FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization...

35
ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego FACULTY OF ELECTRICAL ENGINEERING RENEWABLE ENERGY SYSTEMS II Level MSc (4 semesters, 120 ECTS) PROGRAM 4 SEMESTERS MSc Entry requirements: Diploma of the I level studies in Electrical Engineering or related fields candidates with the B.Sc./B.Eng. diploma from EU/EFTA and non- EU countries (preferably B.Sc. in electrical engineering or related fields) graduates of B.Sc./B.Eng. studies in Poland students registered at UMD, Germany (DD option) Linguistic demands students and alumni of WUT English B1E level exam passed EU and non-EU candidates TOEFL (550 points) or IELTS (6 points) language certificate Completed: Master’s Thesis, Final Examination

Transcript of FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization...

Page 1: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

Projekt współfinansowany ze środków Unii Europejskiej w ramach

Europejskiego Funduszu Społecznego

FACULTY OF ELECTRICAL ENGINEERING

RENEWABLE ENERGY SYSTEMS

II Level – MSc (4 semesters, 120 ECTS)

PROGRAM

4 SEMESTERS

MSc

Entry requirements:

Diploma of the I level studies in Electrical

Engineering or related fields

candidates with the B.Sc./B.Eng. diploma from EU/EFTA and non-EU countries (preferably B.Sc. in electrical engineering or related fields)

graduates of B.Sc./B.Eng. studies in Poland

students registered at UMD, Germany (DD option)

Linguistic demands

students and alumni of WUT –

English B1E level exam passed

EU and non-EU candidates – TOEFL (550 points) or IELTS (6 points) language certificate

Completed:

Master’s Thesis,

Final Examination

Page 2: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

Projekt współfinansowany ze środków Unii Europejskiej w ramach

Europejskiego Funduszu Społecznego

Possible extension:

Studies of the III level (PhD)

Graduate:

The graduates with good perspectives of

application of the obtained knowledge in

power and energy systems, both at the

consumer and the generation side. They

will be able to play the role of a team

leader and organize and run research

debates. They will acquire the experience

necessary for professional career at

research units, industry and at

universities and colleges. They will

possess well above standard skills in

communication (technical English).

Page 3: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

Projekt współfinansowany ze środków Unii Europejskiej w ramach

Europejskiego Funduszu Społecznego

Structure of the program (credits)

Semester 1 Semester 2 Semester 3 Semester 4

1

2 BC

3

4 BC

5 AC AdR

6 BC

7

8

9

10

11

12

13

14 AC

15

16

17

18

19

20 AC

Page 4: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

Projekt współfinansowany ze środków Unii Europejskiej w ramach

Europejskiego Funduszu Społecznego

21

22

23 AdR AdR MT

24 FE

25

26

27

28

29 FL

30

BC – Basic Courses;

FL (Humanities, Foreign Language)

– Nontechnical courses;

AC – Advanced Courses;

AdR – Advanced Courses in Renewable Energy Systems;

MT – Master Thesis;

FE – Final Exam;

Page 5: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

Projekt współfinansowany ze środków Unii Europejskiej w ramach

Europejskiego Funduszu Społecznego

PLAN OF STUDIES

1st YEAR, SEMESTER 1

Obligatory courses:

No. Code Subject/Module Contact hours/week

CHS TSW ECTS Form of

Assessment L T lab p s

1. MAP9974 Statistics and Decision

Methods 2 1 0 0 0 3 120 4 (3,1)

T

2. ELR1310 Numerical and

Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T

3. ELR3256 Power Electronics 2 0 1 0 0 3 90 3 (2,1) T

4. ELR2109 Power System Faults (E) 2 0 0 1 0 3 180 6 (4,2) E

5. ELR3214 Dynamics and Control of

AC/DC Drives (E) 2 0 1 1 0 4 180 6 (4,1,1) E

6. ESN1500

Advanced Technology in

Electrical Power

Generation

2 1 0 1 0 4 150 5 (3,1,1) T

Selected courses:

No. Code Subject/Module Contact hours/week

CHS TSW ECTS Form of

Assessment L T lab p s

1.

Selected courses

(humanities/language) 0 4 0 0 0 4 90 3 E

TOTAL 11 6 3 3 0 23 900 30

Selected courses (humanities/language)

No. Code Subject/Module Contact hours/week

CHS TSW ECTS Form of

Assessment L T lab p s

1. Foreign Language A2 4 4 90 3 E

Page 6: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

Projekt współfinansowany ze środków Unii Europejskiej w ramach

Europejskiego Funduszu Społecznego

1st YEAR, SEMESTER 2

Obligatory courses:

No. Code Subject/Module Contact hours/week

CHS TSW ECTS Form of

Assessment L T lab p s

1. ELR1311

Selected Problems of

Circuit Theory (E) 2 1 0 0 0 3 150 5 (3,2) E

2. ELR2541

Integration of distributed

resources in power

systems

2 0 1 0 0 3 120 4 (3,1) T

3. ELR2341 Energy Storage Systems 1 0 0 1 0 2 90 3 (2,1) T

4. ELR2345

Renewable Energy

Sources 2 0 0 0 1 3 90 4(3,1) E

5. ELR3151

Electrical Generators

Driven by Renewable

Energy Sources

1 0 0 0 1 2 90 3 (2,1) T

6. ELR2141

Protection and Control of

Distributed Energy

Sources (E)

1 0 1 0 1 3 150 5 (3,1,1) E

7. ELR2343 Water Power Plants 2 0 0 0 1 3 90 3 (2,1) T

8. ELR3352

Analogue and Digital

Measurement Systems 2 0 1 0 0 3 90 3 (2,1) T

9. ELR5144Q

Internship (Diploma

placement) 4 weeks 120 4 T

TOTAL 13 1 3 1 4 22 1020 34

2nd YEAR, SEMESTER 3

Obligatory courses:

No. Code Subject/Module Contact hours/week

CHS TSW ECTS Form of

Assessment L T lab p s

1. ELR2542

Legal Regulations And

Investments in Power

Systems with Distributed

Energy Sources

2 0 1 0 0 3 90 3 (2,1) T

Page 7: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

Projekt współfinansowany ze środków Unii Europejskiej w ramach

Europejskiego Funduszu Społecznego

2. ELR3312

Electromagnetic

Compatibility 2 0 1 0 1 4 120 4 (2,1,1) T

3. ELR1323 Photovoltaic Cells (E) 1 0 1 0 0 2 90 3 (2,1) E

4. ELR3153

Modelling of Electrical

Machines 1 0 0 2 0 3 90 3 (2,1) T

5. ELR1324

Industrial Ecology –

Selected Issues (E) 1 0 0 0 1 2 90 3 (2,1) E

6. ELR5147P Diploma Project I 0 0 0 6 0 6 270 9 (9) Z

(next page)

Elective courses:

No. Code Subject/Module Contact hours/week

CHS TSW ECTS Form of

Assessment L T lab p s

1.

Elective courses (min. 2

courses) - next page

5 150 5

TOTAL 7 0 3 8 2 25 900 30

Page 8: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

2nd YEAR, SEMESTER 3

Elective courses:

No. Code Subject/Module Contact hours/week CHS TSW ECTS Form of

Assessment L T lab p s

1. ELR2543

Market Mechanisms In

Power Systems with

Distributed Energy

Sources

1 0 0 0 1 2 90 3 (2,1) T

2. ELR3257

Control of Power

Electronic Converters 1 0 0 1 0 2 90 3 (2,1) T

3. ELR1312

International Law of

Intellectual Property 1 0 0 0 0 1 60 2 (2) T

4. ELR1313

Power Quality

Assessment 2 0 1 0 0 3 90 3 (2,1)

T

5. ELR2113 Digital Control Systems 1 0 1 0 0 2 60 2 (1,1) T

6. ELR1314

Advanced Signal

Processing Methods 2 1 0 0 0 3 90 3 (2,1)

T

7. ELR2114 Logic Design 1 0 1 0 0 2 60 2 (1,1) T

8. ELR1111 Lightning Protection 2 0 0 0 0 2 60 2 (2) T

9. ELR3215 Fuzzy Logic Control 1 0 1 0 0 2 60 2 (1,1) T

10. ELR2112

Artificial intelligence

techniques 2 0 0 0 0 2 90 3 (3) T

11. ELR1315 Signals and Systems 2 1 0 0 0 3 90 3 (2,1) T

12. ELR1215

Visual Engineering

Environments and

Graphical Languages

1 0 2 0 0 3 90 3 (1,2)

