

+ c

=

(

x2

2+ x

)

ln x −1

4x2

− x + c

Funkce je soucinem polynomu a logaritmicke funkce → per partes.⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 6: Metoda per partes

Vypoctete∫

(x + 1) · ln x dx

(x + 1) ln x dx =

u = ln x u′ =1

x

v′ = x + 1 v =x2

2+ x

= ln x

(

x2

2+ x

)

1

x

(

x2

2+ x

)

dx

=

(

x2

2+ x

)

ln x −

(

1

2x + 1

)

dx

=

(

x2

2+ x

)

ln x −

(

1

x2

2+ x

)

+ c

=

(

x2

2+ x

)

ln x −1

4x2

− x + c

Integrujeme per partes pomocı vzorce

u · v′ dx = u · v −

u′· v dx

kde u = ln x a v′ = x + 1.⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 7: Metoda per partes

Vypoctete∫

(x + 1) · ln x dx

(x + 1) ln x dx =

u = ln x u′ =1

x

v′ = x + 1 v =x2

2+ x

= ln x

(

x2

2+ x

)

1

x

(

x2

2+ x

)

dx

=

(

x2

2+ x

)

ln x −

(

1

2x + 1

)

dx

=

(

x2

2+ x

)

ln x −

(

1

x2

2+ x

)

+ c

=

(

x2

2+ x

)

ln x −1

4x2

− x + c

Integrujeme per partes pomocı vzorce

u · v′ dx = u · v −

u′· v dx

kde u = ln x a v′ = x + 1.⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 8: Metoda per partes

Vypoctete∫

(x + 1) · ln x dx

(x + 1) ln x dx =

u = ln x u′ =1

x

v′ = x + 1 v =x2

2+ x

= ln x

(

x2

2+ x

)

1

x

(

x2

2+ x

)

dx

=

(

x2

2+ x

)

ln x −

(

1

2x + 1

)

dx

=

(

x2

2+ x

)

ln x −

(

1

x2

2+ x

)

+ c

=

(

x2

2+ x

)

ln x −1

4x2

− x + c

Integrujeme per partes pomocı vzorce

u · v′ dx = u · v −

u′· v dx

kde u = ln x a v′ = x + 1.⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 9: Metoda per partes

Vypoctete∫

(x + 1) · ln x dx

(x + 1) ln x dx =

u = ln x u′ =1

x

v′ = x + 1 v =x2

2+ x

= ln x

(

x2

2+ x

)

1

x

(

x2

2+ x

)

dx

=

(

x2

2+ x

)

ln x −

(

1

2x + 1

)

dx

=

(

x2

2+ x

)

ln x −

(

1

x2

2+ x

)

+ c

=

(

x2

2+ x

)

ln x −1

4x2

− x + c

Roznasobıme zavorku.⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 10: Metoda per partes

Vypoctete∫

(x + 1) · ln x dx

(x + 1) ln x dx =

u = ln x u′ =1

x

v′ = x + 1 v =x2

2+ x

= ln x

(

x2

2+ x

)

1

x

(

x2

2+ x

)

dx

=

(

x2

2+ x

)

ln x −

(

1

2x + 1

)

dx

=

(

x2

2+ x

)

ln x −

(

1

x2

2+ x

)

+ c

=

(

x2

2+ x

)

ln x −1

4x2

− x + c

Dokoncıme integraci.⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 11: Metoda per partes

Vypoctete∫

(x + 1) · ln x dx

(x + 1) ln x dx =

u = ln x u′ =1

x

v′ = x + 1 v =x2

2+ x

= ln x

(

x2

2+ x

)

1

x

(

x2

2+ x

)

dx

=

(

x2

2+ x

)

ln x −

(

1

2x + 1

)

dx

=

(

x2

2+ x

)

ln x −

(

1

x2

2+ x

)

+ c

=

(

x2

2+ x

)

ln x −1

4x2

− x + c

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 12: Metoda per partes

Vypoctete∫

x sin x dx

x · sin x dx

u = x u′ = 1

v′ = sin x v = − cos x

= −x cos x −

1 · (− cos x) dx

= −x cos x +∫

cos x dx

= −x cos x + sin x + c

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 13: Metoda per partes

Vypoctete∫

x sin x dx

x · sin x dx

u = x u′ = 1

v′ = sin x v = − cos x

= −x cos x −

1 · (− cos x) dx

= −x cos x +∫

cos x dx

= −x cos x + sin x + c

Integrujeme per partes pomocı vzorce

u · v′ dx = u · v −

u′· v dx

kde u = x a v′ = sin x.⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 14: Metoda per partes

Vypoctete∫

x sin x dx

x · sin x dx

u = x u′ = 1

v′ = sin x v = − cos x

= −x cos x −

1 · (− cos x) dx

= −x cos x +∫

cos x dx

= −x cos x + sin x + c

Integrujeme per partes pomocı vzorce

u · v′ dx = u · v −

u′· v dx

kde u = x a v′ = sin x.⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 15: Metoda per partes

