„Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

95
2 Politechnika Poznańska w Poznaniu Wydzial elektryczny, kierunek Elektronika i Telekomunikacja, specjalność Sieci Transportu Informacji Kamil Kopczyński „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych źródel atomowych” Praca magisterska Wykonana pod kierunkiem dr inŜ. Krzysztofa Lange Poznań 2004

Transcript of „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

Page 1: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

2

Politechnika Poznańska w Poznaniu Wydział elektryczny, kierunek Elektronika i Telekomunikacja,

specjalność Sieci Transportu Informacji

Kamil Kopczyński

„Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych źródeł atomowych”

Praca magisterska Wykonana pod kierunkiem dr inŜ. Krzysztofa Lange

Poznań 2004

Page 2: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

3

Spis treści:

Skróty zastosowane w pracy:.........................................................................................5

1. Wprowadzenie.............................................................................................................6

2. Przegląd literatury. .....................................................................................................8

2.1 Skala czasu............................................................................................................ 8

2.1.1 Klasyfikacja skal czasu.............................................................................................. 8

2.1.2 Międzynarodowy Czas Atomowy TAI. ..................................................................... 9

2.1.3 Uniwersalny Czas Koordynowany UTC. ................................................................ 10

2.1.4 Polska Atomowa Skala Czasu TA(PL).................................................................... 14

2.1.5 Czas GPS. ................................................................................................................ 16

2.1.5.1 Struktura informacji nawigacyjnej systemu GPS. ...................................... 16

2.1.6 Skale czasu a wymagania jakim muszą sprostać. .................................................... 18

2.2 Podstawa prawna dla czasu w Polsce...............................................................20

2.3 Atomowe źródła skal czasu...............................................................................21

2.3.1 Generator kwarcowy a wzorce atomowe. ................................................................ 22

2.3.1.1 Własności generatora kwarcowego. ........................................................... 22

2.3.2 Zegary atomowe a zjawiska kwantowe. .................................................................. 24

2.3.3 Rubidowe wzorce częstotliwości............................................................................. 28

2.3.4 Metanowe wzorce częstotliwości. ........................................................................... 29

2.3.5 Cezowe zegary atomowe. ........................................................................................ 30

2.3.6 Masery wodorowe.................................................................................................... 34

2.3.7 Fontanny cezowe. .................................................................................................... 35

2.3.8 Zegar atomowy nowej generacji.............................................................................. 38

2.3.9 Wzorce częstotliwości na przestrzeni lat. ................................................................ 39

2.3.10 Porównanie wzorców atomowych. ........................................................................ 41

2.3.11 Przykład aktualnie produkowanych wzorców atomowych.................................... 42

2.4 Transfer czasu....................................................................................................43

2.4.1 Metoda jednodrogowa. ............................................................................................ 43

2.4.2 Metoda dwudrogowa. .............................................................................................. 46

2.4.3 Metoda jednoczesnych obserwacji. ......................................................................... 51

2.4.3.1 Jednokanałowa metoda jednoczesnych obserwacji. ................................... 56

2.4.3.2 Wielokanałowa metoda jednoczesnych obserwacji.................................... 56

2.4.4 Transport zegarów. .................................................................................................. 58

Page 3: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

4

2.4.5 Porównanie metod transferu czasu. ......................................................................... 58

3. Propozycja algorytmu wyznaczania skali czasu....................................................59

3.1 Dane źródłowe. ...................................................................................................61

3.1.1 Programowa realizacja korekty przestrojeń. ......................................................... 63

3.2 Wyznaczenie wag dla zegarów..........................................................................64

3.2.1 Metody Najmniejszych Kwadratów...................................................................... 65

3.2.2 Programowa realizacja wyznaczania wag. ............................................................ 67

3.3 Wyznaczenie skali czasu TA(IET)....................................................................67

3.3.1 Programowa realizacja wyznaczania skali czasu TA(IET)........................ 68

3.4 Wyznaczanie niestałości skali czasu.................................................................70

3.4.1 Wariancja Allana................................................................................................... 70

3.4.2 Programowa realizacja wyznaczania wariancji Allana. ........................................ 72

3.5 Wyniki. ................................................................................................................73

3.5.1 Charakterystyka skal UTC(PL) oraz TA(PL). ........................................... 74

3.5.2 Porównanie skali czasu TA(IET) z TA(PL). ............................................. 75

3.5.3 Wpływ wyboru wzorca roboczego na skalę TA(IET). .............................. 76

3.5.4 RóŜne metody wyznaczania wag. .............................................................. 78

3.5.5 Wpływ liczby zegarów na parametry skali czasu. ..................................... 81

3.5.6 Jakość zegarów biorących udział w tworzeniu TA(IET)........................... 84

3.5.7 Predykcja skali czasu. ................................................................................ 87

3.5.8 Omówienie wyników. ................................................................................ 88

4. Wnioski......................................................................................................................91

5. Literatura. .................................................................................................................93

Załącznik A....................................................................................................................95

Page 4: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

5

Skróty zastosowane w pracy: AOS – zegar pracujący w Obserwatorium Astrogeodynamicznym w Borowcu; BIPM – Międzynarodowym Biurze Wag i Miar (fr. Bureau International des Poids Mesures); CBR, CBR2 – zegary pracujące w Centrum Badawczo-Rozwojowojowym TPSA w Warszawie; Cs –cez (ang. cesium); CS2, CS3, CS5 – zegary pracujące w Głównym Urządzie Miar w Warszawie; CV – metodą jednoczesnych obserwacji (ang. Common-View); ET – Czas Efemeryd (ang. Ephemeris Time); FTP – (ang. File Transfer Protocol); GPS – System Nawigacji Satelitarnej (ang. Global Positioning System); IŁ2, IŁ3 – zegary pracujące w Instytucie Łączności w Warszawie; ISS – Międzynarodowa Stacja Kosmiczna (ang. International Space Station); JEM – (ang. External Facility of the Japanese Experimental Module); LIT – zegar pracujące w Instytucie Fizyki Półprzewodników w Wilnie na Litwie; LPTF – (fr. Laboratoire Primaire du Temps et des Frequences); MJD – Modyfikowany Dzień Juliański; MNK – Metoda Najmniejszych Kwadratów; NASA – (ang. National Aeronautics and Space Administration); NIST – (ang. National Institute of Standards and Technology); NIST-7 – pierwotny wzorzec częstotliwości – zegar cezowy; NIST-F1 – pierwotny wzorzec częstotliwości – fontanna cezowa; PARCS – (ang. Primary Atomic Reference Clock in SPACE); Q – dobroć; Rb – rubid (ang. rubidium); RMS – średni błąd kwadratowy (ang. root-mean-squere); S/A – (ang. Selective Availability); SOM – 1 Specjalistyczny Ośrodek Metrologii Wojsk Lotniczych i Obrony Powietrznej; TA(PL) – Polska Atomowa Skala Czasu; TAI – Międzynarodowy Czas Atomowy (ang. International Atomic Time); TIC – miernik przedziału czasu (ang. Time Interval Counter); TTS-2 – odbiornik transferu czasu (ang. Time Transfer System 2); TWSTFT – metoda dwudrogowa (ang. Two-Way Satellite Time and Frequency Transfer); USNO – Obserwatorium Marynarki USA (ang. United States Naval Observatory); UT – Czas Uniwersalny (ang. Universal Time); UT1 – Czas Uniwersalny 1 (ang. Universal Time 1); UT2 – Czas Uniwersalny 2 (ang. Universal Time 2); UTC – Uniwersalny Czas Koordynowany (ang. Coordinate Universal Time); VSAT – (ang. Very Small Aperture Terminal);

Page 5: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

6

1. Wprowadzenie.

Historia początków pomiaru czasu jest bardzo odległa i ściśle związana

z obserwacją zjawisk astronomicznych opartych na ruchu obrotowym i obiegowym

Ziemi. Zjawiska te stanowiły pierwsze źródło danych dla tworzonych skal czasu.

Charakteryzowały się one jednak stosunkowo długim okresem trwania

oraz niewystarczającą regularnością ich występowania. Uwzględniając coraz wyŜsze

wymagania ludzkości w stosunku do rachuby czasu, nastąpiła konieczność znalezienia

nowych, bardziej stabilnych źródeł czasu. Efektem poszukiwań stały się atomowe

źródła częstotliwości wzorcowej, do których moŜemy zaliczyć: masery wodorowe,

wzorce rubidowe, wzorce metanowe, wzorce cezowe czy najnowsze osiągnięcie

techniki w postaci fontanny cezowej. Wykorzystanie atomowych wzorców czasu

przyczyniło się do znacznej poprawy parametrów tworzonych skal czasu,

które stanowią podstawę funkcjonowania kaŜdego nowoczesnego społeczeństwa.

Większość wysoko rozwiniętych krajów świata posiada własne, niezaleŜne realizacje

skal czasu. Od roku 2001 oficjalnie równieŜ Polska moŜe się poszczycić swoja własną,

niezaleŜną skalą czasu, która w obecnej chwili jest uwaŜana za jedną z najlepszych skal

czasu w Europie. Korzyści płynących z posiadania stabilnej skali czasu jest wiele,

a sam czas stanowi podstawę funkcjonowania wielu dziedzin Ŝycia. Wystarczy wziąć

pod uwagę: komunikację, bankowość, telekomunikację, fizykę, podpis elektroniczny,

metrologię czy systemy nawigacji satelitarnej. W kaŜdej z tych dziedzin stabilny czas

ma ogromne znaczenie. Dodatkowo posiadanie wysoce stabilnej skali czasu pozwala

starać się o uczestnictwo w programie budowy europejskiego systemu nawigacji

satelitarnej GALILEO. System ten ma stanowić alternatywę dla amerykańskiego

systemy GPS, kontrolowanego przez armię USA. Jego militarny charakter nakłada

wiele ograniczeń dla jego cywilnych uŜytkowników, którzy nie mogą w pełni

wykorzystywać jego moŜliwości. W znacznej mierze utrudnienia te składają się

na podjętą decyzję o stworzeniu kolejnego niezaleŜnego po rosyjskim systemie

GLONASS systemu nawigacji satelitarnej, który umoŜliwi zaspokojenie potrzeb państw

europejskich. Projekt ten powstaje przy współpracy Unii Europejskiej z Europejską

Agencja Kosmiczną (ang. European Space Agency) (ESA). Zakończenie budowy

systemu, którego łączny koszt ma wynieść około 1.1 miliarda euro planowane

jest na 2008 rok. Budowa systemu GALILEO otwiera ogromny rynek wart miliardy

Page 6: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

7

euro, a sam system przez wielu jest postrzegany jako impuls dla rozwoju nowych

technologii w zjednoczonej Europie. Głównym celem systemu, jako systemu nawigacji

satelitarnej jest: zwiększenie jego dostępności oraz poszerzenie jego moŜliwości

przy jednoczesnych zachowaniu dokładności przewyŜszającej amerykański system

GPS. Doskonałą precyzja systemu GALILEO ma się opierać na wysoce stabilnej skali

czasu tworzonej na bazie europejskich źródeł atomowych. MoŜliwość uczestniczenia

w programu GALILEO daje dostęp do nowych technologii oraz moŜliwość czerpania

wymiernych zysków z jego funkcjonowania. Przepustką do uczestniczenia przez Polskę

w tym europejskim przedsięwzięciu jest spełnienie trzech podstawowych warunków:

• posiadanie stabilnej skali czasu;

• dysponowanie dwudrogową metodą transferu czasu TWSTFT;

• posiadanie kilku wysoce stabilnych maserów wodorowych podnoszących stabilność

krótkookresową Polskiej Skali Czasu;

Spełnienie tych trzech warunków wiąŜę się z poniesieniem wstępnych kosztów

związanych z zakupem maserów wodorowych oraz specjalnej aparatury pomiarowej.

Koszty te nie są małe i szacuje się je w granicach miliona dolarów. Patrząc jednak

na te koszty z perspektywy moŜliwych korzyści, jakie moŜe dać uczestnictwo

w tym programie to są one niewielkie. MoŜna powiedzieć, Ŝe w obecnej chwili

jedynymi fizycznymi przeszkodami, które uniemoŜliwiają Polsce uczestniczyć

w tym programie to: brak odpowiednich środków finansowych oraz fakt iŜ Polska

nie jest członkiem Europejskiej Agencji Kosmicznej ESA. Posiadamy jednak mocne

atuty w postaci jednej z najlepszych skal czasu w Europie oraz doskonałej kadry

naukowej cenionej na całym świecie. Nie bez znaczenia jest równieŜ fakt,

iŜ jeden z pierwszych odbiorników systemy GALILEO jest odbiornik TTS – 3

zbudowany w Centrum Badań Kosmicznych AOS Borowiec.

Niniejsza praca stanowi jeden z kierunków prowadzonych badań, którego celem

jest poprawa stabilności Polskiej Atomowej Skali Czasu.

Page 7: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

8

2. Przegląd literatury.

2.1 Skala czasu.

Pojęcie skali czasu jest bardzo trudne do jednoznacznego zdefiniowania,

tym bardziej, Ŝe cięŜko jest nam zdefiniować samo pojęcie czasu. Z tego właśnie

powodu skalę czasu definiujemy jako róŜnorodne metody jej praktycznej realizacji.

Nie moŜna tym samym mówić o Ŝadnej idealnej skali czasu, którą moŜna by fizycznie

zrealizować czy znaleźć w naturze. Skalę czasu tworzy zbiór stanów stowarzyszony

z datami [11, 12].

2.1.1 Klasyfikacja skal czasu.

Skale czasu moŜemy podzielić na dynamiczne i zliczeniowe [5]. Dynamiczne skale

czasu (ang. Dynamic Time Scale) opierają się na zjawiskach związanych z dynamiką

ruchu ciał niebieskich [5]. Astronomia opierając się na podstawowych prawach fizyki

wypracowała bardzo dokładne teorie opisujące ruch ciał Układu Słonecznego, które

pozwalają określać połoŜenie ciął niebieskich na tysiące lat w przód i wstecz. Teorie

te opierają się na złoŜonych zestawach wzorów matematycznych, z których kaŜdy

wyraŜa jedną z trzech współrzędnych przestrzennych danego ciała w funkcji czasu [12].

Do podstawowych dynamicznych skal czasu zaliczamy:

• Czas Gwiazdowy – Doba gwiazdowa jest to przedział czasu między dwoma

przejściami tej samej gwiazdy przez lokalny południk, tj. długość trwania jednego

okresu obrotu w odniesieniu do układu "gwiazd stałych" [11];

• Czas Słoneczny – "Prawdziwy Czas Słoneczny" określany na podstawie pozycji

Słońca na niebie. Nie jest on jednorodny w ciągu roku ze względu na ruch Ziemi

wokół Słońca. Uśredniając Czas Słoneczny za rok uzyskuje się Średni Czas

Słoneczny. Czas ten znajduje się w znanej relacji do Czasu Gwiazdowego: stosunek

doby gwiazdowej do średniej doby słonecznej wynosi ok. 1.00274 [11];

• UT – Czas Uniwersalny (ang. Universal Time) powiązany z ruchem wirowym

Ziemi [5];

• UT1 – Czas Uniwersalny 1 (ang. Universal Time 1) uwzględnienia dla czasu UT

poprawki związane z połoŜeniem bieguna, który jest taki sam dla wszystkich

Page 8: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

9

punktów Ziemi i jako miara połoŜenia kątowego Ziemi jest bardzo istotny

dla nawigacji [11];

• UT2 – Czas Uniwersalny 2 (ang. Universal Time 2) uwzględnia dla czasu UT

poprawki związane z sezonową nieregularnością obrotów Ziemi [11];

• ET – Czas Efemeryd (ang. Ephemeris Time) będący jednostajną skalą czasu

zdefiniowaną na podstawie ruchów orbitalnych Ziemi wokół Słońca. Sekunda ET

jest określona jako l / 31 556 923.9747 część roku tropikalnego dla 0 stycznia 1900

roku. W praktyce czas ET uzyskuje się z ruchu orbitalnego KsięŜyca wokół Ziemi.

[5, 11];

Pojęcie zliczeniowej skali czasu (ang. Integrated Time Scale) odnosi się do tworzenia

skali czasu w oparciu o ciągłe zliczanie odtwarzalnych zjawisk wzorcowych.

Priorytetowe znaczenie dla tego typu skal ma zachowanie stałego czasu trwania

zliczanych zjawisk, co w bezpośredni sposób wpływa na jakość skali tego typu.

Zjawiskiem, które w niemal idealny sposób spełnia ten warunek jest czas przejścia

miedzy dwoma nadsubtelnymi poziomami stanu podstawowego atomu cezu 133Cs.

Czas trwania odpowiadający 9 192 631 770 takim okresom jednoznacznie definiuje

jedną sekundę (1 s) w układzie SI [5, 11, 12]. Wygenerowana tym sposobem

podstawowa jednostka czasu (1 sekunda) podlega ciągłemu zliczaniu, co prowadzi do

tworzenia atomowych skal czasu.

Do najpowszechniej stosowanych skal zliczeniowych zaliczamy:

• TAI – Międzynarodowy Czas Atomowy (ang. International Atomic Time) ;

• UTC – Uniwersalny Czas Koordynowany (ang. Coordinate Universal Time);

2.1.2 Międzynarodowy Czas Atomowy TAI.

Za bezpośrednią realizację i dystrybicję Międzynarodowego Czasu Atomowego

(TAI) (ang. International Atomic Time) jest odpowiedzialna Sekcja Czasu

w Międzynarodowym Biurze Wag i Miar (BIPM) (fr. Bureau International des Poids

Mesures) [16, 22]. TAI jest jednolitą skalą czasu, która zbudowana jest na definicji

sekundy wyznaczanej moŜliwie najdokładniej. Pomimo ogromnej popularności skali

TAI nie jest ona uznawana za oficjalną skalę czasu. TAI jest generowana przez BIPM,

na podstawie danych pochodzących z ponad 200 atomowych zegarów zlokalizowanych

w instytucjach metrologicznych zajmujących się czasem w 30 krajach na całym świecie

Page 9: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

10

[21]. Łączna liczba laboratoriów uczestniczących w tworzeniu TAI w obecnej chwili

wynosi 50 [25]. Wszelkie aktualne informacje i dane na temat TAI moŜna znaleźć

na stronie internetowej BIPM’u:

http://www.bipm.org/en/scientific/tai/time_ftp.html

Szacuje się, Ŝe bieg wyimaginowanego zegara jakim jest skala TAI na przestrzeni roku

moŜe się wahać w granicach ± 10-7 sekundy [21].

Długookresową stabilność skali TAI zapewnia rozwaŜna polityka nadawania wag

zegarom określających ich pozycje względem pozostałych zegarów [25]. Stabilność

TAI dla 40 dniowego czasu uśredniania wynosi 0.6 x 10-15 [2].

W celu umoŜliwiania porównywania zegarów tworzących TAI została zorganizowana

przez BIPM międzynarodowa sieć łączy czasu. Sieć ta jest zorganizowana w lokalne

gwiazdy odpowiadające poszczególnym kontynentom. Kontynentalne gwiazdy

połączone są miedzy sobą łączami dalekosięŜnymi [25]. Strukturę międzynarodowej

sieci łączy czasu przedstawia rysunek (2.1) [25].

Rys.2.1 Struktura organizacyjna międzynarodowych łączy czasu – (stan na wrzesień 2003).

2.1.3 Uniwersalny Czas Koordynowany UTC.

Pewną modyfikacją skali czasu TAI jest Uniwersalny Czas Koordynowany (UTC)

(ang. Coordinate Universal Time) uznawany za oficjalną skalę czasu [5]. Wbrew swojej

Page 10: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

11

nazwie UTC podobnie jak TAI jest skalą czasu generowaną przez zegary atomowe.

Stabilność wzorców atomowych jest znacznie wyŜsza od stabilności ruchu obrotowego

Ziemi, który nie jest stały i podlega efektowi hamowania [16, 19]. Spowalnianie rotacji

naszego globu jest wynikiem wpływu KsięŜyca, który rozkołysał oceany w rytmie

przypływów oraz tarciem atmosfery [19]. Ze względu na konieczność powiązania skali

UTC ze zmieniającym się ruchem obrotowym Ziemi, wymaga ona regulacji. Pozwala

ona zachować zalety wynikające z generacji regularnej skali czasu uzyskanej dzięki

zegarom atomowym i jednocześnie podąŜającej za ruchem obrotowym Ziemi [11].

Mechanizmem pozwalającym zachować korelację między skalą UTC, a skalą UT opartą

na ruchu obrotowym Ziemi wykorzystywaną w nawigacji oraz przez astronomów jest

tzw. sekunda skokowa (ang. leap second) [36].