T

13. ELR2115

Simulation and Analysis

of Power System

Transients

1 0 2 0 0 3 90 3 (1,2) T

14. ELR2520 Power System modelling 2 0 0 1 0 3 90 3 (2,1) T

15. ELR2521

Computer Control of

Power System 2 0 0 0 1 3 90 3 (2,1)

T

16. ELR2241

PLC and Wireless

Communications For

Monitoring and

Metering

2 0 0 0 1 3 90 3 (2,1) T

Page 9: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

17. ELR1325

Measurement Systems

and Teleinformatics in

Electrical Engineering

1 0 1 0 0 2 60 2 (1,1) T

2nd YEAR, SEMESTER 4

Obligatory courses:

No. Code Subject/Module Contact hours/week

CHS TSW ECTS Form of

Assessment L T lab p s

1. ELR5148P Diploma Project II 6 6h 270 9 T

2. ELR5149S Diploma Seminar 2 2h 90 3 T

3. ELR5150D Master Thesis (E) 12 12h 540 18 E

TOTAL 0 0 0 18 2 20 900 30

L T lab p s

L – lecture, T – tutorials, lab – laboratory, p – project, s – seminar,

CHS TSW

CHS – Contact Hours (organized), TSW – Total Student Workload (hours), E – Exam, T – Test, CW – Course

Work

Page 10: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

Description of the courses

1st YEAR, SEMESTER 1

MAP9974 STATISTICS AND DECISION METHODS

Language: English Course: Basic/Advanced

Year (I), semester (1) Level: II Obligatory/Optional

Prerequisits: Applied Statistics Teaching: Traditional/Distance L.

Lecturer: Krzysztof Szajowski, PhD, DSc, Associate Professor

Institute of Mathematics and Computer Science

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 30 15

Exam / Course work/T: Test Test

ECTS 3 1

Workload (h) 90 30

Outcome: Students will become acquainted with basic notions and theorems of mathematical

analysis (algebra, statistics) and prepared to mathematical methods in technological problems.

Content: This is an introductory statistics course for realization of calculating, which assists

statistical decisions. The topics to be covered include data organization, data summaries, basic

statistical inference, selected simple statistical methods and results interpretation. The main topics

are: parametric and non-parametric tests, analysis of variance, linear regression, discrete data

analysis.

Literature:

1. J. Koronacki, J. Mielniczuk, Statystyka dla studentów kierunków technicznych i

przyrodniczych, WNT Warszawa 2001.

2. W. N. Venables, B. D. Ripley, Modern Applied Statistics with S-Plus, Springer-Verlag New

York 1997.

3. Longhow Lam, An Introduction to S-Plus for windows, CAN diensten, Amsterdam 1999.

4. B. Everitt, A Handbook of Statistical Analysis Using S-PLUS, Chapman and Hall, London 1994.

ELR3214 DYNAMICS AND CONTROL OF DC AND AC DRIVES

Language: English Course: Basic/Advanced

Year (I), semester (1) Level: II Obligatory/Optional

Prerequisites: Control Theory-basics, Electrical Drives and Power

Electronics Teaching: Traditional/Distance L.

Lecturer: Prof. Teresa Orłowska-Kowalska, PhD, DSc

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 30 15 15

Exam / Course work: Exam Course work

ECTS 4 1 1

Workload (h) 120 30 30

Outcome: Students will gain knowledge of control methods DC and AC motor drives; problems of

Page 11: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

sensorless drives, nonlinear controllers applications in electrical drives.

Content: Basics of control system synthesis problems for electrical drives. Control quality indexes

for electrical motors, static and dynamical optimization of electrical drives. Torque control

structures; adjustment criteria for linear controllers. Torque and speed control structures of

electrical drives; examples of technical realizations in DC and AC drives. Scalar and vector control

methods in AC drives with induction and permanent magnet synchronous motors. Field oriented

control and direct torque control of AC motors. State variables estimation for AC motor drives.

Electrical drives with microprocessor control. Artificial intelligence methods in electrical drives. In

laboratory tasks models and industrial solutions of automated electrical drives are demonstrated

and tested.

Literature:

1. Kaźmierkowski M.P., Tunia H., Automatic Control of Converter-fed Drives, Elsevier-PWN,

1994.

2. Orlowska-Kowalska T., Bezczujnikowe układy napędowe z silnikami indukcyjnymi, Oficyna

Wydawnicza P.Wr., Wrocław, 2003.

ELR3256 POWER ELECTRONICS

Language: English Course: Basic/Advanced

Year (I), semester (1) Level: II Obligatory/Optional

Prerequisites: Electronics Teaching: Traditional supporting

e-learning /Distance L.

Lecturer: Zbigniew Załoga, PhD

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 30 15

Exam / Course work/T: Course work Course work

ECTS 2 1

Workload (h) 60 30

Outcome: Intensifying theoretical and practical knowledge of power electronics systems.

Content: Contains: semiconductor power switchers: SCR, TRIAC and BJT, MOSFET, IGBT.

Complementary components and systems. Converters: rectifiers, AC-controllers, choppers,

inverters. Common application of converters, also for renewable energy sources systems.

Literature:

1. N. Mohan, T. M.Undeland, W.P. Robbins, Power Electronics. Converters, Applications, Design,

John Wiley & Sons, Inc. 1995

2. A.M. Trzynadlowski, Introduction to Modern Power Electronics, John Wiley & Sons, Inc. 1998

ELR2109 POWER SYSTEM FAULTS

Language: English Course: Basic/Advanced

Year (I), semester (1) Level: II Obligatory/Optional

Prerequisites: Circuit Theory Teaching: Traditional/Distance L.

Lecturer: Prof. Jan Iżykowski, PhD, DSc

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 30 15

Page 12: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

Exam / Course work/T: Exam Course work

ECTS 4 2

Workload (h) 60 30

Outcome: Gaining some basic knowledge regarding power system faults and basic information on

the devices such as digital fault recorders and fault locators. Deep familiarization with different

problems of power system fault analysis.

Content: The course consists of a lecture and project. The lecture deals with different aspects of

power system faults. Fault causes and effects together with fault classification and analysis of

typical fault current wave-shape are delivered in the introduction. Then, the aims of fault

calculations and use of per units are specified. The methods used in fault analysis are described. In

particular it is focused on the symmetrical component method, for which equivalent diagrams of

power system components are described, and then symmetrical and unsymmetrical faults in

systems solidly grounded are analyzed. Ground faults in networks with: an isolated neutral point,

neutral point earthed by the compensation reactor and neutral point earthed by the resistor are

described. Reference of short-circuit calculations to the present standard is given. Basic

characteristic of the devices: digital fault recorder and digital fault locator are delivered. The main

issues relevant for transformation of fault currents and voltages by instrument transformers are

characterized. During the project students complete individual tasks aimed at deep familiarization

with the specific problems of power system fault analysis.

Literature:

1. J. D. Glover, M. Sarma: Power system analysis and design, PWS Publishing Company Boston,

second edition, 1994.

2. J. L. Blackburn: Symmetrical components for power systems engineering, Marcel Dekker, New

York 1993, Serie: Electrical Engineering and Electronics 85.

3. J-P. Barret, P. Bornard, B. Meyer: Power system simulation: Chapman and Hall, London 1997.

4. P. M. Anderson: Power system protection, IEEE Press, Power Engineering Series, New York

1999.

5. H. Ungrad, W. Winkler, A. Wiszniewski: Protection techniques in electrical energy systems,

Marcel Dekker Inc. New York, Basel, Hong Kong, 1995.

ELR1310 NUMERICAL AND OPTIMIZATION METHODS

Language: English Course: Basic/Advanced

Year (I), semester (1) Level: II Obligatory/Optional

Prerequisites: Mathematics and Matlab course Teaching: Traditional/Distance L.

Lecturer: Zbigniew Leonowicz, PhD

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 15 15

Exam / Course work/T: Test

Course work

(Report)

ECTS 2 1

Workload (h) 60 30

Outcome: Students will be able to optimize algorithms implementation for constrained and

unconstrained problems.

