CNS Active Target - 東北大学 大学院理学研究科...

42
CNS Active Target gl as yĻĭ:EJz 9()ňìŘäÚ *()Ńĺw*().Ńĺ 8BBe?Z[gfeXfXeiXW UlI?a PbAblTCT *().%*()/ *()/(+(, ĎÓćijĕùė ãĆ×NJ ) ¬w³ ŇÅŦù :8KJ :8KD

Transcript of CNS Active Target - 東北大学 大学院理学研究科...

Page 1: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

CNS Active Targety :EJz

9() *()-‑ w*().8 e Z[gf eXfXeiXWUl I a Pb blT T*().%*()/

*()/ (+ (, NJ )

w

:8K  J

:8K  D

Page 2: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

*()/ (+ (, NJ *

Page 3: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

r ~∼ s fqc s wr‒– w o xnu r

*()/ (+ (, NJ +

,(

132Sn d

,(

132Sn d

,(

132Sn d

w

6 w uX J:I@K

v

( () U%) ʼ’w )(.

)()1

Page 4: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

EI EI AMNA FEIAH=OE N+

 T Tn  W Wn 2 @J>I  c cn 2 D) cb Te mTU gl  c c 2 cebgba%aXhgeba W fge Uhg ba  c *c  c ca  c cT 2 f aZ X cTeg V XahV Xba Vbee

 c a  W *c 2 >K J I x:bh Xk2 @M>I

)( 7)(( Vcf-‑(

132Sn

d

131Sn

d

n @aiTe Tag Tff

Missing mass

)((%+((DXM h

 KB< ( *DXM p *(DXM

)((%+((DXM h

ZT T%eTl

9XT 4 G[lf Vf bU]XVg iX

*()/ (+ (, NJ ,

Page 5: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

npi gb

*()/ (+ (, NJ -‑

Page 6: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

kvl r dlb/

~∼ q ~∼r

*()/ (+ (, NJ .

Page 7: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

/+ .+

[ggc2 f[ aZT haXg Vb ]bheaT geXaW ,,(,

jm d ʼ’af t ]e

*()/ (+ (, NJ /

Page 8: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

u mfto pi ics

~∼ KG:~∼

*()/ (+ (, NJ 0

Page 9: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

w x   .

wJ

w w

*()/ (+ (, NJ 1

Page 10: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

0SKAMEHAIO=G I EOE I

*()/ (+ (, NJ )(

• :baf WXe )+*Ja  W Wn• @aV WXag XaXeZl bY )(( DXM h• Vebff fXVg ba o ( ) U j g[ a g[X TVVXcgTaVXbY :8K

• Ch abf gl 2 ( () U%)• gTeZXg g[ V aXff2 ( + Z V *   * o-‑V ( ,Tg

• MXel [ Z[ agXaf gl2 Tk h )DVcf  che gl o)(• G 9C E E 9 G

• ?XTil baf2 Qo-‑( 8o)+(• CTeZX XaXeZl WXcbf g ba• /L ELD E 9 C E C 9

9  

(deg)labe0 10 20 30 40 50 60 70 80 90

(MeV

)la

bTK

E

0

1

2

3

4

5Z=132,A=50 scattering on Z=2,A=1, Ex = 0.0 - 30.0 MeV, Kin = 100.0 MeV/u

(deg)CMθ0 1 2 3 4 5 6 7 8 9 10

Ener

gy lo

ss (k

eV/m

m)

-110

1

10

210

310dE/dX of deuteron and 132Sn@100MeV/u

)+*Ja )((DXM h

IXVb XW WXhgXeba

<aXeZl

bff  

XM )((

)

Page 11: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

w x n y

gik l• q q KG:• w

• ‒–s ʼ’

•• MJ•

J Vba ~∼•*()/ (+ (, NJ ))

w

Page 12: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

. IOAION• 8Vg iX KTeZXg KG:

• >Tf ceXffheX bcg mTg ba• Dh g c VTg ba 2 K?><D D%K?><D• IXTWbhg cTW TaW geTV aZ Xg[bW

