MATERIAŁY POMOCNICZE DO MATURY Z...

22
MATERIALY POMOCNICZE DO MATURY Z MATEMATYKI

Transcript of MATERIAŁY POMOCNICZE DO MATURY Z...

Page 1: MATERIAŁY POMOCNICZE DO MATURY Z MATEMATYKIzspradzyn.internetdsl.pl/matura/matematyka---wzory.pdf · 4 3. Funkcja kwadratowa. Funkcją kwadratową ( trójmianem kwadratowym ) nazywamy

MATERIAŁY POMOCNICZE

DO MATURY

Z MATEMATYKI

Page 2: MATERIAŁY POMOCNICZE DO MATURY Z MATEMATYKIzspradzyn.internetdsl.pl/matura/matematyka---wzory.pdf · 4 3. Funkcja kwadratowa. Funkcją kwadratową ( trójmianem kwadratowym ) nazywamy

2

1. Zbiory. Działania na zbiorach. Zbiór, element zbioru – pojęcia pierwotne.

Jeśli x należy do ( jest elementem ) zbioru A, to piszemy x∈A, jeśli y nie należy do zbioru A,

piszemy y∉A.

Każdy zbiór jest wyznaczony przez swoje elementy.

Zbiór skończony – zbiór o skończonej liczbie elementów.

Zbiór pusty ( symbol ∅ ) – zbiór, do którego nie należy żaden element.

Zbiór nieskończony – zbiór, który nie jest ani skończony, ani pusty.

Równość zbiorów: A = B ⇔ (dla każdego x : x∈A ⇔ x∈B )

Zawieranie się zbiorów, podzbiory: A ⊂ B ⇔ ( dla każdego x: x∈A ⇒ x∈B )

Zbiory rozłączne - zbiory nie mające żadnego elementu wspólnego.

Suma zbiorów A ∪∪∪∪ B: x∈A ∪ B ⇔ ( x∈A lub x∈B )

Iloczyn zbiorów A ∩∩∩∩ B: x∈A ∩ B ⇔ ( x∈A i x∈B )

Różnica zbiorów A \ B: x∈A \ B ⇔ ( x∈A i x∉B )

Dopełnienie zbioru A ( symbol A’ ): Jeśli wszystkie rozpatrywane przez nas zbiory są podzbiorami ustalonego zbioru X, to zbiór X

nazywamy przestrzenią.

Jeśli X jest przestrzenią i A ⊂ X, to A’ = X \ A

Iloczyn kartezjański ( produkt ) zbiorów A ×××× B: Parę elementów (x,y), w której wyróżniono element x jako pierwszy nazywamy parą

uporządkowaną.

( x, y )∈A×B ⇔ ( x∈A i y∈B )

Zestawienie niektórych praw rachunku zbiorów:

nazwa prawa treść prawa przemienność dodawania A ∪ B = B ∪ A

przemienność iloczynu A ∩ B = B ∩ A

łączność dodawania (A ∪ B) ∪ C = A ∪ (B ∪ C)

łączność iloczynu (A ∩ B) ∩ C = A ∩ (B ∩ C)

rozdzielność mnożenia względem dodawania (A ∪ B) ∩ C =(A ∩ C) ∪ (B ∩ C)

rozdzielność dodawania względem mnożenia (A ∩ B) ∪ C =(A ∪ C) ∩ (B ∪ C)

prawa

de’Morgana (A ∩ B)’ = A’ ∪ B’

(A ∪ B)’ = A’ ∩ B’

Page 3: MATERIAŁY POMOCNICZE DO MATURY Z MATEMATYKIzspradzyn.internetdsl.pl/matura/matematyka---wzory.pdf · 4 3. Funkcja kwadratowa. Funkcją kwadratową ( trójmianem kwadratowym ) nazywamy

3

2. Układy równań i nierówności. Wartość bezwzględna liczby rzeczywistej

<−≥=

0agdya

0agdyaa

Nierówności z wartością bezwzględną

x < a , to x∈( -a, a ) x > a , to x∈( -∞, -a ) ∪ ( a, ∞ )

ax ≤ , to x∈[ -a, a ] ax ≥ , to x∈( -∞, -a ] ∪ [ a, ∞ )

Rozwiązywanie układów równań liniowych

Rozwiązaniem układu równań liniowych ( stopnia pierwszego ) z dwiema niewiadomymi

nazywamy każdą uporządkowaną parę liczb spełniających oba równania układu.

Dany jest układ równań

=+=+

222

111

cybxa

cybxa (*)

Wyznacznikami układu nazywamy liczby:

W = 22

11

ba

ba = a1 ⋅ b2 - a2 ⋅ b1;

Wx = 22

11

bc

bc = c1 ⋅ b2 - c2 ⋅ b1;

Wy = 22

11

ca

ca = a1 ⋅ c2 - a2 ⋅ c1;

Układ równań (*) nazywamy układem równań:

a) niezależnych ⇔ W ≠ 0, to układ ma dokładnie jedno rozwiązanie dane wzorami:

x = W

Wx , y =W

Wy,

geometryczną interpretacją układu są dwie proste przecinające się,

b) zależnych ⇔ W = 0 i Wx = 0 i Wy = 0, to układ ma nieskończenie wiele rozwiązań ( x, y )

takich, że x∈R, a y = −1

1

b

ax +

1

1

b

c;

geometryczną interpretacją układu są dwie proste pokrywające się;

c) sprzecznych ⇔ W = 0 i Wx ≠ 0 lub Wy ≠ 0, zbiór rozwiązań układu jest zbiorem pustym,

geometryczną interpretacją układu są dwie różne proste równoległe.

Page 4: MATERIAŁY POMOCNICZE DO MATURY Z MATEMATYKIzspradzyn.internetdsl.pl/matura/matematyka---wzory.pdf · 4 3. Funkcja kwadratowa. Funkcją kwadratową ( trójmianem kwadratowym ) nazywamy

4

3. Funkcja kwadratowa. Funkcją kwadratową ( trójmianem kwadratowym ) nazywamy funkcję f określoną wzorem

postaci

f(x) =ax2+bx+c,

gdzie a, b, c ∈ R i a ≠ 0.

Kanoniczną postacią trójmianu kwadratowego nazywamy postać

a4a2

bxa)x(f

2 ∆−

+= ,

gdzie ∆ =b2-4ac. Liczbę ∆ nazywamy wyróżnikiem trójmianu.

Miejsca zerowe funkcji kwadratowej: • funkcja kwadratowa ma dwa różne miejsca zerowe x1, x2 wtedy i tylko wtedy, gdy ∆>0, wtedy

a2

bx1

∆−−= , a2

bx 2

∆+−= ,

• funkcja kwadratowa ma dokładnie jedno miejsce zerowe x1 wtedy i tylko wtedy, gdy ∆=0,

a2

bx1 −= ,

• funkcja kwadratowa nie ma miejsc zerowych wtedy i tylko wtedy, gdy ∆<0.

