Matthias Arndt, Mathieu Blanchot, Kifah S. M. Salih, Lukas ... · PDF fileMatthias Arndt,...

1
Literature and Further Reading (see also www.chemie.uni-kl.de/goossen ) (1) a) Gooßen, L. J.; Rauhaus, J. E.; Deng, D. Angew. Chem. Int. Ed. 2005, 44, 4042; b) Gooßen, L. J.; Blanchot, M.; Brinkmann, C.; Gooßen, K.; Karch, R.; Rivas-Nass, A. J. Org. Chem. 2006, 71, 9506; c) Gooßen, L. J.; Blanchot, M.; Salih, K. S. M.; Karch, R.; Rivas-Nass, A. Org. Lett. 2008, 10, 4497, d) Gooßen, L. J.; Salih, K. S. M.; Blanchot, M. Angew. Chem. Int. Ed. 2008, 47, 8492. (2) a) Arndt, M. diploma thesis, Technische Universität Kaiserslautern, 2008; b) Gooßen, L. J.;Arndt, M.; Blanchot, M.; Rudolphi, F.; Menges, F.; Niedner-Schatteburg, G. Adv. Synth. Cat. 2008, 350, 2701. (3) a) Yet, L. Chem. Rev. 2003, 103, 4283; b) Stefanuti, I.; Smith, S. A.; Taylor, R. J. K. Tetrahedron Lett. 2000, 41, 3735; c) Wang, X.; Porco, Jr., J. A. J. Org. Chem. 2001, 66, 8215. (4) a) Doucet, H.; Kabouche, Z.; Bruneau, C.; Dixneuf, P. H. J. Organomet. Chem. 1997, 551, 151; b) Mitsudo, T.; Hori, Y.; Watanabe, Y. J. Org. Chem. 1985, 50, 1566; c) Gooßen, L. J.; Paetzold, J. Chem. Commun. 2003, 706. (5) a) Bassetti, M.; Floris, B. J. Chem. Soc. Perkin Trans. 2 1988, 227; b) Suzuki, T.; Makoto, T.; Wakatsuki, Y. Org. Lett. 2001,3, 735. (6) a) Pholki, F.; Doye, S. Chem. Soc. Rev. 2003, 32, 104; b) Beller, M.; Seayad, J.; Tillack, A.; Jiao, H. Angew. Chem. 2004, 116, 3448. (7) Alonso, F.; Beletskaya, I. P. M. Yus, Chem. Rev. 2004, 104, 3079. (8) Unpublished results. Practical and Effective Catalyst Systems for the Regio- and Stereoselective Catalytic Hydroamidation of T erminal Alkynes Abstract: The enamide moiety is an important motif often encountered in biologically active compounds and synthetic drugs. We have previously developed ruthenium- based complexes as effective catalysts for the anti-Markovnikov addition of amides, imides, and thioamides to terminal alkynes. 1 In an attempt to gain more insight about the mechanism we spectroscopically monitored in situ our catalytic system. The information thus obtained in combination with data provided by some complementary RuCp-complex catalyzed hydroamidation experiments allowed us to devise a new, second generation catalyst based on the inexpensive and easy-to-handle RuCl 3 . 2 After diligent optimization, the new protocol matched or even surpassed the yields and selectivities obtained with the first-generation catalyst at a fraction of the original cost. The hydroamidation method proved to be an extremely valuable tool for the synthesis of natural products. The Enamide Functionality The enamide moiety is an important substructure often found in natural products and synthetic drugs. 3 Enamides and their derivatives are also versatile synthetic intermediates, e. g. for the preparation of chiral amines or amino acids. Catalyzed Addition of Amides, Imides and Thioamides to T erminal Alkynes 1 Recently, we developed new ruthenium-based catalyst systems for the anti-Markovnikov addition of secondary amides 1a , imides, 1b thioamides 1c or primary amides 1d to terminal alkynes. These systems proved to be generally applicable to a plethora of amides, imides and thioamides. Matthias Arndt , Mathieu Blanchot, Kifah S. M. Salih, Lukas J. Gooßen*, H. Sitzmann* 1 R N O R 1 R 2 R 3 R 2 N H O R 3 R 2 N O R 3 R 1 R 2 N O R 3 R 1 + up to 99%, E/Z 40:1 [Ru(cod)(met) 2 ] P( n Bu) 3 DMAP RuCl 3 · 3H 2 O [HP( n Bu) 3 ] [BF 4 ] DMAP K 2 CO 3 , H 2 O toluene, 100 °C toluene, 100 °C + up to 99%, E/Z 40:1 Dream Reaction” Traditional syntheses of enamides require harsh conditions, lead to the formation of mixtures of E/Z products or suffer from the limited availability of the starting materials. A much more attractive synthetic access route would be a catalytic addition of amides to alkynes. However, while related addition reactions of carboxylates, 4 water, 5 and amines 6 are well- established, to the best of our knowledge no efficient catalyst for a hydroamidation reaction has been reported. 