Vypoctete∫

x sin x dx

x · sin x dx

u = x u′ = 1

v′ = sin x v = − cos x

= −x cos x −

1 · (− cos x) dx

= −x cos x +∫

cos x dx

= −x cos x + sin x + c

Integrujeme per partes pomocı vzorce

u · v′ dx = u · v −

u′· v dx

kde u = x a v′ = sin x.⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 16: Metoda per partes

Vypoctete∫

x sin x dx

x · sin x dx

u = x u′ = 1

v′ = sin x v = − cos x

= −x cos x −

1 · (− cos x) dx

= −x cos x +∫

cos x dx

= −x cos x + sin x + c

Upravıme.⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 17: Metoda per partes

Vypoctete∫

x sin x dx

x · sin x dx

u = x u′ = 1

v′ = sin x v = − cos x

= −x cos x −

1 · (− cos x) dx

= −x cos x +∫

cos x dx

= −x cos x + sin x + c

Integruje druhou cast:∫

cos x dx = sin x

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 18: Metoda per partes

Vypoctete∫

(x − 2) · sin(2x) dx

(x − 2)sin(2x) dx =

u = x − 2 u′ = 1

v′ = sin(2x) v = −1

2cos 2x

= (x − 2) ·

(

−1

2cos(2x)

)

1 ·

(

−1

2cos 2x

)

dx

= −1

2(x − 2) cos(2x) +

1

2

cos 2x dx

= −1

2(x − 2) cos(2x) +

1

1

2sin(2x) + c

= −1

2(x − 2) cos(2x) +

1

4sin(2x) + c

Funkce je soucinem polynomu a sinu → per partes.⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 19: Metoda per partes

Vypoctete∫

(x − 2) · sin(2x) dx

(x − 2)sin(2x) dx =

u = x − 2 u′ = 1

v′ = sin(2x) v = −1

2cos 2x

= (x − 2) ·

(

−1

2cos(2x)

)

1 ·

(

−1

2cos 2x

)

dx

= −1

2(x − 2) cos(2x) +

1

2

cos 2x dx

= −1

2(x − 2) cos(2x) +

1

1

2sin(2x) + c

= −1

2(x − 2) cos(2x) +

1

4sin(2x) + c

Integrujeme per partes pomocı vzorce

u · v′ dx = u · v −

u′· v dx

kde u = x − 2 a v′ = sin(2x).⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 20: Metoda per partes

Vypoctete∫

(x − 2) · sin(2x) dx

(x − 2)sin(2x) dx =

u = x − 2 u′ = 1

v′ = sin(2x) v = −1

2cos 2x

= (x − 2) ·

(

−1

2cos(2x)

)

1 ·

(

−1

2cos 2x

)

dx

= −1

2(x − 2) cos(2x) +

1

2

cos 2x dx

= −1

2(x − 2) cos(2x) +

1

1

2sin(2x) + c

= −1

2(x − 2) cos(2x) +

1

4sin(2x) + c

Platı

v =∫

v′(x) dx =∫

sin(2x) dx = −1

2cos(2x),

protoze

sin x dx = − cos x a∫

f (ax + b) =1

aF(ax + b).

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 21: Metoda per partes

Vypoctete∫

(x − 2) · sin(2x) dx

(x − 2)sin(2x) dx =

u = x − 2 u′ = 1

v′ = sin(2x) v = −1

2cos 2x

= (x − 2) ·

(

−1

2cos(2x)

)

1 ·

(

−1

2cos 2x

)

dx

= −1

2(x − 2) cos(2x) +

1

2

cos 2x dx

= −1

2(x − 2) cos(2x) +

1

1

2sin(2x) + c

= −1

2(x − 2) cos(2x) +

1

4sin(2x) + c

u · v′ dx = u · v −

u′· v dx

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 22: Metoda per partes

Vypoctete∫

(x − 2) · sin(2x) dx

(x − 2)sin(2x) dx =

u = x − 2 u′ = 1

v′ = sin(2x) v = −1

2cos 2x

= (x − 2) ·

(

−1

2cos(2x)

)

1 ·

(

−1

2cos 2x

)

dx

= −1

2(x − 2) cos(2x) +

1

2

cos 2x dx

= −1

2(x − 2) cos(2x) +

1

1

2sin(2x) + c

= −1

2(x − 2) cos(2x) +

1

4sin(2x) + c

Vytkneme konstantu

(

−1

2

)

z integralu.

