M. Wójcik Instytut Fizyki, Uniwersytet Jagielloński Instytut Fizyki Doświadczalnej, Uniwersytet...

Post on 21-Jan-2016

220 views 0 download

Transcript of M. Wójcik Instytut Fizyki, Uniwersytet Jagielloński Instytut Fizyki Doświadczalnej, Uniwersytet...

M. Wójcik

Instytut Fizyki, Uniwersytet Jagielloński

Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski

Warszawa, 10 Marca 2006

74 physicists13 institutions

5 countries

Location of the GERDA Experiment

Double Beta decay

Double Beta Decay

Motivation for GERDA

Open questions:

• What is the absolute mass-scale for neutrinos?• Which mass hierarchy is realized in nature?• What is the nature of neutrino? Dirac or Majorana

• Neutrinoless double beta decay experiment has the potential to answer all three questions

Absolute mass-scale for neutrinos

Especially sensitive ways to measure the neutrino mass

• 3H beta-decay, electron energy measurement

Mainz/Troisk Experiment: me < 2.2 eV KATRIN

• Cosmology, Large Scale Structure

WMAP & SDSS: cosmological bounds m < 0.8 eV

• Neutrinoless double beta decay

evidence/claims? Majorana mass: <mee> 0.4 eV

Tritium Experiments

Neutrino mas hierarchy <mee> value allow to distinguish between NH, IH, QD

• < mee> (100 – 500) meV – claim of an observation of 0 in 76Ge

suggests quasi-degenerate spectrum of neutrino masses

• < mee> (20 – 55) meV – calculated using atmospheric neutrino oscillation parameters

suggests inverted neutrino mass hierarchy or the normal-hierarchy – very near QD region

• < mee> (2 – 5) meV – calculated using solar neutrino oscillation parameters

would suggest normal neutrino mass hierarchy

Neutrino mass hierarchy

quasi-degenerate (QD) mass spectrum

mmin>> (m212)1/2 as well as mmin>>(m32

2)1/2

Heidelberg-Moscow Experiment

Isotope enriched Germanium diodes (86% in 76Ge)

IGEX Experiment

Isotope enriched Ge detectors (86 % in 76Ge)

GERDA Phase I

use existing 76Ge (86 %) detectors of HD-M & IGEX

15 kg existing detectors

• Background, assume 0.01 cts/(keV kg y)

• Energy resolution (FWHM), assume = 3.6 keVNbck 0.5 cts for 15 kg y

– Klapdor-K.: 28.86.9 events in 71.7 kg y

expect 6.01.4 cts above Nbck

For 1 events: signal excluded at 98 % CL

Bare Ge crystals for Phase I

- As small as possible holder mass

- Ultra-pure materials

GERDA Phase II15 kg existing detect. + 20 kg new segmented

detect.

• Verify background index 0.001 cts/(keV kg y)• Statistics 3 y x 35 kg 100 kg y• Assume energy resolution = 3.6 keV

• Nbck 0.36 counts

T1/2 > 2 x 1026 y <mee> < 0.09 – 0.29 eV

Segmented Ge detectors for Phase II

- As small as possible holder mass

- Ultra-pure materials

Hexagonally placed detectors

Nuclear Matrix Elements Calculations

Our Goal: background index of 0.001 cts/(keV kg y) gigantic step in background reduction needed

~ 100

• External background- from U, Th decay chain, especially 2.615 MeV from 208Tl in concrete, rock, steel...

- neutrons from (,n) reaction and fission in concrete, rock and from induced reactions

external background will be reduced by passive and active shield

• Internal background- cosmogenic isotopes produced in spallation reactions at the surface, 68Ge and 60Co with half lifetimes ~year(s)

- surface and bulk Ge contamination internal background will be reduced by anticoincidence between

segments and puls shape discrimination

GERDA

Graded shielding of external backgr.

Shielding layer Tl concentration

• ~ 3 m purified water (700 m3) 208Tl < 1 mBq/kg• ~ 4 cm copper kriostat + 3rd wall 208Tl < 10 mBq/kg• ~ 2 m LN2/LAr (50 m3) Tl ~ 0

Shielding and cooling with LN2/LAr is best solution ‘reduce all impure material close to detectors as much

as possible’

external / n / background < 0.001 cts/(keV kg y) for LN will be reached

Factor ~ 10 smaller ext. bck. for LAr

Background reduction

• Underground experiment (mion shield)• Specific background reduction techniques

- mion veto – water Cerenkov detector

- photon-electron discrimination

- scintillation in kryo-liquid as anticoincidence

Internal Backgrounds

Cosmogenic 68Ge product. in 76Ge at surface: ~1 68Ge/ (kg d)

(Avinione et al., Nucl. Phys B (Proc. Suppl) 28A (1992) 280)

68Ge 68Ga 68Zn T1/2 271 d 68 min stable

Decay EC +(90%) EC(10%) Radiation X – 10,3 keV – 2,9 MeV

After 6 months exposure at surface and 6 months storage underground

58 decays/(kg y) in 1st year Bck. index = 0.012 cts/(keV kg y) = 12 x goal!

As short as possible exposure to cosmic radiation

• Cosmogenic 60Co production in natural Ge at sea level :

6.5 60Co/(kg d) Baudis PhD4.7 60Co/(kg d) Avinione et al.,

60Co 60Ni

T1/2 5.27 y

Decay -

Radiation (Emax = 2824 keV) (1172 keV, 1332 keV)

After 30 days of exposure at sea level 15 decays/(kg y)

Bck. index = 0.0025 cts/(keV kg y) = 2.5 x goal!

As short as possible exposure to cosmics

Internal backgrounds

Internal background reductionPhoton – Electron discrimination

• Signal: local energy deposition – single site event• Gamma background: compton scattering – multi site

event

Anti-coincidence between segments suppr. factor ~10

Puls shape analysis suppr. factor ~2

Background of the Ge detector

Part Source Rate [10-3 keV-1kg-1y-1]

Cristal U-238

Th-232

Co-60

Ge-68

Pb-210 (sf)

Th-232 (sf)

0.25

0.05

0.03

1.53

0.13

0.17

Holder all (copper)

all (teflon)

0.14

0.20

Cable all (copper)

all (kapton)

0.02

~1.5

Sum ~4

Mions and Neutrons at LNGS < 10-4 cts keV-1

kg-1 y-1

Summary GERDA

• GERDA approved by LNGS – location in Hall A

• Phase I: use existing detectors, test Klapdor-K. result in 1 year Background level of 0.01 cts/(keV kg y)

Expected start of data taking 2008

• Phase II: add new segmented detectors

factor 10 in T1/2 sensitivity Challenging background level of 0.001 cts/(keV kg y)

Expected sensitivity <mee> ~ 50 meV

Background suppression is the key to success!

Double beta decay

Double beta experiments