Page 13: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

Content: The course contains theoretical and practical aspects of solving optimization problems.

Optimization problem formulation, examples. Mathematical models. Unconstrained and

constrained problems. Solution of optimization problems: mathematical preliminaries, numerical

methods. Kuhn-Tucker conditions. Lagrangian duality. Selected algorithms for constrained

optimization. Linear programming, simplex method. Neural networks and Genetic algorithms for

optimization.

Literature:

1. E.K.P. Chong, S.H. Żak: An Introduction to Optimization, 2nd edition, New York, John Wiley,

2001.

2. J.F. Bonnans: Numerical optimization: theoretical and practical aspects, Springer-Verlag, 2003.

3. M. Asghar Bhatti: Practical Optimization Methods, Berlin, Springer-Verlag 2000.

ESN1500 ADVANCED TECHNOLOGY IN ELECTRICAL POWER GENERATION

Language: English Course: Basic/Advanced

Year (I), semester (1) Level: II Obligatory/Optional

Prerequisites: Thermodynamics Teaching:Traditional/Distance L.

Lecturer: Halina Kruczek, PhD, DSc, Associate Professor

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 30 15 15

Exam / Course work/T: Exam Test

Course work

(Report)

ECTS 3 1 1

Workload (h) 90 30 30

Outcome: Knowledge, skills and design bases in the field of energy conversion and advanced

power production system with new zero emission concept, nuclear resources.

Content: This course covers fundamentals of thermodynamics, chemistry, flow and transport

processes as applied to energy systems. The topics include analysis of energy conversion in

thermomechanical, thermochemical, processes in existing and future power systems, with

emphasis on efficiency, environmental impact and performance. Systems utilizing fossil fuels,

nuclear resources, over a range of sizes and scales are discussed. Applications include combustion,

hybrids, supercritical and combined cycles IGCC. Tutorials and the project supplement the

lecture.

Literature:

1. Fundamentals of Heat and Mass Transfer, Frank P. Incropera, David P. DeWitt, John Wiley &

Sons, 1996

2. Thermodynamics and heat power, Granet, Irving., Pearson Prentice Hall, cop. 2004.

3. Energy Hndbook, Robert Loftness, 1983.

4. Steam its generation and use, The Bacock &Wilcox Company a McDermott company ed. By J.B.

Kitto and S.C. Stultz ed. 41, 2005.

FOREIGN LANGUAGE A2

Language: Course: Basic/Advanced

Year (I), semester (1) Level: II Obligatory/Optional

Prerequisites: Teaching: Traditional/Distance L.

Page 14: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

Lecturer:

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h)

60

Exam / Course work/T: Exam

ECTS

3

Workload (h)

90

Page 15: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

1st YEAR, SEMESTER 2

ELR1311 SELECTED PROBLEMS OF CIRCUIT THEORY

Language: English Course: Basic/Advanced

Year (I), semester (2) Level: II Obligatory/Optional

Prerequisites: Mathematics and Differential Equations and Linear

Algebra and Basic Circuit Theory Teaching: Traditional/Distance L.

Lecturer: Zbigniew Leonowicz, PhD

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 30 15

Exam / Course work/T: Exam Test

ECTS 3 2

Workload (h) 90 60

Outcome: Students will be able to carry out synthesis of electrical circuits with the optimization

approach, knowledge of phenomena in nonlinear circuits, selected methods of analysis.

Content: The course deals with selected problems of Synthesis of Linear Circuits & Systems, as well

as Analysis of Nonlinear Electrical Circuits - theoretical and practical aspects of linear circuits

design based on different methods and requirements. Furthermore, the course discusses the aspects

of nonlinear circuits’ analysis and structures, with practical examples and exercises.

Literature:

1. L.A. Chua, C.A. Desoer, E.S. Kuh: Linear ad Nonlinear Circuits, New York : McGraw-Hill Book

Co., 1987.

2. H. Baher: Synthesis of Electrical Networks, New York: J. Wiley, 1984.

3. F. Kouril, K. Vrba.: Non-Linear And Parametric Circuits : Principles, Theory And Applications,

Chichester : Ellis Horwood, 1988.

ELR2541 INTEGRATION OF DISTRIBUTED RESOURCES IN POWER SYSTEMS

Language: English Course: Basic/Advanced

Year (I), semester (2) Level: II Obligatory/Optional

Prerequisites: Electrical Power System, Power system faults, Power

system protection, Energy Production Teaching: Traditional/Distance L.

Lecturer: Prof. Marian Sobierajski, PhD, DSc

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 30 15

Exam / Course work/T: Test Course work

ECTS 3 1

Workload (h) 90 30

Outcome: Familiarizing students with problems and technical aspects for integrating of distributed

energy resources in power systems.

Content: Classification of distributed energy resources (DER). Aimed level penetration of DER in

an electric power system. Wind generation. Modelling of DER. Schemes and points of connection of

distributed generation to a distribution system. Load flow and short circuit simulation in electric

power network with dispersed generation. An analysis of the impact of distributed generators on

Page 16: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

power load flow, short-circuit currents, voltage changes, power quality and protection of

distribution network. Technical requisites for producer connection to the public electric power

grids. The influence of DER on frequency regulation in electric power system. Autonomous

operation of distributed generators. Microgrids.

Literature:

1. Jenkins N., Allan R., Crossley P., Kirschen D., Strbac G.: Embeded Generation. Power &

Energy 2000.

2. Loi Lei Lai, Tze Fun Chan: Distributed Generation. 2007 John Wiley & Sons, Ltd.

ELR2341 ENERGY STORAGE SYSTEMS

Language: English Course: Basic/Advanced

Year (I), semester (2) Level: II Obligatory/Optional

Prerequisites: Electrical devices Teaching: Traditional/Distance L.

Lecturer: Kazimierz Herlender, PhD

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 30 15

Exam / Course work/T: Test

Course work

(Project

documentation)

ECTS 3 1

Workload (h) 90 30

Outcome: Students will know different kinds of energy storage systems and basics of battery

energy storage design.

Content: Classification and main characteristics of different kinds of electrical energy storage in a

power system, such as: pumped hydro energy storage, flywheel systems, compresses air systems

(CAES), fuel cell, Superconducting Magnetic Energy Storage (SMES), ultra capacitors and Battery

Energy Storage (BES),. Comparing the main parameters of this energy storage and given possible

areas of their applications.

Literature:

1. Batterie-Energiespeicher in der Elektrizitätsversorgung - Kompendium, H.-J. Haubrich

[Hrsg], Verlag Mainz, Aachen 1996

2. Proceedings of EU-Project ICOP-DISS-2140-96, Distributed Energy Storage for Power Systems,

Pod red. Feser K., Styczyński Z. A., Verlag Mainz, Aachen 1998.

3. Markiewicz H. Urządzenia elektroenergetyczne. WNT, Warszawa 2001.

ELR2345 RENEWABLE ENERGY SOURCES

Language: English Course: Basic/Advanced

Year (I), semester (2) Level: II Obligatory/Optional

Prerequisites: Applied Statistics Teaching: Traditional/Distance L.

Lecturer: Prof. Zbigniew Styczyński, PhD, DSc

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 30 15

Page 17: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

Exam / Course work/T: Exam Course work

ECTS 3 1

Workload (h) 90 30

Outcome: Understanding of problems concerning renewable energy sources.

Content: The course deals with the basic problems and practical aspects of renewable energy

sources. After an introduction and general theoretical basis, the following problems are presented:

wind energy, solar energy, biomass energy, geothermal energy and wave energy. Presentations

contain: introduction, scientific principles of work, energy conversion, advantages and

disadvantages, technology, applications, examples of energy projects, economics, environmental

impacts and benefits. The seminar supplements the course.

Literature:

1. J. Twidell, T. Weir: Renewable Energy Resources, Seventh Edition, Spon Press, London, 2005.

2. T. Burton, D. Sharpe, N. Jenkins, E. Bossanyi: Wind Energy Handbook, John Wiley and Sons

Ltd. Chichester, England, 2001.

3. Luque, S. Hegedus: Handbook of photovoltaic science and engineering, John Wiley and Sons

Ltd. Chichester, England, 2003.