Iloczynowa postać funkcji kwadratowej: • jeżeli ∆>0, to trójmian kwadratowy y = ax2+bx+c (a≠0) można przedstawić w postaci iloczynu

y = a(x-x1)(x-x2),

gdzie x1, x2 oznaczają miejsca zerowe trójmianu; • jeżeli ∆=0, to trójmian kwadratowy y= ax2+bx+c (a≠0) można przedstawić w postaci iloczynu

y = a(x-x1)2,

gdzie x1 jest miejscem zerowym trójmianu.

Wzory Viete’a Jeżeli trójmian kwadratowy y= ax

2+bx+c (a≠0) ma miejsce zerowe (dwa lub jedno) x1, x2, to

a

bxx 21 −=+ ,

a

cxx 21 =⋅ .

Wykres funkcji kwadratowej y= ax2+bx+c, gdzie a≠0, jest krzywą zwaną parabolą. Wierzchołek

paraboli ma współrzędne:

∆−−=a4

,a2

bW .

Dla a < 0 wierzchołek paraboli jest maksimum funkcji kwadratowej, natomiast dla a > 0

wierzchołek paraboli jest minimum funkcji kwadratowej.

a > 0 a >0 a > 0 a < 0 a < 0 a < 0 ∆ < 0 ∆ = 0 ∆ > 0 ∆ < 0 ∆ = 0 ∆ > 0

Page 5: MATERIAŁY POMOCNICZE DO MATURY Z MATEMATYKIzspradzyn.internetdsl.pl/matura/matematyka---wzory.pdf · 4 3. Funkcja kwadratowa. Funkcją kwadratową ( trójmianem kwadratowym ) nazywamy

5

4. Wielomiany

Wielomianem stopnia n jednej zmiennej nazywamy funkcję W:R→R określoną wzorem

postaci:

W(x)=a0+a1x+a2x2+...+anx

n,

gdzie a0, a1, a2, ..., an ∈ R i an≠0, n ∈ N.

Liczby a0, a1, a2, ..., an nazywamy współczynnikami wielomianu W.

Dwa wielomiany są równe wtedy i tylko wtedy, gdy są tego samego stopnia i mają równe

współczynniki przy odpowiednich potęgach zmiennej.

Wielomian W jest podzielny przez wielomian W1 jeśli istnieje wielomian Q taki, że

W(x) = W1(x)⋅Q(x) dla każdego x ∈ R.

Dla każdej pary wielomianów W i W1 takich, że stopień wielomianu W1 jest dodatni, istnieje

dokładnie jeden układ wielomianów Q i R, dla których W(x)=W1(x)⋅Q(x)+R(x) ( dla każdego

x ∈ R ) i stopień wielomianu R jest mniejszy od stopnia wielomianu W1 lub wielomian R jest

zerowy. Wielomian R nazywa się resztą z dzielenia wielomianu W przez wielomian W1.

Reszta z dzielenia wielomianu W przez dwumian postaci ( x – r ), gdzie r ∈ R, jest równa liczbie

W(r).

Twierdzenie Bézouta. Liczba a jest pierwiastkiem wielomianu W wtedy i tylko wtedy, gdy

wielomian W jest podzielny przez dwumian ( x –a ).

Jeżeli liczba wymierna q

p jest miejscem zerowym wielomianu W(x)=a0+a1x+a2x

2+...+anx

n, gdzie

an≠0, to q jest dzielnikiem współczynnika an, zaś p jest dzielnikiem współczynnika a0.

Page 6: MATERIAŁY POMOCNICZE DO MATURY Z MATEMATYKIzspradzyn.internetdsl.pl/matura/matematyka---wzory.pdf · 4 3. Funkcja kwadratowa. Funkcją kwadratową ( trójmianem kwadratowym ) nazywamy

6

5. Funkcja wykładnicza i logarytmiczna

Funkcją wykładniczą jednej zmiennej nazywamy funkcję f: ( R ) → R+ określoną wzorem postaci:

f ( x ) = ax, gdzie a∈R+ .

Własności funkcji wymiernej:

Funkcja f ( x ) = ax przyjmuje tylko wartości dodatnie;

Funkcja f ( x ) = ax jest rosnąca gdy a > 1;

Funkcja f ( x ) = ax jest stała gdy a = 1;

Funkcja f ( x ) = ax jest malejąca gdy 0 < a < 1.

Równania i nierówności wymierne:

Jeżeli a > 0 i a ≠ 1 oraz ax = a

y to x = y;

Jeżeli a > 1 oraz ax > a

y ( a

x < a

y ) to x > y ( x < y );

Jeżeli a > 1 oraz ax ≥ a

y ( a

x ≤ a

y ) to x ≥ y ( x ≤ y );

Jeżeli 0 < a < 1 oraz ax > a

y ( a

x < a

y ) to x < y ( x > y );

Jeżeli 0 < a < 1 oraz ax ≥ a

y ( a

x ≤ a

y ) to x ≤ y ( x ≥ y ).

Logarytm dodatniej liczby b przy podstawie a ( a > 0 i a ≠ 1 ) jest to wykładnik potęgi, do której

należy podnieść a, żeby otrzymać b:

log a b = z ⇔ az = b.

Z określenia logarytmu wynika, że log a 1 = 0, log a a = 1.

Funkcją logarytmiczną jednej zmiennej nazywamy funkcję f: ( R+ ) → R określoną wzorem

postaci:

f ( x ) = log a x, gdzie a∈R+\1.

Własności funkcji wymiernej:

Funkcja f ( x ) = log a x jest rosnąca gdy a > 1;

Funkcja f ( x ) = log a x jest malejąca gdy 0 < a < 1.

Twierdzenia o logarytmach:

Jeśli a, b, c∈R+ i a ≠ 1, to log a (b⋅c) = log a b + log a c oraz log a c

b = log a b - log a c;

Jeśli a, b ∈R+ , a ≠ 1 i r∈R, to log a br = r log a b;

Jeśli a, b, x∈R+ , a ≠ 1 i b ≠ 1, to log a b = alog

blog

x

x ( zmiana podstawy logarytmu ).

Page 7: MATERIAŁY POMOCNICZE DO MATURY Z MATEMATYKIzspradzyn.internetdsl.pl/matura/matematyka---wzory.pdf · 4 3. Funkcja kwadratowa. Funkcją kwadratową ( trójmianem kwadratowym ) nazywamy

7

6. Funkcje trygonometryczne

Jeśli α jest miarą kąta skierowanego α=XOP , P jest dowolnym punktem końcowego ramienia

tego kąta ( P ≠ O, x i y są współrzędnymi P, rPO = , to

sin αααα = r

y, cos αααα =

rx , tg αααα =

x

y ( gdy x ≠≠≠≠ 0 ), ctg αααα =

y

x ( gdy y ≠≠≠≠ 0 ).