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 23: Metoda per partes

Vypoctete∫

(x − 2) · sin(2x) dx

(x − 2)sin(2x) dx =

u = x − 2 u′ = 1

v′ = sin(2x) v = −1

2cos 2x

= (x − 2) ·

(

−1

2cos(2x)

)

1 ·

(

−1

2cos 2x

)

dx

= −1

2(x − 2) cos(2x) +

1

2

cos 2x dx

= −1

2(x − 2) cos(2x) +

1

1

2sin(2x) + c

= −1

2(x − 2) cos(2x) +

1

4sin(2x) + c

Platı∫

cos(2x) dx =1

2sin(2x), protoze

cos x dx = sin x a∫

f (ax + b) =1

aF(ax + b).

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 24: Metoda per partes

Vypoctete∫

(x − 2) · sin(2x) dx

(x − 2)sin(2x) dx =

u = x − 2 u′ = 1

v′ = sin(2x) v = −1

2cos 2x

= (x − 2) ·

(

−1

2cos(2x)

)

1 ·

(

−1

2cos 2x

)

dx

= −1

2(x − 2) cos(2x) +

1

2

cos 2x dx

= −1

2(x − 2) cos(2x) +

1

1

2sin(2x) + c

= −1

2(x − 2) cos(2x) +

1

4sin(2x) + c

Upravıme.⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 25: Metoda per partes

Vypoctete∫

x arctg x dx.

x arctg x dx

u = arctg x u′ =1

1 + x2

v′ = x v =x2

2

=x2

2arctg x −

1

2

x2

1 + x2dx

=x2

2arctg x −

1

2

1 −1

1 + x2dx

=x2

2arctg x −

1

2

(

x − arctg x)

+ c.

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 26: Metoda per partes

Vypoctete∫

x arctg x dx.

x arctg x dx

u = arctg x u′ =1

1 + x2

v′ = x v =x2

2

=x2

2arctg x −

1

2

x2

1 + x2dx

=x2

2arctg x −

1

2

1 −1

1 + x2dx

=x2

2arctg x −

1

2

(

x − arctg x)

+ c.

Jedna se o soucin polynomu a funkce arkustangens.⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 27: Metoda per partes

Vypoctete∫

x arctg x dx.

x arctg x dx

u = arctg x u′ =1

1 + x2

v′ = x v =x2

2

=x2

2arctg x −

1

2

x2

1 + x2dx

=x2

2arctg x −

1

2

1 −1

1 + x2dx

=x2

2arctg x −

1

2

(

x − arctg x)

+ c.

Budeme integrovat metodou per partes. Budeme integrovat polynom aderivovat arkustangens.

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 28: Metoda per partes

Vypoctete∫

x arctg x dx.

x arctg x dx

u = arctg x u′ =1

1 + x2

v′ = x v =x2

2

=x2

2arctg x −

1

2

x2

1 + x2dx

=x2

2arctg x −

1

2

1 −1

1 + x2dx

=x2

2arctg x −

1

2

(

x − arctg x)

+ c.

uv′ dx = uv −

u′v dx

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 29: Metoda per partes

Vypoctete∫

x arctg x dx.

x arctg x dx

u = arctg x u′ =1

1 + x2

v′ = x v =x2

2

=x2

2arctg x −

1

2

x2

1 + x2dx

=x2

2arctg x −

1

2

1 −1

1 + x2dx

=x2

2arctg x −

1

2

(

x − arctg x)

+ c.

Racionalnı funkci, ktera nenı ryze lomena, delıme:

x2

x2 + 1=

(x2 + 1) − 1

x2 + 1=

x2 + 1

x2 + 1−

1

x2 + 1= 1 −

1

x2 + 1

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 30: Metoda per partes

Vypoctete∫

x arctg x dx.

x arctg x dx

u = arctg x u′ =1

1 + x2

v′ = x v =x2

2

=x2

2arctg x −

1

2

x2

1 + x2dx

=x2

2arctg x −

1

2

1 −1

1 + x2dx

=x2

2arctg x −

1

2

(

x − arctg x)

+ c.

K dokoncenı zbyva integrovat jednicku a jeden parcialnı zlomek. Toprovedeme pomocı prıslusnych vzorcu.

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 31: Metoda per partes

Vypoctete∫

ln x dx

1 · ln x dxu = ln x u′ =

1

x

v′ = 1 v = x

= x ln x −

1 dx

= x ln x − x + c

= x(ln x − 1) + c

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 32: Metoda per partes

Vypoctete∫

ln x dx

1 · ln x dxu = ln x u′ =

1

x

v′ = 1 v = x

= x ln x −

1 dx

= x ln x − x + c

= x(ln x − 1) + c

Funkci je soucinem polynomu a logaritmicke funkce:

1 · ln x dx.

Integrujeme per partes pri volbe u = ln x a v′ = 1.⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 33: Metoda per partes

Vypoctete∫

ln x dx

1 · ln x dxu = ln x u′ =

1

x

v′ = 1 v = x

= x ln x −

1 dx

= x ln x − x + c

= x(ln x − 1) + c

(ln x)′ =1

x∫

1 dx = x

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 34: Metoda per partes

Vypoctete∫

ln x dx

1 · ln x dxu = ln x u′ =

1

x

v′ = 1 v = x

= x ln x −

1 dx

= x ln x − x + c

= x(ln x − 1) + c

u · v′ dx = u · v −

u′· v dx

Uzijeme vztah1

xx = 1.