ELR3151 ELECTRICAL GENERATORS DRIVEN BY RENEWABLE ENERGY SOURCES

Language: English Course: Basic/Advanced

Year (I), semester (2) Level: II Obligatory/Optional

Prerequisites: Teaching: Traditional/Distance L.

Lecturer: Jan Zawilak, PhD, DSc, Associate Professor

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 15 15

Exam / Course work/T: Test Course work

ECTS 2 1

Workload (h) 60 30

Outcome: Students will be provided with some knowledge of working principles and applications

of generators used in systems with renewable energy sources.

Content: Fundamentals of construction principles and operating characteristics of generators

driven with renewable energy sources, i.e. an induction generator with a squirrel cage or slip-rings,

cylindrical and disc synchronous generators with permanent magnet or wound excitation.

Literature:

1. Ion Boldea, Synchronous Generators (Electric Power Engineering) 2. Gieras J. F., Wing M.: Permanent magnet motor technology, Marcel Dekker, Inc. New York,

Basel 2002 3. L. H. Hansen, L. Helle, F. Blaabjerg, E. Ritchie, S. MunkNielsen, H. Bindner, P. Sørensen and B.

Bak-Jensen Conceptual survey of Generators and Power Electronics for Wind Turbines

ELR2141 PROTECTION AND CONTROL OF DISTRIBUTED ENERGY SOURCES (E)

Language: English Course: Basic/Advanced

Year (I), semester (2) Level: II Obligatory/Optional

Prerequisites: Power system faults Teaching: Traditional/Distance L.

Lecturer: Prof. Eugeniusz Rosołowski, PhD, DSc

Page 18: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 15 15 15

Exam / Course work/T: Exam Course work

Course work

ECTS 3 1 1

Workload (h) 90 30 30

Outcome: Students will be provided with descriptions of protection relaying techniques applied in

distributed generation networks.

Content: The course consists of a lecture, lab and of a seminar. All these forms deal with the

following problems: The purpose of power system protection. Basic protection criteria and main

characteristics. Distributed generation: a overview of applied energy sources. Line, transformer and

generator protection. Interconnection systems: solutions and requirements. Loss of the main

protection: applied criteria for islanding detection. Photovoltaic source protection. In this course

the focus is on the issues relating to the power system protection including both the network

protection and the protection of distributed generation.

Literature:

1. Jenkins N. Allan R., Crossley P., Kirschen D., and Strbacet G., Embedded generation. The Institution of Electrical Engineers, London 2000.

2. Anderson P.M., Power System Protection, McGraw-Hill, IEEE Press, 1999

3. Bergen A.R., Vittal V., Power systems analysis. Prentice Hall, Upper Saddle River, N.J., 2000. 4. Patel M.R., Wind and Solar Power Systems. CRC Press, Boca Raton 1999.

ELR2343 WATER POWER PLANTS

Language: English Course: Basic/Advanced

Year (I), semester (2) Level: II Obligatory/Optional

Prerequisites: Electrical devices Teaching: Traditional/Distance L.

Lecturer: Kazimierz Herlender, PhD

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 30 15

Exam / Course work/T:: Course work

Course work

ECTS 2 1

Workload (h) 60 30

Outcome: Gaining some basic knowledge of design, building and exploiting hydropower stations.

Content: The scope of the obeys problems of designing, building and exploiting hydropower

stations, including estimation hydrology potential of water, construction of basic hydrotechnical

and electrical equipment, classification of hydro plants and types of turbines, basic problems of

hydro plants automation and control (including control of turbines and generators); problems of

designing small hydroplants – law, procedures, feasibility studies.

Literature:

1. Bobrowicz Władysław, Small Hydro Power – Investor Guide Leonardo Energy, Utilisation Guide Section 8 – Distributed Generation, Autumn 2006

2. Harvey A., Micro-hydro power, 2004, 3. Allan. Undershot Water Wheel. 2008 4. Shannon, R. Water Wheel Engineering. 1997

Page 19: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

5. Pacey, A. Technology in World Civilization: A Thousand-year History, 1997

ELR3352 ANALOGUE AND DIGITAL MEASUREMENT SYSTEMS

Language: English Course: Basic/Advanced

Year (I), semester (2) Level: II Obligatory/Optional

Prerequisites: Basis of electrical engineering, Basis of electronics,

electrical measurements Teaching: Traditional/Distance L.

Lecturer: Daniel Dusza, PhD

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 30 15

Exam / Course work/T:: Test Course work

ECTS 2 1

Workload (h) 60 30

Outcome: Getting knowledge and skills in the range of analogue and digital measuring system

projecting.

Content: Functional diagrams of measuring systems uses in renewable energy sources; converting

signals – sensor types, analogue and digital blocks of transducers used in renewable energy

measurements; principle of construction of measuring system to measure: wind speed, wave

energy, passive solar building energy, temperatures, noises, flows, vibrations; control and

processing equipment, programmable instruments; evolution of renewable energy measuring

systems.

Literature:

1. Clayton G., Winder S.: Operational amplifiers, Newnes, Oxford, 2003. 2. Horowitz P., Hill W., The art of electronics, Cambridge University Press, New York, 2007. 3. Jung W., IC Op Amp cookbook, Prentce-Hall, PTR, 1999. 4. Jung W., Op Amp applications, Handbook, Elsevier/Newnes, Oxford 2006. 5. Lyons R.G., Understanding digital signal processing, Addison Wesley Longman, 1997.

2nd YEAR, SEMESTER 3

ELR2542 LEGAL REGULATIONS AND INVESTMENTS IN POWER SYSTEMS WITH

DISTRIBUTED ENERGY SOURCES

Language: English Course: Basic/Advanced

Year (II), semester (3) Level: II Obligatory/Optional

Prerequisites: Power Systems Teaching: Traditional/Distance L.

Lecturer: Prof. Artur Wilczyński, PhD, DSc

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 15 15

Exam / Course work/T: Course work Course work

(Presentation)

ECTS 1 1

Page 20: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

Workload (h) 30 30

Outcome: Obtaining knowledge in the field: national and European Union law, technical and

economical conditions for construction of technological systems using renewable sources in

energy supply as well as principles of an investment project for distributed and dispersed

generation.

Content: The fundamentals of legal regulations in the field of renewable energy sources usage in

power systems, European Union and national legal documents in the field of renewable energy

sources, principles for well-balanced expansion. Renewable energy sources on electricity and heat

markets as well as an investment process in distributed and dispersed power systems with

application of renewable energy sources (conception, formal and legal requirements, financing,

realization) are also discussed.

Literature: 1. G. Boyle: Renewable Energy – Power for a sustainable future, Second Edition, Oxford University

Press Inc. New York, 2004

2. T. Burton, D. Sharpe, N. Jenkins, E. Bossanyi: Wind Energy Handbook, John Wiley and Sons Ltd.

Chichester, England, 2001.

3. A. Luque, S. Hegedus: Handbook of photovoltaic science and engineering, John Wiley and Sons Ltd.

Chichester, England, 2003.

4. T. Markvart: Solar electricity, Second Edition, UNESCO, John Wiley and Sons Ltd. New York, 2000.

ELR3312 ELECTROMAGNETIC COMPATIBILITY

Language: English Course: Basic/Advanced

Year (II), semester (3) Level: II Obligatory/Optional

Prerequisites: Completed courses: Mathematics, Circuit Theory and

High Voltage Engineering Teaching: Traditional/Distance L.

Lecturer: Grzegorz Kosobudzki, PhD, Przemysław Janik PhD

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 30 15 15

Exam / Course work/T: Course work

Course work

(Report) Course work

ECTS 2 1 1

Workload (h) 60 30 30

Outcome: Acquainting students with practical aspects of EMC and power quality in power

delivery systems.

Content: The course contains the basic problems and practical aspects of electromagnetic

compatibility

Content: The course contains the basic problems and practical aspects of electromagnetic

compatibility EMC. The following problems are presented: electromagnetic disturbances caused by

lighting strikes and electrostatic discharges; EMC phenomena generated by converter fed drives;

methods of electrical and electronic equipment protection from overvoltages and overcurrents;

aspects of electromagnetic shielding; power quality parameters, requirements, standards; influence

Page 21: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

of power quality phenomena on equipment; non-linear devices influence on power quality;

disturbances mitigation techniques; harmonics reduction; measurements

Literature:

1. Hasse P.: Overvoltage protection of low voltage systems, TJ International, Padstown, 2000.

2. Pradas Kodali V.: Engineering Electromagnetic Compatibility Principles, Measurments and

Technology, IEEE Press, New York, 1996.

