a a adeltauniv.edu.eg/new/engineering/wp-content/uploads/Presentation-… · Bz A(BC) = (AB)C A(B +...

28

Transcript of a a adeltauniv.edu.eg/new/engineering/wp-content/uploads/Presentation-… · Bz A(BC) = (AB)C A(B +...

Page 1: a a adeltauniv.edu.eg/new/engineering/wp-content/uploads/Presentation-… · Bz A(BC) = (AB)C A(B + C) = A B + A C (B + C)A = BA + CA. 1 2 12 m T m n a a a ªº «» «» «» «»
Page 2: a a adeltauniv.edu.eg/new/engineering/wp-content/uploads/Presentation-… · Bz A(BC) = (AB)C A(B + C) = A B + A C (B + C)A = BA + CA. 1 2 12 m T m n a a a ªº «» «» «» «»
Page 3: a a adeltauniv.edu.eg/new/engineering/wp-content/uploads/Presentation-… · Bz A(BC) = (AB)C A(B + C) = A B + A C (B + C)A = BA + CA. 1 2 12 m T m n a a a ªº «» «» «» «»

Definition (Matrix): A matrix is a set of real or complex numbers (or

elements) arranged in some rows and columns which

form a rectangular array.

The numbers in the array are called entries or elements

of the matrix. If a matrix has m rows and n columns,

we say that its dimension (order) is m by n m n

11 12 1

21 22 2

1 2

n

n

m m mn

a a a

a a a

a a a

A

Matrices

Page 4: a a adeltauniv.edu.eg/new/engineering/wp-content/uploads/Presentation-… · Bz A(BC) = (AB)C A(B + C) = A B + A C (B + C)A = BA + CA. 1 2 12 m T m n a a a ªº «» «» «» «»

1n

1 2 na a a

is called a column vector

1 nis called a row vector

na

a

a

2

1

Page 5: a a adeltauniv.edu.eg/new/engineering/wp-content/uploads/Presentation-… · Bz A(BC) = (AB)C A(B + C) = A B + A C (B + C)A = BA + CA. 1 2 12 m T m n a a a ªº «» «» «» «»

Operations on matrices

1) Equality of matrices:

2) Matrix addition and subtraction

Page 6: a a adeltauniv.edu.eg/new/engineering/wp-content/uploads/Presentation-… · Bz A(BC) = (AB)C A(B + C) = A B + A C (B + C)A = BA + CA. 1 2 12 m T m n a a a ªº «» «» «» «»

11 12 1

21 22 2

1 2

p

pij m p

m m mp

ka ka ka

ka ka kak ka

ka ka ka

A

3) Scalar multiple of a matrix:

Page 7: a a adeltauniv.edu.eg/new/engineering/wp-content/uploads/Presentation-… · Bz A(BC) = (AB)C A(B + C) = A B + A C (B + C)A = BA + CA. 1 2 12 m T m n a a a ªº «» «» «» «»

Example

If

9 1 3 4 7 8

2 4 2 , 9 3 5 ,

7 1 5 1 1 2

A B Find 3A-5B.

Solution

27 3 9

3 6 12 6 ,

21 3 15

C

A

20 35 40

5 45 15 25

5 5 10

D

B

7 32 31

3 5 39 3 31

26 8 25

C D

A B

Page 8: a a adeltauniv.edu.eg/new/engineering/wp-content/uploads/Presentation-… · Bz A(BC) = (AB)C A(B + C) = A B + A C (B + C)A = BA + CA. 1 2 12 m T m n a a a ªº «» «» «» «»

A B B A

Properties of matrix addition and scalar

Multiplication:

A (B C) (A B) C

1 2 1 2( ) ( ) A A

1 2 1 2( ) A A A

1 1 1( ) A B A B

1 A A

Page 9: a a adeltauniv.edu.eg/new/engineering/wp-content/uploads/Presentation-… · Bz A(BC) = (AB)C A(B + C) = A B + A C (B + C)A = BA + CA. 1 2 12 m T m n a a a ªº «» «» «» «»

11 12 1 11 12 1

21 22 2 21 22 2

1 21 2

p n

p n

p p pnm m mp

a a a b b b

a a a b b b

b b ba a a

AB

Matrix Multiplication

11 11 1 1 11 1 1

21 11 2 1 21 1 2

1 11 1 1 1

... ...

... ...