7 Institut für Organische Chemie, TU Kaiserslautern, Erwin-Schrödinger-Straße-54, 67663 Kaiserslautern, Tel (+49) 0631 205 2046, [email protected] , [email protected] R 2 R 3 N S R 1 Cat. R 1 R 2 R 3 N O R 1 R 2 R 3 N S R 1 R 2 R 3 N O R 1 R 3 N O O R 2 R 1 R 3 N O O R 2 R 1 R 3 NH O O R 2 R 3 NH O R 2 R 3 NH S R 2 R 2 NH 2 O R 2 N H O R 1 R 2 N H O R 1 Ru (II) toluene 100 °C toluene 100 °C DMF 60 °C P( n Bu) 3 DMAP dcypm KO t Bu P( n Oct) 3 3A MS dcypm H 2 O P( i Pr) 3 Sc(OTf) 3 P( n Bu) 3 Sc(OTf) 3 = + Cat. up to 98% Z/E > 1:30 up to 74% Z/E > 8:1 up to 99% Z/E > 1:30 up to 99% Z/E > 8:1 up to 75% Z/E > 1:15 up to 99% Z/E > 30:1 up to 99% Z/E = 40:1 dcypb Yb(OTf) 3 NEt 3 3A mol. sieves Same Pot up to 89% Z/E =1:20 DMF/ H 2 O 60 °C Synthesis of Natural Products via Hydroamidation 1d Following the protocol for the addition of primary amides to terminal alkynes the natural products Lansiumamide A and Alatamide could be synthesized in high yields and stereoselectivities. Development of a RuCl 3 3H 2 O-based Protocol for the Catalytic Hydroamidation 2 In an attempt to reverse the regioselectivity of the hydroamidation in favour of the Markovnikov product, we synthesized sterically demanding and electron-rich RuCp-complexes and utilized them in hydroamidation reactions. Unfortunately no beneficial influence of the Cp-Ligand could be observed. Furthermore, the results matched those of the [Ru(cod)(met) 2 ]-based protocol. 8 The information thus obtained in combination with spectroscopic investigations led us to the discovery of a new RuCl 3 -based protocol. The key step is the selective reduction of Ru III to Ru II during the catalyst preformation, which is mediated by the employed phosphine, a process assisted by water. 90% reduction of the catalyst cost better fit for large-scale applications replacement of air-sensitive, liquid dramatic improvement of the P( n Bu) 3 by its tetrafluoroborate salt synthetic applicability Representative examples of the scope are illustrated below. N N O O n Bu n Bu N O N O (CH 2 ) 3 Cl N O SiMe 3 N O (CH 2 )OMe N O O OMe N O n Bu N O t Bu N O n Bu N O Ph O n Bu N N O O n Bu N O O n Bu N S n Bu N O n Bu EtO N O n Bu 71%, Z/E = 1:40 97%, Z/E = 1:8 99%, Z/E = 1:33 90%, Z/E = 1:2 99%, Z/E = 1:24 96%, Z/E = 1:40 99%, Z/E = 1:40 99%, Z/E = 1:32 97%, Z/E = 1:22 91%, Z/E = 1:40 99%, Z/E = 1:40 88%, Z/E = 1:30 94% 80%, Z/E = 1:3 93%, Z/E = 1:40 49%, Z/E = 1:40 ,Z/E = 1:22 Myxobacteria Chondromyces Seeds of Zizyphus vulgaris spinosus Bunge Chondria atropurpurea N O Lansamide I N O Lansiumamide A N O Lansiumamide B Fruits of Clausena Lansium OH O O O OH N H O Apicularen A NH O O N H O N H O N Frangufoline N H N H O N H Chondriamide C Leaves of Clausena Lansium O R 1 NH R 2 R 3 R 4 O R 1 N R 2 R 3 R 4 O R 1 N R 2 R 4 R 3 or [cat.] + O NH 2 N O Ph SiMe 3 O H O Ph SiMe 3 O N 3 Ph SiMe 3 N O Ph SiMe 3 N H O Ph Ph MgBr O NH 2 OMe N O OMe Lansiumamide A + [Ru.-cat.] 98%, Z/E = 20:1 DPPA, Et 3 N toluene RT, 0.5 h aq. THF, 85°C Et 2 O, -78°C 0°C Curtius- Rearrangement TBAF 4 steps: 7% Alatamide 79%, Z/E = 1:18 1.) [Ru.-cat.] 2.) Isomerization + Synthesis by Taylor et al. 1b Ru Cp R Cl Cl Ru Cp R Cl Cl n N H O n Bu N O n Bu Ru Cp R O Ru Cp R O n RuCl 3 ·3H 2 O Cp R H MeOH T, 6 h P( n Bu) 3 DMAP K 2 CO 3 , MeOH toluene 100 °C, 15 h K 2 CO 3 MeOH T, 6 h + Cp R H = 99%, E/Z = 40:1 Ru (II) O N R 3 R 2 R 1 O N H R 3 R 2 R 1 Ru (III) O N R 3 R 2 Ru (II) L n X HNR 2 C(O)R 3 P( n Bu) 3 , DMAP K 2 CO 3 , H 2 O L n = P( n Bu) 3 and/or DMAP X = NR 2 C(O)R 3 or Cl, ... toluene 100 °C 2 + HNR 2 C(O)R 3 P( n Bu) 3 , DMAP - OP( n Bu) 3 KCl, KHCO 3 up to 99% Z/E > 1:40 Cl 3 ·3H 2 O Main features