Instytucją, która zajmuje się kontrolą nieregularności obrotów Ziemi

jest (ang. International Earth Rotation Services) z siedzibą w ParyŜu. W chwili,

gdy owa instytucja dostrzega, Ŝe zbliŜa się chwila, w której Ziemia znów zaczyna

opóźniać się o pełną sekundę w stosunku do czasu atomowego, zarządza na całym

świecie dodanie owej sekundy. Czas zostaje jak gdyby wstrzymany do momentu,

aŜ kula ziemska dogoni go ze swoim obrotem [19]. Sekunda skokowa po raz pierwszy

została dodana do czasu UTC 30 czerwca 1972 roku i od tamtej pory jest dodawana

średnio raz na rok [36]. Do końca 1971 roku skalę UTC koordynowano do rotacji Ziemi

w sposób ciągły przez zmianę szybkości chodu zegarów. W tamtym okresie róŜnica

między UTC i UT2 była utrzymywana w granicach ± 0,2 s [12]. Mechanizm sekundy

skokowej jest szczególnie przydatny dla uŜytkowników, którzy korzystają

z astronomicznej skali czasu UT1. Dzięki zastosowaniu sekundy skokowej róŜnica

między obiema skalami czasu nigdy nie jest większa jak 0.9 s. Szacuje się, Ŝe dobowa

róŜnica między skalą UT1, a UTC wynosi około 2 ÷ 3 milisekundy, co w skali roku daje

około 1 sekundę [36]. NaleŜy podkreślić, iŜ moŜliwa jest sytuacja, w której Ziemia

zacznie przyspieszać i będzie istniała konieczność odjęcia sekundy skokowej

(ang. negative leap second) od czasu UTC. Do tej pory sytuacja taka jednak nie miała

miejsca. Dodatkowo opierając się na dotychczasowej wiedzy na temat ruchu

obrotowego Ziemi moŜna powiedzieć, Ŝe potrzeba odjęcia sekundy skokowej

nie pojawi się nigdy [36].

Zaletą uwzględniania sekund skokowych jest zapobiegnięcie sytuacji, w której za

kilkanaście tysięcy lat zachód Słońca będziemy oglądać w południe. Mechanizm ten

Page 11: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

12

dostarcza równieŜ pewnych problemów, szczególnie firmom telekomunikacyjnym,

dla których utrzymanie synchronizacji sieci stanowi priorytetowe zadanie.

W obecnej chwili róŜnica między TAI, a UTC wynosi 32 sekundy [5, 11, 12, 21].

Przykład:

UTC 17:12:00

TAI 17:12:32

W tabeli (2.1) oraz na rysunku (2.2) przedstawiono historię wprowadzania do skali

czasu UTC kolejnych sekund skokowych [12, 23].

Okres (od – do) TAI – UTC [s]

1972.01.01 ÷ 1972.06.30 10 1972.07.01 ÷ 1972.12.31 11 1973.01.01 ÷ 1973.12.31 12 1974.01.01 ÷ 1974.12.31 13 1975.01.01 ÷ 1975.12.31 14 1976.01.01 ÷ 1976.12.31 15 1977.01.01 ÷ 1977.12.31 16 1978.01.01 ÷ 1978.12.31 17 1979.01.01 ÷ 1979.12.31 18 1980.01.01 ÷ 1981.06.30 19 1981.07.01 ÷ 1982.06.30 20 1982.07.01 ÷ 1983.06.30 21 1983.07.01 ÷ 1985.06.30 22 1985.07.01 ÷ 1987.12.31 23 1988.01.01 ÷ 1989.12.31 24 1990.01.01 ÷ 1990.12.31 25 1991.01.01 ÷ 1992.06.30 26 1992.07.01 ÷ 1973.06.30 27 1993.07.01 ÷ 1994.06.30 28 1994.07.01 ÷ 1995.12.31 29 1996.01.01 ÷ 1997.06.30 30 1997.07.01 ÷ 1998.12.31 31 1999.01.01 ÷ --------------- 32

Tab. 2.1 Historia sekund przestępnych, róŜnica TAI – UTC (dane na rok 2003).

Rys. 2.2 Ruch wirowy Ziemi, a sekunda skokowa.

Page 12: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

13

Biorąc pod uwagę dotychczasowe obserwacje ruchu obrotowego Ziemi to dodanie

33 sekundy skokowej do skali UTC prawdopodobnie nastąpi 30 czerwca 2004 [19, 20].

Lokalne (narodowe) realizacje czasu UTC oznaczane jako UTC(k) (i/lub) TA(k), pełnią

narodowe laboratoria czasu. Pełna ich lista wraz z akronimami została zamieszczona

w tabeli (2.2) [24].

Akronim Laboratorium

AMC Alternate Master Clock station Colorado Springs, Colo., USA

AOS Astronomiczne Obserwatorium Szerokosciowe ( Borowiec Astrogeodynamic Observatory) Borowiec, Poland

APL Applied Physics Laboratory Laurel, Mass., USA AUS Consortium of laboratories in Australia BEV Bundesamt für Eich- und Vermessungswesen, Vienna, Austria BIRM Beijing Institute of Radio Metrology and Measurement, Beijing, P. R. China CAO Stazione Astronomica di Cagliari (Cagliari Astronomical observatory)Cagliari, Italy CH Swiss Federal Office of Metrology and Accreditation (METAS)

CNM Centro Nacional de Metrología, Querétaro, Mexico CRL Communications Research Laboratory, Tokyo, Japan CSIR Council for Scientific and Industrial Research, Pretoria, South Africa

DLR Deutsche Zentrum für Luft- und Raumfahrt (German Aerospace Centre) Oberpfaffenhofen, Germany

DTAG Deutsche Telekom AG, Darmstadt, Germany F Commission Nationale de l'Heure, Paris, France

GUM Główny Urząd Miar (Central Office of Measures), Warsaw, Poland IEN Istituto Elettrotecnico Nazionale Galileo Ferraris, Turin, Italy

IFAG Bundesamt für Kartographie und Geodäsie (Federal Agency for Cartography and Geodesy), Fundamental station, Wettzell, Kötzting, Germany

IGMA Instituto Geográfico Militar, Buenos Aires, Argentina INPL National Physical Laboratory, Jerusalem, Israel IPQ Institute Português da Qualidade, Monte de Caparica, Portugal.

JATC Joint Atomic Time Commission, Lintong, P.R. China JV Justervesenet, Norwegian Metrology and Accreditation Service, Kjeller, Norway

KRIS Korea Research Institute of Standards and Science, Daejeon, Rep. of Korea LDS University of Leeds, Leeds, United Kingdom LT Lithuanian National Metrology Institute, Vilnius, Lithuania

MSL Measurement Standards Laboratory, Lower Hutt, New Zealand NAO National Astronomical Observatory, Misuzawa, Japan NIM National Institute of Metrology, Beijing, P.R. China

NIMB National Institute of Metrology, Bucharest, Romania NIMT National Institute of Metrology, Bangkok, Thailand NIST National Institute of Standards and Technology, Boulder, Colo., USA NMC National Centre of Metrology, Sofiya, Bulgary NMIJ National Metrology Institute of Japan, Tsukuba, Japan NML National Measurement Laboratory, Sydney, Australia

NMLS National Metrology Laboratory of SIRIM Berhad, Shah Alam, NPL National Physical Laboratory, Teddington, United Kingdom NPLI National Physical Laboratory, New Delhi, India NRC National Research Council of Canada, Ottawa, Canada

NTSC National Time Service Center of China, Lintong, P.R. China OMH Országos Mérésügyi Hivatal (National Office of Measures) Budapest, Hungary

ONBA Observatorio Naval, Buenos Aires, Argentina ONRJ Observatório Nacional, Rio de Janeiro, Brazil

OP Observatoire de Paris (Paris Observatory), Paris, France ORB Observatoire Royal de Belgique (Royal Observatory of Belgium) Brussels, Belgium GUM Consortium of laboratories in Poland PTB Physikalisch-Technische Bundesanstalt, Braunschweig, Germany ROA Real Instituto y Observatorio de la Armada, San Fernando, Spain SCL Standards and Calibration Laboratory, Hong Kong

Page 13: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

14

SG Standards, Productivity and Innovation Board, Singapore SMU Slovenský metrologický ústav (Slovak Institute of Metrology) Bratislava, Slovakia

SP Sveriges Provnings- och Forskningsinstitut (Swedish National Testing and Research Institute), Borås, Sweden

SU Institute of Metrology for Time and Space (IMVP), NPO "VNIIFTRI" Mendeleevo, Moscow Region, Russia

TCC TIGO Concepcion Chile TL Telecommunication Laboratories, Chung-Li, Taiwan

TP Institute of Radio Engineering and Electronics, Academy of Sciences of the Czech Republic, Prague, Czech Republic

UME Ulusai Metroloji Enstitüsü, Marmara Research Center, (National Metrology Institute), Gebze Kocaeli, Turkey

USNO U.S. Naval Observatory, Washington D.C., USA VSL Van Swinden Laboratorium, Delft, the Nederlands

Tab. 2.2 Lista laboratoriów wraz z ich akronimami realizujących lokalne UTC(k).

Wszystkie te laboratoria partycypują w tworzeniu międzynarodowej skali czasu poprzez

wysyłanie do BIPM’u danych ze swoich zegarów. Większość z tych laboratoriów

posiada komercyjne cezowe wzorce atomowe zapewniające praktyczną realizacje

sekundy. Realizacja ta jest na tyle dokładna, Ŝe spełnia wymagania większości aplikacji.

W pewnej ilości laboratoriów znajdują się zegary cezowe o większej dokładności.

Niepewność dla tych zegarów jest rzędu 1015 [22].

2.1.4 Polska Atomowa Skala Czasu TA(PL).

Polska niezaleŜna skala czasu TA(PL) została oficjalnie uruchomiona 4 lipca 2001

roku i w obecnej chwili jest uwaŜana za jedna z najlepszych skal czasu w Europie

[3, 18]. Na dzień dzisiejszy (kwiecień 2004) jest ona tworzona przez 9 zegarów

zlokalizowanych w 5 laboratoriach czasu na terenie Polski oraz jednego wzorca

na Litwie. Lista wszystkich laboratoriów uczestniczących w tworzeniu TA(PL) wygląda

następująco [9]:

• AOS – Obserwatorium Astrogeodynamiczne, Borowiec;

• CBR, CBR2 – Centrum Badawczo-Rozwojowe TPSA, Warszawa;

• CS2, CS3, CS5 – Główny Urząd Miar, Warszawa;

• IŁ3 – Instytut Łączności, Warszawa;

• SOM – 1 Specjalistyczny Ośrodek Metrologii Wojsk Lotniczych i Obrony

Powietrznej, Warszawa;

• LIT – Instytut Fizyki Półprzewodników, Wilno, Litwa;

Zegary w poszczególnych laboratoriach są porównywane przy uŜyciu wielokanałowego

odbiornika GPS o nazwie TTS-2 zbudowanego w AOS Borowiec przy współpracy

Page 14: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

15

z BIPM (fr. Bureau International des Poids et Mesures) w Sevres. Polska Atomowa

Skala Czasu TA(PL) jest wyznaczana jako średnia waŜona wszystkich zegarów

wchodzących w jej skład [3, 18].

Od 2001 roku dwa polskie laboratoria AOS i GUM zajmują się niezaleŜną realizacją

Polskiego Uniwersalnego Czasu Koordynowanego. Skala UTC(PL) jest oparta

na zegarze CS5 pracującym w GUM, a skala UTC(AOS) na zegarze zlokalizowanym

w AOS. Oba te wzorce są cezowymi zegarami atomowymi HP5071A [3, 18].

Niepewność porównań zegarów między laboratoriami waha się obecnie na poziomie

2 ÷ 5 ns – średni błąd kwadratowy (ang. root-mean-squere) (RMS). Otrzymane dane

z obserwacji przeprowadzanej metodą jednoczesnych obserwacji (ang. Common-View)

zaimplementowanej w odbiorniku TTS-2 są zbierane w tygodniowych odstępach czasu.

Na podstawie tych danych wyznaczana jest średnia waŜona wartość dla kaŜdego zegara,

dla kaŜdego dnia miesiąca. Obliczenia te są przeprowadzane na końcu kaŜdego

miesiąca. Właśnie w ten sposób niezaleŜna Polska Atomowa Skala Czasu Ta(PL)

jest wyznaczona od sierpniu 1999 roku. Oficjalnie zaczęła ona funkcjonować dopiero

od 4 lipca 2001 roku, a dane o niej zaczęły być zamieszczane w dokumentacji BIPM,

Circular-T. Do głównych celów nowo powstałej skali czasu naleŜały: [3, 18]:

• poprawienie stabilności i dokładności Polskiej Narodowej Skali Czasu UTC(PL);

• połączenie lokalnych zegarów atomowych, pracujących w kilku instytucjach, w celu

stworzenia Oficjalnego Czasu Polskiego;

• umoŜliwienie oszacowania jakości zegarów biorących udział w tworzeniu TA(PL);

• zwiększenie liczby zegarów wchodzących w skład TA(PL);

W skład Polskiej Skali Czasu TA(PL) wchodzą głównie cezowe zegary atomowe

HP5071A, oraz jeden pasywny maser wodorowy z lokalizowany w „1 Specjalistycznym

Ośrodku Metrologii Wojsk Lotniczych i Obrony Powietrznej” w Warszawie.

Planowane jest rozszerzenie grupy laboratoriów czasu o nowe ośrodki oraz zwiększanie

liczby cezowych wzorców atomowych oraz maserów wodorowych [3, 18].

Najmłodszym uczestnikiem TA(PL) jest zegar SOM – 1, który rozpoczął swoją pracę

w listopadzie 2003 roku.

Zegary znajdujące się w GUM (CS2, CS3, CS5) są porównywane przy uŜyciu

elektronicznego licznika HP5335A [3, 18].

Page 15: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

16

2.1.5 Czas GPS.

Czas GPS jest ciągłą skalą czasu trwającą od 5 stycznia 1980 roku. Skala ta jest

zsynchronizowana z dokładnością do jednej mikrosekundy z czasem UTC(USNO),

czyli realizacją czasu UTC w USNO (ang. United States Naval Observatory). Z kolei

ta realizacja róŜni się od UTC na ogół o mniej niŜ 1 µs. System GPS posiada

tym samym odrębny system mierzenia czasu uwzględniający jedynie te sekundy

skokowe, które zostały wprowadzone przed oficjalnym ustanowieniem tzw. czasu GPS.

Wszystkie później dodane sekundy skokowe do czasu UTC składają się na obecną

(maj 2004) róŜnicę biegu skal czasu GPS – UTC = 13 s oraz róŜnicę TAI − GPS = 19 s.

Czas GPS nie jest w stanie dorównać precyzji skali UTC(USNO). MoŜe jednak pełnić

funkcję stabilnej skali czasu dla samego systemu GPS, który moŜe być później

wykorzystywany przez systemy transferu czasu opisane w paragrafie (2.4) [40].

2.1.5.1 Struktura informacji nawigacyjnej systemu GPS.

KaŜdy z satelitów nadaje na dwóch kanałach, których częstotliwości

są wielokrotnością częstotliwości podstawowej wynoszącej 10.23 MHz [14, 15]:

• sygnał L1 na częstotliwości nośnej 1575.42 MHz;

• sygnał L2 na częstotliwości nośnej 1227.6 MHz;

Oba sygnały nośne są modulowane specjalnymi bitowymi kodami pseudolosowymi

(ang. pseudo-random noise) (PRN) [6, 14, 15]:

• Kod C/A (ang. Clear/Acquisition code lub ang. Civilian Code) – jest krótkim kodem

o długości 1023 bitów powtarzających się co 1 ms, a generowanych z szybkością

1.023 Mb/s. KaŜdy z satelitów nadaje inny ciąg kodowy z grupy 1023 ciągów Golda,

wybranych w sposób ułatwiający odbiornikowi identyfikację ciągów nadawanych

przez róŜne satelity. Kod ten umoŜliwia odbiornikowi szybką synchronizację.

Moduluje on jedynie sygnał L1.

• Kod P (ang. Precise lub ang. Prorected code) – jest kodem długim, którego okres

powtarzania wynosi 267 dni, generowanym z szybkością 10.23 Mb/s. KaŜdy

z satelitów ma przypisany fragment tego kodu o długości jednego tygodnia. Kod ten

moduluje oba sygnały L1 i L2.

Page 16: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

17

Na pokładzie kaŜdego z satelitów znajduje się: atomowy zegar cezowy, zegar rubidowy,

bądź kombinacja obu zegarów. Ze wzorca atomowego uzyskiwana jest częstotliwość

podstawowa oraz sygnały dla generatorów ciągów [6, 12, 15].

Oba sygnały niosą ze sobą zakodowaną informację o aktualnej poprawce zegara satelity

względem czasu GPS, a takŜe informację o czasie UTC(USNO) z dokładnością

do 90 ns (warunek 1 sigma) [6].

Format informacji nawigacyjnej został przedstawiona na rysunku (2.3) [6].

Rys. 2.3 Format informacji nawigacyjnej.

Depesza nawigacyjna naładana jest na kod P i kod C/A. Szybkość transmisji wynosi

50 bitów na sekundę. Składa się ona z 25 ramek,kaŜda złoŜona z 1500 bitów. KaŜda

ramka podzielona jest na 5 podramek, po 300 bitów. Odebranie jednej ramki danych

zajmuje więc 30 sekund, a odebranie wszystkich 25 ramek zajmuje 12.5 minuty.

Podramki 1, 2 i 3 powtarzają te same 900 bitów danych we wszystkich 25 ramkach,

umoŜliwia to odbiornikowi odebranie krytycznych danych w ciągu 30 sekund.

Dane depeszy nawigacyjnej uaktualniane są co cztery godziny [6]. KaŜda depesza

nawigacyjna zawiera następujące informacje [6]:

• HOW (ang. Handover Word) – umoŜliwia synchronizację odbiornika polegającą

na przejściu od śledzenia kodu C/A do śledzenia kodu P.

• TOW (ang. Telemetry Word) – zawiera informacje telemetryczne.

• Korekta czasu (ang. Clock Correction) – umoŜliwia korektę czasu ze względu

na dryft generatorów pokładowych, a takŜe opóźnienia fali w jonosferze. Dodatkowo

umoŜliwia obliczenie czasu UTC.

Page 17: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

18

• Efemerydy (ang. Ephemeris) – zawierają dokładne dane orbitalne satelity

nadającego depeszę, niezbędne do wyznaczania czasu i pozycji.

• Informacje alfanumeryczne (ang. Message).

• Almanach (ang. Almanac Health Status) – dane dotyczące aktualnego stanu

systemu, w tym przybliŜone elementy orbitalne wszystkich satelitów, których

znajomość przyśpiesza proces akwizycji. Kompletna informacja mieści się

w 25 kolejnych ramkach.

2.1.6 Skale czasu a wymagania jakim muszą sprostać.

Bez względu na to czy mówimy o skali czasu zliczeniowej czy dynamicznej, musi

ona spełniać pewne fundamentalne warunki. Do takich warunków zaliczamy [11]:

• kalibrację – polegającą na określeniu okresu podstawowego drgania;

• określenie początku skali czasu;

Oba te warunki wymagają przyjęcia pewnych konwencji, które w większości

przypadków są ustalana na zasadzie porozumień międzynarodowych [11].

Poza tymi dwoma podstawowymi warunkami skala czasu powinna cechować się

kilkoma innymi właściwościami świadczącymi o jej jakości. Za takie cechy uznaje się:

• niezawodność (ang. reliability) – określa zdolność skali czasu do poprawnej pracy

oraz realizacji swoich podstawowych funkcji, bez względu na zaistniałe czynniki

zewnętrzne mogące te funkcje ograniczać [5, 11];

• dokładność (ang. accuracy) – określa jakość odtwarzania Czasu Idealnego TT,

a takŜe zdolność utrzymywania średniej wartości przedziału skali czasu zgodnie

z wartością zdefiniowaną. W większości przypadków średnia wartość przedziału

czasu jest moŜliwie bliska sekundzie SI na rotującej geoidzie. Okazuje się bowiem,

Ŝe czas trwania sekundy SI dla zegara cezowego znajdującego się w spoczynku

na Ziemie i wysokości 1km nad poziomem morza jest krótszy o 1.1 x 10-13 s od tego

samego zegara, który znajduje się na powierzchni morza. Uwzględniając,

Ŝe powierzchnia geoidy jest wyznaczona z niepewnością równą 3 x 10-17, moŜemy

stwierdzić, iŜ realizacja sekundy SI na geoidzie podlega takiej samej

niepewności [11];

• stałość (ang. stability) – określa zdolność skali czasu do utrzymania stałej wartości

zdefiniowanego przedziału czasu, nawet gdy wartość ta odbiega od idealnej

Page 18: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

19

(wygenerowana sekunda nie jest równa sekundzie SI). Taki stan rzeczy objawia się

zmieniającą się wartością względnego odchylenia standardowego określającego

niestałość skali czasu [5]. Do badanie niestabilności skal czasu wykorzystujemy

wariancję Allana opisaną w paragrafie (3.4.1) [5, 11];

• opóźnienie dostępu do skali czasu – cecha ta definiuje opóźnienie dostępu do skali

czasu przez uŜytkownika, który ma zamiar określić róŜnicę między odczytem zegara

lokalnego, a odczytem skali w określonej chwili wskazanej przez zegar. Opóźnienie

to jest złoŜeniem kilku czynników zaleŜnych od obu stron: czasu pozyskiwania

danych, czasu ich przetwarzania, czasu przesłania informacji korygującej odczyt

zegara w określonej chwili. Dostęp do skali czasu moŜe się wahać od kilku dni,

jak w przypadku UTC, do czasu rzeczywistego (ang. on-line) kosztem

długoterminowej stabilności. Dostęp on-line moŜe mieć miejsce jednak w sytuacji,

gdy zegary tworzące taką skale czasu znajdują się w jednym laboratorium [5];

Głównym czynnikiem wpływającym na jakość skali czasu jest liczba zegarów, jaka ją

tworzy. Zwiększenie liczby zegarów, biorących udział w generowaniu skali czasu

w większości przypadków prowadzi do poprawy wymienionych wyŜej właściwości [5].

Przykładem takiej skali czasu moŜe być skala TAI, w skład której wchodzi ponad

200 zegarów rozproszonych na całym świecie [21].

Dopuszcza się sytuację, w której do generacji skali czasu wykorzystuje się wyniki innej

skali czasu o charakterze bardziej lokalnym [5].