... ...

p p n p pn

p p n p pn

m mp p m n mp pn

a b a b a b a b

a b a b a b a b

a b a b a b a b

Page 10: a a adeltauniv.edu.eg/new/engineering/wp-content/uploads/Presentation-… · Bz A(BC) = (AB)C A(B + C) = A B + A C (B + C)A = BA + CA. 1 2 12 m T m n a a a ªº «» «» «» «»

Example

Find the product of the following matrices:

4 7 9 2

3 5 6 8

A Β

Solution

4 9 7 6 4 ( 2) 7 8

3 9 5 6 3 ( 2) 5 8

AB78 48

=57 34

Page 11: a a adeltauniv.edu.eg/new/engineering/wp-content/uploads/Presentation-… · Bz A(BC) = (AB)C A(B + C) = A B + A C (B + C)A = BA + CA. 1 2 12 m T m n a a a ªº «» «» «» «»

Example

Find the product of the following matrices:

5 84 3

1 02 0

2 7

A B

Solution

5 ( 4) 8 2 5 ( 3) 0 8

1 ( 4) 0 2 1 ( 3) 0 0

2 ( 4) 7 2 2 ( 3) 0 7

AB

4 15

4 3

6 6

Page 12: a a adeltauniv.edu.eg/new/engineering/wp-content/uploads/Presentation-… · Bz A(BC) = (AB)C A(B + C) = A B + A C (B + C)A = BA + CA. 1 2 12 m T m n a a a ªº «» «» «» «»

m p p n m n A B C

Remarks:

BA AB

A(BC) = (AB)C

A(B + C) = A B + A C

(B + C)A = BA + CA

Page 13: a a adeltauniv.edu.eg/new/engineering/wp-content/uploads/Presentation-… · Bz A(BC) = (AB)C A(B + C) = A B + A C (B + C)A = BA + CA. 1 2 12 m T m n a a a ªº «» «» «» «»

11 21 1

12 22 2

1 2

m

mT

n n mn

a a a

a a a

a a a

A

Transpose of a matrix:

Page 14: a a adeltauniv.edu.eg/new/engineering/wp-content/uploads/Presentation-… · Bz A(BC) = (AB)C A(B + C) = A B + A C (B + C)A = BA + CA. 1 2 12 m T m n a a a ªº «» «» «» «»

Example

51 0 2 2 1 1

, , 03 2 1 2 0 3

3

A B C

Solution

1 3

0 2 ,

2 1

T

A 1 1 1

1 2 2

TT

A B

1 1

1 2 ,

1 2

5 0 3 .T C

Page 15: a a adeltauniv.edu.eg/new/engineering/wp-content/uploads/Presentation-… · Bz A(BC) = (AB)C A(B + C) = A B + A C (B + C)A = BA + CA. 1 2 12 m T m n a a a ªº «» «» «» «»

( )T T A A

Properties of transpose of a matrix:

( )T T T A B A B

( )T T TAB B A

( )T T T TABC C B A

( )T T T T A B C A B C

( )T T A A

Page 16: a a adeltauniv.edu.eg/new/engineering/wp-content/uploads/Presentation-… · Bz A(BC) = (AB)C A(B + C) = A B + A C (B + C)A = BA + CA. 1 2 12 m T m n a a a ªº «» «» «» «»

0 000 0

0 000 0

0 00

0 0 0

Special Matrices

, ( ) A 0 A A A 0

2 0 0 0

1 6 0 0

8 9 3 0

4 2 1 5

-

L

1 2 3 4

0 5 6 7

0 0 8 9

0 0 0 1

U

1) Zero matrix 0:

2) Triangular matrix:

upper triangular matrix lower triangular matrix

Page 17: a a adeltauniv.edu.eg/new/engineering/wp-content/uploads/Presentation-… · Bz A(BC) = (AB)C A(B + C) = A B + A C (B + C)A = BA + CA. 1 2 12 m T m n a a a ªº «» «» «» «»

12

7 0 0

0 0

0 0 1

D

1 0 0

0 1 0

0 0 1

I

5 0

0 5

3) Diagonal matrix:

4) Scalar matrix:

5) Identity matrix:

Page 18: a a adeltauniv.edu.eg/new/engineering/wp-content/uploads/Presentation-… · Bz A(BC) = (AB)C A(B + C) = A B + A C (B + C)A = BA + CA. 1 2 12 m T m n a a a ªº «» «» «» «»

1 2 7

2 5 6

7 6 4

A

0 1 1

1 0 2

1 2 0

A

6) Symmetric matrix:

7) Skew symmetric:

;T A A

;T A A

Page 19: a a adeltauniv.edu.eg/new/engineering/wp-content/uploads/Presentation-… · Bz A(BC) = (AB)C A(B + C) = A B + A C (B + C)A = BA + CA. 1 2 12 m T m n a a a ªº «» «» «» «»