3. Dugan R. C., McGranaghan M. F., Beaty H. W.: Electrical Power Systems Quality, McGraw-

Hill, New York, USA, 1986.

ELR1323 PHOTOVOLTAIC CELLS (E)

Language: English Course: Basic/Advanced

Year (II), semester (3) Level: II Obligatory/Optional

Prerequisites: Power Systems Teaching: Traditional/Distance L.

Lecturer: Przemysław Janik, PhD

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 15 15

Exam / Course work/T: Exam

Course work

(Laboratory tasks

and problem

solutions)

ECTS 2 1

Workload (h) 60 30

Outcome: Students will be introduced with photovoltaic effect and the operation principles of

photovoltaic cells. They will be able to describe the fabrication technology of photovoltaic cells and

photovoltaic batteries, their characteristics and parameters; identify the effect of various factors on

the conversion efficiency of photovoltaic devices; explain construction and production steps of

photovoltaic modules; describe transformation and storage of electrical energy from photovoltaic

modules; discuss concentrating solar power systems constructions.

Content: An introduction to basic concepts and energy units. An identification of energy sources,

analysis of energy sources and their influence on the environment; Characterization of the solar

radiation and the properties of the earth’s atmosphere; description of the photovoltaic effect and

the basic physical models of solar cells. The review of technologies, the parameters and

characteristics of the photovoltaic cells; the description of factors affecting efficiency of

photovoltaic energy conversion; the description of construction and production steps for

photovoltaic modules, methods of energy storage and conversion.

Literature: 1. S.R. Wenham, M.A. Greek, M.E. Watt, R. Corkish,, Applied Photovoltaics, Earthscan, London 2009 2. J.D. Myers, Solar Applications In Industry and Commerce, Prentice-Hall, New Jersey 1984

3. V.D. Hunt , Handbook of Conservation nad Solar Energy, Van Nostrand Reinhold, New York 1982

ELR3153 MODELLING OF ELECTRICAL MACHINES

Language: English Course: Basic/Advanced

Year (II), semester (3) Level: II Obligatory/Optional

Page 22: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

Prerequisites: Completed basic courses of Engineering Graphics,

Informatics and Electrical Engineering

Teaching: Traditional with using

of multimedia /Distance L.

Lecturer: Krzysztof Makowski, PhD, DSc, Associate Professor

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 15 30

Exam / Course work/T: Course work Course work

ECTS 2 1

Workload (h) 60 30

Outcome: Students will learn some principles of present-day methods of electromagnetic

modelling of electrical machines.

Content: Mathematical grounds of electromagnetic field theory, electromagnetic quantities and

Maxwell’s equations. An outline of the finite element method (FEM) and its application to

magnetostatic and magnetodynamic linear and non-linear problems. Field-circuit equations of

electromechanical converters with regard to movement of moving parts of the converter.

Calculation methods of electromagnetic torque and power losses. General rules for field model

formulation of the converters and a presentation of some examples of modelling of

electromechanical converters by FEM.

Literature:

1. Di Barbra P., Savini A., Wiak S. : Field models in electricity and magnetism, Springer, 2008 2. Bolkowski S. i inni : Komputerowe metody analizy pola elektromagnetycznego, WNT,

Warszawa, 1993 3. Hameyer K., Belmans R.: Numrical modeling and design of electrical machines and devices,

WITT Press, Southampton, 1999 4. Lowther D.A., Silvester P.P.: Computer aided design in magnetics, Springer-Verlag, Berlin Heidelberg New

York Tokyo, 1986. 5. Silvester P.P., Ferrari R.L.: Finite elements for electrical engineers, Cambridge University Press,

Cambridge, 1983.

ELR1324 INDUSTRIAL ECOLOGY – SELECTED ISSUES (E)

Language: English Course: Basic/Advanced

Year (II), semester (3) Level: II Obligatory/Optional

Prerequisites: none Teaching: Traditional/Distance L.

Lecturer: Zbigniew Leonowicz, PhD

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 15 15

Exam / Course work/T: Exam Course work

(Presentation)

ECTS 2 1

Workload (h) 60 30

Outcome: Students will learn various aspects of industrial ecology. They will be able to analyze

and recognize problems related to waste reduction and modelling of industrial processes in

accordance with the principles of laws of nature.

Content: Students will learn the fundamentals of industrial ecology- the science of sustainability in

industrial and engineering problems. The aims of industrial ecology are: minimizing of energy and

Page 23: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

materials usage, ensuring acceptable quality of life, minimizing the ecological impact of human

activity & maintaining the economic viability of systems.

Literature: 1. Allenby B, Allenby R, Deanna J.: The Greening of Industrial Ecosystems, National Academy Press,

Washington, 1994

2. IEEE White Paper on Sustainable Development and Industrial Ecology, IEEE 1995

3. Frosch R.A., “Industrial Ecology: A Philosophical Introduction,” Proceedings of the National Academy

of Sciences, USA 89 (February 1992): 800–803

ELR5147P DIPLOMA PROJECT I

Language: English Course: Basic/Advanced

Year (II), semester (4) Level: II Obligatory/Optional

Teaching: Traditional/Distance L.

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 180

Exam / Course work/T: Course work

ECTS 9

Workload (h) 270

ELECTIVE COURSES (MIN. 2 COURSES)

ELR2543 MARKET MECHANISMS IN POWER SYSTEMS WITH DISTRIBUTED ENERGY

SOURCES

Language: English Course: Basic/Advanced

Year (II), semester (3) Level: II Obligatory/Optional

Prerequisites: Teaching: Traditional/Distance L.

Lecturer: Prof. Artur Wilczyński, , PhD, DSc

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 15 15

Exam / Course work/T: Course work Course work

ECTS 1 1

Workload (h) 30 30

Outcome: Fundamental institutional market recognition and infrastructural energy sector

regulation with regard to all realization options of generation, transmission, storage and

distribution processes and role of distributed sources including renewables.

Content: Specific features of energy sector. Evolution of structural forms - from vertical integration

to restructuring and liberalization. Market and regulation mechanisms. Institutional forms of the

energy market. State interventionism. Fusion and merger processes in the energy sector.

Infrastructural multienergy utilities. Financial relations and flows in the power sector. The

implementation of European energy policy issues : effectiveness, renewable energy sources, climate

change.

Literature:

1. Kowalska A, Wilczyoski A, Źródła rozproszone w systemie elektroenergetycznym: Wydawnictwo KAPRINT, Lublin 2007.

2. Malko J. Wilczyoski A., Rynki energii – działania marketingowe. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2006

Page 24: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

3. W. Joerss, M. Uyterlinde, P. Loeffler, P. E. Morthorst: Decentralised Power Generation in the Liberalised EU Energy Markets, Springer-Verlag Berlin Heidelberg, 2003.

4. B.Murray: Power Markets and Economics: Energy Costs, Trading, Emissions, John Wiley and Sons Ltd. Chichester, England, 2009.

5. , H. Yamin, Zuyi Li: Market Operations in Electric Power Systems: Forecasting, Scheduling, and Risk Management, John Wiley and Sons Ltd. New York, 2002.

ELR3257 CONTROL OF POWER ELECTRONIC CONVERTERS

Language: English Course: Basic/Advanced

Year (II), semester (3) Level: II Obligatory/Optional

Prerequisites: Power electronics Teaching: Traditional supported

e-learning /Distance L.

Lecturer: Zdzisław Załoga, PhD

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 15 15

Exam / Course work/T: Course work Course work

ECTS 2 1

Workload (h) 60 30

Outcome: Getting acquainted with control systems for power electronics systems

Content: Drivers for semicontrolled switches: SCRs, triacs. Drivers for fully controlled switches:

GTOs, BJTs, power MOSFETs, IGBTs. Triggering and phase control. Phase control systems for:

rectifiers, AC controllers, cycloconverters and control systems for choppers, inverters. PWM

techniques control systems. Common applications, also for renewable energy sources systems.