Na jakość skali czasu wpływa równieŜ sam algorytm wykorzystywany

do jej generowania. Dobrze zaprojektowany algorytm pozwala na zminimalizowanie

niekorzystnych efektów wpływających na pogorszenie jakości skali czasu. Do tego typu

czynników zaliczamy usuwanie i dodawanie zegarów z / do zespołu zegarów [5].

Page 19: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

20

2.2 Podstawa prawna dla czasu w Polsce.

W ostatnim czasie pojawiła się długo oczekiwana ustawa o czasie urzędowym

na obszarze Rzeczypospolitej Polskiej, której treść znajduje się na rysunku (2.4) [30].

Ustawa ta reguluje podstawy prawne dla funkcjonowania czasu urzędowego na terenie

Polski [30].

USTAWA

z dnia 10 grudnia 2003 r. o czasie urz ędowym na obszarze Rzeczypospolitej Polskiej

(Dz. U. z dnia 4 lutego 2004 r.)

Art. 1. Na obszarze Rzeczypospolitej Polskiej wprowadza się czas urzędowy.

Art. 2.

1. Czasem urzędowym na obszarze Rzeczypospolitej Polskiej jest czas środkowoeuropejski albo czas letni środkowoeuropejski w okresie od jego wprowadzenia do odwołania.

2. Czas środkowoeuropejski jest czasem zwiększonym o jedną godzinę w stosunku do uniwersalnego czasu koordynowanego UTC(PL).

3. Czas letni środkowoeuropejski jest czasem zwiększonym o dwie godziny w stosunku do uniwersalnego czasu koordynowanego UTC(PL).

4. Uniwersalny czas koordynowany UTC(PL) jest polską realizacją międzynarodowego uniwersalnego czasu koordynowanego UTC i wyznaczany jest przez państwowy wzorzec jednostek miar czasu i częstotliwości.

Art. 3. Prezes Rady Ministrów wprowadza i odwołuje czas letni środkowoeuropejski, w drodze rozporządzenia, ustalając na okres co najmniej jednego roku kalendarzowego dokładne daty, od których następuje wprowadzenie lub odwołanie czasu letniego, uwzględniając istniejące standardy międzynarodowe w tym zakresie.

Art. 4.

1. Organem uprawnionym do utrzymywania czasu urzędowego i uniwersalnego czasu koordynowanego UTC(PL) oraz do rozpowszechniania sygnałów tych czasów jest Prezes Głównego Urzędu Miar.

2. Minister właściwy do spraw gospodarki określi, w drodze rozporządzenia, sposoby rozpowszechniania sygnałów czasu urzędowego i uniwersalnego czasu koordynowanego UTC(PL), uwzględniając w szczególności standardy międzynarodowe i potrzeby uŜytkowników.

Art. 5. Traci moc ustawa z dnia 18 stycznia 1996 r. o czasie letnim (Dz. U. Nr 29, poz. 128).

Art. 6.

Ustawa wchodzi w Ŝycie po upływie 14 dni od dnia ogłoszenia.

Prezydent Rzeczypospolitej Polskiej: A. Kwaśniewski

Rys. 2.4 Treść ustawy o czasie urzędowym na terenie RP.

Page 20: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

21

2.3 Atomowe źródła skal czasu.

Do pierwszej połowy XX wieku najdokładniejszą formą pomiaru czasu,

a jednocześnie źródłem skal czasu były obserwacje astronomiczne. Niestety zjawiska

te charakteryzują się długim okresem trwania, a dodatkowo nie są na tyle stałe,

jak wcześniej uwaŜano. Nauka potrzebowała dokładniejszych źródeł. Czynniki

te spowodowały, Ŝe zaczęto szukać dokładniejszych źródeł czasu. Poszukiwania

te zostały zakończone w 1955 roku, kiedy to zbudowano pierwszy zegar atomowy.

Był on efektem dwudziestoletniego okresu badań prowadzonych przez kilka

laboratoriów naukowych [41].

Atomowe wzorce częstotliwości moŜemy podzielić na aktywne i pasywne. Wzorce

aktywne wykorzystują stymulowaną emisję spójną promieniowania w odpowiedniej

strukturze rezonansowej (rezonatora wnękowego). W przypadku wzorców pasywnych

rolę rezonatora pełni zbiór cząstek (tzn. atomów i cząsteczek) poddawanych

poŜądanemu przejściu kwantowemu. W tym przypadku wymagana jest obecność

zewnętrznego generatora wspomagającego wytwarzanie tych przejść. Największe

prawdopodobieństwo przejść ma miejsce w przypadku najdokładniejszego dostrojenia

częstotliwości promieniowania do częstotliwości rezonansowej wykorzystywanych

atomów [19].

W obecnej chwili mamy do dyspozycji kilka róŜnych odmian zegarów atomowych,

których budowa bazuje na takich pierwiastkach jak: cez, rubid, metan czy wodór [41].

Do źródeł czasu odgrywających priorytetowe znaczenie w dzisiejszych czasach

zaliczamy:

• rubidowe wzorzece częstotliwości (ang. rubidium frequency standards);

• metanowe wzorce częstotliwości (ang. methane frequency standards);

• cezowe zegary atomowe (ang. cesium atomic clocks);

• masery wodorowe (ang. hydrogen masers);

• fontanny cezowe (ang. cesium fountains);

• zegary atomowe nowej generacji;

Page 21: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

22

2.3.1 Generator kwarcowy a wzorce atomowe.

Generator kwarcowy stanowi jeden podstawowych elementów pasywnych

wzorców atomowych, który jest wykorzystywany przez nie jako źródło wyjściowych

sygnałów wzorcowych.

2.3.1.1 Własności generatora kwarcowego.

Działanie rezonatora kwarcowego polega na wykorzystaniu zjawiska

piezoelektrycznego, polegającego na wzajemnym przetwarzaniu energii mechanicznej

w elektryczną. Podstawowy element rezonatora kwarcowego stanowi odpowiednio

oszlifowany kryształ kwarcu Si O2. Wygląd typowego rezonatora kwarcowego

przedstawia rysunek (2.5) [19].

kryształ kwarcu

podstawka

doprowadzenia odprowadzenia

Rys. 2.5 Budowa rezonatora kwarcowego.

Rezonator kwarcowy składa się z kryształu kwarcu, doprowadzeń mechanicznych

mocujących kwarc i jednocześnie odbierających z jego powierzchni ładunek

oraz odprowadzeń stanowiących poza podstawką nóŜki rezonatora. Rezonator znajduje

się w próŜniowej bańce metalowej. PróŜnia w bańce ogranicza tłumienie drgań

kryształu. Głównym czynnikiem wpływającym na częstotliwość drgań własnych

rezonatora jest dokładne określenie jego wymiarów [19].

Dla określenia właściwości częstotliwościowych rezonatora kwarcowego stosuje się

ekwiwalent elektryczny w postaci układu rezonansowego, co przedstawia

rysunek (2.6) [19].

RLC

Co

Rys. 2.6 Schemat zastępczy rezonatora kwarcowego.

Pojemność C oraz indukcyjność L odpowiadają właściwościom mechanicznym

kryształu kwarcu. Rezystancja R odpowiada za tłumienie rezonatora wynikające

Page 22: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

23

z niedoskonałości próŜni, przenikania energii drgań kryształu poprzez odprowadzenia

i doprowadzenia. Pojemność Co jest pojemnością doprowadzeń [19].

Typowe parametry precyzyjnych rezonatorów kwarcowych zostały umieszczone

w tabeli (2.3) [19].

Parametr rezonatora Rezonator 2,5 MHz Rezonator 5 MH z

Częstotliwość 2.5 MHZ 5 MHz

Rząd drgania (owerton) 5 5

Średnica kryształu 30 mm 15 mm

R 65 Ω 100 Ω

L 19.5 H 8 H

C 2,1⋅10-4 pF 1.27⋅10-4 pF

C0 4 pF 2 pF

Współczynnik starzenia po kilku miesiącach pracy < 10-9 /miesiąc < 10-10 /dzień

Temperatura pracy 50°C 78°C

Dobroć Q 4⋅106 2.5⋅106

Maksymalna wartość skuteczna prądu w.cz., jaki moŜe przepływać przez kryształ < 100 µA < 50 µA

Tab. 2.3 Typowe dane techniczne precyzyjnych rezonatorów kwarcowych.

Rezonatory kwarcowe posiadają stosunkowy wysoki współczynnik dobroci Q mogący

osiągać wartość 106. Wynik ten zawdzięczają doskonałym właściwościom

dielektrycznym oraz wysokiej selektywności zjawiska piezoelektrycznego kryształu

kwarcu. Stanowią one podstawę do uzyskania wysokiej stabilności częstotliwości

konstruowanych generatorów kwarcowych [19].

Impedancję rezonatora kwarcowego przy pominięciu tłumienia R moŜna opisać wzorem

(2-1) [19].

ooK

LCCC

LCjZ

2

2 1

ωωω

ω +−⋅= (2-1)

gdzie:

ωωωω - częstotliwość rezonansowa równa 2Πf;

Dla generatora wykorzystującego rezonans szeregowy impedancji przedstawionej

wzorem (2-1) częstotliwość rezonansową określa się wzorem (2-2) [19].

LCf S ⋅Π⋅

=2

1 (2-2)

Częstotliwość rezonansu szeregowego fS, opisana wzorem (2-2), zaleŜy jedynie

od parametrów mechanicznych wynikających ze sposobu szlifowania kwarcu

Page 23: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

24

modelowanych przez parametry L i C. ZaleŜność ta jest obarczona wpływem

temperatury [19].

Niestałość częstotliwości generatora kwarcowego, jak i kaŜdego innego generatora

określa równanie Groszkowskiego, wzór (2-3) [19].

222

1ih

Qf

f ⋅⋅

=∆ (2-3)

gdzie:

Q – dobroć rezonatora, wzór (2-5);

hi – współczynnik zniekształceń przebiegu generatora;

Na podstawie wzorów (2-2) i (2-3) moŜna wyciągnąć pewne wnioski w stosunku

do generatorów kwarcowych [19]:

• musi on generować przebieg sinusoidalny;

• powinien wykorzystywać rezonans szeregowy;

• powinien pracować w stałej temperaturze ze względu na podatność termiczną

kryształu kwarcu (zaleŜność temperaturowa jest nieliniowa i ma znaczący wpływ

na zmianę jego wymiarów);

2.3.2 Zegary atomowe a zjawiska kwantowe.

Zegary atomowe stanowią obecnie najdokładniejsze źródła czasu stosowane

na świecie. Wszystkie odmiany zegarów atomowych pracują w odpowiednich

warunkach i wykorzystują własności atomów polegające na absorbowaniu i emitowaniu

elektromagnetycznego promieniowania. Proces absorpcji i emisji odbywa się jedynie

pod wpływem częstotliwości rezonansowej, która jest bardzo stabilna w długim okresie

czasu [31, 41].

W celu zrozumienia zasady działania zegarów atomowych konieczne jest zrozumienie

zjawiska kwantyzacji poziomów energetycznych atomu. Kwantyzacja daje podstawy

do wyznaczenia częstotliwości atomowej – rezonansowej. Prawa mechaniki kwantowej

mówią, Ŝe energia otaczająca atom posiada pewne dyskretne poziomy energetyczne.

Atom w szczególnych warunkach moŜe zmieniać swój poziom energetyczny. Zmiana

taka moŜe odbywać w obydwu kierunkach: przejście z niŜszego poziomu na wyŜszy

(absorpcja energii elektromagnetycznej), przejście z wyŜszego poziomu na niŜszy

Page 24: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

25

(emisja energii elektromagnetycznej) [10]. Rysunek (2.7) przedstawia proces zmiany

poziomu energetycznego przez atom [10].

Ene

rgia

E1

E2

Foton

Rys. 2.7 Zmiana poziomu energii atomu.

Zmiana poziomu energetycznego atomu następuje pod wpływem tzw. częstotliwości

rezonansowej, która jest częstotliwością naturalną dla danego atomu. Częstotliwość

rezonansowa f, w której następuje absorpcja lub emisja promieniowania

elektromagnetycznego jest określona wzorem (2-4) [10].

h

EEf 12 −

= (2-4)

gdzie:

h – stała Plancka równa 6.62607 · 10–34 J·s [8];

E1, E2 – poziomy energetyczne atomu;

Maksymalna emisja lub absorpcja następuje pod wpływem częstotliwości naturalnej

dla danego atomu – częstotliwości rezonansowej [10]. W praktyce proces ten nie jest

tak idealny, jak mówi o tym teoria, a atom nie emituje lub absorbuje energii

w precyzyjnie wyznaczonej częstotliwości rezonansowej, rysunek (2.8).

f [Hz]

Amplituda

3 dB

f Rf1 f 2 Rys. 2.8 Krzywa rezonansowa.

Pewna część energii rozkłada się wokół częstotliwości rezonansowej tworząc rozmycie

częstotliwości (ang. smearing frequency). Im większy efekt rozmycia częstotliwości,

Page 25: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

26

tym gorsza precyzja pomiaru. Rozkład ten jest definiowany jako współczynnik jakości

Q, czyli dobroć określana wzorem (2-5) [10].

12 ff

fQ R

−= (2-5)

gdzie:

fR – częstotliwość rezonansowa;

f1, f2 – częstotliwości wyznaczające szerokość prąŜka;

W wielu przypadkach okazuje się, Ŝe im wyŜsza częstotliwość rezonansowa tym dobroć

Q jest wyŜszy. Ponadto rozmycie jest odwrotnie proporcjonalne do czasu przebywania

atomu w aparaturze. MoŜna powiedzieć, Ŝe zarówno współczynnik Q, jak i precyzja

pomiaru są tym wyŜsze, im dłuŜszy jest czas trwania pomiaru [10]. Czas trwania

pomiaru uzaleŜniony jest natomiast od prędkości poruszających się atomów.

Im prędkość jest mniejsza, tym czas ten będzie dłuŜszy [37].

Ruch atomów moŜe wprowadzać pewną niepewność w postaci przesunięcia

częstotliwości rezonansowej, która jest uzaleŜniona od kierunku poruszania się atomów.

W zaleŜności czy atomy poruszają się w tym samym kierunku co fala, czy

w przeciwnym, przesunięcie częstotliwości rezonansowej będzie odpowiednio

w kierunku niŜszych lub wyŜszych częstotliwości. Zjawiska te są opisane przez

pierwsze i drugie zjawisko Dopplera. W przypadku prostopadłego ruchu atomów

w stosunku do kierunku rozchodzenia się fali przesunięcie względem częstotliwości

rezonansowej nie wystąpi. Konieczne jest, aby aparatura pomiarowa uwzględniała

te zjawiska [4, 10]. Generalnie moŜna powiedzieć, Ŝe dobry wzorzec częstotliwości

powinien się charakteryzować nie tylko wysoką stabilnością czy stałością sygnału

okresowego, ale równieŜ powinien minimalizować potencjalne błędy, jakie mogą

wystąpić w trakcie wytwarzania sygnału wzorcowego [4, 10].

Na proces wytwarzania wzorcowej częstotliwości rezonansowej w zegarach atomowych

składają się cztery podstawowe fazy [10]:

Faza 1:

W pierwszej fazie następuje wybór atomów znajdujących się w odpowiednim

stanie energetycznym. Selekcję osiąga się poprzez zastosowanie zewnętrznego

pola magnetycznego pełniącego rolę filtru blokującego atomy znajdujące się

Page 26: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

27

w nieodpowiednim stanie energetyczny. Proces rozdzielenia atomów będących

w róŜnych stanach energetycznych pod wpływem pola magnetycznego opisuje

zjawisko Zeeman’a [8].

Faza 2:

Kolejna faza prowadzi do zmiany poziomu energetycznego atomów, które

nie zostały odfiltrowane przez zewnętrzne pole magnetyczne. Zmiana stanu

energetycznego atomów następuje wewnątrz wnęki rezonansowej

z oscylującym polem mikrofalowym o odpowiednio dobranej częstotliwości

rezonansowej. Dostrajanie częstotliwości rezonansowej ma miejsce w pętli

fazowej. Zjawisko polegające na zmianie stanu energetycznego atomów pod

wpływem oscylującego pola mikrofalowego zostało opisane

przez N. F. Ramsey’a [8].

Faza 3:

Następna faza polega na wykryciu atomów, które zmieniły swój stan

energetyczny pod wpływem oscylującego pola mikrofalowego o częstotliwości

rezonansowej. W tym celu chmura atomów zostaje przepuszczona ponownie

przez pole magnetyczne pozwalające odseparować atomy znajdujące się

w róŜnych stanach energetycznych (filtr odrzucający atomy, które nie

osiągnęły odpowiedniego stanu energetycznego w fazie drugiej).

Faza 4:

Ostatnia faza polega na detekcji liczby atomów, które w fazie drugiej uzyskały

odpowiedni poziom energetyczny i nie zostały odfiltrowane w wyniku

oddziaływania pola magnetycznego w fazie trzeciej. Na podstawie liczby

atomów wykrytych przez detektor następuje ocena prawidłowego doboru

częstotliwości rezonansowej.

Znaczącą modyfikacją tego procesu było zastosowanie rozdzielonej wnęki

rezonansowej z oscylacyjnym polem mikrofalowym. Pomysł ten zrodził się w głowie

N. F. Ramsey’a w 1949 roku. Metoda ta zakładała zastosowanie dwóch osobnych

otworów z polem oscylującym znajdujących się jeden za drugim w bliskiej odległości,

zamiast pojedynczego pola. Rozwiązanie to pozwoliło na wyeliminowanie przesunięcia

wynikającego z pierwszego zjawiska Dopplera stanowiącego istotny problem

Page 27: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

28

w przypadku zastosowania pojedynczego otworu. Praktyczna realizacja tej myśli

nastąpiła w 1950 roku [10].

2.3.3 Rubidowe wzorce częstotliwości.

Wzorzec rubidowy jest pierwszym przedstawicielem rodziny oscylatorów

atomowych, który znalazł uznanie jako atomowy wzorzec częstotliwości. Operuje

on na częstotliwości rezonansowej atomów rubidu 87Rb wynoszącej 6 834 682 608 Hz.

Częstotliwość ta jest wykorzystywana w pętli fazowej do kontroli częstotliwości

oscylatora kwarcowego. Budowa rubidowego wzorca częstotliwości została

przedstawiona na rysunku (2.9) [19, 37].

Rys. 2.9 Budowa rubidowego wzorca częstotliwości.

Proces rozpoczyna się w lampie rubidowej, która emituje wiązkę optyczną. Wiązka

ta jest pompowana do specjalnej komory filtrującej zawierającej opary rubidu 85Rb,

która zmienia populację obsadzeń dwóch nadsubtelnych poziomów. Prowadzi

to do „depopulacji” dolnego nadsubtelnego stanu podstawowego. Następnie atomy

te są poddawane działaniu pola mikrofalowego pod wpływem, którego zmieniają

one swój stan energetyczny. Źródłem tego pola jest syntezator częstotliwości. Zmiana

stanu energetycznego powoduje zwiększoną absorpcję wiązki optycznej przez atomy

rubidu 87Rb. Po przejściu przez główną komorę, wiązka trafia do detektora, który bada

jaka część strumienia optycznego została zaabsorbowana przez atomy rubidu. Sygnał

z detektora optycznego dostraja częstotliwość oscylatora kwarcowego

za pośrednictwem układu automatycznej regulacji częstotliwości ARCZ w taki sposób,

aby maksymalnie zwiększyć ilość pochłanianego światła wiązki optycznej przez atomy

rubidu. Tym sposobem otrzymuje się stabilną częstotliwość odpowiadającą

Page 28: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

29

częstotliwości rezonansowej atomów rubidu. Zastosowanie odpowiednich dzielników

w zaleŜności od potrzeb daje nam dostęp do sygnałów wzorcowych: 1 Hz, 1544 MHz,

2048 MHz, 5 MHz czy 10 MHz [19, 37].

Oscylatory rubidowe charakteryzują się najlepszym stosunkiem ceny do dokładności

spośród wszystkich oscylatorów atomowych. W stosunku do oscylatorów cezowych

są one znacznie mniejsze, bardziej niezawodne oraz duŜo tańsze.

Dobroć Q w przypadku wzorców rubidowych osiąga poziom 107. Biorąc pod uwagę

wysoką wartość częstotliwości rezonansowej atomów rubidu nie jest to najlepszy

wynik. Na degradację parametru Q wpływa stosunkowo szerokie rozmycie

częstotliwości rezonansowej. Niestałość oscylatora dla czasu uśredniania τ = 1 s wynosi

1 x 10-11, a dla τ = 1 dzień 1 x 10-12. [37].

2.3.4 Metanowe wzorce częstotliwości.

Schematyczną budowę wzorca metanowego przedstawia rysunek (2.10) [19].

He-Ne CH4

Detektor

Komorawzmacniaj ąca

Komoraabsorbuj ąca

Lustro Lustro naprzetworniku

piezoelektrycznym

Urządzenierozszczepiaj ące

strumie ń

Wyjście

Układ AutomatycznejRegulacji Cz ęstotliwo ści

ARCZ

Rys. 2.10 Budowa wzorca metanowego.

Główny element wzorca metanowego stanowi komora absorpcyjna zawierająca

metan CH4, która jest poprzedzona komorą wzmacniającą wypełnioną 3He-20Ne.

Obie komory umieszczone są centralnie między dwoma lustrami wnęki laserowej.