• 8Vg i g Xf• IbTW Tc• <FJ TaW = efg I@ UXT XkcXe Xag• EXkg fgXc• Fg[Xe G[lf Vf VTfX

*()/ (+ (, NJ )*

Page 13: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

. INE AM=OE I B KAM=OE I KMANNPMA

P X W

*()/ (+ (, NJ )+

( *Tg ( +Tg ( -‑Tg ) (Tg

-200 -150 -100 -50 0 50 100 150 200-200

-150

-100

-50

0

50

100

150

200Si

low

gai

nSt

op in

TPC

Stop

in T

PC

DbagX :Te b f h Tg baEbg gT aZ agb TVVbhagg[X geTV aZ XYY V XaVl

)%*WXZ

) -‑%* -‑WXZ

*%+WXZ

+%,WXZ

(deg)CMθ0 1 2 3 4 5 6 7 8 9 10

(a.u

.)2

(qR

)|L

|J

0

0.1

0.2

0.3

0.4

0.5 L=0Δ

L=1Δ

L=2Δ

Z=132,A=50 scattering on Z=2,A=1, Ex = 15.0 MeV, Kin = 100.0 MeV/u

Page 14: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

PGOEKGE =OE I/P=G C=EI KAM=OE I

*()/ (+ (, NJ ),

Page 15: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

PGOEKGE =OE I• q q• ( , Tg• w ‒–

*()/ (+ (, NJ )-‑

Page 16: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

& =OH OR 320 N

2014 JINST 9 C05014

[V]THGEM2 V∆0 100 200 300 400 500 600 700

Gai

n

10

210

310 = 700VTHGEM1 V∆

= 600VTHGEM1 V∆

= 500VTHGEM1 V∆

Figure 6. Dependence of ∆VTHGEM2 on the effective gas gain Geff in 0.3-atm D2. Each electric field (ED,ET and EI) was fixed to 1 kV/cm/atm.

[V]THGEM2 V∆0 100 200 300 400 500 600 700 800 900

Gai

n

10

210

310 = 800VTHGEM1 V∆

= 700VTHGEM1 V∆

= 600VTHGEM1 V∆

Figure 7. Dependence of ∆VTHGEM2 on the effective gas gain Geff in 0.4-atm D2. Each electric field (ED,ET and EI) was fixed to 1 kV/cm/atm.

4.2 Dependence on the electric fields of the drift, transfer and induction regions

The dependence of the effective gas gain on each electric field was also measured. In these mea-surements, the strength of the electric fields, with the exception of the field of interest, were fixedto 1 kV/cm/atm and each bias voltage ∆VTHGEM1 and ∆VTHGEM2 was fixed to 500V. Figure 8shows the dependence of Geff on the drift field strength ED. Geff increases with the ED until

– 6 –

2014 JINST 9 C05014

!"#$%&'(

)*$+%,-.(/0)(

Pre-Amplifier

!

Figure 1. Schematic view of this work. High voltagesVM, V2U, V2D, V1U and V1D are biased independently.

Figure 2. Photograph of readout pad with thealpha source. Readout pads below the straightpath of the alpha particles are connected in arow to collect the charges.

preamplifier was treated by a shaping amplifier (ORTEC 571) and the pulse height of the shapedsignal was recorded by a multi-channel analyzer (MCA) (Kromek 102).