Literature:

1. N. Mohan, T. M. Undeland, W.P. Robbins, Power Electronics, Converters, Applications, Design,

John Wiley & Sons, Inc. 1995

2. A.M. Trzynadlowski, Introduction to Modern Power Electronics, John Wiley & Sons, Inc. 1998

ELR 1312 INTERNATIONAL LAW OF INTELLECTUAL PROPERTY

Language: English Course: Basic/Advanced

Year (II), semester (3) Level: II Obligatory/Optional

Prerequisites: none Teaching: Traditional/Distance L.

Lecturer: Zbigniew Leonowicz, PhD

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 15

Exam / Course work/T: Course work

ECTS 2

Workload (h) 60

Outcome: Students will learn various systems of the protection of intellectual property rights

(patents, trademarks, etc.) in the world and will also possess basic knowledge about the

International Law System as well as about the practical use of the protection systems based on

examples.

Content: The course deals with different aspects of the law of intellectual property (patents,

trademarks and others) from the practical point of view. The law systems of EU, USA, Japan,

Page 25: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

central European countries, Africa and Latin America are shortly presented and compared.

International conventions and the European Patent system are outlined. An emphasis is given to

the practical use of selected protection systems, basing on case studies and examples.

Literature:

1. M. Edenborough: Intellectual Property Law, London, Cavendish Publ., 1997.

2. WIPO Intellectual Property Handbook: Policy, Law and Use, WIPO Publication No.489 (E).

3. P. Goldstein: International Intellectual Property, Foundation Press, 2001.

ELR1313 POWER QUALITY ASSESSMENT

Language: English Course: Basic/Advanced

Year (II), semester (3) Level: II Obligatory/Optional

Prerequisites: Mathematics and Circuit Theory Teaching:Traditional/Distance L.

Lecturer: Przemyslaw Janik, PhD

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 30 15

Exam / Course work/T: Course work

Course work

(Report)

ECTS 2 1

Workload (h) 60 30

Outcome: Understanding of the basic phenomena and practical engineering aspects of power

quality assessment in power systems.

Content: The course contains the basic problems and practical aspects of power quality assessment

in power systems. Beginning with the general basis, the following problems will be presented:

classes of power quality problems, standards, interruptions, voltage sags, transient overvoltages,

harmonics, long duration voltage variations, flicker, power quality measurement, disturbances

mitigation methods, chosen algorithms for power quality assessment. A computer-based laboratory

supplements the course.

Literature:

1. Arrillaga J. Watson N. R.: Power System Quality Assessment, John Wiley & Sons, New York,

2000

2. Bollen M. H. J.: Understanding Power Quality Problems Voltage Sags and Interruptions, IEEE

Press, New York, USA, 2000.

3. Dugan R. C., McGranaghan M. F., Beaty H. W.: Electrical Power Systems Quality, McGraw-

Hill, New York, USA, 1986.

ELR2113 DIGITAL CONTROL SYSTEMS

Language: English Course: Basic/Advanced

Year (II), semester (3) Level: II Obligatory/Optional

Prerequisites: Completed courses: Fundamentals of Control

Engineering 1, 2 Teaching: Traditional/Distance L.

Lecturer: Marek Michalik, PhD, Mirosław Łukowicz, PhD

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 15 15

Page 26: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

Exam / Course work/T: Course work Course work

ECTS 1 1

Workload (h) 30 30

Outcome: Learning about fundamental topics related to the digital control algorithms design for

different types of digital controllers.

Content: Structure of digital control systems, A/C and D/C conversion, conditioning and digital

filtering of input signals. Direct Digital Control: PID digital regulators, robust digital regulators,

fuzzy control, state variable feedback compensation, digital control with state observers.

Literature:

1. Kuo B.J.: Digital Control Systems. Hold. Reinhard and Winston Inc. 1981.

2. Santina M.S., Stubberud A.R., Hostetter G.H.: Digital Contriol Systems. Oxford University

Press.1994.

3. Aufi R.: Digital Control Systems. Prentice Hall. 2004.

4. Isermann R.: Digital Control Systems. Springer-Verlag. 1997.

ELR1314 ADVANCED SIGNAL PROCESSING METHODS

Language: English Course: Basic/Advanced

Year (II), semester (3) Level: II Obligatory/Optional

Prerequisites: Mathematics and Linear Algebra and Complex Function

and Basic Circuit Theory Teaching: Traditional/Distance L.

Lecturer: Zbigniew Leonowicz, PhD

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 30 15

Exam / Course work/T: Test Test

ECTS 2 1

Workload (h) 60 30

Outcome: Acquainting students with contemporary advanced signal processing methods,

knowledge about the ideas of non-parametric and parametric estimation of signal parameters,

examples of the application in power systems engineering.

Content: The course introduces the bases of advanced signal processing methods in electrical

engineering. Introducing lectures provide the ideas of discrete representations of the continuous

signal with basic functions and the signal orthogonal projection. The next stage of the course

concerns continuous representations of deterministic signals. The introduced definitions allow

passing into the nonparametric time-frequency representations, then, following the time-scale

representations with wavelets. The backgrounds of statistical signal processing are introduced with

outlined parameter estimation, optimal filtering, linear modelling and estimation. Finally, various

methods of parametric spectrum estimation are outlined. Examples of the application in electrical

engineering are presented.

Literature:

1. S. Haykin, B. Van Veen – Signals and Systems, John Wiley & Sons, Inc., 1999.

2. S. M. Kay – Modern Spectral Estimation, Prentice Hall, Signal Processing Series, Englewood

Cliffs, 1988.

3. S. Qian, D. Chen – Joint Time-Frequency Analysis. Methods and Applications, Prentice Hall,

Upper Saddle River, 1996.

Page 27: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

4. D. F. Elliot – Handbook of Digital Signal Processing, Academic Press, Inc., 1987.

ELR2114 LOGIC DESIGN

Language: English Course: Basic/Advanced

Year (II), semester (3) Level: II Obligatory/Optional

Prerequisites: Completed course: Fundamentals of Electronics Teaching: Traditional/Distance L.

Lecturer: Prof. Jan Iżykowski, PhD, DSc

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 15 15

Exam / Course work/T: Course work Course work

ECTS 1 1

Workload (h) 30 30

Outcome: Gaining basic knowledge regarding combinatorial and sequential logic circuits

(automata). In particular, students will become familiar with: presenting the required operation of

the logic circuit, synthesis (design) and analysis of automata, implementation issues. Relating both

synthesis and analysis of the considered automata to practical cases of the automata application

allows students to acquire the skills relevant for self-designing of the automata.

Content: The course consists of a lecture and laboratory, both dealing with the problems listed

below. Boolean algebra and logic expressions. Methods of analysis and synthesis of combinatorial

and sequential logic circuits (automata). Combinatorial logic circuits - simplification, designing and

troubleshooting. Sequential automata: description and classification. Structure of Moore and Mealy

sequential automata. Sequential automata design with the method of consecutive switching tables.

Sequential automata design with the use of transition tables and output maps. The implementation

of automata. Examples of the automata design.

Literature:

1. Mano M. Morris, Digital design (second edition), Prentice-Hall Int., Inc., Englewood Cliffs,

New Jersey, 1991.

2. M. Morris Mano, C. R. Kime: Logic and computer design fundamentals, Pearson Prentice-hall

Int., 2004, 3rd ed.

3. Tocci R.J., Digital Systems. Principles and applications, Prentice-Hall Int., Inc., London, 1988.

ELR1111 LIGHTNING PROTECTION

Language: English Course: Basic/Advanced

Year (II), semester (3) Level: II Obligatory/Optional

Prerequisites: Mathematics, Electrotechnics fundamentals Teaching: Traditional/Distance L.

Lecturer: Krystian Chrzan, PhD

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 30

Exam / Course work/T: Test

ECTS 2

Workload (h) 60

Outcome: Acquiring knowledge of lightning physics and lightning protection

Content: Lightning protection provides information for the protection of buildings, electrical and

Page 28: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

electronic equipment and people from the effects produced by atmospheric discharges. The

importance of lightning protection has been increasing lately due to the miniaturization of

electronic elements and their over voltage susceptibility. The lightning protection could be

regarded now as a part of the electromagnetic compatibility. The lecture discusses the conventional

lightning protection, e.g. Franklin rod, potential equalization, surge arresters and non-conventional

lightning protection (early streamer emission terminals).