Transcript of Matthias Arndt, Mathieu Blanchot, Kifah S. M. Salih, Lukas ... · PDF fileMatthias Arndt,...

Page 1: Matthias Arndt, Mathieu Blanchot, Kifah S. M. Salih, Lukas ... · PDF fileMatthias Arndt, Mathieu Blanchot, Kifah S. M. Salih, Lukas J. Gooßen*, H. Sitzmann* 1 R N O R 1 R 2 R 3 HN

Literature and Further Reading (see also www.chemie.uni-kl.de/goossen)

(1) a) Gooßen, L. J.; Rauhaus, J. E.; Deng, D. Angew. Chem. Int. Ed. 2005, 44, 4042; b) Gooßen, L. J.; Blanchot, M.; Brinkmann, C.; Gooßen, K.; Karch, R.; Rivas-Nass, A. J. Org. Chem. 2006, 71, 9506;

c) Gooßen, L. J.; Blanchot, M.; Salih, K. S. M.; Karch, R.; Rivas-Nass, A. Org. Lett. 2008, 10, 4497, d) Gooßen, L. J.; Salih, K. S. M.; Blanchot, M. Angew. Chem. Int. Ed. 2008, 47, 8492.

(2) a) Arndt, M. diploma thesis, Technische Universität Kaiserslautern, 2008; b) Gooßen, L. J.; Arndt, M.; Blanchot, M.; Rudolphi, F.; Menges, F.; Niedner-Schatteburg, G. Adv. Synth. Cat. 2008, 350, 2701.

(3) a) Yet, L. Chem. Rev. 2003, 103, 4283; b) Stefanuti, I.; Smith, S. A.; Taylor, R. J. K. Tetrahedron Lett. 2000, 41, 3735; c) Wang, X.; Porco, Jr., J. A. J. Org. Chem. 2001, 66, 8215.

(4) a) Doucet, H.; Kabouche, Z.; Bruneau, C.; Dixneuf, P. H. J. Organomet. Chem. 1997, 551, 151; b) Mitsudo, T.; Hori, Y.; Watanabe, Y. J. Org. Chem. 1985, 50, 1566; c) Gooßen, L. J.; Paetzold, J. Chem.

Commun. 2003, 706.

(5) a) Bassetti, M.; Floris, B. J. Chem. Soc. Perkin Trans. 2 1988, 227; b) Suzuki, T.; Makoto, T.; Wakatsuki, Y. Org. Lett. 2001, 3, 735.

(6) a) Pholki, F.; Doye, S. Chem. Soc. Rev. 2003, 32, 104; b) Beller, M.; Seayad, J.; Tillack, A.; Jiao, H. Angew. Chem. 2004, 116, 3448.

(7) Alonso, F.; Beletskaya, I. P. M. Yus, Chem. Rev. 2004, 104, 3079.

(8) Unpublished results.