A schematic view of the gas supply system used in the present work is displaced in figure 3.For an adequate gas supply, a gas regulator for low-pressure conditions was employed. The oxygencontamination in the chamber and the leakage of hydrogen/deuterium are monitored continuously.For the oxygen contamination, an oxygen concentration sensor JKO-25LJII (from JIKCO Ltd.) unitwas employed at the outlet pipe of the vacuum pump. Gasman M07630 (from CROWCON Detec-tion Instruments Ltd.) unit was used as a hydrogen leak monitor (no alarm was triggered during themeasurements). The procedure of the gas operation before starting the measurement is as follow-ing. Once we pump the chamber and achieve a gas pressure ≤ 0.4 kPa, the hydrogen/deuterium gasis filled. After filling the gas, the gas flow becomes purer (O2 level under 0.1%) with respect to theconcentration of deuterium inside the chamber while monitoring the oxygen contamination leveland the gas leak rate. Because the flammability limits based on the volume percentage of hydrogenin oxygen at 1 atm are 4.0 and 94.0, we had to keep the oxygen concentration inside the chamberless than 6%. Low oxygen concentration is very important not only for safety but also for avoidingelectron attachment by oxygen molecules in the gas. The oxygen concentration level was alwayskept less than 0.1% through out the entire measurement. Guided by GARFIELD++ simulations ofelectron attachment, a transverse diffusion with oxygen concentration levels lower than 0.1% anda drift field strength higher than 1 kV/cm/atm, the recombination during the drift is assumed to benegligible in our measurement.

3 Measurement

In order to evaluate the performance of THGEM, the effective gas gain, Geff, was derived. Theeffective gas gain is defined by the following relation, which is the amount of charge collected onthe readout pad divided by the primary charge:

Geff =Qpads

qe ·∆E/Wi, (3.1)

– 3 –

,(( h g[ V +(( h W T XgXe /(( h c gV[

*()/ (+ (, NJ ).

Page 17: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

KAM=OE I REOD DECD EIOAINEOT A=HN

*()/ (+ (, NJ )/

3 D E /. 1 cebi WXf UXggXeXaXeZl eXfb hg ba g[Ta Xf[ Ze W T baZ g[XUXT cTg[45 fgTU X j g[ hc gb g[X -‑((% Vcf )((%DXM h )+*OX UXT

o) 8

j UXT agXaf gl bY )(. Vcf45 F  ) 8 Tg Tfg K?><D

fXZ XagXW K?><D

Xf[ Ze W

ZTa5*(((

ZTa5*(((

ZTa3)((

Effective Gas Gain

0 20 40 60 80 100 120 140

Cha

rge

Res

olut

ion

(FW

HM

) [%

]

20

40

60

80

100

for DGGEMs

for Grid + THGEMs

Ybe ZT a5*(((Tg eXVb eXZ ba

J FgT Xg T A ITW bTaTEhV :[X +(-‑  *((-‑

(deg)CMθ0 1 2 3 4 5 6 7 8 9 10

Ener

gy lo

ss (k

eV/m

m)

-110

1

10

210

310dE/dX of deuteron and 132Sn@100MeV/u

)+*Ja )((DXM h

IXVb XW WXhgXeba

<aXeZl

bff  

XM )((

)

Page 18: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

& =OH /P=G C=EI PGOEG=TAMA320

Field Cage

Beam region

Recoilregion

Recoilregion

Read Pad

V1V2V3V4

Mesh

16.2mm

2mm

5mmE DD

1 5 DDM

1 5 DD)+*OX )0, ,

DXM h1 -‑, ( (1-‑,

8 c[T + ., DXM ) )( ( ((1/.

D%K?><D2 @afc eXW UlWXiX bc Xag Tg DJL  *().

*()/ (+ (, NJ )0

Page 19: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

y   320

) ((< ((

) ((< ()

) ((< (*

) ((< (+

) ((< (,

)*(( ),(( ).(( )0((

>Ta

!MZX RMS

>T a MJ !MZX9XT IXZ ba  V[TaZ aZ M,9

( ((

* ((

, ((

. ((

0 ((

)( ((

)* ((

( *(( ,(( .(( 0(( )(((

IXfb

hgba

RS

>T a

:[TeZX IXfb hg ba MJ >T a9XT IXZ ba  V[TaZ aZ M,9

9XT IXZ ba  :[TaZ aZWMZX

E DD1 5 DD

M1 5 DD

)+*OX )0, ,DXM h

1 -‑, ( (1-‑,

8 c[T + ., DXM ) )( ( ((1/.