MoŜna tak wykonać laser He-Ne, aby pracował na długości fali λ = 3.39 µm

odpowiadającej częstotliwości rezonansowej metanu równej 88 THz. Przy spręŜeniu

atomów metanu do odpowiedniego ciśnienia będą one absorbowały promienie lasera

w całym zakresie jego oscylacji. Zachodzi wówczas oddziaływanie cząsteczek metanu

w komorze z dwiema falami bieŜącymi, tworzącymi falę stojącą w rezonatorze

Fabry-Perot układu laserowego. Cząsteczki mające dowolne prędkości są pobudzane

Page 29: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

30

sygnałami o dwóch róŜnych częstotliwościach. Wynika to bezpośrednio z przesunięcia

Dopplera pierwszego rzędu, które ma przeciwny znak dla kaŜdej fali bieŜącej.

W przypadku małego ciśnienia gazu w komorze średnia droga swobodna jest większa

niŜ średnica wiązki. Wówczas czas oddziaływania jest czasem przelotu przez średnicę

wiązki. W temperaturze pokojowej zaobserwowana szerokość linii wynosi 100 kHz.

Wzorce metanowe osiągają dobroć Q na poziomie 109. Sygnał rezonansowy moŜna

zaobserwować za pomocą fotodetektora [19].

2.3.5 Cezowe zegary atomowe.

Cezowe zegary atomowe zaczęły stanowić pierwotne wzorce częstotliwości

od chwili, gdy definicja sekundy została wyznaczona na podstawie częstotliwości

rezonansowej atomów cezu 133Cs, która wynosi 9 192 631 770 Hz [4, 10, 37, 43].

Oscylatory cezowe posiadają bardzo wąskie przesunięcie częstotliwości rezonansowej

i mogą pracować niemal bez regulacji [37].

Cezowe zegary atomowe charakteryzują się dobrą stabilnością długookresową

wynoszącą 2 x 10-14 Hz, co odpowiada dokładności 2 ns na 1 dzień i 1 s

na 1 400 000 lat. Wzorce cezowe występują w dwóch podstawowych wersjach,

które róŜnią się wewnętrzną budową. RóŜnica polega na odmiennym sposobie filtracji

atomów, które nie osiągnęły odpowiedniego stanu energetycznego i nie powinny brać

udziału w dalszym procesie. Realizację tego zadania powierza się magnesom stałym

wytwarzającym pole magnetyczne, bądź w nowszych realizacjach laserom pompującym

[10]. Przykładową budowę zegara wykorzystującego magnesy stałe przedstawia

rysunek (2.11) [10, 19, 39].

Rys. 2.11 Budowa cezowego zegara atomowego ze statycznym polem magnetycznym.

Page 30: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

31

Źródło atomów cezu stanowi działo cezowe, które podgrzewa atomy cezu

do temperatury 100 0C, a następnie w postaci chmury atomów wysyła je z duŜą

prędkością w kierunku magnesu A. Magnes ten pełni rolę filtru wybierającego atomy

znajdujące się w odpowiednim stanie energetycznym. Kieruje je w stronę otworu

z oscylującym polem mikrofalowym, którego częstotliwość odpowiada częstotliwości

rezonansowej atomów cezu. Pod wpływem tego pola atomy cezu zmieniają swój stan

energetyczny. Po osiągnięciu wyŜszego stanu energetycznego atomy przepuszczane

są przez magnes B, który wybija atomy posiadające odpowiedni stan energetyczny

w kierunku detektora. Sygnał z detektora optycznego dostraja częstotliwość oscylatora

kwarcowego za pośrednictwem układu automatycznej regulacji częstotliwości ARCZ

tak, aby ilość atomów, które pod wpływem oscylującego pola mikrofalowego

przechodzą w odpowiedni stan energetyczny była maksymalna. W ten sposób

otrzymujemy stabilną częstotliwość, która po przejściu przez dzielniki częstotliwości

daje dostęp do sygnałów wzorcowych o częstotliwościach: 1 Hz, 1544 MHz,

2048 MHz, 5 MHz czy 10 MHz [4, 10, 43].

Modyfikację cezowego zegara atomowego stanowi zastąpienie magnesów stałych

laserami pompującymi, których wiązka pełni rolę separatora przepuszczającego atomy

znajdujące się w odpowiednim stanie energetycznym. [4, 10, 43].

Wykorzystanie lasera zamiast magnesu niesie ze sobą pewne zalety. Pozwala

na skierowanie niemal wszystkich atomów ze źródła do otworu z oscylującym polem

mikrofalowym. Zastosowanie w tym celu magnesu powoduje, Ŝe nie wszystkie atomy

ze źródła, które znajdują się w odpowiednim stanie energetycznym trafiają do otworu

z polem mikrofalowym o częstotliwości rezonansowej. W związku z tym siła sygnału

po przejściu przez wiązkę lasera jest znacznie większa, niŜ po przejściu przez pole

magnetyczne magnesu [10, 43]. Zastosowanie laserów zwiększa równieŜ stosunek

sygnału do szumu w strumieniu atomów, co pozwala na zmniejszenie czasu obserwacji

atomów [43]. Ostatnia zaleta płynie z wyeliminowania asymetrii spektrum cezu

powstającego w wyniku zastosowania magnesów [43]. Prędkość poruszających się

atomów cezu wewnątrz zegara jest wysoka i wynosi 100 m/s. Ogranicza to czas

obserwacji atomów do kilku milisekund. Zakres częstotliwości, w którym występuje

rezonans wynosi kilkaset herców [37]. Budowę tego typu wzorca cezowego przedstawia

rysunek (2.12) [10, 19].

Page 31: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

32

Rys. 2.12 Budowa cezowego zegara atomowego zbudowanego z uŜyciem laserów.

Przykładem zegara wykorzystującego lasery zamiast magnesów jest zegar o nazwie

NIST-7 przedstawiony na rysunku (2.13) [32].

Rys. 2.13 Zdjęcie cezowego zegara atomowego NIST-7.

Wzorzec ten pracuje w NIST (ang. National Institute of Standards and Technology)

od 1993 roku i charakteryzuje się bardzo dobrym poziomem niepewności wynoszącym

5 x 10-15 [32, 43].

Zegary cezowe posiadają zalety, które wyróŜniają je spośród innych wzorców

atomowych. Są to: wysoka częstotliwość rezonansowa wynosząca 9 192 631 770 Hz

oraz wąski zakres częstotliwości w jakim rezonans występuje. Obie te właściwości

sprawiają, Ŝe zegary cezowe posiadają wysoką wartość dobroci Q, która

w ich przypadku wynosi 108 [10, 37].

Page 32: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

33

W obecnej chwili najpopularniejszym i najczęściej wykorzystywanym cezowym

zegarem atomowym jest model HP5071A produkowany przez firmę Agilent

Technologies, Inc. of Santa Clara, California, rysunek (2.14) [29, 38].

Rys. 2.14 Zdjęcie cezowego zegara atomowego HP5071A firmy Agilent Technologies.

Właśnie na bazie tego modelu zegara zbudowana jest Polska Atomowa Skala Czasu

TA(PL) oraz w znaczniej mierze TAI, dla której model cezowego zegara HP5071A

stanowi 68% wszystkich zegarów jakie biorą udział w jej tworzeniu [2]. Model

ten jest następcą modelu zegara HP5061. Stabilność długookresowa zegara HP5071A

wynosi mniej niŜ 1 x 10-14 [29].

Parametry techniczne zegara HP5071A firmy Agilent zostały umieszczone w tabelach

(2.4) oraz (2.5) [1].

Zegar cezowy Parametr

Standardowy Opcja 001

Dokładność ± 1 x 10-12 ± 5 x 10-13

Zmiana częstotliwości zaleŜna od środowiska ± 1 x 10-13 ± 8 x 10-14

Powtarzalność ± 1.0 x 10-13 ± 1.0 x 10-13

Tab. 2.4 Parametry opisujące dokładność zegara HP5071A.

Stabilno ść długookresowa dla sygnału 5MHz, 10MHz na wyj ściu

Zegar cezowy Czas uśredniania Standardowy Opcja 001

104 sekund ≤ 2.7 x 10-13 ≤ 8.5 x 10-14

105 sekund ≤ 8.5 x 10-14 ≤ 2.7 x 10-14

5 dni ≤ 5.0 x 10-14 ≤ 1.0 x 10-14

30 dni ≤ 5.0 x 10-14 ≤ 1.0 x 10-14

Tab. 2.5 Parametry opisujące niestałość zegara HP5071A.

Page 33: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

34

Produkcją cezowych zegarów atomowych zajmują się równieŜ dwie inne firmy: Datum,

Inc. of Beverly, MA oraz Frequency Electronics, Inc. of Uniondale, NY [38].

2.3.6 Masery wodorowe.

Projekt pierwszego masera wodorowego zrodził się w głowie amerykańskich

fizyków: Norman F. Ramsey, Daniel Kleppner, H. Mark Goldenberg, którzy

byli pracownikami Harvard University. Pierwszy model masera wodorowego powstał

w 1960 roku [10]. Kolejne lata badań nad maserami wodorowymi doprowadziły

do stworzenia w 1962 roku przez Keppner’a masera będącego w stanie dostarczać

sygnał odniesienia o bardzo dokładnej częstotliwości. Tym sposobem maser wodorowy

stał się pierwotnym wzorcem częstotliwości [10].

Maser wodorowy stanowi jeden z bardziej skomplikowanych i najdroŜszych spośród

dostępnych wzorców częstotliwości. Samo słowo „MASER” jest akronimem pełnej

nazwy w języku angielskim (ang. Microwave Amplification by Stimulated Emission of

Radiation), którą moŜna przetłumaczyć jako: „mikrofalowy wzmacniacz

ze stymulowaną emisją promieniowania” [37].

Maser operuje na częstotliwości rezonansowej atomów wodoru o wartości

1 420 405 752 Hz [10, 37].

Budowa masera wodorowego została przedstawiona na rysunku (2.15) [10].

Rys. 2.15 Budowa masera wodorowego.

Praca masera wodorowego opiera się na wystrzeleniu atomów wodoru,

które przechodzą w pierwszej chwili przez bramę w postaci pola magnetycznego

magnesu. Pole przepuszcza w kierunku bulwy jedynie te atomy, które znajdują się

w odpowiednim stanie energetycznym. Zaraz po tym jak atomy trafią do bulwy pewna

część tych atomów przechodzi do niŜszego stanu energetycznego, co powoduje

Page 34: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

35

uwolnienie przez nie fotonów. Uwolnione fotony stymulują pozostałe atomy

w taki sposób, aby równieŜ one osiągnęły niŜszy poziom energetyczny. Proces

ten bardzo szybko prowadzi do wytworzenia w bulwie pola mikrofalowego, które dąŜy

do samo-podtrzymania. Tym sposobem częstotliwość pola mikrofalowego

wytworzonego wewnątrz bulwy ustawia się na częstotliwości rezonansowej atomów

wodoru 1 420 405 752 Hz i jest podtrzymywane tak długo, aŜ do bulwy nie trafiają

nowe atomy wodoru. Sygnał ten jest wykorzystywany w pętli fazowej do kontroli

częstotliwości oscylatora kwarcowego. Następnie sygnał z oscylatora kwarcowego

trafia na dzielniki, a po przejściu przez nie otrzymujemy sygnały wzorcowe [10, 37].

Częstotliwość rezonansowa maserów wodorowych 1 420 405 752 Hz jest znacznie

mniejsza od częstotliwości rezonansowej zegarów cezowych. Szerokość zakresu

częstotliwości rezonansowej dla maserów wodorowych wynosi kilka herców i jest

znacznie węŜsza od analogicznego zakresu dla zegarów cezowych. W konsekwencji

dobroć Q maserów wodorowych osiąga wartość 109 i jest o rząd wielkości wyŜsza, jak

w przypadku wzorców cezowych. Własności te sprawiają, Ŝe stabilność krótkookresowa

maserów wodorowych jest lepsza, niŜ zegarów cezowych i wynosi 1 x 10-15. Biorąc pod

uwagę stabilność długookresowej lepsze są wzorce cezowe [10, 37].

2.3.7 Fontanny cezowe.

Koncepcja fontanny cezowej polegająca na wydłuŜeniu czasu obserwacji atomu

została przedstawiona przez J. R. Zacharias’a w 1954 roku. W tym czasie nie istniały

jednak lasery, które byłyby w stanie schłodzić atomy, powodując w ten sposób

zmniejszenie ich prędkości. Zacharias wierzył jednak, Ŝe stanie się moŜliwe

skierowanie termicznej wiązki atomów w górę i takie zmniejszenie ich prędkości, które

pozwoliłoby osiągnąć skumulowanej grupie atomów pewnego określonego pułapu

i powrót do źródła. W trakcie tej drogi atomy miałyby dwukrotnie przechodzić

przez oscylujące pole mikrofalowe wewnątrz otworu (raz w górę i raz w dół).

Pozwoliłoby to uniknąć problem przesunięcia fazy, występujący w zegarach cezowych.

Niestety praktyczne prace nad tym projektem zostały dosyć szybko zaniechana

ze względu na brak moŜliwości obserwacji sygnału powrotnego, który ulegał

rozproszeniu. Odkryto później, Ŝe było to spowodowane kolizją atomów poruszających

się z róŜnymi prędkościami. Powrót do tej koncepcji nastąpił dopiwero po 35 latach,

gdy powstał pierwszy laser chłodzący (ang. laser cooling) [4, 43].

Page 35: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

36

Pierwotna demonstracja koncepcji fontanny cezowej miała miejsce w Stanford

University w 1989 roku [43]. Pierwsza fontanna cezowa zbudowana została jednak

dopiero w 1991 roku przez grupę prowadzoną przez Andre Clairon i Christophe

Salomon w LPTF (fr. Laboratoire Primaire du Temps et des Frequences) w ParyŜu [4].

Od tamtej pory wiele laboratoriów zbudowało, bądź buduje własne fontanny cezowe.

Schemat budowy fontanny cezowej przedstawia rysunek (2.16) [10].

Rys. 2.16 Budowa fontanny cezowej.

Źródłem zasilania dla fontanny cezowej są atomy cezu, które w liczbie około 107

są wprowadzane do komory próŜniowej [4, 10, 43]. Wnętrze komory poddawane

jest działaniu 6 wiązek laserowych skierowanych względem siebie pod kątem prostym,

które krzyŜują się wewnątrz komory próŜniowej. Przy pomocy tych laserów formowana

jest kula zbudowana z atomów cezu [33]. W procesie formowania tej kuli w ciągu

0.4 sekundy następuje schłodzenie atomów wchodzących w jej skład do temperatury

około 2 µK, czyli niemal zera bezwzględnego [43]. Dodatkowo dwa pionowe lasery

są odpowiedzialne za wystrzelenie uformowanej kuli atomów ku górze.

Po wprowadzeniu atomów w ruch wszystkie lasery są wyłączone. Prędkość nadana

przez lasery jest tak dobrana, aby kula atomów mogła osiągnąć pułap 1 m powyŜej

komory rezonansowej Pod wpływem grawitacji kula osiągając maksymalny pułap

zaczyna spadać w dół, przechodząc ponownie przez otwór z polem mikrofalowym.

Cała podróŜ w górę i w dół łącznie z przejściem przez otwór w obu kierunkach trwa

Page 36: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

37

około 1 sekundy [33, 43]. W czasie przechodzenia kuli atomów przez otwór

z oscylującym polem mikrofalowym, atomy cezu zmieniają swój stan energetyczny

[33]. Częstotliwość tego pola odpowiada częstotliwości rezonansowej atomów cezu

9 192 631 770 Hz, co maksymalizuje liczbę atomów zmieniających swój stan

energetyczny [33]. Dalsza część procesu przypomina optyczne pompowanie

występujące w zegarach atomowych. Na sam koniec całego proces atomy przechodzą

przez wiązkę lasera detekcyjnego, który wymusza emisję energii (fotonów)

przez te atomy. Emisja ta jest wykrywana przez detektor i wszystko rozpoczyna się od

nowa [10, 33].

Kombinacja idei fontanny cezowej z zastosowaniem laserów chłodzących, wydłuŜa

czas obserwacji atomów cezu, co pozwala na osiągniecie bardzo wysokiej dokładności.

W tradycyjnych zegarach cezowych prędkość z jaką poruszają się atomy cezu

przechodzące przez otwór z oscylującym polem mikrofalowym jest na poziomie

100 m/s. Prędkość ta ogranicza czas obserwacji atomów przechodzących przez komorę

rezonansową do kilku milisekund [33]. W fontannach cezowych zastosowano lasery

chłodzące umoŜliwiające schłodzenie atomów cezu do temperatury zera

bezwzględnego, co powoduje zmniejszenie ich prędkości do kilku centymetrów

na sekundę. W rezultacie czas obserwacji wydłuŜa się do około 1 sekundy

i jest ograniczony jedynie przez siłę grawitacji [33]. WydłuŜenie czasu obserwacji

pozwala na lepsze dostrojenie częstotliwości rezonansowej. Wszystko to prowadzi

do osiągnięcia jednego z najdokładniejszych zegarów na świecie.

Jakość wzorców zbudowanych w oparciu o fontannę cezową moŜna wyrazić

przy pomocy dobroci Q, która w ich przypadku wynosi 1010 i jest wyŜsza o rząd

wielkości od dobroci maserów wodorowych oraz o dwa rzędy od zegarów

cezowych [33].

Przykładem fontanny cezowej moŜe być wzorzec o roboczej nazwie NIST-F1 pracujący

od 1999 roku w NIST (ang. National Institute of Standard and Technolgy)

[1, 4, 10, 43]. Wzorzec ten jest uwaŜany za jeden z najdokładniejszych zegarów, jaki

został kiedykolwiek zbudowany i charakteryzuje się niepewnością, która rozpoczyna się

od 1.7 x 10-15. Opowiada to dokładności 1 sekundy na przedziale 30 milionów lat [1].

Na rysunku (2.17) znajduje się zdjęcie fontanny cezowej o nazwie NIST-F1 pracującej

w NIST [10].

Page 37: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

38

Rys. 2.17 Zdjęcie fontanny cezowej NIST-F1.

2.3.8 Zegar atomowy nowej generacji.

W obecnej chwili trwają intensywne prace badawcze nad umieszczeniem nowej

generacji cezowego zegara atomowego na Międzynarodowej Stacji Kosmicznej

(ang. International Space Station) ISS w 2008 roku [35]. Zegar ten ma się znajdować

na zewnętrznym module japońskim (ang. External Facility of the Japanese

Experimental Module) JEM przyłączonym do ISS [35]. Lokalizacja taka ma zapewnić

widoczność tego zegara przez konstelację satelitów GPS (ang. Global Positioning

System) oraz umoŜliwi ć porównywanie go z zegarami znajdującymi się na Ziemi [35].

Prace te są częścią projektu o nazwie PARCS (ang. Primary Atomic Reference Clock

in SPACE), który został zatwierdzony przez NASA (ang. National Aeronautics and

Space Administration) [34]. Do głównych celów projektu naleŜą: poprawa definicji

sekundy, poprawa koordynacji czasu na Ziemi oraz sprawdzenie kilku innych aspektów

związanych z czasem i częstotliwością [28]. W skład grupy zajmującej się

projektowaniem i konstruowaniem zegara nowej generacji wchodzą takie laboratoria

jak: National Institute of Standards and Technology, Jet Propulsion Laboratory,

University of Colorado oraz Harvard-Smithsonian Astrophysical Observatory,

University of Torino [24]. Zegar ten będzie wykorzystywał mikrograwitacyjną

przestrzeń kosmiczną. UmoŜliwi ona dodatkowe zmniejszenie prędkości poruszających

Page 38: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

39

się atomów oraz wydłuŜenie czasu ich obserwacji i jednoczesną poprawę parametrów

tego wzorca [34]. Na rysunku (2.18) przedstawiono schematyczną budowę zegara

nowej generacji [34].

Rys. 2.18 Propozycja budowy zegara nowej generacji – program PARCS.

Szkielet budowy tego zegara stanowią:

• pole przygotowujące atomy (ang. atom preparation region) – wykorzystuje lasery

chłodzące (znane z fontann cezowych), których głównym zadaniem jest stworzenie

kuli atomów i wystrzelenie jej dalej z moŜliwie małą prędkością;

• komora mikrofalowa (ang. microwave cavity) – wewnątrz komory kula atomów

jest poddawana działaniu oscylującego pola mikrofalowego o częstotliwość

odpowiadającej częstotliwości rezonansowej atomów cezu, powodując zmianę

stanów energetycznych atomów;

• obszar detekcji (ang. state detection region) – w obszarze tym następuje detekcja

fotonów emitowanych przez atomy cezu;

Zegar zbudowany w tej technologii ma się charakteryzować nietsałością rzędu 3 x 10-14

oraz dokładnością 1 x 10-16 [28, 33, 34].

2.3.9 Wzorce częstotliwości na przestrzeni lat.

Ciągły rozwój wzorców częstotliwości systematycznie prowadził do poprawy

ich dokładności. Postęp ten doskonale odzwierciedla wykres przedstawiony na rysunku

(2.19), który obrazuje rozwój wzorców częstotliwości pracujących w NIST

na przestrzeni ostatnich 54 lat [43].

Page 39: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

40

Rys. 2.19 Niepewność częstotliwości wzorców atomowych

pracujących w NIST od 1950 roku.

Jak widać na rysunku (2.19) rozwój wzorców na przestrzeni lat ma charakter liniowy,

a poprawa niepewności kolejnych wzorców następowała średnio co 10 lat. Rozwój

pierwotnych wzorców częstotliwości w znacznej mierze był stymulowany rozwojem

laserów chłodzących (ang. lasers- cooling) wykorzystywanych w fontannach cezowych

[43]. Warto podkreślić, Ŝe pierwszy laser chłodzący został zademonstrowany w NIST

w 1982 roku. W obecnej chwili najdokładniejszymi wzorcami częstotliwości

są fontanny cezowe, których przykładem jest zegar NIST-F1 pracujący w NIST

[4, 33, 43].