Practical and Effective Catalyst Systems

for the Regio- and Stereoselective Catalytic

Hydroamidation of Terminal Alkynes

Einleitung in 40 Pt:

Fließtext in Times New Roman

ca. 35 +/- 5 Pt schwarz nicht

fett.

Die Farben und Textstile sowie

Textgrößen entstammen der

Design-Empfehlung der MPG

GV in München.

Hier steht nur ein Beispieltext.

Hier stehtr ein Beispieltext.

Hier steht nur ein Beispieltext.

Hier steht nur ein Beispieltext.

Hier steht nur ein Beispieltext.

Hier steht ein Beispieltext. Hier

steht ein Beispieltext. Hier steht

ein Beispieltext. Hier steht ein

Beispieltext. Hier steht nur ein

Beispieltext.

Zeichnungen und Grafiken mit Untertitel Arial ca. 25

bis 30 Pt, Grün ohne Schatten:

Beispiel der Druckerauswahl für gelungene Ausdrucke

Abstract: The enamide moiety is an important motif often encountered in biologically active compounds and synthetic drugs. We have previously developed ruthenium-

based complexes as effective catalysts for the anti-Markovnikov addition of amides, imides, and thioamides to terminal alkynes.1 In an attempt to gain more insight

about the mechanism we spectroscopically monitored in situ our catalytic system. The information thus obtained in combination with data provided by some

complementary RuCp-complex catalyzed hydroamidation experiments allowed us to devise a new, second generation catalyst based on the inexpensive and

easy-to-handle RuCl3.2 After diligent optimization, the new protocol matched or even surpassed the yields and selectivities obtained with the first-generation catalyst at

a fraction of the original cost. The hydroamidation method proved to be an extremely valuable tool for the synthesis of natural products.

The Enamide Functionality

The enamide moiety is an important substructure often found in natural products and synthetic

drugs.3 Enamides and their derivatives are also versatile synthetic intermediates,

e. g. for the preparation of chiral amines or amino acids.

Catalyzed Addition of Amides, Imides and Thioamides to Terminal Alkynes1

Recently, we developed new ruthenium-based catalyst systems for the anti-Markovnikov

addition of secondary amides1a, imides,1b thioamides1c or primary amides1d to terminal alkynes.

These systems proved to be generally applicable to a plethora of amides, imides and

thioamides.

Matthias Arndt, Mathieu Blanchot, Kifah S. M. Salih, Lukas J. Gooßen*, H. Sitzmann*

1R N

O

R1

R2

R3

R2

NH

O

R3

R2

N

O

R3

R1

R2

N

O

R3

R1

+

up to 99%, E/Z 40:1

[Ru(cod)(met)2]

P(nBu)3

DMAP

RuCl3· 3H2O

[HP(nBu)3][BF4]

DMAPK2CO3, H2O

toluene, 100 °C toluene, 100 °C+

up to 99%, E/Z 40:1

“Dream Reaction”

Traditional syntheses of enamides require harsh conditions, lead to the formation of mixtures of

E/Z products or suffer from the limited availability of the starting materials.

A much more attractive synthetic access route would be a catalytic addition of amides to

alkynes.

However, while related addition reactions of carboxylates,4 water,5 and amines6 are well-

established, to the best of our knowledge no efficient catalyst for a hydroamidation reaction has

been reported.7

Institut für Organische Chemie, TU Kaiserslautern, Erwin-Schrödinger-Straße-54, 67663 Kaiserslautern,

Tel (+49) 0631 205 2046, [email protected] , [email protected]

R2

R3

N

S

R1

Cat.

R1

R2

R3

N

O

R1

R2

R3

N

S

R1

R2

R3

N

O

R1

R3

N

O

OR2

R1

R3

N

O

OR2 R

1

R3

NH

O

OR2

R3

NH

O

R2

R3

NH

S

R2

R2

NH2

O

R2

NH

O

R1

R2

NH

O

R1

Ru(II)

toluene100 °C

toluene100 °C

DMF60 °C

P(nBu)3

DMAP

dcypmKOtBu

P(nOct)3

3A MS

dcypmH2O

P(iPr)3

Sc(OTf)3

P(nBu)3

Sc(OTf)3

=

+ Cat.

up to 98%Z/E > 1:30

up to 74%Z/E > 8:1

up to 99%Z/E > 1:30

up to 99%Z/E > 8:1

up to 75%Z/E > 1:15

up to 99%Z/E > 30:1

up to 99%Z/E = 40:1

dcypbYb(OTf)3

NEt3

3A mol. sieves

Same Pot

up to 89%Z/E =1:20

DMF/ H2O

60 °C

Synthesis of Natural Products via Hydroamidation1d

Following the protocol for the addition of primary amides to terminal alkynes the natural products

Lansiumamide A and Alatamide could be synthesized in high yields and stereoselectivities.