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 35: Metoda per partes

Vypoctete∫

ln x dx

1 · ln x dxu = ln x u′ =

1

x

v′ = 1 v = x

= x ln x −

1 dx

= x ln x − x + c

= x(ln x − 1) + c

1 dx = x

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 36: Metoda per partes

Vypoctete∫

ln x dx

1 · ln x dxu = ln x u′ =

1

x

v′ = 1 v = x

= x ln x −

1 dx

= x ln x − x + c

= x(ln x − 1) + c

Hotovo.⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 37: Metoda per partes

Vıcenasobna per partes

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 38: Metoda per partes

Vypoctete∫

(x2 + 1) sin x dx

(x2 + 1) · sin x dx

u = x2 + 1 u′ = 2x

v′ = sin x v = − cos x

= −(x2 + 1) cos x + 2∫

x · cos x dx

u = x u′ = 1

v′ = cos x v = sin x

= −(x2 + 1) cos x + 2(

x sin x −

sin x dx)

= −(x2 + 1) cos x + 2(

x sin x − (− cos x))

+ c

= (1 − x2) cos x + 2x sin x + c

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 39: Metoda per partes

Vypoctete∫

(x2 + 1) sin x dx

(x2 + 1) · sin x dx

u = x2 + 1 u′ = 2x

v′ = sin x v = − cos x

= −(x2 + 1) cos x + 2∫

x · cos x dx

u = x u′ = 1

v′ = cos x v = sin x

= −(x2 + 1) cos x + 2(

x sin x −

sin x dx)

= −(x2 + 1) cos x + 2(

x sin x − (− cos x))

+ c

= (1 − x2) cos x + 2x sin x + c

• Funkce je soucinem polynomu a funkce sinus.

• Budeme integrovat per partes podle vzorce

u · v′ dx = u · v −

u′· v dx

pri volbe u = (x2 + 1) a v′ = sin x.

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 40: Metoda per partes

Vypoctete∫

(x2 + 1) sin x dx

(x2 + 1) · sin x dx

u = x2 + 1 u′ = 2x

v′ = sin x v = − cos x

= −(x2 + 1) cos x + 2∫

x · cos x dx

u = x u′ = 1

v′ = cos x v = sin x

= −(x2 + 1) cos x + 2(

x sin x −

sin x dx)

= −(x2 + 1) cos x + 2(

x sin x − (− cos x))

+ c

= (1 − x2) cos x + 2x sin x + c

(x2 + 1)′ = 2x∫

sin x dx = − cos x

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 41: Metoda per partes

Vypoctete∫

(x2 + 1) sin x dx

(x2 + 1) · sin x dx

u = x2 + 1 u′ = 2x

v′ = sin x v = − cos x

= −(x2 + 1) cos x + 2∫

x · cos x dx

u = x u′ = 1

v′ = cos x v = sin x

= −(x2 + 1) cos x + 2(

x sin x −

sin x dx)

= −(x2 + 1) cos x + 2(

x sin x − (− cos x))

+ c

= (1 − x2) cos x + 2x sin x + c

u · v′ dx = u · v −

u′· v dx

Konstantnı nasobek 2 a znamenko minus dame pred integral.⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 42: Metoda per partes

Vypoctete∫

(x2 + 1) sin x dx

(x2 + 1) · sin x dx

u = x2 + 1 u′ = 2x

v′ = sin x v = − cos x

= −(x2 + 1) cos x + 2∫

x · cos x dx

u = x u′ = 1

v′ = cos x v = sin x

= −(x2 + 1) cos x + 2(

x sin x −

sin x dx)

= −(x2 + 1) cos x + 2(

x sin x − (− cos x))

+ c

= (1 − x2) cos x + 2x sin x + cJeste jednou integrujeme per partes. Nynı u = x a v′ = cos x.

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 43: Metoda per partes

Vypoctete∫

(x2 + 1) sin x dx

(x2 + 1) · sin x dx

u = x2 + 1 u′ = 2x

v′ = sin x v = − cos x

= −(x2 + 1) cos x + 2∫

x · cos x dx

u = x u′ = 1

v′ = cos x v = sin x

= −(x2 + 1) cos x + 2(

x sin x −

sin x dx)

= −(x2 + 1) cos x + 2(

x sin x − (− cos x))

+ c

= (1 − x2) cos x + 2x sin x + c

x′ = 1∫

cos x dx = sin x

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 44: Metoda per partes

Vypoctete∫

(x2 + 1) sin x dx

(x2 + 1) · sin x dx

u = x2 + 1 u′ = 2x

v′ = sin x v = − cos x

= −(x2 + 1) cos x + 2∫

x · cos x dx

u = x u′ = 1

v′ = cos x v = sin x

= −(x2 + 1) cos x + 2(

x sin x −

sin x dx)