)(Vy-‑( XM )-‑ z*()/ (+ (, NJ )1

XV*(). )-‑?+(/ 7 ?@D8:

Page 20: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

A= PO M= FEIC

*()/ (+ (, NJ *(

Page 21: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

A= PO K=• :baVXcg2 f T ah UXe bY eXTWbhg V[TaaX  eX Tg iX l bj WXY a g ba• :[T XaZX gb cebiX g[X eXfb hg ba bY geTVj g[ bj%WXY a g ba cTW TeeTl• Lf aZ V[TeZX aYbe Tg ba gb WXWhVX g[X cbf g ba

•  LaXkcXVgXW l @ cbegTag Ybe g[X WX gT%eTlW fVe aTg ba Ybe g[X ge ZZXe

*()/ (+ (, NJ *)

+* [ gf ), [ gf

) )(( 4 )(( + 1 *, 4 1+ -‑

,B ?

+ )( fdeg  ,4 ( ) 6be ( + )( 4 +( eTWYbe WX X 4 )(

Page 22: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

Wed Aug 3 15:19:39 2016

Bragg curve for deuteron in 0.4-atm deuterium

Range (mm)

0

10

20

30

40

50

60

70

80

90

100

dE/dX (MeV/mm)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

-‑M=CC PM A BEOOEIC• Y gg aZ g[X VT Vh TgXW V[TeZXgb g[X XTfheXW V[TeZX

• ?bj gb VT Vh TgX g[X V[TeZX• EXXWf UeTZ VheiX• @Y g[XeX f ab W YYhf ba

• 8ffh X T aX fXZ Xag 4geTV bY cTeg V X

• :T Vh TgX agXefXVg ba bY g[XaX fXZ Xag TaW T eXTWbhgcTW

• :T Vh TgX g[X gbgT aXg VXaXeZl Tg XTV[ agXefXVg baTaW WXWhVX g[X XaXeZlWXcbf g

• K[XeX f W YYhf ba• IXfcbafX YhaVg ba Ybe Ta

XaXeZl WXcbf g Tg T VXegT acb ag

• @agXZeTgX g[X eXfcbafX gb g[XXaXeZl WXcbf g ba T baZ g[XgeT]XVgbel

*()/ (+ (, NJ **

Page 23: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

Estimation of delta-ray by irradiating high intensity beam

Recoil deuteron 2000 particle Ex: 14MeV – 15MeV"cm: 1.5deg – 2.5 deg

Projectile 132Sn 2000 particle Energy: 100MeV/u

Projectile 132Sn 2000 particle Energy: 100MeV/u

/>XTag,

w

*()/ (+ (, NJ *+

Page 24: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

0S=HKGA

*()/ (+ (, NJ *,

Page 25: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

= H=K B M /A AG KHAIO

w

:8K)  3 iXfge f

)(V k )(V k *-‑V

:8K*  1Tah

+(V k +(V k *( V

:8K+  0lak

CTeZX Mb h X >T T

 W *c j )(( Vcfs)(WTl  W Wn j )( Vcfs)(WTl  W Wn j )(( Vcfs)(WTl

T V W [ VS VT V

*((1 *()( *()) *()* *()+ *(), *()-‑ *(). *()/ *()0 *()1 *(*( *(*)

J

D

C

s

s

*()/ (+ (, NJ *-‑

w

-‑(V k *be -‑(V k -‑(V k *

Page 26: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

1EMNO 4 A=H ASKAMEHAIO

*()/ (+ (, NJ *.

Page 27: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

. OE A =MCAO  

*()/ (+ (, NJ */

!

�!

����������"���#�

������������

��������� ������������

!

�!