Na przestrzeni ostatnich 54 lat postęp techniczny pozwolił na poprawianie dokładności

wzorców czasu o rząd wielkości co kaŜde pięć lat. Proces ten przedstawia

tabela (2.6) [19].

Lata Dokładno ść

1955 ÷ 1959 10-9

1960 ÷ 1964 10-10 1965 ÷ 1969 10-11 1970 ÷ 1974 10-12 1975 ÷ 1979 10-13 1980 ÷ 1984 10-14 1985 ÷ 1989 10-15 1990 ÷ 1994 10-16 1995 ÷ 1999 10-17 2000 ÷ 2004 10-18

Tab. 2.6 Postęp dokładności wzorców czasu na przestrzeni lat 1955 – 2004.

Page 40: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

41

Dalszy rozwój wzorców częstotliwości będzie coraz trudniejszy i dłuŜszy. Obecnie

pojawiają się nowe metody, które mogą prowadzić do dalszej poprawy jakości wzorców

częstotliwości. Jednak wciąŜ pozostaje wiele praktycznych problemów wymagających

znalezienia odpowiednich rozwiązań, pozwalających na ich zastosowanie. Przykładem

moŜe być program PARCS.

2.3.10 Porównanie wzorców atomowych.

Porównując właściwości róŜnych atomowych wzorców częstotliwości naleŜy

rozróŜnić urządzenia laboratoryjne wysokiej klasy oraz urządzenia komercyjne.

Pierwsze pracują w krajowych laboratoriach i są obsługiwane przez ekspertów, którzy

regularnie je kontrolują i w miarę moŜliwości ulepszają. Komercyjne wzorce cezowe

oraz rubidowe ze względu na ich zmniejszające się wymiary, wysoką niezawodność

w róŜnych warunkach pracy, oczekiwany pobór mocy oraz koszty zakupu i eksploatacji

stały się znacznie bardziej dostępne.

KaŜdy z opisanych wzorców atomowych posiada cechę, która wyróŜnia go względem

pozostałych. Wzorce rubidowe charakteryzują się wysoką niezawodnością, małymi

gabarytami oraz najlepszym stosunkiem ceny do dokładności. Nie stosuje się ich jednak

jako pierwotne wzorce częstotliwości. Cechą wyróŜniającą wzorce metanowe jest to,

Ŝe mogą one pełnić rolę wzorców częstotliwości w zakresie podczerwieni. Bierze się je

pod uwagę jako potencjalne źródło dla wyznaczenia nowej definicji metra

bądź prędkości światła. Wzorce cezowe są w obecnej chwili najpowszechniej

stosowanymi pierwotnymi wzorcami częstotliwość. Właśnie one pod postacią modelu

zegara cezowego HP5071A znajdują się niemal we wszystkich laboratoriach czasu

na całym świecie i w znacznej mierze tworzą skalę czasu TAI. Masery wodorowe

posiadają natomiast najlepszą stabilność krótkookresową spośród wszystkich typów

wzorców atomowych. Cecha ta jest bardzo poŜądana w kontekście tworzonych skal

czasu zdominowanych przez zegary cezowe. Obecność maserów wodorowych

w zespole zegarów pracujących na rzecz skal czasu podnosi ich stabilność

krótkookresową. Są one jednak znacznie droŜsze od komercyjnych modeli zegarów

cezowych ze względu na ich skomplikowaną budowę. Fontanny cezowe stanowią

najmłodszą zdobycz techniki w kategorii atomowych wzorców częstotliwości.

Wykorzystanie w nich laserów chłodzących pozwoliło osiągnąć niespotykane tej pory

poziom niepewności rozpoczynający się od 1.7 x 10-15. Na podstawie wyników

Page 41: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

42

osiąganych przez fontanny cezowe moŜna powiedzieć, Ŝe najbliŜsza przyszłość będzie

naleŜała właśnie do nich.

W tabeli (2.7) przedstawiono zestawienie niepewności współczesnych atomowych

wzorców częstotliwości.

W ostatniej kolumnie podano główne efekty ograniczające dokładność i do pewnego

stopnia długookresową stabilność w celu identyfikacji obszarów obecnych i przyszłych

badań.

Wzorzec Niepewno ść Dobro ć Q Częstotliwo ść rezonansowa

rubidowy 1x10-12 107 6 834 682 608 Hz

metanowy 1 x 10-11 108 88THz

cezowy 5 x 10-15 108 9 192 631 770 Hz

maser wodorowy 1x10-15 109 1 420 405 752 Hz

fontanna cezowa 0.8 x 10-15 1010 9 192 631 770 Hz

Tab. 2.7 Porównanie wzorców atomowych.

2.3.11 Przykład aktualnie produkowanych wzorców atomowych.

Przegląd obecnie produkowanych, komercyjnych atomowych wzorców

częstotliwości przedstawia tabela (2.8).

Lp. Producent Model Typ wzorca

Niestało ść dla ττττ = 1 miesi ąc

Wyjścia

1. Oscilloquartz SA OSA 5585 PRS cezowy 1 x 10-13 2048 Hz, 5 MHz, 10 MHz

2. Oscilloquartz SA OSA 6500B PRC cezowy 1 x 10-13 2048 Hz, 5 MHz, 10 MHz

3. TEKELEKT Systemes Epsilon Clock 3S PY rubidowy 5 x 10-13 1 Hz

10 MHz

4. TEKELEKT Systemes Epsilon Clock 3T rubidowy 5 x 10-13 2048 kHz,

1544 kHz

5. Larus STS 5850 rubidowy 1 x 10-13 1544kHz, 5 MHz, 10 MHz

6. Agilent HP5071A cezowy 5 x 10-14 1 Hz, 100 Hz

1 MHz, 5 MHz, 10 MHz

Tab. 2.8 Przykład produkowanych wzorców atomowych.

Page 42: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

43

2.4 Transfer czasu.

Porównywanie wskazań dwóch odległych zegarów jest nazywane transferem czasu.

Transfer czasu dostarcza podstawowych technik porównywania wskazań odległych

zegarów, redukując wpływ opóźnień wprowadzanych przez jonosferę, troposferę

czy uŜywane odbiorniki. Stanowi przy tym źródło elementarnych danych do tworzenia

skal czasu. Stosowanie technik porównywania zegarów wymaga dokładnej wiedzy

o moŜliwych błędach, jakie mogą wystąpić w czasie wykonywania pomiarów. WaŜną

rolę w pomiarach odgrywa szum, który powinien być mniejszy, niŜ niestabilność

porównywanych zegarów. W przeciwnym wypadku wyniki mogą być zniekształcone.

Istnieje kilka metod porównywania wskazań zegarów. Do najpopularniejszych

i najczęściej stosowanych metod porównywania zegarów naleŜą [5]:

• metoda jednodrogowa (ang. One-Way);

• metoda dwudrogowa (ang. Two-Ways);

• metoda jednoczesnych obserwacji (ang. Common-View);

• transport zegarów [19];.

2.4.1 Metoda jednodrogowa.

Metoda jednodrogowa jest uwaŜa za najbardziej elementarną technikę

porównywania dwóch niezaleŜnych zegarów spośród zespołu zegarów biorących udział

w tworzeniu skali czasu. Znaczenie tej metody jest o tyle duŜe, Ŝe stanowi ona podstawę

dla bardziej złoŜonych metod porównywania zegarów. Obecnie dokładność transferu

czasu dla tej metody szacuje się na ±10 ns dla jednodniowego czasu uśredniania i braku

zakłóceń S/A (ang. Selective Availability). Jest ona nazywana metodą bezpośredniego

dostępu do czasu GPS. Polega ona na transferze czasu zegara odległego w miejsce,

gdzie zlokalizowany jest zegar lokalny. Porównanie względem zegara lokalnego

dokonywane jest za pośrednictwem sygnału elektromagnetycznego. Komparacja dwóch

oddalonych od siebie zegarów przebiega bardzo podobnie, jak w przypadku pomiarów

lokalnych. Proces ten polega na pomiarze odstępu czasu, jaki upływa pomiędzy

odczytem wskazania zegara lokalnego, a chwilą odebrania wskazania zegara

oddalonego dla tej samej chwili czasu [5]. Odbierany sygnał niesie ze sobą informacje

o odczycie wskazania zegara odległego w chwili emisji Tb(tb). W momencie odbioru

tego znacznika zegar lokalny A pokazuje czas Ta(ta). Ustalenia róŜnicy odczytów dwóch

Page 43: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

44

zegarów w tej samej chwili (chwili emisji), polega na wykonaniu operacji opisanej

wzorem (2-6) [5].

)()()( bbbabab tTtTtT −=∆ (2-6)

Z punktu widzenia synchronizacji waŜne jest takŜe określenie związku pomiędzy

przyrostem czasu własnego zegara, a towarzyszącym mu przyrostem czasu

koordynowanego. Do tej pory za przyczynę rozbieŜności czasu własnego zegara i czasu

koordynowanego uznawano efekty relatywistyczne wpływające na propagacje sygnału.

Kolejnym czynnikiem powodującym tą rozbieŜność jest odchylenie częstotliwości

zegara od częstotliwości idealnego wzorca w czasie koordynowanym.

W celu uwzględnienia tego zjawiska moŜna posłuŜyć się zaleŜnością opisującą

przedział czasu koordynowanego, wzór (2-7) [5].

∫++−=∆

azegaraświataliniaa

baaa dtthy

tTtTt )(

1

)()(

(2-7)

gdzie:

Ta(ta), Ta(tb) – opisują zdarzenia występujące w chwilach Ta1, Ta2 wyznaczonych

odczytami czasu własnego zegara A (zegar lokalny);

ta, tb – określają chwile wystąpienia zdarzeń (Ta1, Ta2) względem czasu

koordynowanego;

ya – względne odchylenie częstotliwości zegara od wzorca;

linia świata zegara A – czasoprzestrzenna trajektoria podróŜy zegara A,

ograniczona zdarzeniami rozpoczęcia i zakończenia transportu zegara A;

h(t) – oddziaływania relatywistyczne;

Dokonując prostego przekształcenia wzoru (2-6) polegającego na wyznaczeniu Ta(tb),

a następnie obustronnym odjęciu Tb(tb) otrzymujemy, wzór (2-8) [5].

+−∆+−−=− ∫azegara

światalinia

aabbaabbba dtthytytTtTtTtT )()1()1()()()()( (2-8)

Mając dostęp w chwili ta do informacji o odczycie zegara odległego w chwili emisji

Tb(tb) oraz zegara lokalnego Ta(ta) moŜemy wyznaczyć róŜnicę Ta(ta) - Tb(tb),

wzór (2-9)[5].

Page 44: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

45

[ ] [ ] ababbaaabbbabbaa TtTtTtTtTtTtTtT ∆+∆=−+−=− )()()()()()()( (2-9)

MoŜna ją sprowadzić do sumy dwóch róŜnic [5]:

• ∆Tab(tb) – róŜnica odczytów porównywanych zegarów A i B w chwili emisji tb;

• ∆Ta – czas propagacji znacznika mierzony względem skali zegara lokalnego.

MoŜe być zapisany w postaci wzoru (2-10);

∫+−∆+=∆

azegaraświatalinia

aaa dtthytyT )()1()1( (2-10)

Rysunek (2.20) przedstawia relacje czasowe występujące w jednodrogowym transferze

czasu [5].

∆t

∆T (ta b a

)

∆Ta

T (t )a b

T (t )b b

T (t )a a

T (t )-T (t )a a b b

Ta

Tb

t

t

Ta

Tb

ta

tb

.

..

Rys. 2.20 Relacje czasowe przy transferze jednodrogowym.

Ta, Tb – skale czasu zegara lokalnego A oraz zegara odległego B, t – czas koordynowany.

Obliczając ∆t naleŜy uwzględnić dodatkowe opóźnienia wynikające z propagacji

sygnału przez jonosferę i troposferę, które dodaje się do ∆t. Na wielkość tych opóźnień

wpływa częstotliwość nośna transmitowanego sygnału. Dla częstotliwości

na jakiej pracuje system GPS ∼ 1.5 GHz opóźnienie to jest rzędu dziesiątek

nanosekund, a dla pasma 12 ÷ 15 GHz jest 100 razy mniejsze. Nie bez znaczenia

na niepewność transferu czasu są problemy związane z określeniem pozycji odbiornika

i nadajnika, a takŜe zmieniające się w czasie opóźnienia aparatury pomiarowej [5].

Page 45: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

46

2.4.2 Metoda dwudrogowa.

Metoda dwudrogowa, której pełna angielska nazwa brzmi (ang. Two-Way Satellite

Time and Frequency Transfer) moŜe pracować w oparciu o geostacjonarne satelity

komunikacyjne. Schematyczną koncepcję metody dwudrogowej przedstawia

rysunek (2.21) [5].

Up-linkDown-link

Up-link

Geostacjonarny satelita kominikacyjny

ZegarZegar

Stacjanaziemna

Stacjanaziemna

Rys. 2.21 Metoda dwudrogowa TWSTFT. Metoda dwudrogowa stała się podstawową metodą stosowaną do synchronizacji

częstotliwości zegarów telekomunikacyjnych sieci cyfrowych, jako uzaleŜnienie

dwustronne (ang. double-ended) [5].

MoŜna ją uznać za złoŜenie dwóch przeciwbieŜnych, jednodrogowych transferów

czasu. Metoda ta opiera się na załoŜeniu, Ŝe wartości opóźnień obu dróg są niemal

identyczna, a zmiany tych opóźnień mocno (dodatnie) skorelowane ze sobą.

Takie podejście do zagadnienia pozwala na wyraŜenie róŜnicy odczytów

porównywanych zegarów, jako funkcję róŜnicy opóźnień dróg przesyłanych sygnałów

czasów. Jest ono jednoznaczne ze zredukowaniem wpływu opóźnień na wynik

komparacji [5].

Metoda TWSTFT jest bardziej skomplikowana od metody jednodrogowej

wykorzystującej system GPS. Metoda ta jest znacznie mniej wraŜliwa na wpływ

jonosfery oraz niepewność określenia precyzji transferu. Dokładność tej metody

jest na poziomie 1 ÷ 5 ns. Niepewność komparacji częstotliwości dla jednodobowego

czasu uśredniania wynosi 10-15. Metoda dwudrogowa jest wykorzystywana

do porównywania czasu i częstotliwości pierwotnych wzorców częstotliwości [5].

Idealnie sytuacja zachodzi w chwili, gdy długość drogi, jakie przebywają sygnały

w obu kierunkach jest jednakowa. W rzeczywistych warunkach taka idealna sytuacja

Page 46: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

47

nie występuje, a składa się na to głównie zastosowania róŜnych częstotliwości

nadawania i odbierania. Rozwiązanie takie sprawia, Ŝe w róŜny sposób te sygnały

są propagowane przez jonosferę. NaleŜy takŜe uwzględnić efekt Sagnac’a,

wywoływany przez ruch Ziemi. Efekt ten moŜe być zniwelowany, jeŜeli znana

jest dokładna pozycja satelity [5]. Podobnie, jak w przypadku metody jednodrogowej

równieŜ w tej metodzie nale

Ŝ

y uwzględnia

ć

zjawiska relatywistyczne. Wszystkie

te zjawiska powodują zmiany czasu, co z punktu widzenia skali czasu

jest niekorzystne [5].

W celu lepszego zrozumienia metody dwudrogowej przydatny będzie schemat

przedstawiony na rysunku (2.22) [5].

T (t)

T (t )

T (t )

T (t ) T (t )

Zegar A

Zegar B

T (t)a b

a b

a

b

ea

ra

rb

eb Rys. 2.22 Ogólna koncepcja metody dwudrogowej TWSTFT.

W chwili tea czasu koordynowanego t w kierunku zegara B jest emitowany sygnał

(znacznik) Ta(tea) zegara A. Znacznik ten jest odbierany w miejscu B w chwili trb czasu

koordynowanego, który według skali zegara B ma dat

ę T

b

(t

rb

). Podobnie t

eb

jest koordynowan

ą chwilą emisji znacznika czasu Tb(teb) zegara B, a tra

jest koordynowaną chwilą odbioru tego znacznika w miejscu A, która według skali

zegara A ma datę Ta(tra). Wykorzystując wzór (2-8), transfer czasu od zegara A do

zegara B moŜ

na opisa

ć wzorem (2-11) [5].

( ) ( ) ( ) ∫++∆−∆−−=−

Bzegaraświatalinia

babbabeaarbbeaaeab dtthytyttTtTtTtT )(1)()()()( (2-11)

W identyczny sposób opisujemy transfer czasu od zegara B do zegara A,

wzór (2-12) [5].

( ) ( ) ( ) ∫++∆−∆−−=−

Azegaraświatalinia

abaabaebbraaebbeba dtthytyttTtTtTtT )(1)()()()( (2-12)

gdzie:

(∆∆∆∆t)ab, (∆∆∆∆t)ba – przyrost czasu koordynowanego podczas transmisji znacznika

od zegara A do B i od zegara B do A;

ya, yb – względne odchylenie częstotliwości zegara A i B;

Page 47: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

48

Dokonując liniowej interpolacji róŜnicy Tb(t) –Ta(t) dla t∈(tea, teb) otrzymujemy

następujący związek opisany wzorem (2-13) [5].

2

)()(

2

)()()()( ebaebbeaaeab

śraśrb

tTtTtTtTtTtT

−+−=− (2-13)

gdzie:

2ebea

śr

ttt

−= (2-14)

Następnym krokiem jest odjęcie stronami wzoru (2-12) od (2-11), co jest moŜliwe

po uprzednim przesłaniu wyników pomiarów do odległego miejsca. Przy dodatkowym

wykorzystaniu wzoru (2-13) otrzymujemy zaleŜność opisaną wzorem (2-15) [5].

ε+∆−∆−−−−=−

2

)()(

2

)()(

2

)()()()( baabebbraaeaarbb

śraśrb

tttTtTtTtTtTtT (2-15)

gdzie:

+−++∆−∆= ∫∫Azegara

światalinia

a

Bzegaraświatalinia

babbbaa dtthydtthy

tyty)()1()()1(

2

1

2

)()(ε (2-16)

(∆∆∆∆t)ab, (∆∆∆∆t)ba – koordynatowane przyrosty czasów propagacji sygnału z lokalizacji

A do B i B do A;

εεεε - przyjmuje bardzo małe wartości;

Na podstawie wzoru (2-15) moŜna powiedzieć, Ŝe główny wpływ na wynik komparacji

wskazań zegarów w metodzie dwudrogowej ma róŜnica przyrostów czasów

koordynatowych. Sprawia ona, Ŝe na drugi plan schodzą takie czynniki jak [5]:

• dokładna znajomość współrzędnych zegarów;

• znajomość dróg propagacji sygnałów;

• opóźnienia atmosferyczne;

Głównym medium, wykorzystywanym przy transferze zegarów na duŜe odległość

jest otwarta przestrzeń. Transmisja tego typu wykorzystuje telekomunikacyjne satelity

geostacjonarne [5]. Zastosowanie satelitów do transferu czasu wymaga zwrócenia

uwagi na stabilność propagacji oraz duŜą szerokość pasma transmisji. W przypadku,

gdy zegary znajdują się w stosunkowo niewielkich odległościach od siebie moŜliwe

Page 48: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

49

jest wykorzystanie światłowodów jako medium transmisyjnego. W znacznym stopniu

ogranicza to wpływ czynników zewnętrznych na wynik pomiarów [5].

Rzeczywistą realizację metody TWSTFT przedstawia schemat na rysunku (2.23) [5, 7].

Diplekser

Nadajnik Odbiornik

Zegar A

Miernikprzedziału

czasu

Diplekser

NadajnikOdbiornik

Zegar B

Miernikprzedziału

czasu

dasdsa dbs

dsb

dTadRa

dabs

dbas

dTbdRb

bsSCasSC sbSC

saSC

aT bT

aTI bTI

1pps 1pps

Rys. 2.23 Rzeczywista realizacja metody TWSTFT.

Metoda ta polega na jednoczesnym przesyłaniu sygnału czasu w obu kierunkach.

Cały proces rozpoczyna się wytworzeniem przez zegar impulsy 1pps, który moduluje

częstotliwość pośrednią (70 MHz) urządzenia VSAT (ang. Very Small Aperture

Terminal) [5]. Następnie dokonywana jest konwersji w górę do częstotliwości emisji

np. 14 GHz oraz wzmocnienie sygnały przesyłanego do transpondera satelity. Sygnał

ten jest transmitowany do odbiornika stacji oddalonej, w której znajduje się zegar

odległy. Po odebraniu sygnału przez odbiornik stacji oddalonej następuje

w nim jego: wzmocnienie, konwersja częstotliwości w dół do częstotliwości pośredniej

oraz demodulacja pozwalająca na odzyskanie sygnały 1pps, transmitowanego z zegara

A do B. Proces ten jest identyczny w obu kierunkach. NaleŜy podkreślić, Ŝe transmisja

ze stacji naziemnej do satelity (ang. uplink) odbywa się na innej częstotliwości nośnej,

niŜ transmisja odwrotna (ang. download) [5].

Metoda TWSTFT musi się liczyć z opóźnieniami, jakie mają miejsce w trakcie

transmisji sygnału oraz uwzględniać zjawisko Sagnac’a. Opóźnienia te zostały

przedstawione na rysunku (2.23), a ich opis znajduje się w tabeli (2.9) [5].