= −(x2 + 1) cos x + 2(

x sin x − (− cos x))

+ c

= (1 − x2) cos x + 2x sin x + c

u · v′ dx = u · v −

u′· v dx

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 45: Metoda per partes

Vypoctete∫

(x2 + 1) sin x dx

(x2 + 1) · sin x dx

u = x2 + 1 u′ = 2x

v′ = sin x v = − cos x

= −(x2 + 1) cos x + 2∫

x · cos x dx

u = x u′ = 1

v′ = cos x v = sin x

= −(x2 + 1) cos x + 2(

x sin x −

sin x dx)

= −(x2 + 1) cos x + 2(

x sin x − (− cos x))

+ c

= (1 − x2) cos x + 2x sin x + cIntegrujeme sinus:

sin x dx = − cos x

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 46: Metoda per partes

Vypoctete∫

(x2 + 1) sin x dx

(x2 + 1) · sin x dx

u = x2 + 1 u′ = 2x

v′ = sin x v = − cos x

= −(x2 + 1) cos x + 2∫

x · cos x dx

u = x u′ = 1

v′ = cos x v = sin x

= −(x2 + 1) cos x + 2(

x sin x −

sin x dx)

= −(x2 + 1) cos x + 2(

x sin x − (− cos x))

+ c

= (1 − x2) cos x + 2x sin x + cUpravıme.

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 47: Metoda per partes

Vypoctete∫

(x2 + 1)e−x dx.

(x2 + 1)·e−x dx

u = x2 + 1 u′ = 2x

v′ = e−x v = −e−x

= −(x2 + 1)e−x + 2∫

xe−x dx

u = x u′ = 1

v′ = e−x v = −e−x

= −(x2 + 1)e−x + 2(

−xe−x +∫

e−x dx)

= −(x2 + 1)e−x + 2(−xe−x− e−x) + c = −e−x(x2 + 2x + 3) + c,

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 48: Metoda per partes

Vypoctete∫

(x2 + 1)e−x dx.

(x2 + 1)·e−x dx

u = x2 + 1 u′ = 2x

v′ = e−x v = −e−x

= −(x2 + 1)e−x + 2∫

xe−x dx

u = x u′ = 1

v′ = e−x v = −e−x

= −(x2 + 1)e−x + 2(

−xe−x +∫

e−x dx)

= −(x2 + 1)e−x + 2(−xe−x− e−x) + c = −e−x(x2 + 2x + 3) + c,

Integruje soucin polynomu a exponencialnı funkce.⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 49: Metoda per partes

Vypoctete∫

(x2 + 1)e−x dx.

(x2 + 1)·e−x dx

u = x2 + 1 u′ = 2x

v′ = e−x v = −e−x

= −(x2 + 1)e−x + 2∫

xe−x dx

u = x u′ = 1

v′ = e−x v = −e−x

= −(x2 + 1)e−x + 2(

−xe−x +∫

e−x dx)

= −(x2 + 1)e−x + 2(−xe−x− e−x) + c = −e−x(x2 + 2x + 3) + c,

• Integrujeme per partes.

• Polynom budeme derivovat a exponencielu integrovat.

• Nezapomenme, ze∫

e−x dx = −e−x.

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 50: Metoda per partes

Vypoctete∫

(x2 + 1)e−x dx.

(x2 + 1)·e−x dx

u = x2 + 1 u′ = 2x

v′ = e−x v = −e−x

= −(x2 + 1)e−x + 2∫

xe−x dx

u = x u′ = 1

v′ = e−x v = −e−x

= −(x2 + 1)e−x + 2(

−xe−x +∫

e−x dx)

= −(x2 + 1)e−x + 2(−xe−x− e−x) + c = −e−x(x2 + 2x + 3) + c,

Vzorec je

u · v′ dx = u · v −

u′· v dx

.⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 51: Metoda per partes

Vypoctete∫

(x2 + 1)e−x dx.

(x2 + 1)·e−x dx

u = x2 + 1 u′ = 2x

v′ = e−x v = −e−x

= −(x2 + 1)e−x + 2∫

xe−x dx

u = x u′ = 1

v′ = e−x v = −e−x

= −(x2 + 1)e−x + 2(

−xe−x +∫

e−x dx)

= −(x2 + 1)e−x + 2(−xe−x− e−x) + c = −e−x(x2 + 2x + 3) + c,

• Opet polynom krat exponencialnı funkce.

• Opet integrujeme per partes. Opet derivujeme polynom.

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 52: Metoda per partes

Vypoctete∫

(x2 + 1)e−x dx.