����������"���#�

������������

��������� ������������

5 D 9 D

(D

D M D

D M D (DD

KG: J VbacheX XhgXe h be ?lWebZXa be ?X :F*Eb TZaXg V Y X W:[TeZX XTfheX Xag f XffXag T

Page 28: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

*()/ (+ (, NJ *0

n A= PO NTNOAH

ceXT c  I<G@:o 0( af

( +M c:

M)/,(  :8<E)*U g *Mcc -‑(DJ

Fcg VT a0(D9 f

ch fX f[TcX

JX Y ge ZZXe aZ hf aZ f WX cTWXkg ge ZZXe Ul JJ

+(( ?m TVVXcg fb YTe )*U g )-‑((fT c X

KG: = Tf[ 8 : 8HJXeiXe

=G:

:b XeV T UTfX TaWbj Vbfg  XTfl gb ZXg a*((1

45 M)/,( :8<E

8+0)0

Page 29: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

O=P =I 4 2 EI + )( IP GAE

*()/ (+ (, NJ *1

1.2 Methods

1.2.1 Overview of traditional method used in normal kinematics

Nuclear incompressibility KA and ISGMR energy EGMR are directly connected to eachother by an equation:

EGMR = h̄

!KA

m < r2 >, (4)

where m and < r2 > denotes the nucleon mass and mean square radius of matter[4]. TheISGMR was identified in 1977[5, 6] and was the subject of a number of studies throughthe 1980s[7, 8, 9]. Most of the earlier investigations of the isoscalar giant resonances usedinelastic α scattering at 100-200 MeV and the strength of a particular giant resonancewas assumed to be concentrated in a single peak with a Gaussian or Lorentzian shape.More recently, there have been giant resonance measurements using inelastic scatteringof 386-MeV α particles at extremely small angles, including 0◦ at RCNP (for instance ref.[10, 11]) as well as with 240-MeV α particles at Texas A&M [12]. In both cases, multipoledecomposition analysis was performed to great effect to extract the ISGMR strengths.

The EGMR is usually referred to as a moment ratio of the strength distribution. Inthe measurement for the tin isotopes, alpha particles were used as a isoscalar probe toexcite the GMR and the missing mass spectroscopy was applied to deduce the excitationenergy and scattering angle[1, 2]. Since the GMR is located in the continuum region,multipole- decomposition analysis is employed to deduce the monopole strength from theexcitation energy and scattering angle distribution of the reaction spectra. The multipole-decomposition analysis is enabled by forward-angle scattering measurement (includingzero degrees), where the angular distribution of the monopole strength is distinctly dif-ferent from that of other multipoles, and also the monopole strength is largest at 0◦.Optical model parameters required for the coupled channel calculation of cross sectionfor the excitation of various multipole can be deduced by analyzing the elastic scatteringdata.

The incompressibility of a nucleus KA, may be expressed as:

KA ∼ Kvol(1 + cA−1/3) + Kτ [(N − Z)/A]2 + KCoulZ2A−4/3, (5)

To extract the symmetric term Kτ of nuclear incompressibility in eq. (5), the deducedKA’s for tin isotopes were fitted by the quadratic function of asymmetric parameter (N-Z)/A assuming the KCoulis model independent and c ∼ 1 as shown in Fig. 1.

1.2.2 Reaction study on (d,d’)

It has been shown a few years ago, in a measurement at GANIL [14], that an attractivepossibility for measurement of giant resonances in nuclei away from the stability line isinelastic scattering off a 2H target. In that measurement, the TPC MAYA was used as an

3

@aVb ceXff U gl

1.2 Methods

1.2.1 Overview of traditional method used in normal kinematics

Nuclear incompressibility KA and ISGMR energy EGMR are directly connected to eachother by an equation:

EGMR = h̄

!KA

m < r2 >, (4)

where m and < r2 > denotes the nucleon mass and mean square radius of matter[4]. TheISGMR was identified in 1977[5, 6] and was the subject of a number of studies throughthe 1980s[7, 8, 9]. Most of the earlier investigations of the isoscalar giant resonances usedinelastic α scattering at 100-200 MeV and the strength of a particular giant resonancewas assumed to be concentrated in a single peak with a Gaussian or Lorentzian shape.More recently, there have been giant resonance measurements using inelastic scatteringof 386-MeV α particles at extremely small angles, including 0◦ at RCNP (for instance ref.[10, 11]) as well as with 240-MeV α particles at Texas A&M [12]. In both cases, multipoledecomposition analysis was performed to great effect to extract the ISGMR strengths.