Page 49: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

50

Opóźnienie wzgl ędem stacji A Opó źnienie wzgl ędem stacji B

dTa

dRa

das

dsa

daks

- opóźnienie nadajnika stacji A - opóźnienie odbiornika stacji A - opóźnienie propagacji na

odcisnku: stacja A – satelita - opóźnienie propagacji na

odcisnku: satelita – stacja A - opóźnienie urządzeń satelity dla

transmisji od stacji A do B

dTb

dRb

dbs

dsb

dkbs

- opóźnienie nadajnika stacji B - opóźnienie odbiornika stacji B - opóźnienie propagacji na

odcisnku stacja B – satelita - opóźnienie propagacji na

odcisnku satelita – stacja B - opóźnienie urządzeń satelity dla

transmisji od stacji B do A

Uwzględnienie zjawiska Sagnaca

SCas

SCsa

- poprawka Sagnaca dla transmisji na odcinku: stacji A – satelity

- poprawka Sagnaca dla transmisji na odcinku: satelita – stacji A

SCbs

SCsb

- poprawka Sagnaca dla transmisji na odcinku: stacji B – satelity

- poprawka Sagnaca dla transmisji na odcinku: satelita – stacji B

Tab. 2.9 Opóźnienia występujące w metodzie TWSTFT.

W obu stacjach znajduje się miernik przedziału czasu TIC (ang. Time Interval Counter),

których działanie opisują równania (2-17 i (2-18) [5].

RasasasbabsbsTbbaa ddSCdSCddTTTI +++++++−= (2-17)

RbsbsbsabasasTaabb ddSCdSCddTTTI +++++++−= (2-18)

Wskazania te są wymieniane między miernikami stacji odległych, co umoŜliwia

w bezpośredni sposób wyznaczyć róŜnicę porównywanych skal czasu. Równanie (2-19)

przedstawia odpowiednio uporządkowaną róŜnicę równań (2-17) i (2-18) [5].

( ) ( ) ( ) ( )

( ) ( ) ( )22

222

sbbssaassba

sab

sbbssaasRbTbRaTababa

SCSCSCSCdd

ddddddddTITITT

−−−+−+

+−−−+−−−+−=− (2-19)

Równanie (2-19) składa się z pięciu osobnych części, które kolejno uwzględniają:

róŜnicę odczytów mierników przedziału czasu, wpływ opóźnień urządzeń

stacjonarnych, opóźnienia propagacji, opóźnienia urządzeń satelity, wpływ zjawiska

Sagnac’a. Ostatnie te cztery czynniki moŜna uznać za poprawki, o które naleŜy

skorygować wskazania mierników przedziału czasu [5].

WaŜną kwestią są opóźnienia wprowadzane przez jonosferę i troposferę. Pierwsze

jest w znacznym stopniu uzaleŜnione od częstotliwości nośnej i powoduje niezerowe

opóźnienie róŜnicowe łącza w górę i w dół, które szacujemy przy pomocy

wzoru (2-20) [5].

+

22

113,40

ud ffc

TEC (2-20)

Page 50: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

51

gdzie:

TEC – (ang. Total Electron Content) liczba wolnych elektronów wzdłuŜ drogi

sygnału. Jest ona zaleŜna od pory dnia (gęstość elektronów: min – północ,

max – południe), pory roku (gęstość elektronów: min – lato max – zima),

11-letniego cyklu słonecznego (gęstość elektronów: max – największa aktywność

Słońca), geograficznego usytuowania;

fd – częstotliwość łącza w dół;

fu – częstotliwość łącza w górę;

Opóźnienie to jest tym mniejsze im wyŜsze są wartości częstotliwości dla transmisji

w górę i w dół. Dla częstotliwości fd = 12 GHz, fu = 14 GHz oraz

TEC = 1018 elektronów/m2 róŜnicowe opóźnienie jonosfery wynosi 0.25 ns,

a dla fd = 4 GHz i fu = 6 GHz wynosi 4.6 ns [5].

W przypadku róŜnicowego opóźnienia troposfery (róŜnica opóźnień łącza w górę

i w dół) to jest ono równe zeru. Na zerową wartość tego opóźnienia wpływa wartość

częstotliwości transmisyjnej, która nie przekracza 20 GHz [5].

2.4.3 Metoda jednoczesnych obserwacji.

Metoda jednoczesnych obserwacji (ang. Common-View) jest uwaŜana za bardzo

prostą metodę umoŜliwiającą bezpośrednie porównanie ze sobą dwóch zegarów.

Ogólną zasadę jej działania przedstawia rysunek (2.24) [5, 15].

Zegar A Zegar B

Zegar S

Wymiana danych: FTP, e-mail

Ziemia

b∆Ta∆T

Rys. 2.24 Metoda jednoczesnych obserwacji.

Page 51: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

52

W odróŜnieniu od metody jednodrogowej, która porównuje dany zegar do czasu GPS,

metoda jednoczesnych obserwacji porównuje dwa zegary miedzy sobą [15].

W technice tej dwie stacje naziemne A i B odbierają jednocześnie w chwilach czasu

Ta(ta) i Tb(tb) znacznik czasu Ts(ts) nadawany przez tego samego satelitę S w chwili ts.

Następnie w obu odbiornikach wyznaczana jest róŜnica między ich własnymi czasami

w chwili ts (czyli Ta(ts) i Tb(ts)), a odebranym znacznikiem czasu Ts(ts). Operacje

te opisują wzory (2-21) i (2-22) [5].

)()()( sassssa tTtTtT ∆=− (2-21)

)()()( sbssssb tTtTtT ∆=− (2-22)

Po wykonaniu tych obliczeń przez kaŜdą ze stacji, dane w postaci wyznaczonych róŜnic

są przesyłane między dwoma ośrodkami badawczymi. UmoŜliwiają one wyznaczenie

róŜnic odczytów zegarów w chwilach emisji znacznika czasu (2-23) [5].

)()()()( sbssassbsa tTtTtTtT ∆−∆=− (2-23)

Stosując wzór (2-22) oraz wzór (2-9) zastosowany zarówno dla zegara A i B róŜnice

te moŜna zapisać w postaci wzoru (2-24) [5].

[ ] [ ] [ ]bassbbssaasbsa TTtTtTtTtTtTtT ∆−∆−−−−=− )()()()()()( (2-24)

Pierwsze dwa nawiasy określają pseudoodległości od satelity w chwili emisji

dla zegarów A i B, a trzeci przedstawia róŜnicę opóźnień transmisji znacznika od zegara

S do zegarów A i B. Na podstawie wzoru (2-24) moŜna stwierdzić, Ŝe w przypadku

wykorzystania metody jednoczesnych obserwacji do transferu czasu jakość

obserwowanego zegara S nie wpływa na wynik porównywanych zegarów [5].

Wymiana danych między dwoma laboratoriami czasu jest realizowana

za pośrednictwem internetu: FTP, e-mail. JeŜeli czas dotarcia znacznika

do obu odbiorników jest dokładnie taki sam, wówczas pomiar przestaje być uzaleŜniony

od medium transmisyjnego. Fluktuacje opóźnień pomiędzy satelitą, a dwoma

odbiornikami moŜna pominąć, jeŜeli są one ze sobą dokładnie skorelowane. Jednak

taka idealna sytuacja nie ma miejsca w rzeczywistych pomiarach. Metoda

jednoczesnych obserwacji osiąga bardzo dobre wyniki nawet w przypadku, gdy drogi

od satelity do odbiorników A i B nie są identyczne. Sprawdza się ona najlepiej

w chwili, gdy dystans między odbiornikami jest mały w porównaniu z odległością

odbiorników od satelity [5].

Page 52: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

53

Metoda jednoczesnych obserwacji zapewnia lepszą dokładność i stabilność niŜ metoda

jednodrogowa. Wymaga ona jedynie róŜnicowej kalibracji pomiędzy dwoma

odbiornikami, która dostarcza informacji na temat opóźnień wprowadzanych przez

urządzenia odbiorcze. Metoda ta jest obarczona pewnymi błędami spowodowanymi

głównie niepewnością efemeryd satelitów, błędnym oszacowaniem opóźnień

w atmosferze oraz niestałością opóźnień odbiorników. Dokładność metody

jednoczesnych obserwacji dla transferu czasu waha się w przedziale od 1 ÷ 10 ns.

Metoda jednoczesnych obserwacji od długiego czasu jest uŜywana do porównywania

międzynarodowych źródeł czasu i częstotliwości. Znaczna część danych jaka spływa

do BIPM, które są wykorzystywana do generowania takich skal czasu jak: TAI

(ang. International Atomic Time) czy UTC (ang. Coordinated Universal Time)

jest pozyskiwana dzięki metodzie jednoczesnych obserwacji [5, 15]. Ze względu

na duŜą popularność tej metody format danych jaki ona generuje doczekał się pewnego

standardu, który został dokładnie określony przez BIPM [15]. Plik z danymi

pochodzący z odbiornika GPS (TTS-2) obejmuje tygodniowy okres obserwacji. Format

danych dla metody CV został przedstawiony na rysunku (2.25) [27].

Page 53: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

54

GGTTS GPS DATA FORMAT VERSION = 01 REV DATE = 2000-11-29 RCVR = AOS SRC TTS-2 023 14.04 CH = 08 IMS = 99999 LAB = AOS Borowiec X = 3738369.22 m. Y = 1148164.25 m. Z = 5021810.46 m. FRAME = ITRF88 COMMENTS = New high performance clock, from 01.08.2 001 source of UTC(AOS) INT DLY = 20.80 ns CAB DLY = 149.30 ns REF DLY = 20.40 ns REF = HP5071A, opt 001, s.n. US39301660 CKSUM = FC PRN CL MJD STTIME TRKL ELV AZTH REFSV SRSV REFGPS SRGPS DSG IOE MDTR SMDT MDIO SMDI C K hhmmss s .1dg .1dg .1ns .1ps/ s .1ns .1ps/s .1ns .1ns.1ps/s.1ns.1ps/s 2 FF 52876 001800 780 525 2689 1733809 5 3 57 120 15 234 102 -1 61 0 A 4 1 21 FF 52876 001800 780 559 665 -319405 -4 0 15 -106 14 193 98 9 58 5 B 3 2 16 FF 52876 001800 780 578 2184 -710549 -5 0 -21 -99 14 189 96 6 57 3 C D 3 17 FF 52876 001800 780 163 574 -2578232 -69 9 -27 -1396 19 90 287 113 118 17 5 2 4 6 FF 52876 001800 780 176 1093 72210 2 2 33 26 24 132 265 92 115 16 9 1 5 3 FF 52876 001800 780 405 2886 -388039 -5 3 -112 -85 14 19 124 -18 73 -9 E C 6 15 FF 52876 001800 780 714 2209 -1506780 -4 3 12 -92 15 156 85 -4 52 -2 C C 7 18 FF 52876 001800 780 441 1350 -114833 2 -15 7 17 237 116 -13 69 -7 A 8 8 2 FF 52876 003415 765 520 2573 1733849 5 0 32 117 49 234 103 2 61 1 9 B 1 21 FF 52876 003415 765 488 657 -319464 -5 3 19 -119 49 193 107 12 64 7 E 5 2 16 FF 52876 003415 765 516 2099 -710598 -5 4 -23 -103 49 189 103 10 62 5 F 3 3 3 FF 52876 003415 765 474 2896 -388073 -6 8 -115 -100 51 19 110 -13 65 -7 F B 6 15 FF 52876 003415 765 793 2209 -1506831 -6 4 8 -113 49 156 82 -2 51 -1 D 9 7 31 FF 52876 005000 780 209 2942 -3792523 -17 7 -15 -307 17 139 225 -69 107 -16 5 4 8 2 FF 52876 010600 780 457 2371 1733945 4 5 -0 112 16 234 113 9 67 5 9 7 1

Rys. 2.25 Format danych zgodny ze standardem określony przez BIPM dla metody jednoczesnych obserwacji

Dane z odbiornika TTS-2 pracującegow w CBK PAN w Borowcu.

Page 54: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...
Page 55: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

56

Metoda jednoczesnych obserwacji posiada swoje dwie odmiany [13, 15]:

• jednokanałowa CV (ang. Singl Channel Common View);

• wielokanałowa CV (ang. Muli-Channel Common View);

2.4.3.1 Jednokanałowa metoda jednoczesnych obserwacji.

Metoda jednokanałowa wymaga od odbiornik GPS, aby ten znał plan przelotu

satelitów GPS. Plan ten pozwala określić odbiornikowi czas, w którym odbiornik

powinien rozpocząć obserwację danego satelity. Inny odbiornik zlokalizowany

w oddalonym miejscu moŜe prowadzić obserwacje tego samego satelity w tym samym

czasie. Dane zebrane przez oba odbiorniki są wymieniane miedzy laboratoriami

uczestniczącymi w pomiarach.

Pierwszy odbiornik jednokanałowy został stworzony w NIST w 1980 roku. Wkrótce

później powstało kilka innych odbiorników bazujących na projekcie opracowanym

przez NIST. W tym czasie w systemie GPS pracowało jedynie kilka satelitów, a kaŜdy

z odbiorników mógł śledzić jedynie jednego satelitę w danym czasie. Pomimo,

iŜ obecne odbiorniki potrafią obserwować jednocześnie kilka satelitów, to odbiorniki

jednokanałowe nadal są stosowane [15].

Jeśli chodzi o plany przelotów satelitów to są one publikowane przez BIPM

co 6 miesięcy. Czas obserwacji satelity trawa 13 minut. Maksymalna liczba

obserwowanych satelitów w ciągu doby wynosi 48. W praktyce jednak liczba

ta jest mniejsza [15].

2.4.3.2 Wielokanałowa metoda jednoczesnych obserwacji.

Metoda wielokanałowa, która powstałą w Polsce nie wykorzystuje planów

przelotów, a odbiornik sam zapisuje dane zbierane ze wszystkich satelitów jakie

w danej chwili widzi. Zasadę działania tej metody przedstawia rysunek (2.26). Pomimo,

iŜ odbiornik wielokanałowy przetwarza znacznie większą liczbę danych metoda

ta niesie ze sobą wiele zalet. W przypadku obserwacji prowadzanych przy pomocy

dwóch odbiorników jednokanałowych istniała ograniczona liczba obserwacji,

jakie mogły być prowadzone jednocześnie. Wiązało się to z bezczynnym oczekiwaniem

odbiorników na satelitę, który będzie mógł być jednocześnie obserwowany przez oba

odbiorniki. W przypadku wykorzystania odbiorników wielokanałowych istnieje

moŜliwość porównania dwóch zegarów znajdujących się w rozsądnej odległości

Page 56: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

57

(np. na tym samym kontynencie), bez obawy, Ŝe w chwili obserwacji nie znajdzie się

przynajmniej jeden satelita, który będzie widziany przez oba odbiorniki. Tym sposobem

odbiorniki wielokanałowe umoŜliwiają ciągłe prowadzenie obserwacji bez Ŝadnych

przerw. Metoda wielokanałowa z powodzeniem jest wykorzystywana przez BIPM

do zbierana danych, na podstawie których jest generowana skala TAI. Czas obserwacji

kaŜdego z satelitów trawa podobnie jak w przypadku metody jednokanałowej 13 minut.

UmoŜliwia to porównywanie miedzy sobą danych pochodzących z odbiorników

wielokanałowych z danymi pochodzącymi z odbiorników jednokanałowych. Dane

są jednak zbierane co 16 minut. RóŜnica tych 3 minut wynika z 2 minutowego okresu,

jaki odbiornik potrzebuje na określenie satelitów, które będą obserwowane

przez następne 13 minut, a po zakończeniu tego czasu odbiornik przez 1 minutę

odczekuje czas na rozpoczęcie kolejnego cyklu obserwacji [15].

Oczywiście ilość zbieranych danych przez odbiorniki wielokanałowe jest znacznie

większa, jak w przypadku odbiorników jednokanałowych. Teoretyczna liczba satelitów,

jaka moŜe być obserwowana jednocześnie wynosi 12. Praktyczna liczba

jest w granicach 5 lub 6 satelitów. Zakładając, Ŝe odbiornik w ciągu trwania całej doby

ciągle będzie obserwował 5 satelitów to łączna liczba obserwacji wyniesie 450 w ciągu

dnia. Wartość ta przekracza blisko dziesięciokrotnie liczbę obserwacji jaką moŜe

przeprowadzić wykorzystując odbiorniki jednokanałowe [15, 17].

Zegar A Zegar B

Wymiana danych: FTP, e-mail

Ziemia

Rys. 2.26 Wielokanałowa metoda jednoczesnych obserwacji.

Page 57: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

58

2.4.4 Transport zegarów.

Transport zegarów satelitów Bloku I jest interesujący dla wysokiej dokładności

porównań czasu (10 ns lub mniej). Zegary A i B zlokalizowane w róŜnych

miejscowościach na powierzchni Ziemi, mogą być porównane przez sukcesywne

obserwacje tego samego satelity, lub grupy satelitów, z okresami między kolejnymi

obserwacjami nie dłuŜszymi niŜ 12 godzin. W tych warunkach obserwacje mogą

być wykonywane w momentach najwyŜszych wzniesień satelitów, zmniejszając

w ten sposób błędy oszacowania opóźnień spowodowanych jonosferą i troposferą.

Minimalizuje to wpływ błędów efemeryd operacyjnych (błąd wzdłuŜ orbity jest zwykle

największy). Metoda ta zaleŜy od niestałości zegarów pokładowych, która w przypadku

satelitów Bloku I jest relatywnie mała (około 5 ns dla 12 godzin). Satelity Bloku II

nie mogą być stosowane w tej metodzie ze względu na ich celowe zdegradowanie [19].

2.4.5 Porównanie metod transferu czasu.

Porównanie wszystkich pięciu metod transferu czasu ze względu na osiągane

przez nie wyniki w postaci niepewności czasu oraz częstotliwości dla jednodniowego

czasu uśrednia przy spełnieniu warunku 2σ przedstawia tabela (2.10) [15].

Metoda Niepewno ść czasu

ττττ = 24h warunek 2 σσσσ Niepewno ść częstotliwo ści

ττττ = 24h warunek 2 σσσσ

Jednodrogowa < 10 ns < 1 x 10-13

Dwudrogowa < 5 ns < 5 x 10-14

Jednoczesnych obserwacji (jednokanałowa)

< 10 ns < 5 x 10-14

Jednoczesnych obserwacji (wielokanałowa)

< 5 ns < 5 x 10-14

Transport zegarów 10 ns 1 x 10-13

Tab. 2.10 Porównanie metod transferu czasu.

Page 58: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

59

3. Propozycja algorytmu wyznaczania skali czasu.

Algorytm opisany w tej pracy stanowi propozycję wyznaczania Polskiej Atomowej

Skali Czasu z polskich źródeł atomowych. Wykorzystuje on elementy zaczerpnięte

z algorytmu tworzącego skalę TA(PL) oraz algorytmu AT1 tworzącego skalę w NIST.

Do głównych załoŜeń tego algorytmu naleŜą:

• otrzymanie skali czasu o jak najlepszej stabilności krótkookresowej;

• otrzymanie skali czasu o jak najlepszej stabilności długookresowej;

• minimalizacja wpływu usuwania oraz dodawania zegarów z zespołu zegarów

biorących udział w generowaniu skali;

Algorytm wyznaczania skali czasu jest procesem etapowym, w którym moŜna wyróŜnić

cztery podstawowe fazy:

• przygotowanie danych wejściowych pochodzących z comiesięcznych raportów

publikowanych przez Główny Urząd Miar w Warszawie, co sprowadza się do:

- dokonania korekty przestrojeń zegarów;

• określenie wag dla poszczególnych zegarów biorących udział w tworzeniu skali

w danym miesiącu, na co składają się takie czynności:

- wyznaczenie przy pomocy metody najmniejszych kwadratów MNK odchyleń

standardowych dla kaŜdego zegara za okres całego miesiąca;

- wyznaczenie na podstawie wartości odchyleń standardowych wag dla kaŜdego

zegara;

• wyznaczenie skali czasu TA(IET) obejmuje:

- określenie początku skali czasu;

- wybór wzorca roboczego;

- wyznaczenie róŜnic między wzorcem roboczym, a pozostałymi zegarami;

• zbadanie niestałości skali czasu;

Schematyczny opis algorytmu znajduje się na rysunku (3.1) który przedstawia ogólną

koncepcje wyznaczania skali czasu. Szczegółowe omówienie kaŜdej z czterech części

algorytmu znajduje się w dalszej części rozdziału.

Page 59: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

60

Rys. 3.1 Schematyczny opis algorytmu generującego skalę czasu TA(IET).