Związki między funkcjami tego samego kąta x:

sin2x + cos

2x = 1, dla x∈ R,

tg x = xcos

xnis, dla x ≠(2k+1)⋅

2

Π , k∈C,

ctg x = xsin

xcos, dla x ≠ kΠ, k∈C,

tg x ⋅ ctg x = 1, dla x≠k⋅2

Π , k∈C.

Funkcje trygonometryczne kąta podwójnego:

sin 2x = 2⋅sin x⋅cos x,

cos 2x = cos2x - sin

2x = 1 - 2sin

2x = 2 cos

2x – 1,

tg 2x = xtg1

xtg2

2−

, dla x≠(2k+1)⋅4

Π i x≠(2k+1)⋅2

Π , k∈C,

ctg 2x = xctg2

1xctg2−

, dla x≠k⋅2

Π , k∈C.

Funkcje trygonometryczne są okresowe. Okresem zasadniczym funkcji sinus i cosinus jest 2Π,

a okresem zasadniczym funkcji tangens i cotangens jest Π.

Równania trygonometryczne są to równania, w których niewiadome występują pod znakami

funkcji trygonometrycznych.

Tabela zawiera rozwiązania najprostszych równań trygonometrycznych:

Równanie Rozwiązanie x0 jedyne rozwiązanie równania

należące do przedziału

sin x = a, |a|<1 x = kΠ+(-1)kx0, k∈C ( )

22, ΠΠ

cos x = a, |a|<1 x = 2kΠ ± x0, k∈C ( 0, Π )

tg x = a, a∈R x = kΠ + x0, k∈C ( )22

, ΠΠ−

ctg x = a, a∈R x = kΠ + x0, k∈C ( )0,2

Π− ∪ ( )

2,0 Π

Page 8: MATERIAŁY POMOCNICZE DO MATURY Z MATEMATYKIzspradzyn.internetdsl.pl/matura/matematyka---wzory.pdf · 4 3. Funkcja kwadratowa. Funkcją kwadratową ( trójmianem kwadratowym ) nazywamy

8

7. Funkcje wymierne. Równania i nierówności wymierne.

Funkcją wymierną jednej zmiennej nazywamy funkcję F: ( R \ A ) → R określoną wzorem

postaci:

( ))x(W

)x(WxF

1

= ,

gdzie W i W1 są wielomianami, zaś A jest zbiorem wszystkich miejsc zerowych wielomianu W1.

Równaniem wymiernym nazywamy równanie postaci:

0)x(W

)x(W

1

= ,

gdzie W i W1 są wielomianami.

Rozwiązaniem równania 0)x(W

)x(W

1

= nazywamy każdą liczbę r, dla której W1(r)≠0 i W(r)=0.

Nierównością wymierną nazywamy nierówność postaci

0)x(W

)x(W

1

> , lub 0)x(W

)x(W

1

< , lub 0)x(W

)x(W

1

≥ , lub 0)x(W

)x(W

1

≤ ,

gdzie W i W1 są wielomianami.

Nierówności

0)x(W

)x(W

1

> , 0)x(W

)x(W

1

<

są równoważne odpowiednio nierównościom w postaci iloczynu:

W(x)⋅W1(x)>0, W(x)⋅W1(x)<0.

Natomiast nierówności

0)x(W

)x(W

1

≥ , 0)x(W

)x(W

1

są równoważne odpowiednio układom:

≠≥⋅

0)x(W

0)x(W)x(W

1

1 ,

≤⋅0)x(W

0)x(W)x(W

1

1 .

Page 9: MATERIAŁY POMOCNICZE DO MATURY Z MATEMATYKIzspradzyn.internetdsl.pl/matura/matematyka---wzory.pdf · 4 3. Funkcja kwadratowa. Funkcją kwadratową ( trójmianem kwadratowym ) nazywamy

9

8. Ciągi Zasada indukcji matematycznej ( zupełnej )

Jeżeli twierdzenie, które dotyczy liczb naturalnych, jest

(1) prawdziwe dla ustalonej liczby naturalnej n0,

(2) jeżeli dla każdej liczby naturalnej k ≥ n0 z założenia prawdziwości twierdzenia dla k wynika,

że jest ono prawdziwe dla liczby następnej k + 1,

to twierdzenie jest prawdziwe dla każdej liczby naturalnej n ≥ n0.

Ciągiem nieskończonym nazywamy funkcję określoną na zbiorze liczb naturalnych dodatnich

( N \ 0 ). Wartości tej funkcji nazywamy wyrazami ciągu i oznaczamy f ( n ) = an. Jeżeli wyrazy

ciągu są liczbami rzeczywistymi , to ciąg nazywamy ciągiem liczbowym.

Ciąg o wyrazach a1, a2,..., an, ... oznaczamy ( an ).

Ciąg liczbowy ( an ) nazywamy:

ciągiem rosnącym wtedy i tylko wtedy gdy dla każdego n∈N\0 zachodzi an < an+1;

ciągiem malejącym wtedy i tylko wtedy gdy dla każdego n∈N\0 zachodzi an > an+1;

ciągiem niemalejącym wtedy i tylko wtedy gdy dla każdego n∈N\0 zachodzi an ≤ an+1;

ciągiem nierosnącym wtedy i tylko wtedy gdy dla każdego n∈N\0 zachodzi an ≥ an+1.

Ciągi rosnące lub malejące nazywamy monotonicznymi.

Granice ciągu Liczba g jest granicą ciągu liczbowego ( an ) wtedy i tylko wtedy, gdy do każdego otoczenia

liczby g należą wszystkie wyrazy tego ciągu z wyjątkiem skończonej ich ilości.

ε<−∧∨∧⇔=>>ε∞→

gagalim nMnM0

nn

.

Ciąg liczbowy ( an ) jest rozbieżny do +∞∞∞∞ wtedy i tylko wtedy, gdy dla każdej liczby A

wszystkie wyrazy tego ciągu oprócz skończonej ich ilości są większe od A..

Aaalim nMnMA

nn

>∧∨∧⇔+∞=>∞→

.

Ciąg liczbowy ( an ) jest rozbieżny do -∞∞∞∞ wtedy i tylko wtedy, gdy dla każdej liczby B

wszystkie wyrazy tego ciągu oprócz skończonej ich ilości są mniejsze od B..

Baalim nMnMB

nn

<∧∨∧⇔+∞=>∞→

.

Prawdziwe są następujące twierdzenia:

1. Jeżeli aalim nn

=∞→

i bblim nn

=∞→

, to:

a) )ba(lim nnn

+∞→

= a + b, b) )ba(lim nnn

−∞→

= a – b,

c) )ba(lim nnn

∞→ = a ⋅ b, d) jeżeli 0blim n

n≠

∞→, to

b

a

nb

na

nlim =

∞→.

2. Jeżeli dla każdego n∈N\0 an > 0 i 0alim nn

=∞→

, to +∞=∞→ na

1

nlim .

3. Jeżeli dla każdego n∈N\0 an < 0 i 0alim nn

=∞→

, to −∞=∞→ na

1

nlim .