(x2 + 1)·e−x dx

u = x2 + 1 u′ = 2x

v′ = e−x v = −e−x

= −(x2 + 1)e−x + 2∫

xe−x dx

u = x u′ = 1

v′ = e−x v = −e−x

= −(x2 + 1)e−x + 2(

−xe−x +∫

e−x dx)

= −(x2 + 1)e−x + 2(−xe−x− e−x) + c = −e−x(x2 + 2x + 3) + c,

Vzorec pro cervenou cast je∫

uv′ dx = uv −

u′v dx, zbytek zustane.

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 53: Metoda per partes

Vypoctete∫

(x2 + 1)e−x dx.

(x2 + 1)·e−x dx

u = x2 + 1 u′ = 2x

v′ = e−x v = −e−x

= −(x2 + 1)e−x + 2∫

xe−x dx

u = x u′ = 1

v′ = e−x v = −e−x

= −(x2 + 1)e−x + 2(

−xe−x +∫

e−x dx)

= −(x2 + 1)e−x + 2(−xe−x− e−x) + c = −e−x(x2 + 2x + 3) + c,

e−x dx = −e−x

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 54: Metoda per partes

Vypoctete∫

(x2 + 1)e−x dx.

(x2 + 1)·e−x dx

u = x2 + 1 u′ = 2x

v′ = e−x v = −e−x

= −(x2 + 1)e−x + 2∫

xe−x dx

u = x u′ = 1

v′ = e−x v = −e−x

= −(x2 + 1)e−x + 2(

−xe−x +∫

e−x dx)

= −(x2 + 1)e−x + 2(−xe−x− e−x) + c = −e−x(x2 + 2x + 3) + c,

Vytkneme (−e−x).⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 55: Metoda per partes

Vypoctete∫

ln2 x dx

1 · ln2 x dxu = ln2 x u′ =

2 ln x

x

v′ = 1 v = x

= x ln2 x − 2∫

ln x dx

u = ln x u′ =1

x

v′ = 1 v = x

= x ln2 x − 2(

x ln x −

1 dx)

= x ln2 x − 2(

x ln x − x)

+ c

= x ln2 x − 2x ln x + 2x + c

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 56: Metoda per partes

Vypoctete∫

ln2 x dx

1 · ln2 x dxu = ln2 x u′ =

2 ln x

x

v′ = 1 v = x

= x ln2 x − 2∫

ln x dx

u = ln x u′ =1

x

v′ = 1 v = x

= x ln2 x − 2(

x ln x −

1 dx)

= x ln2 x − 2(

x ln x − x)

+ c

= x ln2 x − 2x ln x + 2x + c

• Je zde soucin polynomu a druhe mocniny logaritmu.

• Upravıme funkci ln2 x na soucin (1) · (ln2 x) a integrujeme per

partes pri volbe u = ln2 x a v′ = 1

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 57: Metoda per partes

Vypoctete∫

ln2 x dx

1 · ln2 x dxu = ln2 x u′ =

2 ln x

x

v′ = 1 v = x

= x ln2 x − 2∫

ln x dx

u = ln x u′ =1

x

v′ = 1 v = x

= x ln2 x − 2(

x ln x −

1 dx)

= x ln2 x − 2(

x ln x − x)

+ c

= x ln2 x − 2x ln x + 2x + c

(ln2 x)′ = 2 ln x(ln x)′ = 2 ln x1

x∫

1 dx = x

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 58: Metoda per partes

Vypoctete∫

ln2 x dx

1 · ln2 x dxu = ln2 x u′ =

2 ln x

x

v′ = 1 v = x

= x ln2 x − 2∫

ln x dx

u = ln x u′ =1

x

v′ = 1 v = x

= x ln2 x − 2(

x ln x −

1 dx)

= x ln2 x − 2(

x ln x − x)

+ c

= x ln2 x − 2x ln x + 2x + c∫

u · v′ dx = u · v −

u′· v dx

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 59: Metoda per partes

Vypoctete∫

ln2 x dx

1 · ln2 x dxu = ln2 x u′ =

2 ln x

x

v′ = 1 v = x

= x ln2 x − 2∫

ln x dx

u = ln x u′ =1

x

v′ = 1 v = x

= x ln2 x − 2(

x ln x −

1 dx)

= x ln2 x − 2(

x ln x − x)

+ c

= x ln2 x − 2x ln x + 2x + cTento trik jiz zname: Napıseme funkci ln x jako soucin (1) · ln x aintegrujeme per partes pri volbe u = ln x a v′ = 1.