Pobranie danych w postaci dokumentu w formacie MS Word

publikowanego przez GUM“ ”infXX-YY.doc

NaleŜy:- usunąć wiersz z numeracją kolumn;- usunąć wiersz opisujący główną jednostkę;- usunąć wszelkie gwiazdki;- zamienić znaki określające brak danych “0”;

Skopiowanie danych z biuletynu GUM dotyczących TA(PL) do pliku tekstowego

“ ”infXX-YY.txt

Dzien MJD CS5 CS2 CS3 AOS CBR IL2 LIT 1 52275 413 454 -3394 40 -31 -1091 504 2 52276 420 456 -3405 40 -33 -1076 499 . ..... ... ... ..... ... ... ..... ... 30 52304 442 471 -3583 35 -70 -1206 512 31 52305 447 478 -3590 39 -74 -1202 515

Uruchomienie programu:“ ”przestrojenia.exe

Rok Miesiac CS5 CS2 CS3 AOS CBR IL 2 2002 1 0.0 0.0 -7.0 -1.8 0.0 0. 0 2002 2 0.0 0.0 0.0 0.0 0.0 0. 0 2002 3 0.0 0.0 0.0 0.0 0.0 0. 0 2002 4 -0.3 0.0 0.0 0.0 0.0 0. 0

Efektem działa programu są 3 pliki:- “ “ - dane źródłowe po korekcie;- “ ” - dane ze wszystkich miesięcy; - “ ” - dane o przestrojeniach;

infXX-YYp.txtall.txtprzestrojenia.txt

AOS - CZERWIEC 2003PRZED KOREKTĄ

1060

1160

1260

1360

1460

1560

1660

52785 52790 52795 52800 52805 52810 52815 52820 52825

AOS - CZERWIEC 2003PO KOREKCIE

1060

1160

1260

1360

1460

1560

1660

52785 52790 52795 52800 52805 52810 52815 52820 52825

Przykład korekty przestrojenia:PRZED PO

Uruchomienie programu:“ ”wagi.exe

Dane źródłowe dla tego programu zawiera plik:

“ ”infXX-YYp.txt

( )∑=

−⋅−−

=n

iiiy bxay

n 1

2

21σ

Wyznaczenie przy pomocy MNK odchylenia standardowego (sigma)

dla kaŜdego z zegarów:

Wartości “sigm“ umieszczane są w pliku docelowym:“ ”sigma.txt

Rok Miesiac CS5 CS2 CS3 AOS CBR I L2 LIT ITR IL3 2002 1 3.4 5.2 28.3 8.5 5.1 12 .7 5.5 0.0 0.0 2002 2 5.6 3.2 4.4 1.7 6.0 23 .5 6.8 5.6 0.0 2002 3 3.1 1.7 2.8 2.6 7.0 49 .2 6.7 9.9 0.0 2002 4 3.1 1.6 3.8 3.7 8.1 193 .1 7.2 7.8 2.6

%1001

1

1

⋅=∑

=

N

n n

iiw

σ

σ

Wyznaczenie wag w “%” na podstawie danych pliku “ ”sigma.txt

Procentowe wartości wag umieszczane są w pliku: “ ”wagi.txt

Rok Miesiac CS5 CS2 CS3 AOS CBR IL 2 LIT ITR IL3 2002 1 26.7 17.5 3.2 10.8 17.9 7. 2 16.6 0.0 0.0 2002 2 9.6 16.9 12.4 32.2 9.0 2. 3 7.9 9.7 0.0 2002 3 15.8 27.9 17.5 18.7 7.0 1. 0 7.2 4.9 0.0 2002 4 14.3 27.2 11.6 11.9 5.5 0. 2 6.1 5.7 17.4

Uruchomienie programu: “ ”dla którego dane źródłowe stanową pliki:

“ ”, “ ”, “ ”, “ ”

skala_czasu.exe

infXX-YYp.txt wagi.txt utc_inter.txt tai_inter.txt

Wybór zegara roboczego:a następnie róŜnic między tym zegarem a resztą zegarów

fd ROBOCZYtT )(

NROBOCZYN tTtTtDIV )()()(

[∑−

=

+⋅=−1

1

)())(()(N

iiiROBOCZY AwtDIVtKKTAtT

Wyznaczenie skali czasu TA(KK) względem zegara roboczego

Interpolacja danych prezentujących relacji między UTC(GUM), a UTC oraz TAIpochodzących z serwera BIPM przy pomocy programu “ ”

Wynikiem działania tego programu są dwa pliki:interpolacja.exe

“ ”, “ ”utc_inter.txt tai_inter.txt

Rok Miesiac MJD UTC(PL)-TA(IET) UTC-TA(IET) TP(PL)-TA(IET) TAI-TA(IET) 2002 1 52291 57.5 123.4 453.6 328.6 2002 1 52292 61.5 125.3 457.5 329.1 2002 1 52293 59.4 130.1 453.3 328.3 2002 1 52294 55.7 127.4 459.8 237.6

Relacje skali TA(KK) względem zegara roboczego i UTCopisuje plik: “ ”skala_czasu.txt

Bieg skali czasu TA(IET) względem TAI

Uruchomienie programu:“ ”niestalosc.exe

Dane wejściowe dlatego programu zawiera

plik: “ ”skala_czasu.txt

( )2

1

22

2

2

1

)(τ

τσ∑

=∆

=

M

ii

y

xM

Wyznaczenie niestałości skali czasu na podstawie wariancji Allana

Tal Liczba_punktów Wariancja_Allana Przedzial_ niepewnosci 5 165 7.15457E-15 1.8856e-026 10 83 5.51453E-15 1.8993e-027 20 42 3.71976E-15 1.4233e-027 50 17 3.85653E-15 9.5299e-028 75 11 4.71841E-15 2.4419e-028 100 9 4.17302E-15 4.4419e-028

Dane określającewariancję Allana

zawiera plik: “ ”niestalosc.txt

Wykres przedstawiający niestałość skali czasu TA(IET) względem TAI

]

Przygotowanie danych źródłowych

Wyznaczenie wag Wyznaczenie skali czasu TA(KK)

Zbadanie jako ści skali czasu - stabilno ść

0.0E+00

1.0E-15

2.0E-15

3.0E-15

4.0E-15

5.0E-15

6.0E-15

7.0E-15

8.0E-15

0 20 40 60 80 100

IET

-1600-1400-1200-1000

-800-600-400-200

0

52200 52400 52600 52800 53000 53200

Page 60: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

61

3.1 Dane źródłowe.

Źródło danych wejściowych dla algorytmu, który za chwilę zostanie

przedstawiony, stanowią dane pochodzące z biuletynów Głównego Urzędu Miar

w Warszawie (GUM) pełniącego funkcje samodzielnego laboratorium czasu

i częstotliwości. Publikowane dane mają postać comiesięcznych raportów, dostępnych

w postaci dokumentów w formacie programu Microsoft Word. Pliki źródłowe są

etykietowane w następujący sposób:

infXX-YY.doc

gdzie:

XX – oznacza miesiąc np. 02;

YY – oznacza rok np. 04;

Z punktu widzenia algorytmu wyznaczanie skali czasu najistotniejsze dane znajdują się

w tabeli opisującej Polską Atomową Skalę Czasu TA(PL), której fragment został

przedstawiony w tabeli (3.1) [9].

Dzień MJD CS5 CS2 CS3 AOS CBR IŁ2 LIT

ns

1 2 3 4 5 6 7 8 9

1 52275 413 454 -3394 40 -31 -1091 504

2 52276 420 456 -3405 40 -33 -1076 499

3 52277 424 462 -3416 42 -36 -1089 494

4 52278 423 460 -3425 41 -38 -1110 494

5 52279 425 457 -3438 39 -36 -1116 492

..... ..... ..... ..... ..... ..... ..... ..... .....

27 52301 441 472 -3579 26 -73 -1183 515

28 52302 441 471 -3583 29 -73 -1177 518

29 52303 439 471 -3587 31 -69 -1190 518

30 52304 442 471 -3583 35 -70 -1206 512

31 52305 447 478 -3590 39 -74 -1202 515

Tab. 3.1 Fragment biuletynu GUM za czerwiec 2003.

Ze względu na trudność operowanie na dokumentach pochodzących z programu

Microsoft Word, naleŜy przekonwertować dane z tego formatu do pliku tekstowego

z rozdzielonymi znakami tabulacji (dane zawarte w tabeli (3.1)) tworząc plik:

infXX-YY.txt

Konwersji moŜna dokonać np. przy pomocy programu Microsoft Excel.

Zawartość przekonwertowanego pliku w formacie tekstowym powinna wyglądać

w sposób pokazany na rysunku (3.2).

Page 61: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

62

Dzie ń MJD CS5 CS2 CS3 AOS CBR IŁ2 LIT 1 52275 413 454 -3394 40 -31 -1091 504 2 52276 420 456 -3405 40 -33 -1076 499 3 52277 424 462 -3416 42 -36 -1089 494 4 52278 423 460 -3425 41 -38 -1110 494 5 52279 425 457 -3438 39 -36 -1116 492 ................................................... ........... 27 52301 441 472 -3579 26 -73 -1183 515 28 52302 441 471 -3583 29 -73 -1177 518 29 52303 439 471 -3587 31 -69 -1190 518 30 52304 442 471 -3583 35 -70 -1206 512 31 52305 447 478 -3590 39 -74 -1202 515

Rys. 3.2 Zawartość pliku w formacie tekstowym „inf06-03.txt” czerwiec 2003.

RóŜnica między plikiem w formacie MS Word, a plikiem tekstowym sprowadza się do:

• braku wiersza z liczbą porządkową kolumn;

• braku wiersza opisującego główną jednostkę czyli nanosekundy;

• brak gwiazdek „*” w kolumnach, określających dzień, w którym dany zegar został

przestrojony;

• wszelkie miejsca w postaci kresek „-” czy innych znaków, które wskazują na brak

danych w danym okresie zastępujemy zerami „0”;

Zarówno tabela (3.1), jak rysunek (3.2) przedstawiają wartości dobowe, odpowiadające

róŜnicom między TA(PL), a zegarami uczestniczącymi w jej tworzeniu dla danego

miesiąca. Liczba zegarów na przestrzeni ostatnich dwóch lat waha się miedzy

6 ÷ 9 [9]. Dane zawarte w biuletynach GUM uwzględniają ewentualne przestrojenia

jakim zegary są poddawane. Przestrojenia te mogą wystąpić w dwóch postaciach:

• przestrojenie częstotliwości;

przykład: W dniu MJD 52897 o godz. 14:00 UTC przestrojono zeg ar CS5 o -19e-15 (frequency offset z 133e-15 na 114e-15).

• skoku biegu zegara o określoną wartość;

przykład: W dniu MJD 53058, o godz. 12:00 UTC wykonano skok i mpulsu 1PPS wzorca CBR (kod BIPM 1350761) o 500 ns.

Utrzymanie naturalnego biegu zegarów wymaga dokonania korekty przestrojeń tak,

aby nie wpływały one na generowaną skalę czasu. Powinna być ona wolna od tego typu

ingerencji. Oczywiście moŜliwe są niekontrolowane skoki, które nie podlegają korekcie.

Aby lepiej wyjaśnić przestrojenia oraz sposób ich korygowania załóŜmy, Ŝe bieg zegara

moŜna opisać funkcją liniową przy pomocy wzoru (3-1).

Page 62: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

63

)'()'(' bbxaay +++= (3-1)

gdzie:

y’ - wartość odczytana z tabeli (3.1);

x - dzień w MJD;

a’ - wartość przestrojenia częstotliwości;

b’ - wartość skoku biegu zegara;

a, b - parametry funkcji liniowej;

Przestrojenia mogą występować osobno (samo przestrojenie częstotliwości,

bądź jedynie skok zegara o pewien czas) lub łącznie.

W celu określenia biegu zegara przed dokonaniem przestrojenia, a po korekcie naleŜy

zbudować układ równań liniowych złoŜony z równania (3-1) oraz równania (3-2).

baxy += (3-2)

gdzie:

y - wartość po korekcie, a przed przestrojeniem;

3.1.1 Programowa realizacja korekty przestrojeń.

Program, który jest odpowiedzialny za korygowanie wprowadzanych przestrojeń

nosi nazwę „przestrojenia.exe ”. Wymaga on podania pewnych dodatkowych

informacji niezbędnych dla prawidłowego działania programu:

• poprosi o podania nazwy pliku źródłowego z danymi „infXX-YY.txt ”;

• zapyta czy w danym miesiącu były jakieś przestrojenia;

• w przypadku wystąpienia przestrojeń poprosi o padanie:

- łącznej liczby przestrojeń dla danego miesiąca;

- nazwy zegara, który był przestrajany – jego skrótu np. „CS5”;

- dzień wystąpienia przestrojenia w skali MJD np. 52555;

- typy przestrojenia: czas „t” lub częstotliwość „f”;

- wartość przestrojenia;

Wynikiem działania programu „przestrojenia.exe ” są trzy pliki:

• „przestrojenia.txt ” – gromadzi informacje o przestrojeniach, jakie miały miejsce

w kolejnych miesiącach. Suma wszystkich przestrojeń dla danego zegara

jest dodawana do przyszłych wskazań danego zegara. Informacje te pozwalają

Page 63: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

64

na odtworzenie naturalnego biegu zegara. Format tego pliku został przedstawiony

na rysunku (3.3);

Rok Miesiac CS5 CS2 CS3 AOS CBR IŁ2 LIT ITR IŁ3 2002 1 0.0 0.0 -7.0 -1.8 0.0 0.0 0.0 0.0 0.0 2002 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2002 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2002 4 -0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Rys. 3.3 Format pliku „przestrojenia.txt”.

• „ infXX-YYp.txt ” – zawiera dane skorygowane o podane przetrojenia – właśnie

ten plik będzie potrzebny do dalszych obliczeń;

• „all.txt ” – przechowuje skorygowane dane ze wszystkich dotychczasowych

miesięcy, z zachowaniem osobnych kolumn dla kaŜdego zegara, co umoŜliwia łatwą

analizę biegu poszczególnym zegarów w dotychczasowym okresie czasu;

Rysunek (3.4) przedstawia efektu działania programu „przestrojenia.txt ”

na przykładzie zegara pracującego w AOS Borowiec.

AOS - CZERWIEC 2003PRZED KOREKTĄ

1060

1160

1260

1360

1460

1560

1660

52785 52790 52795 52800 52805 52810 52815 52820 52825

AOS - CZERWIEC 2003PO KOREKCIE

1060

1160

1260

1360

1460

1560

1660

52785 52790 52795 52800 52805 52810 52815 52820 52825

Rys. 3.4 Dane zegara AOS za czerwiec 2003 przed i po dokonaniu korekty przestrojenia o –400 ns w dniu 52793 MJD.

3.2 Wyznaczenie wag dla zegarów.

Kolejnym etapem stanowiącym jeden z kluczowych elementów dla skali czasu

jest wyznaczenie wag dla zegarów uczestniczących w jej tworzeniu dla danego

miesiąca. Głównym celem takiej operacji jest określenie jakości poszczególnych

zegarów na podstawie z góry przyjętych kryteriów. Taka dyferencjacja zegarów

pozwala na promowanie zegarów lepszych kosztem pozostałych tak, aby ich wpływ

na końcowy wynik wyznaczanej skali czasu był większy w stosunku do wpływu

zegarów, których jakość jest gorsza. Przez jakość zegara moŜemy rozumieć

jego przewidywalność. Im zegar jest bardziej przewidywalny, tym lepszy z punktu

widzenia skali czasu. WaŜne jest równieŜ, aby nie doprowadzać do sytuacji, gdy wpływ

Page 64: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

65

jednego zegara na skalę czasu był zbyt duŜy. MoŜe to spowodować, iŜ skala czasu

zespołu zegarów stanie się skalą jednego zegara. Podejście takie zabezpiecza równieŜ

przed nagłym pogorszeniem parametrów skali w przypadku uszkodzenia zegara

o dominującej pozycji.

W przypadku algorytmu skali czasu zaproponowanego w tej pracy, głównym kryterium

na podstawie, którego określa się jakość poszczególnych zegarów jest odchylenie

standardowe (błąd średniego odchylenia kwadratowego), wzór (3-3) [42].

( )∑

=

−⋅−−

=n

iiiy bxay

n 1

2

2

1σ (3-3)

Wartości odchylenia standardowego wyznaczane są na podstawie metody

najmniejszych kwadratów MNK. Pozwala ona określić relacje między parametrem

x (MJD) i y (róŜnica między TA(PL),a odpowiednim zegarem). Wagi

dla poszczególnych zegarów są wyznaczana na podstawie wzoru (3-4) [5].

%1001

1

1

⋅=∑

=

N

n n

iiw

σ

σ (3-4)

gdzie:

N – liczba zegarów uczestnicząca w danym miesiącu w tworzeniu skali czasu;

i – liczba całkowita z przedziału od 1 do N;

σσσσi – wartość odchylenia standardowego dla i-tego zegara;

Suma wyznaczonych wag dla wszystkich zegarów w danym miesiącu wynosi 100%,

wzór (3-5) [5].

%100

1

=∑=

N

iiw (3-5)

3.2.1 Metody Najmniejszych Kwadratów.

Metoda najmniejszych kwadratów (MNK) jest jednym ze sposobów

na dopasowanie funkcji do zbioru punktów. Minimalizuje ona sumę kwadratów

wartości teoretycznych wynikających z zaobserwowanych wartości. Przy estymacji

waŜne jest ustalenie potrzebnych załoŜeń, aby estymatory posiadały poŜądane

Page 65: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

66

własności. Te poŜądane własności to zwykle nieobciąŜoność i minimalna

wariancja [42].

Wyprowadzenie wzorów na estymatory MNK w przypadku wielu zmiennych najłatwiej

przeprowadzić stosując zapis macierzowy. Model liniowy moŜna wyrazić

wzorem (3-6) [42].

εβ += Xy (3-6)

gdzie:

),,0(~,:,:,

.....1

::::

.....1

,:2

11

1

1111

IN

xx

xx

X

y

y

y

nnknn

k

n

σεε

εε

β

ββ

=

=

=

=

(3-7)

Estymator parametru β oznaczymy przez b, a estymator parametru ε jako e. Reszty z

modelu definiujemy wzorem (3-8) [42].

Xbye −= (3-8)

Idea metody MNK polega na tym, Ŝe mając pewien zbiór danych zawierających yi i X i

dla i∈(1,...,n) znajdujemy estymator b parametru β minimalizujący sumę kwadratów

reszt. Dokujemy tego przez zminimalizowanie funkcje celu S(b), która jest równa sumie

kwadratów reszt, wzór (3-9) [42].

( ) ( ) XbXbyXbXbyyyXbyXbyeebS '''''''')( +−−=−−=⋅= (3-9)

Ostatnia równość wynika z faktu, Ŝe składniki y’Xb i b’X’y są skalarami, dla których

transpozycja nic nie zmienia. Warunk pierwszego rzędu istnienia minimum uzyskujemy

przez zróŜniczkowanie funkcji S(b) względem b, wzór (3-10) [42].

XbXyXb

XbXb

b

yXb

b

yy

b

bS'2'2

''''2

')( +−=∂

∂+∂

∂−∂

∂=∂

∂ (3-10)

Następnie przyrównujemy uzyskaną pochodną do zera i przenosimy składnik X’y

na prawą stronę dzieląc obie strony przez 2. Tym sposobem uzyskujemy układ równań

normalnych, wzór (3-11) [42].

yXXbX '' = (3-11)

Dalej rozwiązując ten układ równań dla parametru „b” otrzymujemy postać analityczną

estymatora MNK, wzór (3-12) [42].

yXXXb ')'( 1−= (3-12)

Warunki drugiego rzędu dla minimalizacji (3-9) związane są z określonymi macierzami

drugich pochodnych funkcji S(b) o postaci, wzór (3-13) [42].

Page 66: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

67

XXb

XbX

b

yX

bb

bS'2

'

'2

'

'2

'

)(2

=∂

∂+∂

∂−=∂∂

∂ (3-13)

3.2.2 Programowa realizacja wyznaczania wag.

Wyznaczaniem wag dla poszczególnych zegarów zajmuje się program o nazwie

„wagi.exe ”. Źródłem danych wejściowych dla tego programu są pliki tekstowe

typu „infXX-YYp.txt ”, będące efektem działania programu „przestrojenia.exe ”.

Jak wcześniej juŜ wspomniano, pliki te zawierają oryginalne dane źródłowe

skorygowane o przestrojenia jakim zostały poddane poszczególne zegary.

W wyniku działania programu „wagi.exe ” otrzymujemy dwa pliki tekstowe:

• „sigma.txt ” - zawiera on wartości błędu średniego odchylenia kwadratowego,

które opisuje wzór (3-3). W przypadku wystąpienia sytuacji, gdy nie posiadamy

części danych dla danego zegara w określonym miesiącu, wartość parametru

sigma σσσσ przyjmuje bardzo duŜe wartości. Informacje zawarte w tym pliku

są kluczowe do wyznaczanie wag. Format tego pliku znajduje się na rysunku (3.5).

Rok Miesiac CS5 CS2 CS3 AOS CBR I Ł2 LIT ITR IŁ3 2002 1 3.4 5.2 28.3 8.5 5.1 12.7 5.5 0.0 0.0 2002 2 5.6 3.2 4.4 1.7 6.0 23.5 6.8 5.6 0.0 2002 3 3.1 1.7 2.8 2.6 7.0 49.2 6.7 9.9 0.0 2002 4 3.1 1.6 3.8 3.7 8.1 193.1 7.2 7.8 2.6

Rys. 3.5 Format pliku „sigma.txt”.

• „wagi.txt ” – efekt działania programu „wagi.exe ” wykorzystywany w kolejnym

etapie tworzenia skali czasu. Zawiera on wagi wyraŜone w procentach, określające

jakość kaŜdego zegara biorącego udział w jej tworzeniu w danym miesiącu.

Dane te są w ścisły sposób związane z parametrem sigma σσσσ, a zaleŜność tą opisuje

wzór (3-4). Format pliku „wagi.txt ” przedstawia rysunek (3.6).

Rok Miesiac CS5 CS2 CS3 AOS CBR IŁ2 LIT ITR IŁ3 2002 1 26.7 17.5 3.2 10.8 17.9 7.2 16.6 0.0 0.0 2002 2 9.6 16.9 12.4 32.2 9.0 2.3 7.9 9.7 0.0 2002 3 15.8 27.9 17.5 18.7 7.0 1.0 7.2 4.9 0.0 2002 4 14.3 27.2 11.6 11.9 5.5 0.2 6.1 5.7 17.4

Rys. 3.6 Format pliku „wagi.txt”.