Literature:

1. Rakov V., Uman M. Lightning, physics and effects, Cambridge University Press 2005.

2. Horvath T., Understanding Lightning and Lightning Protection, Wiley 2006.

ELR3215 FUZZY LOGIC CONTROL

Language: English Course: Basic/Advanced

Year (II), semester (3) Level: II Obligatory/Optional

Prerequisites: Control Engineering and Programming in Matlab Teaching: Traditional/Distance L.

Lecturer: Krzysztof Szabat, PhD, DSc

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 15 15

Exam / Course work/T: Test Course work

ECTS 1 1

Workload (h) 30 30

Outcome: Acquiring knowledge of the fuzzy-control.

Content: The course aims to discuss thoroughly the influence of specific parameters on the fuzzy

model (the influence of membership functions, type of t-norm and s-norm, defuzzyfication

methods and rule base). Different types of fuzzy controllers are presented. The difference between

linear and fuzzy controllers is pointed out. Methods of design and tuning of fuzzy models are

presented, i.e. the application of genetic algorithms. Methods of the stability proof for systems with

fuzzy controllers are considered. Problems of industrial applications of the fuzzy control are

addressed.

Literature:

1. Michels K., Klawonn F., Kruse R., Nürnberger A., Fuzzy Control – Fundamentals, Stability and

Design of Fuzzy Controllers, Springer, 2006

ELR2112 ARTIFICIAL INTELLIGENCE TECHNIQUES

Language: English Course: Basic/Advanced

Year (II), semester (3) Level: II Obligatory/Optional

Prerequisites: Completed courses: Mathematics, Circuit Theory,

Fundamentals of Control Engineering Teaching: Traditional/Distance L.

Lecturer: Waldemar Rebizant, PhD, DSc, Associate Professor

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 30

Exam / Course work/T: Course work

ECTS 3

Workload (h) 90

Page 29: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

Outcome: : The students are expected to present the knowledge of the theory of artificial

intelligence techniques with special attention to their application in power system protection and

control problems.

Content: The course covers the following items: introduction to artificial intelligence techniques in

power system control; Expert Systems – main features, structure, inference methods, strategies for

conflict resolving, application fields; systems based on Fuzzy Logic – fuzzy signals, membership

functions, fuzzy settings, fuzzification and defuzzification methods, multicriterial algorithms;

Artificial Neural Networks – main features, neurone types, activation functions, neural network

architectures, learning methods, application fields; Genetic Algorithms – evolutionary strategies,

genetic modifications, application examples; Hybrid Intelligent Schemes; application examples of

intelligent techniques described for power system protection and control purposes.

Literature:

1. Pao Y.A.: “Adaptive Pattern Recognition and Neural Networks”, Addison-Wesley, Reading,

MA, 1989.

2. Yager R.R. and Filev D.P.: ”Essentials of Fuzzy Modelling and Control”, J. Wiley & Sons, Inc.,

New York, USA, 1994.

3. Ringland G.A. and Duce D.A. (ed. By): “Approaches to Knowledge Representation: An

Introduction”, Research Studies Press Ltd., Wiley & Sons, Chichester, England, 1988.

4. Dillon T.S. and Niebur D. (edited by): “Neural Network Applications in Power Systems”, CRL

Publishing Ltd., London, 1996.

5. Cichocki A., Unbehauen R., “Neural Networks for Optimization and Signal Processing”. John

Wiley & Sons, 1993.

ELR1315 SIGNALS AND SYSTEMS

Language: English Course: Basic/Advanced

Year (II), semester (3) Level: II Obligatory/Optional

Prerequisites: Mathematics and Linear Algebra and Basic Circuit

Theory Teaching: Traditional/Distance L.

Lecturer: Tomasz Sikorski, PhD

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 30 15

Exam / Course work/T: Test Test

ECTS 2 1

Workload (h) 60 30

Outcome: Students will become familiar with generalization of electrical circuit using system

approach, characteristic of systems in time, operator and frequency domain, state variable method.

The ability to determine stability of the system. Digital simulation of analogue systems, signal flow

graphs, block diagrams, transfer function, Z-transform. Some aspects of digital filters synthesis.

Content: The course deals with the crucial aspects of signal transmission process through Linear

Stationary Systems. Firstly, descriptions of signals and systems in the time domain are introduced,

taking the Duhamel integral and the significance of convolution and distributions into special

consideration. Further lectures aim at introducing the operator domain and the frequency domain.

Provided definitions of Laplace and Fourier transform lead to the description of signals and

systems in both domains, simultaneously. The introduced transfer function develops stability of

LSS systems. Next topics concern the introduction to the digital domain with difference equations,

Page 30: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

signal flow graphs and block diagrams. Defined two sided Z-transform serves as a tool for the

analysis of digital systems, especially on the basis of poles and zeros of the transfer function. Some

aspects of synthesis of digital filters are also introduced.

Literature:

1. S. Haykin, B. Van Veen – Signals and systems, John Wiley & Sons, Inc., 1999.

2. S T.H. Glisson – Introduction to system analysis, McGraw-Hill, Inc, 1985.

3. G. E. Carlson – Signal and linear system analysis, John Wiley & Sons, Inc., 1998.

4. Ch.T. Chen – System and signal analysis, Oxford University Press, 1994.

ELR1215 VISUAL ENGINEERING ENVIRONMENTS AND GRAPHICAL LANGUAGES

Language: English Course: Basic/Advanced

Year (II), semester (3) Level: II Obligatory/Optional

Prerequisites: PC and Windows OS literacy. Teaching: Traditional/Distance L.

Lecturer: Paweł Żyłka, PhD

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 15 30

Exam / Course work/T: Test Test

ECTS 1 2

Workload (h) 30 60

Outcome: Introducing students and familiarizing them with the idea of graphical object-oriented

programming language; and mastering their skills in application of graphical engineering

environments in control and measurement systems, interfacing and instrumentation.

Content: Complex numerical calculations, designing, servicing and operating various control and

measurement systems, interfacing and instrumentation tasks are everyday duties in a

contemporary engineer’s work. These engineering actions require practical skills in the application

of flexible and rapid software development tools. The lecture series is meant to introduce students

into the most modern trends in these areas and familiarise them with the idea of graphical object-

oriented programming language. The aim is also to present the advantages, abilities and limitations

of the graphical engineering and programming software, taking as an example the industry-

standards: Agillent Vee and NI LabView packages. The following topics are presented: language

syntax, data types and structures, data flow rules, basic objects as well as the principles, tips and

tricks helpful in designing correct and efficient programs. An emphasis is put on demonstrating

and explaining practical applications in measurement, control and test systems as well as in remote

data acquisition.

Literature:

1. R. Helsel, Graphical programming - a tutorial for HP Vee, Prentice Hall PTR, London, 1995.

2. R. H. Bishop, LabView Student edition 6i, Upper Sadle River, Prentice-Hall 2001.

3. W. Tłaczała, Środowisko LabView w eksperymencie wspomaganym komputerowo, WNT,

Warszawa 2002.

ELR2115 SIMULATION AND ANALYSIS OF POWER SYSTEM TRANSIENTS

Language: English Course: Basic/Advanced

Year (II), semester (3) Level: II Obligatory/Optional

Page 31: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

Prerequisites: Completed course: Circuit Theory,

Numerical Methods Teaching: Traditional/Distance L.

Lecturer: Prof. Eugeniusz Rosołowski, PhD, DSc

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 15 30

Exam / Course work/T: Test Test

ECTS 1 2

Workload (h) 30 60

Outcome: The course provides descriptions of digital models used for simulation of

electromagnetic transients in complex three-phase electric networks.

Content: The course consists of a lecture and project. Both of these forms deal with the following

problems: Modelling of physical systems - basic principles. Numerical oscillation and accuracy of

discrete models. Digital models of basic electric elements with lamped and distributed parameters.