Development of a RuCl3∙3H2O-based Protocol for the Catalytic Hydroamidation2

In an attempt to reverse the regioselectivity of the hydroamidation in favour of the Markovnikov

product, we synthesized sterically demanding and electron-rich RuCp-complexes and utilized

them in hydroamidation reactions.

Unfortunately no beneficial influence of the Cp-Ligand could be observed. Furthermore, the

results matched those of the [Ru(cod)(met)2]-based protocol.8

The information thus obtained in combination with spectroscopic investigations led us to the

discovery of a new RuCl3-based protocol. The key step is the selective reduction of RuIII to RuII

during the catalyst preformation, which is mediated by the employed phosphine, a process

assisted by water.

● 90% reduction of the catalyst cost ● better fit for large-scale applications

● replacement of air-sensitive, liquid ● dramatic improvement of the

P(nBu)3 by its tetrafluoroborate salt synthetic applicability

Representative examples of the scope are illustrated below.

N N

O

O

nBu

nBu

N

O

N

O(CH

2)3Cl

N

OSiMe

3

N

O(CH

2)OMe

N O

O OMe

N

OnBu

N

OtBu

N

OnBu

N

OPh

OnBu

N

NO

OnBu

NO

OnBu

N

SnBu

N

O

nBu

EtO

N

O

nBu

71%, Z/E = 1:4097%, Z/E = 1:8

99%, Z/E = 1:33

90%, Z/E = 1:2

99%, Z/E = 1:24 96%, Z/E = 1:4099%, Z/E = 1:40

99%, Z/E = 1:32 97%, Z/E = 1:22 91%, Z/E = 1:40

99%, Z/E = 1:40

88%, Z/E = 1:30

94% 80%, Z/E = 1:3

93%, Z/E = 1:40

49%, Z/E = 1:40 ,Z/E = 1:22

Myxobacteria Chondromyces

Seeds of Zizyphus vulgaris

spinosus Bunge

Chondria atropurpurea

N

O

Lansamide I

N

O

Lansiumamide A

N

O

Lansiumamide B

Fruits of Clausena Lansium

OH

O

O

O

OH

NH

O

Apicularen A

NHO

O

NH

O

NH

O

N

Frangufoline

NH

NH

O

NH

Chondriamide C

Leaves of Clausena Lansium

O

R1

NH

R2

R3

R4

O

R1

N

R2

R3

R4

O

R1

N

R2

R4

R3

or[cat.]

+

O

NH2

N

O

Ph

SiMe3

OH

O Ph

SiMe3

O

N3

Ph

SiMe3

N

OPh

SiMe3

NH

O

Ph

Ph

MgBr

O

NH2

OMe

N

OOMe

Lansiumamide A

+[Ru.-cat.]

98%, Z/E = 20:1

DPPA, Et3N

toluene RT, 0.5 h

aq. THF, 85°C Et2O, -78°C

0°C

Curtius-Rearrangement

TBAF

4 steps: 7%

Alatamide

79%,Z/E = 1:18

1.) [Ru.-cat.]2.) Isomerization

+ Synthesis by Taylor et al.1b

RuCpR

Cl Cl

Ru CpR

ClCln

NH

O

nBu N

OnBu

RuCpR

ORu Cp

R

O

n

RuCl3·3H2OCpRH

MeOH

T, 6 h

P(nBu)3

DMAPK2CO3, MeOH

toluene100 °C, 15 h

K2CO3

MeOH

T, 6 h

+

CpRH =

99%, E/Z = 40:1

Ru(II)

O

N R3

R2

R1

O

NH R3

R2R

1

Ru(III)

O

N

R3

R2

Ru(II)

LnX

HNR2C(O)R3

P(nBu)3, DMAP

K2CO3, H2O

Ln= P(nBu)3 and/or DMAP

X = NR2C(O)R3 or Cl, ...

toluene100 °C

2

+

HNR2C(O)R3

P(nBu)3, DMAP

- OP(nBu)3

KCl, KHCO3

up to 99%Z/E > 1:40

Cl3 ·3H2O

Main

features