4. Jeżeli ∞=∞→

nn

alim , to 0limna

1

n=

∞→.

5. Jeżeli 0alim nn

=∞→

i ciąg ( bn ) jest ciągiem ograniczonym, to 0)ba(lim nnn

=⋅∞→

.

Page 10: MATERIAŁY POMOCNICZE DO MATURY Z MATEMATYKIzspradzyn.internetdsl.pl/matura/matematyka---wzory.pdf · 4 3. Funkcja kwadratowa. Funkcją kwadratową ( trójmianem kwadratowym ) nazywamy

10

9. Ciągi arytmetyczny i geometryczny

Ciąg arytmetyczny

Ciąg ( an ) nazywamy arytmetycznym wtedy i tylko wtedy, gdy różnica między dowolnym

wyrazem ciągu a wyrazem bezpośrednio go poprzedzającym, jest stała dla danego ciągu.

an+1 - an = r

Dla dowolnego ciągu ( an ) przez Sn oznaczamy sumę pierwszych n wyrazów tego ciągu, tzn.

Sn = a1 + a2 + ... + an.

Jeżeli ciąg ( an ) jest ciągiem arytmetycznym o różnicy r, to prawdziwe są wzory:

dla każdego n∈N\0 an = a1 + ( n – 1 ) r,

dla każdego n∈N\0 an = 2

aa 1n1n +− + ,

dla każdego n∈N\0 Sn = n2

aa n1 ⋅+

= n2

r)1n(a2 1 ⋅−+

.

Ciąg geometryczny

Ciąg ( an ) nazywamy geometrycznym wtedy i tylko wtedy, gdy a1 ≠ 0 i iloraz dowolnego

wyrazu tego ciągu i wyrazu bezpośrednio go poprzedzającego, jest dla danego ciągu stały.

n

1n

a

a + = q

Jeżeli ciąg ( an ) jest ciągiem geometrycznym o ilorazie q ≠ 0, to prawdziwe są wzory:

dla każdego n∈N\0 an = a1 ⋅qn-1,

dla każdego n∈N\0 an2 = an-1⋅an+1,

jeżeli q ≠ 1, to Sn = a1q1

q1 n

−,

jeżeli q = 1, to Sn = n ⋅ a1.

Dla ciągu geometrycznego ( an ) spełniającego warunek q < 1 zachodzi:

0alim n

n=

∞→ ,

=

∞→n

nSlim q1

a

q1

q1alim 1

n

1n −=

−−

∞→.

Page 11: MATERIAŁY POMOCNICZE DO MATURY Z MATEMATYKIzspradzyn.internetdsl.pl/matura/matematyka---wzory.pdf · 4 3. Funkcja kwadratowa. Funkcją kwadratową ( trójmianem kwadratowym ) nazywamy

11

10. Granica funkcji. Funkcje ciągłe. 1. Granica funkcji w punkcie

Liczba g jest granicą funkcji f w punkcie x0 wtedy i tylko wtedy, gdy dla każdego ciągu ( xn )

takiego, że xn ∈ Df , xn ≠ x0 i 0nn

xxlim =∞→

jest g)x(flim nn

=∞→

.

2. Granice jednostronne funkcji w punkcie

a) Liczbę a nazywamy granicą lewostronną funkcji f w punkcie x0 wtedy i tylko wtedy, gdy

dla każdego ciągu ( xn ) spełniającego warunki xn ∈ Df , xn < x0 i 0nn

xxlim =∞→

jest a)x(flim nn

=∞→

.

b) Liczbę b nazywamy granicą prawostronną funkcji f w punkcie x0 wtedy i tylko wtedy, gdy

dla każdego ciągu ( xn ) spełniającego warunki xn ∈ Df , xn > x0 i 0nn

xxlim =∞→

jest b)x(flim nn

=∞→

.

c) Istnienie granic jednostronnych funkcji w punkcie x0 i ich równość jest równoważna istnieniu

granicy funkcji w punkcie x0.

3. Granica niewłaściwa funkcji w punkcie

a) Funkcja f ma w punkcie x0 granicę niewłaściwą +∞∞∞∞ wtedy i tylko wtedy, gdy dla każdego

ciągu ( xn ) takiego, że 0nn

xxlim =∞→

, xn ∈ Df i xn ≠ x0 jest +∞=∞→

)x(flim nn

.

b) Funkcja f ma w punkcie x0 granicę niewłaściwą -∞∞∞∞ wtedy i tylko wtedy, gdy dla każdego

ciągu ( xn ) takiego, że 0nn

xxlim =∞→

, xn ∈ Df i xn ≠ x0 jest −∞=∞→

)x(flim nn

.

4. Twierdzenia o granicy funkcji w punkcie

Jeżeli a)x(flim0xx

=→

i b)x(glim0xx

=→

, to:

a) ))x(g)x(f(lim0xx

+→

= a + b, b) ))x(g)x(f(lim0xx

−→

= a – b,

c) ))x(g)x(f(lim0xx

⋅→

= a ⋅ b, d) jeżeli b≠0, tob

a

)x(g

)x(flim

0xx=

→.

5. Granica funkcji w +∞ oraz w -∞

a) Mówimy, że granicą funkcji y = f(x) w +∞∞∞∞ jest liczba g wtedy i tylko wtedy, gdy dla

każdego ciągu ( xn ) spełniającego warunki xn ∈ Df i +∞=∞→

nn

xlim jest g)x(flim nn

=∞→

.

b) Mówimy, że granicą funkcji y = f(x) w -∞∞∞∞ jest liczba g wtedy i tylko wtedy, gdy dla każdego

ciągu ( xn ) spełniającego warunki xn ∈ Df i −∞=∞→

nn

xlim jest g)x(flim nn

=∞→

.

6. Ciągłość funkcji

Funkcja f jest ciągła w punkcie x0 ∈ Df wtedy i tylko wtedy, gdy istnieje granica funkcji w

punkcie x0 i )x(f)x(flim 0xx 0

=→

.

Funkcja f jest ciągła w zbiorze Z ⊂ Df wtedy i tylko wtedy, gdy jest ciągła w każdym punkcie

zbioru Z.

Jeżeli funkcje f i g są ciągłe w punkcie x0, to funkcje f + g, f - g, f ⋅ g też są ciągłe w tym

punkcie, i jeżeli g(x0) ≠ 0, to funkcja g

f też jest ciągła w x0.

Page 12: MATERIAŁY POMOCNICZE DO MATURY Z MATEMATYKIzspradzyn.internetdsl.pl/matura/matematyka---wzory.pdf · 4 3. Funkcja kwadratowa. Funkcją kwadratową ( trójmianem kwadratowym ) nazywamy

12

11. Pochodna funkcji i jej zastosowania

Ilorazem różnicowym funkcji f odpowiadającym przyrostowi argumentu ∆x = x1 – x0, gdzie

x0, x1∈ Df i x0 ≠ x1, nazywamy liczbę x

)x(f)xx(f 00

∆−∆+

.