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 60: Metoda per partes

Vypoctete∫

ln2 x dx

1 · ln2 x dxu = ln2 x u′ =

2 ln x

x

v′ = 1 v = x

= x ln2 x − 2∫

ln x dx

u = ln x u′ =1

x

v′ = 1 v = x

= x ln2 x − 2(

x ln x −

1 dx)

= x ln2 x − 2(

x ln x − x)

+ c

= x ln2 x − 2x ln x + 2x + c

(ln x)′ =1

x∫

1 dx = x

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 61: Metoda per partes

Vypoctete∫

ln2 x dx

1 · ln2 x dxu = ln2 x u′ =

2 ln x

x

v′ = 1 v = x

= x ln2 x − 2∫

ln x dx

u = ln x u′ =1

x

v′ = 1 v = x

= x ln2 x − 2(

x ln x −

1 dx)

= x ln2 x − 2(

x ln x − x)

+ c

= x ln2 x − 2x ln x + 2x + c∫

u · v′ dx = u · v −

u′· v dx

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 62: Metoda per partes

Vypoctete∫

ln2 x dx

1 · ln2 x dxu = ln2 x u′ =

2 ln x

x

v′ = 1 v = x

= x ln2 x − 2∫

ln x dx

u = ln x u′ =1

x

v′ = 1 v = x

= x ln2 x − 2(

x ln x −

1 dx)

= x ln2 x − 2(

x ln x − x)

+ c

= x ln2 x − 2x ln x + 2x + c

Dopocıtame integral z jednicky.⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 63: Metoda per partes

Vypoctete∫

ln2 x dx

1 · ln2 x dxu = ln2 x u′ =

2 ln x

x

v′ = 1 v = x

= x ln2 x − 2∫

ln x dx

u = ln x u′ =1

x

v′ = 1 v = x

= x ln2 x − 2(

x ln x −

1 dx)

= x ln2 x − 2(

x ln x − x)

+ c

= x ln2 x − 2x ln x + 2x + c

Upravıme. Hotovo.⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 64: Metoda per partes

Najdete∫

x3 sin x dx.

x3 sin x dx =

u = x3 3x2 6x 6 0

v′ = sin x − cos x − sin x cos x sin x

= −x3 cos x−(−3x2 sin x)+6x cos x−6 sin x + c

= (−x3 + 6x) cos(x) + (3x2− 6) sin x + c

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 65: Metoda per partes

Najdete∫

x3 sin x dx.

x3 sin x dx =

u = x3 3x2 6x 6 0

v′ = sin x − cos x − sin x cos x sin x

= −x3 cos x−(−3x2 sin x)+6x cos x−6 sin x + c

= (−x3 + 6x) cos(x) + (3x2− 6) sin x + c

• Trikrat integrujeme per partes, ale vsechno zapıseme do jednohoschematu.

• Zluta sipka reprezentuje derivovanı. Derivujeme az na nulu.

• Cervena sipka reprezentuje integrovanı.

derivace derivace derivace derivace

integrace integrace integrace integrace

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 66: Metoda per partes

Najdete∫

x3 sin x dx.

x3 sin x dx =

u = x3 3x2 6x 6 0

v′ = sin x − cos x − sin x cos x sin x

= −x3 cos x−(−3x2 sin x)+6x cos x−6 sin x + c

= (−x3 + 6x) cos(x) + (3x2− 6) sin x + c

Nasobıme ve smeru sipek. Soucinum ve smeru zlutych sipekznamenko ponechame, soucinum ve smeru cervenych sipek znamenkozmenıme a vsechny souciny secteme.

soucin

soucin

soucin

soucin

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 67: Metoda per partes

Najdete∫

x3 sin x dx.

x3 sin x dx =

u = x3 3x2 6x 6 0

v′ = sin x − cos x − sin x cos x sin x

= −x3 cos x−(−3x2 sin x)+6x cos x−6 sin x + c

= (−x3 + 6x) cos(x) + (3x2− 6) sin x + c

Upravıme.⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 68: Metoda per partes

Najdete∫

(x3 + 2)e−x dx.

(x3 + 2x)e−x dx

=

u = x3 + 2x 3x2 + 2 6x 6 0

v′ = e−x−e−x e−x

−e−x e−x

= −(x3 + 2x)e−x−(3x2 + 2)e−x+(−6xe−x)−6e−x + c

= −e−x(x3 + 2x + 3x2 + 2 + 6x + 6) + c

= −e−x(x3 + 3x2 + 8x + 8) + c

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 69: Metoda per partes

Najdete∫

(x3 + 2)e−x dx.

(x3 + 2x)e−x dx

=

u = x3 + 2x 3x2 + 2 6x 6 0

v′ = e−x−e−x e−x

−e−x e−x

= −(x3 + 2x)e−x−(3x2 + 2)e−x+(−6xe−x)−6e−x + c

= −e−x(x3 + 2x + 3x2 + 2 + 6x + 6) + c

= −e−x(x3 + 3x2 + 8x + 8) + c• Trikrat integrujeme per partes, ale vsechno zapıseme do jednoho

schematu.

• Zluta sipka reprezentuje derivovanı. Derivujeme az na nulu.

• Cervena sipka reprezentuje integrovanı.

derivace derivace derivace derivace

integrace integrace integrace integrace

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 70: Metoda per partes

Najdete∫

(x3 + 2)e−x dx.