The EGMR is usually referred to as a moment ratio of the strength distribution. Inthe measurement for the tin isotopes, alpha particles were used as a isoscalar probe toexcite the GMR and the missing mass spectroscopy was applied to deduce the excitationenergy and scattering angle[1, 2]. Since the GMR is located in the continuum region,multipole- decomposition analysis is employed to deduce the monopole strength from theexcitation energy and scattering angle distribution of the reaction spectra. The multipole-decomposition analysis is enabled by forward-angle scattering measurement (includingzero degrees), where the angular distribution of the monopole strength is distinctly dif-ferent from that of other multipoles, and also the monopole strength is largest at 0◦.Optical model parameters required for the coupled channel calculation of cross sectionfor the excitation of various multipole can be deduced by analyzing the elastic scatteringdata.

The incompressibility of a nucleus KA, may be expressed as:

KA ∼ Kvol(1 + cA−1/3) + Kτ [(N − Z)/A]2 + KCoulZ2A−4/3, (5)

To extract the symmetric term Kτ of nuclear incompressibility in eq. (5), the deducedKA’s for tin isotopes were fitted by the quadratic function of asymmetric parameter (N-Z)/A assuming the KCoulis model independent and c ∼ 1 as shown in Fig. 1.

1.2.2 Reaction study on (d,d’)

It has been shown a few years ago, in a measurement at GANIL [14], that an attractivepossibility for measurement of giant resonances in nuclei away from the stability line isinelastic scattering off a 2H target. In that measurement, the TPC MAYA was used as an

3

)+*Ja

)+*OX)+*9T

Tfl Xge V gXe bYaVb ceXff U gl

7I@9=

Page 30: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

1 -‑ -‑

! , 9D EDD  

! 16,

! G Tfg V! DN :f! XZeTWXe

! T baW! DN :f

)+*Ja)(( DXM h5)(( Vcf  gbgT o )DVcf

*()/ (+ (, NJ

)+*Ja)(( DXM h5)(( Vcf  gbgT Vcf

yp b)(.Vcf w q

w 2)(-‑ Vcf k )(*(V %* o ( () U%)f%)

+(

T baW2 J D V[ TfT Xg T  *()+CG%DN :2 ? D lT Xg T  *()+

Page 31: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

/=O= = PENEOE I NTNOAH• KG: cTeg

• ? Z[ WXaf gl =8 : Yeb :8<E• ? Z[ fcXXW bcg VT a eXTWbhg  o.( D9 fXV• JbYgjTeX mXeb fhcceXff ba

• J Vba cTeg• ?@DG flfgX  Ybe J8DLI8@ J Vba Tg I@B<E

• 9XT cTeg• J aZ X MD< UbTeW eXTWbhg  DF:F• TgT eTgX TaW iX g X

• GTeTf g V

*()/ (+ (, NJ +)

:8K9XT GTeTf g V

<kc 8HKG: J

g XfgT c

Page 32: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

DA BEMNO ASKAMEHAIO=O 4-‑1

*()/ (+ (, NJ +*

• )+*Ja )((DXM• @agXaf gl 2+-‑( Vcf

• Ghe gl2 *-‑%+(

• 9XT G@ fWbaX j b W<aYbe Tg ba

• *-‑K9 WTgT agbgT

9XT G@

)+*Ja

)++JU

)+,KX

Page 33: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

MAGEHEI=MT MANPGOR A=H EIB MH=OE I

*()/ (+ (, NJ ++

• IX]XVg ba bY WX gT eTlf• Gh fX [X Z[g Vhg• : hfgXe aZ

• IX]XVg ba bY UXT % X cTeg V Xf• <iXag fX XVg ba Ul ceX%geTV aZ jVXageb W geTV aZ