Jeżeli przy powyższym istnieje granica x

)x(f)xx(flim 00

0x ∆−∆+

→∆ i jest liczba skończoną, to tę

liczbę nazywamy pochodną funkcji w punkcie x0 i oznaczamy f ’(x0).

Jeżeli funkcja ma pochodną w punkcie x0, to mówimy, że jest w tym punkcie różniczkowalna.

Jeżeli funkcja y = f(x) jest określona w pewnym otoczeniu punktu x0 i ma w tym punkcie

pochodną, to prosta o równaniu:

y = f ’(x) ⋅ ( x – x0 ) + f(x0)

jest prostą styczną do wykresu funkcji f w punkcie P ( x0, f(x0) ). f ’(x0) jest tangensem kąta

nachylenia tej stycznej do osi 0X.

Jeżeli przez X oznaczymy zbiór tych argumentów, dla których istnieje pochodna funkcji f,

wówczas funkcję, która każdemu x ∈ X przyporządkowuje liczbę f ’(x) nazywamy pochodną funkcji f. Dziedziną funkcji f ’ jest zbiór X.

Jeżeli funkcje f i g są różniczkowalne w zbiorze X, to:

a) ( k⋅ f )’ = k ⋅ f ’, dla k ∈ R

b) ( f + g )’ = f ’ + g’

c) ( f - g )’ = f ’ - g’

d) ( f ⋅ g )’ = f ’⋅ g + g’⋅ f e)

2

'

g

f'gg'f

g

f ⋅−⋅=

Pochodne niektórych funkcji: a) ( c )’ = 0

b) ( x m

)’ = m xm-1

, dla m ∈ W \0

c) ( sin x )’ = cos x

d) ( cos x )’ = - sin x

e) ( tg x )’ = xcos

12

f) ( ctg x )’ = - xsin

12

Jeśli funkcja f jest różniczkowalna w każdym punkcie pewnego zbioru X ⊂ R, a funkcja g w

każdym punkcie y0 = f(x) zbioru wartości funkcji f, to dla x ∈ X pochodna funkcji złożonej h = g f równa się iloczynowi pochodnej funkcji zewnętrznej g i pochodnej funkcji wewnętrznej f:

( g f )’(x) = g’(f(x)) ⋅ f ’(x).

Jeżeli funkcja f jest różniczkowalna w zbiorze Z ⊂ Df i pochodna funkcji f jest różniczkowalna,

to pochodną funkcji f ’ nazywamy drugą pochodną funkcji f i oznaczamy f ’’.

Page 13: MATERIAŁY POMOCNICZE DO MATURY Z MATEMATYKIzspradzyn.internetdsl.pl/matura/matematyka---wzory.pdf · 4 3. Funkcja kwadratowa. Funkcją kwadratową ( trójmianem kwadratowym ) nazywamy

13

12. Badanie funkcji 1. Twierdzenia o monotoniczności funkcji

Niech funkcja f będzie różniczkowalna w przedziale ( a, b ), wtedy dla każdego x ∈ ( a, b )

- jeżeli f ’(x) > 0, to funkcja f jest rosnąca w przedziale ( a, b );

- jeśli f jest rosnąca w przedziale ( a, b ), to f ’(x) ≥ 0;

- jeżeli f ’(x) < 0, to funkcja f jest malejąca w przedziale ( a, b );

- jeśli f jest malejąca w przedziale ( a, b ), to f ’(x) ≤ 0.

2. Ekstremum funkcji

Mówimy, że funkcja ma w punkcie x0 ∈ Df minimum ( maksimum ), jeśli dla każdego x

należącego do pewnego otoczenia punktu x0 zawartego w dziedzinie funkcji zachodzi f(x) > f(x0)

( f(x) < f(x0) ). Maksimum i minimum nazywamy ekstremum funkcji.

Warunek konieczny ekstremum. Jeżeli funkcja f ma ekstremum w punkcie x0 ∈ ( a, b ) i jest w

tym punkcie różniczkowalna, to

f ’(x0) = 0.

Warunek wystarczający ekstremum. Jeżeli funkcja f ma pochodną w pewnym otoczeniu punktu

x0, przy czym

f ’(x) > 0 gdy x < x0 i f ’(x) < 0 gdy x > x0

to w punkcie x0 funkcja f ma maksimum; jeżeli natomiast

f ’(x) < 0 gdy x < x0 i f ’(x) > 0 gdy x > x0

to w punkcie x0 funkcja f ma minimum.

3. Najmniejsza i największa wartość funkcji w przedziale

Mówimy, że funkcja f określona w przedziale < a, b > osiąga w tym przedziale wartość

największą ( najmniejszą ), jeśli istnieje punkt x0 ∈ < a, b > taki, że dla każdego x ∈ < a, b > i

x ≠ x0 spełniony jest warunek f(x) ≤ f(x0) ( f(x) ≥ f(x0) ).

Aby wyznaczyć największą ( najmniejszą ) wartość funkcji w przedziale < a, b >, należy znaleźć

wszystkie maksima ( minima ) lokalne w tym przedziale oraz obliczyć f(a) i f(b); największa

( najmniejsza ) z tych liczb jest liczbą poszukiwaną.

4. Asymptoty wykresu funkcji

Prostą, której odległość od wykresu danej funkcji f zmierza do zera w nieskończoności nazywamy

asymptotą wykresu funkcji f.

Prostą o równaniu x = a nazywamy asymptotą pionową wykresu funkcji f, jeżeli funkcja f jest

określona przynajmniej z jednej strony punktu a oraz ±∞=+→

)x(flimax

albo ±∞=−→

)x(flimax

.

Jeżeli istnieją skończone granice mx

)x(flim

x=

±∞→ oraz b]mx)x(f[lim

x=−

±∞→, to prostą o równaniu

y = mx+b nazywamy asymptotą ukośną ( albo poziomą przy m = 0 ) wykresu funkcji f.

Page 14: MATERIAŁY POMOCNICZE DO MATURY Z MATEMATYKIzspradzyn.internetdsl.pl/matura/matematyka---wzory.pdf · 4 3. Funkcja kwadratowa. Funkcją kwadratową ( trójmianem kwadratowym ) nazywamy

14

12. Badanie funkcji cd. 5. Schemat badania funkcji

5.1 Wyznaczamy dziedzinę funkcji

5.2 Obliczamy granice na końcach dziedziny

5.3 Wyznaczamy asymptoty wykresu funkcji

5.4 Wyznaczamy pierwszą pochodną i jej dziedzinę

5.5 Obliczamy miejsca zerowe pierwszej pochodnej

5.6 Określamy znak pierwszej pochodnej, wyznaczamy przedziały monotoniczności i ekstrema

funkcji

5.7 Wyznaczamy punkty przecięcia wykresu funkcji z osiami układu współrzędnych i wartości

funkcji w punktach wyznaczonych w 5.5, 5.6

5.8 Zbieramy wyniki z poprzednich punktów w tabeli

5.9 Szkicujemy wykres funkcji

Page 15: MATERIAŁY POMOCNICZE DO MATURY Z MATEMATYKIzspradzyn.internetdsl.pl/matura/matematyka---wzory.pdf · 4 3. Funkcja kwadratowa. Funkcją kwadratową ( trójmianem kwadratowym ) nazywamy

15

13. Funkcja homograficzna Funkcją homograficzną nazywamy funkcję postaci

f(x) = dcx

bax

+

+

gdzie c ≠ 0 i a⋅d - b⋅c ≠ 0.