(x3 + 2x)e−x dx

=

u = x3 + 2x 3x2 + 2 6x 6 0

v′ = e−x−e−x e−x

−e−x e−x

= −(x3 + 2x)e−x−(3x2 + 2)e−x+(−6xe−x)−6e−x + c

= −e−x(x3 + 2x + 3x2 + 2 + 6x + 6) + c

= −e−x(x3 + 3x2 + 8x + 8) + c

Nasobıme ve smeru sipek. Soucinum ve smeru zlutych sipekznamenko ponechame, soucinum ve smeru cervenych sipek znamenkozmenıme a vsechny souciny secteme.

soucin

soucin

soucin

soucin

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 71: Metoda per partes

Najdete∫

(x3 + 2)e−x dx.

(x3 + 2x)e−x dx

=

u = x3 + 2x 3x2 + 2 6x 6 0

v′ = e−x−e−x e−x

−e−x e−x

= −(x3 + 2x)e−x−(3x2 + 2)e−x+(−6xe−x)−6e−x + c

= −e−x(x3 + 2x + 3x2 + 2 + 6x + 6) + c

= −e−x(x3 + 3x2 + 8x + 8) + c

Upravıme.⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 72: Metoda per partes

Resenı pomocı rovnice

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 73: Metoda per partes

Vypoctete∫

ex cos x dx.

ex·cos x dx

u = ex u′ = ex

v′ = cos x v = sin x

= ex sin x −

ex sin x dx

u = ex u′ = ex

v′ = sin x v = − cos x

= ex sin x −

(

−ex cos x −

−ex cos x dx)

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 74: Metoda per partes

Vypoctete∫

ex cos x dx.

ex·cos x dx

u = ex u′ = ex

v′ = cos x v = sin x

= ex sin x −

ex sin x dx

u = ex u′ = ex

v′ = sin x v = − cos x

= ex sin x −

(

−ex cos x −

−ex cos x dx)

Integrujeme soucin exponencialnı a goniometricke funkce.⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 75: Metoda per partes

Vypoctete∫

ex cos x dx.

ex·cos x dx

u = ex u′ = ex

v′ = cos x v = sin x

= ex sin x −

ex sin x dx

u = ex u′ = ex

v′ = sin x v = − cos x

= ex sin x −

(

−ex cos x −

−ex cos x dx)

• Integrujeme per partes.

• Je jedno, jak zvolıme u a v′.

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 76: Metoda per partes

Vypoctete∫

ex cos x dx.

ex·cos x dx

u = ex u′ = ex

v′ = cos x v = sin x

= ex sin x −

ex sin x dx

u = ex u′ = ex

v′ = sin x v = − cos x

= ex sin x −

(

−ex cos x −

−ex cos x dx)

Vzorec je

u · v′ dx = u · v −

u′· v dx

.⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 77: Metoda per partes

Vypoctete∫

ex cos x dx.

ex·cos x dx

u = ex u′ = ex

v′ = cos x v = sin x

= ex sin x −

ex sin x dx

u = ex u′ = ex

v′ = sin x v = − cos x

= ex sin x −

(

−ex cos x −

−ex cos x dx)

• Opet soucin exponencialnı a goniometricke funkce.

• Integrujeme per partes, nynı musıme zachovat stejnou volbu u av′.

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 78: Metoda per partes

Vypoctete∫

ex cos x dx.

ex·cos x dx

u = ex u′ = ex

v′ = cos x v = sin x

= ex sin x −

ex sin x dx

u = ex u′ = ex

v′ = sin x v = − cos x

= ex sin x −

(

−ex cos x −

−ex cos x dx)

Vzorec pro cervenou cast je∫

uv′ dx = uv −

u′v dx, zbytek zustane.

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 79: Metoda per partes

Vypoctete∫

ex cos x dx.

ex cos x dx = ex sin x + ex cos x −

ex cos x dx

2∫

ex cos x dx = ex sin x + ex cos x + c

ex cos x dx =ex

2(sin x + cos x) + c

Po dvou per partes jsme se dostali zpatky k integralu, ktery chcemespocıtat.

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 80: Metoda per partes

Vypoctete∫

ex cos x dx.

ex cos x dx = ex sin x + ex cos x −

ex cos x dx

2∫

ex cos x dx = ex sin x + ex cos x + c

ex cos x dx =ex

2(sin x + cos x) + c

Resıme jako rovnici s neznamym integralem, proto jej prevedeme nalevou stranu. Pripıseme integracnı konstantu.

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 81: Metoda per partes

Vypoctete∫

ex cos x dx.

ex cos x dx = ex sin x + ex cos x −

ex cos x dx

2∫

ex cos x dx = ex sin x + ex cos x + c

ex cos x dx =ex

2(sin x + cos x) + c

Delıme dvema a dostavame vysledek.⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×

Page 82: Metoda per partes

KONEC

⊳⊳ ⊳ ⊲ ⊲⊲ c©Lenka Pribylova, 2006 ×