11 21

12 22

a a

aIf

a

A

Determinant of a matrix

(1) Determinant of Matrix): 2 2

11 22 21 12 detThen A a a a a A

11 21 31

12 22 32

13 23 33

a a a

a a a

a a

If

a

A

(2) Determinant of Matrix): 3 3

22 23 21 23 21 2211 21 13

32 33 31 33 31 32

Thena a a a a a

A a a aa a a a a a

Page 20: a a adeltauniv.edu.eg/new/engineering/wp-content/uploads/Presentation-… · Bz A(BC) = (AB)C A(B + C) = A B + A C (B + C)A = BA + CA. 1 2 12 m T m n a a a ªº «» «» «» «»

Example

Find of the following matrices:

4 3

2 1 i

A

Solution

A

1 2 2

2 5 1

4

5 3

ii

A

4 3

( 4)(1) ( 3)(2) 22 1

i

A

1 2 25 1 2 1 2 5

2 5 1 ( 1) (2) ( 2)5 3 4 3 4 5

4 5 3

ii

A

10 (2) 2 ( 2) 10 14

Page 21: a a adeltauniv.edu.eg/new/engineering/wp-content/uploads/Presentation-… · Bz A(BC) = (AB)C A(B + C) = A B + A C (B + C)A = BA + CA. 1 2 12 m T m n a a a ªº «» «» «» «»

11 12 1

21 22 2

1 2

,

n

n

n n nn

a a a

a a a

a a a

If

A

Inverse of a matrix

1 1 en Th A adj A

A

T

ij ijadj A adj a A

where:

1A

is the cofactor of each element.ijA

Page 22: a a adeltauniv.edu.eg/new/engineering/wp-content/uploads/Presentation-… · Bz A(BC) = (AB)C A(B + C) = A B + A C (B + C)A = BA + CA. 1 2 12 m T m n a a a ªº «» «» «» «»

Example

Find of the following matrix:

Solution

1A

1 2 2

2 5 1

4 5

3

A

1 2 2

2 5 1 14

4 5 3

A

Page 23: a a adeltauniv.edu.eg/new/engineering/wp-content/uploads/Presentation-… · Bz A(BC) = (AB)C A(B + C) = A B + A C (B + C)A = BA + CA. 1 2 12 m T m n a a a ªº «» «» «» «»

T10 2 10

4 5 3

8 3 1

adj A

10 4 8

2 5 3

10 3 1

1

10 4 81

2 5 314

10 3 1

A

Page 24: a a adeltauniv.edu.eg/new/engineering/wp-content/uploads/Presentation-… · Bz A(BC) = (AB)C A(B + C) = A B + A C (B + C)A = BA + CA. 1 2 12 m T m n a a a ªº «» «» «» «»

* We will solve Linear system of equations which take

the following form:

Solution of linear system of equations

by using Inverse matrix method

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

n n

n n

n n nn n n

a x a x a x b

a x a x a x b

a x a x a x b

to get the values of the unknowns 1 2, , , .nx x x

Page 25: a a adeltauniv.edu.eg/new/engineering/wp-content/uploads/Presentation-… · Bz A(BC) = (AB)C A(B + C) = A B + A C (B + C)A = BA + CA. 1 2 12 m T m n a a a ªº «» «» «» «»

* We can write the previous system of equations in the

general form as:

AX B

where:

11 12 1 1 1

21 22 2 2 2

1 2

, ,

n

n

n n nn n n

a a a x b

a a a x bX B

a a a x b

A

* To solve this system, multiply both sides by we get:1A

1 1A AX A B 1X A B

Page 26: a a adeltauniv.edu.eg/new/engineering/wp-content/uploads/Presentation-… · Bz A(BC) = (AB)C A(B + C) = A B + A C (B + C)A = BA + CA. 1 2 12 m T m n a a a ªº «» «» «» «»

Example

Solve the following linear system of equations using

inverse matrix method:

Solution

1 2 3

1 2 3

1 2 3

x 2 2 4

2x 5 7

4x 5 3 5

x x

x x

x x

1 2 2

2 5 1

4 5

3

A1

10 4 81

2 5 314

10 3 1

A

Page 27: a a adeltauniv.edu.eg/new/engineering/wp-content/uploads/Presentation-… · Bz A(BC) = (AB)C A(B + C) = A B + A C (B + C)A = BA + CA. 1 2 12 m T m n a a a ªº «» «» «» «»

1X A B

1

2

3

10 4 8 41

2 5 3 714

10 3 1 5

x

x

x

40 28 401

8 35 1514

40 21 5

28 21

42 314

456

Page 28: a a adeltauniv.edu.eg/new/engineering/wp-content/uploads/Presentation-… · Bz A(BC) = (AB)C A(B + C) = A B + A C (B + C)A = BA + CA. 1 2 12 m T m n a a a ªº «» «» «» «»