Dziedziną funkcji homograficznej jest zbiór D =

c

d\R .

Wykresem funkcji homograficznej jest hiperbola.

Proste o równaniach x = c

d− oraz y =

c

a są asymptotami tej hiperboli.

hiperbola o równaniu y = x

1 hiperbola o równaniu y = -

x

1

Aby narysować funkcję homograficzną musimy jej postać f(x) = dcx

bax

+

+ przekształcić do postaci

f(x) = wx

ut+

+ , wtedy wykres funkcji y = x

u przesuwamy o wektor [ -w, t ].

Pochodna funkcji homograficznej jest równa f ’(x) = 2)dcx(

cbda

+

⋅−⋅, ponieważ z założenia licznik

jest różny od zera, więc pochodna funkcji nie przyjmuje wartości równej zero, czyli funkcja

homograficzna nie posiada ekstremum. Znak pochodnej zależy od znaku licznika ( czyli wyrażenia

a⋅d - b⋅c ). Wynika z tego, że:

funkcja homograficzna jest w przedziałach ( -∞, c

d− ) oraz (

c

d− , +∞ ) rosnąca, gdy a⋅d - b⋅c > 0,

funkcja homograficzna jest w przedziałach ( -∞, c

d− ) oraz (

c

d− , +∞ ) malejąca, gdy a⋅d - b⋅c < 0.

Page 16: MATERIAŁY POMOCNICZE DO MATURY Z MATEMATYKIzspradzyn.internetdsl.pl/matura/matematyka---wzory.pdf · 4 3. Funkcja kwadratowa. Funkcją kwadratową ( trójmianem kwadratowym ) nazywamy

16

14. Geometria analityczna – wektory, proste Współrzędnymi wektora u

r

w prostokątnym układzie współrzędnych XOY nazywamy miary jego

składowych. Jeżeli punkt A( xA, yA ) jest początkiem, a punkt B( xB, yB ) jest końcem wektora ur

, to

współrzędnymi wektora ur

są liczby: a = xB - xA , b = yB - yA .

Zapisujemy to symbolicznie: ur

[ a, b ] lub ur

= [ a, b ].

Jeżeli wektor ur

= [ a, b ], to długość wektora ur

wyraża się wzorem: 22 bau +=r

.

Jeżeli punkt A( xA, yA ) i punkt B( xB, yB ), to środek S odcinka AB ma współrzędne:

xS =2

xxAB

+, yS =

2

y yAB

+.

Jeśli α jest miarą kąta skierowanego uporządkowanej pary niezerowych wektorów ( ur

, vr

)

współrzędnych ur

= [ a1, a2 ], vr

= [b1, b2 ], to:

cos α = vu

baba2211

rr

+ , sin α =

vu

baba1221

rr

− .

Jeżeli wektory ur

i vr

mają współrzędne ur

= [ a1, a2 ], vr

= [b1, b2 ], to ich iloczyn skalarny wyraża się

wzorem ur ⋅ vr = a1 ⋅ b1 + a2 ⋅ b2 .

Wyznacznikiem niezerowej pary wektorów ur

i vr

o współrzędnych ur

= [ a1, a2 ], vr

= [b1, b2 ]

nazywamy liczbę d( ur

, vr

) = 21

21

bb

aa = a1 ⋅ b2 - a2 ⋅ b1 .

Jeżeli punkty A( xA, yA ), B( xB, yB ) i C( xC, yC ) są wierzchołkami trójkąta, to pole trójkąta ∆ABC

wyraża się wzorami:

P = )AC,AB(d2

1 = )BC,BA(d2

1 = )CB,CA(d2

1 ,

P = )yxyx()yxyx()yxyx(CAACBCCBABBA2

1 −+−+− .

Współczynnikiem kierunkowym prostej nieprostopadłej do osi OX nazywamy tangens kąta nachylenia

tej prostej do osi OX.

Równaniem kierunkowym prostej l nieprostopadłej do osi OX nazywamy równanie postaci y = ax+b,

gdzie a oznacza współczynnik kierunkowy prostej l, zaś b rzędną punktu, w którym l przecina oś OY.

Jeżeli punkty A( xA, yA ) i B( xB, yB ) należą do prostej l, to równanie prostej l ma postać:

y - yA = BA

BA

xx

yy

−( x – xA ), gdy xA ≠ xB , lub

( y - yA )⋅( xA – xB ) – ( yA – yB )⋅( x – xA ) = 0.

Każde równanie postaci Ax+By+C = 0, gdzie A2 +B2 ≠ 0 jest równaniem ogólnym prostej. Wektor

ur

= [ A, B ] jest wektorem prostopadłym do tej prostej.

Odległość punktu P ( x0, y0 ) od prostej o równaniu Ax+By+C = 0 wyraża się wzorem:

d = 22

00

BA

CByAx

+

++.

Warunki równoległości prostych Dwie proste o równaniach y = a1 x +b1 i y = a2 x +b2 są równoległe wtedy i tylko wtedy, gdy a1 = a2.

Dwie proste o równaniach Ax+By+C = 0 i A1 x+B1 y+C1 = 0 są równoległe wtedy i tylko wtedy, gdy

AB1 – BA1 = 0.

Warunki prostopadłości prostych Dwie proste o równaniach y = a1 x +b1 i y = a2 x +b2 są prostopadłe wtedy i tylko wtedy, gdy a1 ⋅ a2 = -1.

Dwie proste o równaniach Ax+By+C = 0 i A1 x+B1 y+C1 = 0 są prostopadłe wtedy i tylko wtedy, gdy

AA1 + BB1 = 0.

Page 17: MATERIAŁY POMOCNICZE DO MATURY Z MATEMATYKIzspradzyn.internetdsl.pl/matura/matematyka---wzory.pdf · 4 3. Funkcja kwadratowa. Funkcją kwadratową ( trójmianem kwadratowym ) nazywamy

17

15. Geometria analityczna – krzywe stopnia drugiego Okrąg

Równanie okręgu o środku ( a, b ) i promieniu r ma postać ( x – a )2 + ( y – b )2 = r 2 .

Równanie postaci x2 + y2 -2ax – 2by + c = 0 przedstawia okrąg wtedy i tylko wtedy, gdy a2 +b2 – c > 0,

promieniem okręgu jest r = cba 22 −+ , zaś środkiem punkt ( a, b ).

Równanie stycznej do okręgu o środku ( a, b ) i promieniu r w punkcie ( x0, y0 ) należącym do okręgu, ma

postać ( x0 – a )( x – a )+( y0 – b )( y – b ) = r 2 .