• KeTV aZ j VXageb W geTV aZIXVbeWXW ch fXf JX XVgXW ch fXf

9O 9C

Page 34: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

*()/ (+ (, NJ +,

9 9 9 HL (

Fa l baX gehXXiXag Ybe >DIf XkcXVgXW ag[ f fcXVgeh

9 hX2 fgbc a KG:IXW2 ) -‑  :[ * eTg b bYWXhgXeba TaW cebgba>eXXa2 * (

t  9:EJ

t

Page 35: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

ASO NOAK

*()/ (+ (, NJ +-‑

Page 36: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

JVba

KG:

8f8W k )0:F9F k )hK:8 k )GbjXe fhcc l

Q8G k )0

=G: k )0 k ,eXTWbhg cTW k )D%K><D k )Y X W VTZX k )   aV fhccbegf Vba k . k *  )(k)( 0fge c=G:  J k 0 k . k *GeXT c k 0 k . k * 4 1. V[6J 8 1. V[8 : 1. V[

q) *V

u

*(V

,(V 6+,V k*0VTVg iX TeXT

DTah

yJ z

.   a

*()/ (+ (, NJ +.

.

Page 37: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

w8Vg iX eXZ ba2  k l m 4  )(( )(( )((IXTVg ba cb agf bY Q2 % )((J Z T bY UXT 2 -‑

8Vg iX eXZ ba2  k l m 4  +(( *(( +((IXTVg ba cb agf bY Q2 % +((J Z T bY UXT 2 -‑

*()/ (+ (, NJ +/

Page 38: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

ehbpf• s  ><K be bg[Xe• y z• w

*()/ (+ (, NJ +0

Page 39: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

DTNE N =NA• <dhTg ba bY fgTgX g[ebhZ[ cebgba%aXhgeba Y a gX flfgX

• eX Tg ba UXgjXXa Vb beXW TaW Vb be Xff TggXe• eX Tg ba UXgjXXa Y a gX TaW aY a gX flfgX

• XZeXXf bY YeXXWb bY ahV Xba• <YYXVg bY cT e agXeTVg ba Tal UbWl YbeVX• =be aZ V hfgXe

• ahV Xba%ahV Xba cT e  K4( K4)• T c[T cTeg V X• bg[Xef6

• 8fgebc[lf Vf• EhV Xbflag[Xf f

*()/ (+ (, NJ +1

Page 40: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

1EAG B NOP T

*()/ (+ (, NJ ,(

(d,d�), (a,a’), (p,p’)aVb ceXff U glfl Xgel XaXeZlV hfgXe

(d,2p)>K fgeXaZg[ a ebaZebhc9   9 )0   9 9  EhV Xba VbeeX Tg ba

 W c Ybe 8E:  c W  W g  T g  T +?X KeTafYXe eXTVg baf

Page 41: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

GN B M KDTNE N• D ff aZ Tff fcXVgebfVbcl bY hafgTU X ahV X

• aiXefX aX Tg Vf• X Tfg V aX Tfg V fVTggXe aZ• geTafYXe c V hc eXTVg ba

• abe T aX Tg Vf 45 J?8I8H 2 ,2• Xkbg[Xe V eXTVg ba  cbf g iX H iT hX

• BXl bY XkcXe Xag• [ Z[ h abf gl

• [ Z[ agXaf gl UXT• g[ V gTeZXg

• XiXag%Ul%XiXag cTeg V X WXag Y VTg ba bY [ Z[ agXaf gl UXT  )hf• WXgXVgbef Ybe cebUX• [ Z[%eTgX TeZX fVT X WTgT TVdh f g ba

*()/ (+ (, NJ ,)

DTV[ aX CXTea aZ

8Vg iX KTeZXg 9 ZI@GJ F< F

)hf ‒–

Page 42: CNS Active Target - 東北大学 大学院理学研究科 ...lambda.phys.tohoku.ac.jp/nstar/content/files/detectorWS2017/Ota.pdf · =OH OR- 320N 2014 JINST 9 C05014 ∆ V THGEM2 [V]

p q• :8K%J ‒–

• )(( Vcf w w‒–

• I@9= ‒–• ‒–

• :8K%D• s s y z

*()/ (+ (, NJ ,*