Models of selected three-phase system elements: lines, transformers, generators. Models of non-

linear electric elements: diodes, thyristors, varistors and non-linear inductance. Numerical methods

used in EMTP program for linear and non-linear network equation solution. EMTP application to

simulation of selected problems with using of basic network elements: transmission line,

transformer, generator, instrument transformers. Using of ATPDraw program for preparation of

simulation cases. Using MODELS module for simulation of an auxiliary procedures: measurement,

control and protection. Analysis of the simulation results: PLOTXY programme, EMTP-MATLAB

interface. During the laboratory students complete individual tasks aimed at deep familiarization

with the specific problems of electromagnetic transients analysis in power systems.

Literature:

1. N. Watson, J. Arrillaga: Power systems electromagnetic transients simulation. The Institution

of Electrical Engineers, London 2003

2. H.W. Dommel: Electromagnetic Transients Program. Reference Manual. BPA, Portland, 1986

3. J. D. Glover, M. Sarma: Power system analysis and design, PWS Publishing Company Boston,

second edition, 2002

4. W. D. Stevenson: Elements of Power System Analysis (4th Ed.). McGrawHill, New York, 1982

5. J-P. Barret, P. Bornard, B. Meyer: Power system simulation: Chapman and Hall, London 1997

ELR2520 POWER SYSTEM MODELLING

Language: English Course: Basic/Advanced

Year (II), semester (3) Level: II Obligatory/Optional

Prerequisites: Completed courses: Linear Algebra and Fundamentals of

Power Systems Teaching: Traditional/Distance L.

Lecturer: Kazimierz Wilkosz, PhD, DSc, Associate Professor

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 30 15

Exam / Course work/T: Test

Course work

(Reports)

ECTS 2 1

Workload (h) 60 30

Page 32: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

Outcome: Familiarizing with modern concepts of power system modelling, competence in solving

problems of power system state estimation and distribution system of load estimation, enhancing

practical skills in carrying out projects, providing students with a theoretical background for

further study in science and applications in the field of power system modelling.

Content: The course is intended to acquaint students with modern concepts of power system

modelling. Steady-state modelling and transient modelling, off-line modelling and real-time

modelling are considered. Attention is also paid to the power system model reduction. The course

provides students with a theoretical background for further study in science and applications.

Literature:

1. Abur A., Exposito A. G., Power system state estimation. New York, Marcel Dekker, Inc. 2004.

2. Machowski J., Białek J.W.,Bumby J. R., Power system dynamics and stability, New York, John

Willey & Sons 1997.

ELR2521 COMPUTER CONTROL OF POWER SYSTEM

Language: English Course: Basic/Advanced

Year (II), semester (3) Level: II Obligatory/Optional

Prerequisites: Completed course: Power Systems Teaching: Traditional/Distance L.

Lecturer: Kazimierz Wilkosz, PhD, DSc, Associate Professor

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 30 15

Exam / Course work/T: Test

Course work

(Presentation)

ECTS 2 1

Workload (h) 60 30

Outcome: Familiarising students with modern concepts of power system computer control,

understanding power system computer control problems, providing a theoretical background for

further study in science and applications in the field of power system computer control, enhancing

practical skills in preparing a presentation, developing students’ skills in participating in a

discussion.

Content: The course is intended to acquaint students with modern concepts of power system

computer control. The following topics are considered: power system control, dispatcher power

system control, EMS, SCADA, MINISCADA, substations computer control, power station

computer control, distribution company computer systems, simulators for dispatchers, power

system safety when the power system control is done with the use of computers, specific problems

of computer systems used in power system. The course provides students with a theoretical

background for further individual study.

Literature:

1. Donald G. Fink, Standard Handbook for Electrical Engineers. Section 10: Power-System

Components/SCADA. McGraw-Hill Professional 1999.

2. Flynn D. (Ed.), Thermal Power Plant Simulation and Control, The Institution of Engineering

and Technology 2003.

3. Strauss C., Practical electrical network automation and communication systems, Elsevier 2003.

4. Waha J. P. (Ed.), Control of power plants and power systems, Elsevier 2000.

Page 33: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

ELR2241 PLC AND WIRELESS COMMUNICATIONS FOR MONITORING AND

METERING

Language: English Course: Basic/Advanced

Year (II), semester (3) Level: II Obligatory/Optional

Prerequisites: Teaching: Traditional/Distance L.

Lecturer: Prof. Bogdan Miedziński , PhD, DSc

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 30 15

Exam / Course work/T: Course work Course work

ECTS 2 1

Workload (h) 60 30

Outcome: Acquainting students with the modern concept of PLC and wireless communications for

monitoring as well as metering in power system and industrial applications.

Content: The course is intended to acquaint students with the modern concept of PLC and wireless

communications for monitoring as well as metering in power electrical and industrial applications.

The course describes selected problems on sensors for various use and distributed network

systems. Special attention is paid to environment condition control and automated meter reading

(AMR) to increase reliability of electrical power systems with renewable sources of energy.

Literature:

1. Xavier Carcelle: Power Line Communications in Practice; Artec House,Boston-london,2006 2. Yang Xiao, Yi Pan: Emerging Wireless LANs, Wireless PANs and Wireless MANs: Wiley&sons,

Inc. Pub. 2009 3. Doster Klaus; Powerline Communications; Prentice Hall, 2000

ELR 1325 MEASUREMENT SYSTEMS AND TELEINFORMATICS IN ELECTRICAL

ENGINEERING

Language: English Course: Basic/Advanced

Year (II), semester (3) Level: II Obligatory/Optional

Prerequisites: Informatics Fundamentals Teaching: Traditional/Distance L.

Lecturer: Jarosław Szymańda, PhD

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 15 15

Exam / Course work/T: Test Course work

ECTS 1 1

Workload (h) 30 30

Outcome: Acquainting students with basic notions of computer networks and the exchange of

information. Learning skills to design local networks on the base of the PC computers. Individual

system solutions - the programming of network cards and steering of packets (pktdrv) in Ethernet

networks - with the use of high level language procedures and functions: Delphi, c ++, Java.

Page 34: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

Content: Acquainting students with basic notions of computer networks and the exchange and

sharing information in engineering problems. Devices and networks of Ethernet and Token Ring

type. Standard of protocols and norms. Models of the layers of OSI (Open Systems

Interconnection). The topologies of local networks (LAN), municipal (MAN) and others.

Communication protocols for layers – the notion of network frames. Most important network

procedures of the operating systems of UNIX and MS Windows. Network protocols: TCP / IP,

UDP, NFS and encapsulation and the decapsulation of packets. The technical aspects of the server

to host transport, chosen elements of the organization of supervisory tasks. Basic principles of a

local network design on the basis of the PC computers. Individual system solutions – the

configuration of network cards and steering packets in the Ethernet networks. The review of the

most important elements of the programming and modeling of network events with utilization of

built-in functions in objects languages: Delphi, and script languages (Javascript, PHP).

Literature:

1. Guide to local networking, Greg Nunemacher, MIKOM 1996 2. Contemporary urban networks, J.Jaworski, R.Morawski, J.Olędzki, WNT 92 3. DELPHI programming, version 4.0 or newer, any publication. 4. Programming of the networks in UNIX, W. R. Stevens, WNT 1995 5. TCP/IP. Network administration, Craig Hunt, OW READ ME 1996

Page 35: FACULTY OF ELECTRICAL ENGINEERING - Rok · PDF fileRENEWABLE ENERGY SYSTEMS ... Optimization Methods 1 0 1 0 0 2 90 3 (2,1) T ... (hours), E – Exam, T – Test, CW – Course Work

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

2nd YEAR, SEMESTER 4

ELR5148P DIPLOMA PROJECT II

Language: English Course: Basic/Advanced

Year (II), semester (4) Level: II Obligatory/Optional

Teaching: Traditional/Distance L.

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 180

Exam / Course work/T: Course work

ECTS 9

Workload (h) 270

ELR5149S DIPLOMA SEMINAR

Language: English Course: Basic/Advanced

Year (II), semester (4) Level: II Obligatory/Optional

Teaching: Traditional/Distance L.

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 30

Exam / Course work/T: Test

ECTS 3

Workload (h) 90

ELR5150D MASTER THESIS

Language: English Course: Basic/Advanced

Year (II), semester (4) Level: II Obligatory/Optional

Teaching: Traditional/Distance L.

Lecture Tutorials Laboratory Project Seminar

Hours / sem. (h) 180

Exam / Course work/T: Exam

ECTS 18

Workload (h) 540