Elipsa Niech dane będą dwa punkty F1, F2 oraz liczba dodatnia a taka, że 2a > F1⋅F2 . Elipsą nazywamy zbiór

tych wszystkich punktów P płaszczyzny, dla których PF1 + PF2 = 2a.

Jeśli punkty F1, F2 należą do osi OX, zaś początek układu współrzędnych jest środkiem odcinka 21FF , to

równanie elipsy ma postać 1b

y

a

x2

2

2

2

====++++ , gdzie b2 = a2 – c2 i |c| = OF1 .

Elipsa ta ma środek symetrii w punkcie ( 0, 0 ) i dwie osie symetrii proste OX i OY.

Równanie stycznej do elipsy w punkcie ( x0, y0 ) należącym do elipsy, ma postać: 1b

yy

a

xx2

0

2

0 ====++++ .

Punkty F1, F2 nazywamy ogniskami elipsy.

Cięciwą elipsy nazywamy każdy odcinek, którego końce należą do elipsy. Średnicą elipsy nazywamy

każdą cięciwę, do której należy środek symetrii elipsy. Osią wielką nazywamy najdłuższą z jej średnic. Osią małą nazywamy najkrótszą z jej średnic. Wierzchołkami elipsy nazywamy punkty wspólne elipsy i jej osi

symetrii.

Mimośrodem elipsy nazywamy liczbę e = a

c, zaś kierownicami elipsy proste o równaniach:

x = c

a 2

i x = -c

a 2

.

Hiperbola Niech dane będą dwa punkty F1, F2 oraz liczba dodatnia a taka, że 2a < F1⋅F2 . Hiperbolą nazywamy zbiór

tych wszystkich punktów P płaszczyzny, dla których PF1 - PF2 = 2a.

Jeśli punkty F1, F2 należą do osi OX, zaś początek układu współrzędnych jest środkiem odcinka 21FF , to

równanie hiperboli ma postać 1b

y

a

x2

2

2

2

====−−−− , gdzie b2 = c2 – a2 i |c| = OF1.

Hiperbola ta ma środek symetrii w punkcie ( 0, 0 ) i dwie osie symetrii proste OX i OY.

Równanie stycznej do hiperboli w punkcie ( x0, y0 ) należącym do hiperboli, ma postać: 1b

yy

a

xx2

0

2

0====−−−− .

Punkty F1, F2 nazywamy ogniskami hiperboli.

Asymptotami hiperboli są elipsy proste o równaniach: y = a

b ⋅x i y = -a

b ⋅x.

Parabola Jest to krzywa, która w pewnym układzie XOY ma równanie y2 = 2px, gdzie p ≠ 0, 2p jest parametrem

paraboli. Punkt F =

0,

a

b jest ogniskiem paraboli. Prosta o równaniu x = -

2

p jest kierownicą paraboli.

Punkt ( 0, 0 ) jest wierzchołkiem paraboli.

Parabola jest zbiorem wszystkich punktów płaszczyzny równo odległych od jej ogniska i od jej

kierownicy. Jedyną osią symetrii paraboli jest prosta OX.

Równanie stycznej do paraboli y2 = 2px w punkcie ( x0, y0 ) należącym do paraboli, ma postać:

y ⋅⋅⋅⋅ y0 = p⋅⋅⋅⋅ ( x + x0 ).

Page 18: MATERIAŁY POMOCNICZE DO MATURY Z MATEMATYKIzspradzyn.internetdsl.pl/matura/matematyka---wzory.pdf · 4 3. Funkcja kwadratowa. Funkcją kwadratową ( trójmianem kwadratowym ) nazywamy

18

16. Planimetria - własności podstawowych figur planimetrycznych Odległość punktu od prostej. Odległość punktu od figury niepustej – długość promienia największego otoczenia kołowego

tego punktu wewnątrz którego nie ma punktów tej figury. Gdy otoczenie takie nie istnieje,

odległość jest zerem.

Odległość punktu od prostej równa się odległości tego punktu od jego rzutu prostokątnego na tę

prostą.

Położenie prostej m względem okręgu o(A,r).

m jest styczną do o(A,r) ⇔ odl. A od m = r,

m jest sieczną o(A,r) ⇔ odl. A od m < r,

m jest zewnętrzną dla o(A,r) ⇔ odl. A od m > r.

Styczna do okręgu (tzn. prosta mająca z nim dokładnie jeden punkt wspólny) jest prostopadła do

promienia łączącego punkt styczności ze środkiem okręgu.

Dwa okręgi. Jeśli okręgi o(A,a) i o(B,b) są różne i a ≥ b, to

o(A,a) i o(B,b) są wzajemnie zewnętrzne ⇔ AB > a + b,

o(A,a) i o(B,b) są zewnętrznie styczne ⇔ AB = a + b,

o(A,a) i o(B,b) przecinają się ⇔ a - b < AB < a + b,

o(A,a) i o(B,b) są wewnętrznie styczne ⇔ a - b = AB,

o(B,b) ⊂ k(A,a) ⇔ a - b > AB.

Związki miarowe w trójkącie prostokątnym.

Jeśli AC⊥CB i CD⊥AB , to a2 = DBc ⋅ , sinα=

c

a, cosα=

c

b, tgα=

b

a, ctgα=

a

b, b

2 = ADc ⋅ ,

a= α⋅ sinc = α⋅ tgb , h2 = DBAD ⋅ , b= α⋅ cosc = α⋅ ctga , c

2 = a

2+b

2 (tw. Pitagorasa), c=

αsin

a=αcos

b.

Związki miarowe w dowolnym trójkącie.

Wzór sinusów: r2sin

c

sin

b

sin

a =γ=β=α , gdzie r – długość promienia okręgu opisanego na ∆ABC.

Wzór cosinusów: a2 = b

2 + c

2 - 2bc cosα.

Symetralne wszystkich boków trójkąta przecinają się w jednym punkcie O, który jest środkiem

okręgu przechodzącego przez punkty A, B, C, czyli okręgu opisanego na tym trójkącie.

Długość promienia opisanego na trójkącie r =S4

abc, gdzie S jest polem trójkąta;

Dwusieczne wszystkich kątów wewnętrznych trójkąta przecinają się w jednym punkcie, który

jest środkiem okręgu stycznego do wszystkich boków trójkąta, czyli okręgu wpisanego w trójkąt.

Długość promienia okręgu wpisanego w trójkąt p

S=ρ , gdzie S – pole, p – połowa obwodu trójkąta.

Odcinek łączący środki dwu boków trójkąta jest równoległy do trzeciego boku i równy jego

połowie.

Page 19: MATERIAŁY POMOCNICZE DO MATURY Z MATEMATYKIzspradzyn.internetdsl.pl/matura/matematyka---wzory.pdf · 4 3. Funkcja kwadratowa. Funkcją kwadratową ( trójmianem kwadratowym ) nazywamy

19

16. Planimetria - własności podstawowych figur planimetrycznych cd. Najważniejsze wiadomości o wielokątach.

Czworokąt – wielokąt o czterech bokach.

Suma miar kątów wewnętrznych dowolnego czworokąta jest równa 360O.

Trapez – czworokąt mający przynajmniej dwa boki równoległe.

Trapez równoramienny – trapez mający dwa boki przeciwległe nierównoległe i równe.

Jeżeli w trapezie dwa przeciwległe boki nie są równoległe, to

1. suma kątów wewnętrznych leżących przy każdym z tych boków jest kątem

półpełnym,

2. odcinek łączący środki tych boków jest równoległy do podstaw (tzn. boków

równoległych), a jego długość równa się połowie sumy długości obu podstaw.

W trapezie równoramiennym kąty przy każdej podstawie są przystające.

Trapez równoramienny ma jedną oś symetrii.

Czworokąt wpisany w okrąg i czworokąt opisany w kręgu. Czworokąt wypukły można wpisać w krąg ⇔ sumy miar kątów przeciwległych w tym czworokącie

są równe(każda z nich jest równa 180o).

Czworokąt wypukły można opisać na kręgu ⇔ sumy długości boków przeciwległych w tym

czworokącie są równe.

Odcinki, proste i kąty w związku z okręgiem Kąt między cięciwą i styczną

Kąt ostry między cięciwą i styczną przechodzą przez koniec cięciwy jest równy połowie kąta

środkowego opowiadającego cięciwie.

Kąt środkowy i kąty wpisane oparte na tym samym łuku

Wszystkie kąty wpisane okrąg i oparte na tym samym łuku są równe każdy z nich jest równy

połowie kąta środkowego opartego na tym łuku

Kąt wpisany w półokrąg (oparty na średnicy) jest prosty.

Page 20: MATERIAŁY POMOCNICZE DO MATURY Z MATEMATYKIzspradzyn.internetdsl.pl/matura/matematyka---wzory.pdf · 4 3. Funkcja kwadratowa. Funkcją kwadratową ( trójmianem kwadratowym ) nazywamy

20

17. Rachunek prawdopodobieństwa Kombinatoryka Permutacje – każdy n - wyrazowy ciąg utworzony ze wszystkich elementów n elementowego

zbioru. P = n!

Kombinacje – każdy k - elementowy podzbiór n - elementowego zbioru. )!kn(!k

!n

k

nCk

n −=

=

Wariacje bez powtórzeń – każdy k - wyrazowy ciąg utworzony z różnych elementów n -

elementowego zbioru. )!kn(

!nVk

n−

=

Wariacje z powtórzeniami – każdy k - wyrazowy ciąg utworzony z elementów n - elementowego

zbioru. kkn nW =

Własności prawdopodobieństwa P(A) ≥ 0, P(∅) = 0, P(Ω) = 1,

jeżeli A ⊂ B to P(A) ≤ P(B), dla każdego A ⊂ Ω jest P(A) ≤1,

P(A’) = 1- P(A), P(A∪B) = P(A) + P(B) – P(A∩B).

Klasyczna definicja prawdopodobieństwa

Jeżeli wszystkie zdarzenia elementarne są jednakowo prawdopodobne to prawdopodobieństwo

każdego zdarzenia A jest ilorazem liczby zdarzeń sprzyjających temu zdarzeniu przez liczbę

wszystkich zdarzeń elementarnych. P(A) = ΩA

,

gdzie A - liczba zdarzeń sprzyjających zdarzeniu A, Ω - liczba wszystkich zdarzeń

elementarnych.

Prawdopodobieństwo warunkowe Prawdopodobieństwo zdarzenia A pod warunkiem zajścia zdarzenia B jest to liczba

P(A / B) = )B(P

)BA(P ∩

Prawdopodobieństwo całkowite ( zupełne ) Jeśli B1, B2, ... ,Bn są zdarzeniami wyłączającymi się parami oraz ich suma jest zdarzeniem

pewnym, to dla dowolnego zdarzenia A zachodzi wzór:

P(A) = P(A / B1) ⋅ P(B1) + P(A / B2) ⋅ P(B2) + ... + P(A / Bn) ⋅ P(Bn)

Niezależność zdarzeń Zdarzenia A i B nazywamy niezależnymi, jeżeli P(A∩B) = P(A) ⋅ P(B).

W przeciwnym przypadku mówimy, że zdarzenia A i B są zależne.

Schemat Bernoulliego – ciąg powtórzeń tego samego doświadczenia

Prawdopodobieństwo otrzymania dokładnie k sukcesów w n próbach Bernoulliego wynosi:

Pn(k) =

k

n ⋅pk⋅qn-k,

gdzie p – prawdopodobieństwo sukcesu, q = 1- p - prawdopodobieństwo porażki, k = 0, 1, ... ,n.

Page 21: MATERIAŁY POMOCNICZE DO MATURY Z MATEMATYKIzspradzyn.internetdsl.pl/matura/matematyka---wzory.pdf · 4 3. Funkcja kwadratowa. Funkcją kwadratową ( trójmianem kwadratowym ) nazywamy

21

Page 22: MATERIAŁY POMOCNICZE DO MATURY Z MATEMATYKIzspradzyn.internetdsl.pl/matura/matematyka---wzory.pdf · 4 3. Funkcja kwadratowa. Funkcją kwadratową ( trójmianem kwadratowym ) nazywamy

22

S P I S T R E Ś C I

1. ZBIORY. DZIAŁANIA NA ZBIORACH. 2

2. UKŁADY RÓWNAŃ I NIERÓWNOŚCI. 3

3. FUNKCJA KWADRATOWA. 4

4. WIELOMIANY 5

5. FUNKCJA WYKŁADNICZA I LOGARYTMICZNA 6

6. FUNKCJE TRYGONOMETRYCZNE 7

7. FUNKCJE WYMIERNE. RÓWNANIA I NIERÓWNOŚCI WYMIERNE. 8

8. CIĄGI 9

9. CIĄGI ARYTMETYCZNY I GEOMETRYCZNY 10

10. GRANICA FUNKCJI. FUNKCJE CIĄGŁE. 11

11. POCHODNA FUNKCJI I JEJ ZASTOSOWANIA 12

12. BADANIE FUNKCJI 13

12. BADANIE FUNKCJI CD. 14

13. FUNKCJA HOMOGRAFICZNA 15

14. GEOMETRIA ANALITYCZNA – WEKTORY, PROSTE 16

15. GEOMETRIA ANALITYCZNA – KRZYWE STOPNIA DRUGIEGO 17

16. PLANIMETRIA - WŁASNOŚCI PODSTAWOWYCH FIGUR PLANIMETRYCZNYCH 18

16. PLANIMETRIA - WŁASNOŚCI PODSTAWOWYCH FIGUR PLANIMETRYCZNYCH CD. 19

17. RACHUNEK PRAWDOPODOBIEŃSTWA 20