3.3 Wyznaczenie skali czasu TA(IET).

W tej chwili posiadamy juŜ odpowiednio przygotowane dane źródłowe

wraz z wyznaczonymi wagami dla kaŜdego z zegarów. MoŜemy więc przystąpić

do wyznaczenia skali czasu. W tym celu naleŜy:

Page 67: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

68

• Wybrać wzorzec roboczy, którego bieg będzie stanowił punkt odniesienia

dla pozostałych zegarów. Czynnikiem decydującym o jego wyborze z grupy zegarów

powinna być niezawodność, w szerokim znaczeniu. Wskazanie zegara roboczego

będziemy oznaczać przez (3-14).;

ROBOCZYtT )( (3-14)

• Wyznaczyć róŜnice między wskazaniem zegara roboczego, a wskazaniami

pozostałych wzorców, wzór (3-15).;

NROBOCZYN tTtTtDIV )()()( −= (3-15)

gdzie:

N - liczba zegarów pomniejszona o wzorzec roboczy;

T(t)N - wskaznie N-tego zegara;

• Dopiero w chwili, gdy mamy wyznaczone wszystkie róŜnice moŜemy przystąpić

do wyznaczenia skali czasu za dany miesiąc. Operację tę opisuje wzór (3-16) [3].

[ ]∑

=

+⋅=−1

1

)())(()(N

iiiROBOCZY AwtDIVtIETTAtT (3-16)

gdzie:

A - parametr korygujący skalę czasu. Stanowi róŜnicę między wskazaniem

skali czasu dla ostatniego dnia poprzedniego miesiacu, a wskazaniem skali

czasu wyznaczonego dla pierwszego dnia bierzącego miesiąca. Pozwala

zlikwidować skoki biegu skali czasu tracącej swoją ciągłość ze względu

na niezaleŜne wyznaczanie wag zegarów w kaŜdym miesiącu.

• Początek skali czasu TA(IET) datowany jest na 1 stycznia 2002 roku.

3.3.1 Programowa realizacja wyznaczania skali czasu TA(IET).

Za wyznaczenie skali czasu odpowiada program o nazwie „skala_czasu.exe ”.

Pozostaje jednak sprawa wyboru wzorca roboczego. Teoretycznie kaŜdy zegar mógłby

pełnić tę rolę. Praktycznie jednak wybór ten warto zawęzić do grupy zegarów,

które stanowią realizację polskiej skali czasu UTC. [3, 18]. Obecnie dwa zegary spośród

zegarów tworzących TA(PL) pełnią niezaleŜnie od siebie tę funkcję:

• AOS – Obserwatorium Astrogeodynamiczne, Borowiec;

• CS5 – Główny Urząd Miar, Warszawa;

Page 68: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

69

Warto dodać, iŜ zegar CS5 stanowi realizację Polskiego Uniwersalnego Czasu

Koordynowanego UTC(PL).

Wybór któregokolwiek z tych dwóch zegarów umoŜliwia późniejsze odniesienie

wygenerowanej skali czasu do takich skal jak: UTC, TAI czy TA(PL). Jest to moŜliwe

ze względu na dostępność danych określających relacje: UTC – UTC(PL),

UTC – UTC(AOS), a takŜe TAI – TA(PL). Dane te są publikowane na stronie

internetowej BIPM’u w postaci plików tekstowych dostępnych pod adresem [26]:

http://www.bipm.org/en/scientific/tai/time_ftp.html

W przypadku skali czasu wyznaczanej w tej pracy, rolę zegara roboczego pełni zegar

CS5. Wybór ten sprawia, Ŝe będziemy wykorzystywać relację UTC – UTC(PL)

oraz TAI – TA(PL), zapisane w plikach „utc-pl.txt ” oraz „tai-pl.txt ”, pobrane

ze strony BIPM’u. Pliki te zawierają relacje z częstotliwością co 5 dni. Wymusza

to konieczność interpolowania tych danych. Interpolacji moŜemy dokonać

wykorzystując programu „interpolacja.exe ”. Dane źródłowe dla tego programu

stanowią właśnie pliki: „utc-pl.txt ” oraz „tai-pl.txt ”, a wynikiem jego działania

są dwa pliki:

• „utc_inter.txt ” – interpolowane i skorygowane dane określające relacje

UTC – UTC(PL);

• „ tai_inter.txt ” – interpolowane dane określające relacje TAI – TA(PL) ;

W chwili, gdy wybraliśmy zegar roboczy CS5, naleŜy wyznaczyć róŜnice DIV(t)N

określone wzorem (3-15). PoniewaŜ dane z biuletynów GUM dają nam dostęp

do informacji o TA(PL)(t) – T(t)N, chcąc wyznaczyć róŜnice CS5 – T(t)N wykonujemy

następującą operacje, wzór (3-17).

[ ] [ ]5))(()())(()(5 CStPLTAtTtPLTAtTCS NN −−−=− (3-17)

W ten sposób otrzymujemy relację między zegarem roboczym CS5, a pozostałymi

wzorcami. Dalej korzystamy ze wzoru (3-16) wyznaczamy podstawową relacje między

zegarem CS5, a naszą skalą czasu TA(IET). Relacja ta stanowi punkt wyjścia

dla moŜliwości odniesienie skali TA(IET) do pozostałych skal czasu.

Odniesienie skali TA(IET) do UTC opisuje wzór (3-18).

[ ] [ ]))(()())(()())(()( tIETTAtTtPLUTCtUTCtIETTAtUTC ROBOCZY −+−=− (3-18) gdzie:

UTC(PL)(t) = TROBOCZY(t) = CS5(t);

Page 69: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

70

Aby wyrazić skalę TA(IET) względem TAI, wzór (3-21) musi najpierw znaleźć relację

TA(PL) - TA(IET), wzór (3-20) do wyznaczenia której potrzebujemy znać zaleŜność

UTC – TA(PL), wzór (3-19). W tym celu wykorzystujemy informacje zawarte

w plikach „utc-pl.txt ” oraz „tai-pl.txt ”.

[ ] [ ])(5))(())(()())(()( tCStPLTAtPLUTCtUTCtPLTAtUTC −−−=− (3-19)

[ ] [ ]))(()())(()())(())(( tPLTAtUTCtIETTAtUTCtIETTAtPLTA −−−=− (3-20)

[ ] [ ]))(())(())(()())(()( tIETTAtPLTAtPLTAtTAItIETTAtTAI −+−=− (3-21)

Wynikiem działania programu „skala_czasu.exe ” jest plik tekstowy o nazwie

„skala_czasu.txt ” będący jednocześnie kumulacją wyników ze wszystkich

poprzednich miesięcy. Format tego pliku został przedstawiony na rysunku (3.7).

Rok Miesiac MJD CS5-TA(IET) UTC-TA(IET) TA(PL)-TA(IET) TAI-TA(IET) 2002 1 52275 -327.6 -259.0 85.4 -278.2 2002 1 52276 -332.8 -263.6 87.2 -279.0 2002 1 52277 -337.1 -267.3 86.9 -281.9 2002 1 52278 -339.0 -268.6 84.0 -287.4

Rys. 3.7 Format pliku „skala_czasu.txt”.

3.4 Wyznaczanie niestałości skali czasu.

W chwili, gdy posiadamy wyznaczoną skalę czasu pozostaje sprawdzenie

jej jakość. Jednym z podstawowych wyznaczników jakości skali czasu

jest niestałość, którą moŜemy wyznaczyć korzystając z wariancji Allana. Pozwala

ona na wyznaczenie średniego odchylenia częstotliwości umoŜliwiającego zbadanie

długookresowej stabilności częstotliwości wirtualnego zegara realizującego skalę czasu

w dziedzinie czasu [11]. Niestałość skali czasu pozwala równieŜ na ocenę jakości

uŜytego algorytmu do jej wyznaczania, przez co moŜemy porównać róŜne algorytmy.

Badanie niestałości skali czasu dokonuje się w stosunku do skali czasu z załoŜenia

bardziej stabilnej. W przypadku skali czasu wyznaczanej w tej pracy punktem

odniesienia mogą być skale TAI, UTC oraz TA(PL).

3.4.1 Wariancja Allana.

Stałość sygnału moŜna ocenić na podstawie obserwacji częstotliwości chwilowej

ν(t) w czasie, bądź jej względnego odchylenia y(t), które są praktycznie niemierzalne.

Pomiar częstotliwości odbywa się w przedziałach o skończonej długości τ

rozpoczynających się w chwili tk i jest związany z tworzeniem wartości średniej

pomiaru. Miarą tą jest średnie względne odchylenie częstotliwości, wzór (3-22) [5].

Page 70: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

71

∫+

==τ

τ ττ

k

k

t

t

kk dttytyy )(1

)()( (3-22)

Niestałość częstotliwości sygnału moŜna określić wykonując wiele pomiarów wartości

)(τy według następujących warunków [5]:

• wykonywane jest M pomiarów wartości )(τy , k = 1, ..., M;

• kaŜda wartości )(τy jest mierzona w przedziale obserwacji τ rozpoczynającym się

w chwili tk;

• odstęp pomiędzy chwilami początkowymi ti wynosi T, czyli przerwa pomiędzy

przedziałami wynosi T - τ.

Zasada wykonywania pomiarów wartości względnego odchylenia częstotliwości

)(τy przedstawia rysunek (3.8) [5].

x(t)

tk

tk+4

tk+3

tk+2

tk+1 t

ky ( )τ k+2y ( )τ

k+1y ( )τ k+3

y ( )τ

τ

τ

τ

τ

T

Rys. 3.8 Zasada wykonywania pomiarów odchyleń )(τy przy ocenie niestałości sygnału.

Tym sposobem uzyskujemy M wartości względnego średniego odchylenia

częstotliwości. Na ich podstawie oblicza się estymatę M-punktowej wariancji,

wzór (3-23) [5].

∑ ∑= =

−=

M

i

M

jjiy y

My

MTM

1

2

1

2 1

1

1),,( τσ (3-23)

Jej szczególnym przypadkiem jest wariancja dwupunktowa (dla M = 2) bez martwego

czasu (T = τ), która została przyjęta za podstawowa miarę niestałości sygnałów,

wzór (3-24) [5].

∑ ∑= =

−=

2

1

22

1

2

2

1),,2(

i jjiy yyττσ (3-24)

Page 71: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

72

Zapis ten moŜna uprosci do postaci, wzór (3-25) [5].

( )2

12

2

1)( kky yy −= +τσ (3-25)

Określenie niestałości częstotliwości sygnału za pomocą wariancji Allana

jest porównaniem wartości względnego średniego odchylenia częstotliwości )(τy

dla dwóch sąsiednich przedziałów obserwacji o długości τ i uśrednianiu kwadratów

róŜnic tych odchyleń po nieskończonym czasie obserwacji. Wariancję Allana moŜna

przedstawić w zaleŜności od funkcji x(t), wzór (3-26) [5].

( )22 )()(2)2(2

1)( txtxtxy ++−+= τττσ (3-26)

Zasadę wyznaczania wariancji Allana na podstawie porównania średnich odchyleń

częstotliwości w dwóch sąsiednich przedziałach obserwacji przedstawia

rysunek (3.9) [5].

x(t)

tk

tk+4

tk+3

tk+2

tk+1 t

ky ( )τ k+2y ( )τ

k+1y ( )τ k+3y ( )τ

τ

τ

τ

τ

T

Rys. 3.9 Ocena niestałości sygnału na podstawie porównania średnich odchyleń częstotliwości

w sąsiednich przedziałach obserwacji.

W praktyce w celu wyznaczenia wartości wariancji/dewiacji Allana wykonuje się

skończoną liczbę N pomiarów odchyleń )(τy , a jej estymator opisuje wzór (3-27) [5].

( )∑−

=+ −

−=

nN

kkky yy

NN

2

1

2

12

)1(2

1),(τσ (3-27)

3.4.2 Programowa realizacja wyznaczania wariancji Allana.

Wyznaczaniem wariancji Allana zajmuje się program „niestalosc.exe ”, który

po uruchomieniu poprosi o podanie:

• pliku źródłowego „skala_czasu.txt ” zawierającego informacje o skali czasu

TA(IET) w odniesieniu do skal czasu UTC(PL), UTC, TA(PL) oraz TAI;

• numeru kolumny zawierającej informacje o rachubie dni w skali MJD;

• wymiaru potęgi dziesiętnej danych opisującej relacje skali TA(IET);

Page 72: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

73

Wynikiem działania programu jest plik tekstowy o nazwie „niestalosc.txt ”

zawierający wyznaczoną wariancje Allana dla skali czasu TA(IET) względem UTC,

TA(PL) oraz TAI. Format tego pliku przedstawia rysunek (3.10).

Tal Punkty War_Allana Niepewnosc 5 165 7.15e-015 1.88e-029 10 83 5.51e-015 1.89e-029 20 42 3.72e-015 1.42e-029 50 17 3.86e-015 9.52e-029 100 9 1.74e-015 2.44e-029

Rys. 3.10 Format pliku „niestalosc.txt”.

Fizyczny proces wyznaczenia wariancji Allana przedstawia się następująco[11]:

• wyznaczenie pierwszych róŜnic, wzór (3-28);

)()()( 1111 tTtTtT −+=∆ τ (3-28) • wyznacznie drugich róŜnic, wzór (3-29);

)()(2)2()( 11112 tTtTtTtT ++−+=∆ ττ (3-29) • wyznaczenie średniej unormowanej róŜnicy częstotliwości pomiędzy dwoma

sąsiednimi wskazaniami zegarów określone wzorem (3-30);

[ ]τ

ττ

τ )()()(

1),( 1 tT

tTtTty kkkk

∆=−+= (3-30)

• wyznaczenie wariancji Allena, wzór (3-31);

( )

21

22

2

2

)(1

)(τ

τσ∑

=

∆=

M

ii

y

tTM

(3-31)

gdzie:

M – całkowita liczba drugich róŜnic ∆2T(t);

ττττ - czas uśredniania – jedna doba, czyli 86400 sekund;

3.5 Wyniki.

Zaprezentowany w tej pracy algorytm wyznaczania skali czasu stanowi przykład

alternatywnej metody wyznaczania Polskiej Atomowej Skali Czasu TA(PL). Skala

czasu wygenerowana w oparciu o zaproponowany algorytm nosi umowną nazwę

TA(IET). Źródłem danych dla skali TA(IET) są informacje o TA(PL) zawarte

w comiesięcznych Informatorach SłuŜby Czasu publikowanych przez Główny Urząd

Miar w Warszawie oraz informacje zawarte na oficjalnej stronie internetowej

Międzynarodowego Biura Wag i Miar w Sevres. Ostateczny wynik skali TA(IET)

jest efektem wielu prób, których głównym celem było osiągnięcie skali czasu o jak

najlepszej stabilności. Wszelkie wyniki zawarte w tej pracy prezentują skalę TA(IET)

Page 73: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

74

z wagami IET względem trzech głównych skal czasu: UTC, TAI oraz TA(PL). Skupiają

się one wokół:

• zbadania skal czasu UTC(PL) oraz TA(PL);

• porównanie skali TA(IET) ze skalą TA(PL);

• wpływ wyboru wzorca roboczego na skalę TA(IET);

• poszukiwania najbardziej optymalnego sposobu wyznaczania wag dla zegarów;

• zbadania wpływu liczby zegarów uczestniczących w tworzeniu skali czasu;

• określenia jakości poszczególnych wzorów, które biorą udział w jej tworzeniu;

• predykcji skali czasu;

3.5.1 Charakterystyka skal UTC(PL) oraz TA(PL).

Informacje o skalach czasu UTC(PL) oraz TA(PL) zawarte na stronach BIPM’u

są bardzo uŜyteczne przy wyznaczaniu relacji między skalą TA(IET), a skalami: TAI,

UTC oraz TA(PL). Zaletą tych danych jest ich ciągła aktualizacja. W przypadku skali

TA(PL) jest ona odniesiona do skali TAI, co przedstawia rysunek (3.11) [26].

Rys. 3.11 Relacja TAI – TA(PL) za okres styczeń 2002 ÷÷÷÷ kwiecień 2004.

Dane o skali UTC(PL) są podawane względem skali UTC, rysunek (3.12) [26].

Rys. 3.12 Relacja UTC – UTC(PL) za okres styczeń 2002 ÷÷÷÷ kwiecień 2004 przed korektą. Relacja ta nie jest jednak ciągła, jak to było w przypadku TAI – TA(PL), co wymusza

konieczność dokonania korekty skoków biegu skali tak, aby zachować jej ciągłość.

Skorygowany obraz relacji UTC – UTC(PL) pokazuje rysunek (3.13).

Page 74: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

75

Rys. 3.13 Relacja UTC – UTC(PL) za okres styczeń 2002 ÷÷÷÷ kwiecień 2004 po korekcie. Niestałość skali czasu TA(PL) względem TAI oraz UTC(PL) względem skali UTC

przedstawia rysunek (3.14).

Tab. 3.14 Niestałość skali TA(PL) względem TAI oraz UTC(PL) względemUTC

za okres styczeń 2002 ÷÷÷÷ kwiecień 2004.

3.5.2 Porównanie skali czasu TA(IET) z TA(PL).

Polska Atomowa Skala Czasu TA(PL) jako oficjalna skala czasu stanowi pewien

punkt odniesienia dla skali TA(IET) wyznaczanej w tej pracy. Komparacja obu skal

między sobą pozwala ocenić jakość skali TA(IET) względem TA(PL). Na rysunku

(3.15) znajduje się porównanie biegu skal czasu TA(PL) oraz TA(IET) w odniesieniu

do skali TAI.

Rys. 3.15 Bieg skal czasu TA(PL) oraz TA(IET) względem TAI

za okres styczeń 2002 ÷÷÷÷ marzec 2004.

Page 75: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

76

Porównanie niestałości skal TA(PL) i TA(IET) względem TAI przedstawia

rysunek (3.16).

Rys. 3.16 Nietsałość skal czasu TA(PL) oraz TA(IET) względem TAI

za okres styczeń 2002 ÷÷÷÷ marzec 2004.

3.5.3 Wpływ wyboru wzorca roboczego na skalę TA(IET).

Do tej pory wybór wzorca roboczego był ograniczony do wyboru z grupy zegarów

tworzących Polską Atomową Skalę Czasu TA(PL). Dodatkowo wybór ten został

zawęŜony do dwóch zegarów CS5 oraz AOS stanowiących realizację polskiego czasu

UTC. Wybranie jednego z tych dwóch wzorców umoŜliwia odniesienie wyznaczonej

skali czasu TA(IET) względem skal UTC, TA(PL) oraz TAI. Jest to moŜliwe dzięki

dostępność danych o relacji biegu tych zegarów względem skali UTC [26].

W tej chwili zostanie zbadany przypadek, w którym rolę wzorca roboczego będzie

pełnił zewnętrzny zegar wirtualny pod postacią skali TAI. Przy takim załoŜeniu w celu

odniesienia skali TA(IET) względem skal TAI, TA(PL) oraz UTC naleŜy wykonać

przekształcenia opisane wzorami (3-32), (3-34), (3-35).

[ ]∑=

+⋅=−N

iii AwtDIVtIETTAtTAI

1

)())(()( (3-32)

gdzie:

[ ] [ ]iii tTPLTAPLTAtTAItTtTAItDIV )()()()()()()( −+−=−= (3-33) A – parametr korygujący skalę czasu;

T(t) i – wskazanie i-tego zegara;

[ ] [ ]))(()())(()())(())(( tPLTAtTAItIETTAtTAItIETTAtPLTA −−−=− (3-34)

[ ] [ ]))(())(())(()())(()( tIETTAtPLTAtPLTAtUTCtIETTAtUTC −+−=− (3-45)

Page 76: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

77

Porównanie biegu skali TA(IET) względem skal UTC, TA(PL) oraz TAI dla sytuacji,

w której rolę wzorca roboczego pełni zegar CS5 i skala TAI przedstawiają rysunki:

(3.17), (3.18), (3.19).

Rys. 3.17 Relacja UTC – TA(IET) za okres styczeń 2002 ÷÷÷÷ marzec 2004.

Rys. 3.18 Relacja TA(PL) – TA(IET) za okres styczeń 2002 ÷÷÷÷ marzec 2004.

Rys. 3.19 Relacja TAI – TA(IET) za okres styczeń 2002 ÷÷÷÷ marzec 2004.

Page 77: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

78

Niestałość skali czasu TA(IET) względem UTC, TA(PL) oraz TAI została

zaprezentowana na rysunkach: (3.20), (3.21), (3.22).

Rys. 3.20 Niestałość skali TA(IET) względem UTC za okres styczeń 2002 ÷÷÷÷ marzec 2004.

Rys. 3.21 Niestałość skali TA(IET) względem UTC(PL) za okres styczeń 2002 ÷÷÷÷ marzec 2004.

Rys. 3.22 Niestałość skali TA(IET) względem UTC(PL) za okres styczeń 2002 ÷÷÷÷ marzec 2004.

3.5.4 RóŜne metody wyznaczania wag.

Jak juŜ wspomniano w paragrafie (3.2), proces wyznaczania wagi stanowi jeden

z kluczowych fragmentów całego algorytmu. W znaczącym stopniu sposób

Page 78: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

79

ich wyznaczania wpływa na stabilność skali czasu. W tej części przedstawię wyniki

dla czterech róŜnych metod wyznaczania wag zegarów:

• Wagi równe – jest to najprostszy sposób wyznaczania wag. W tym przypadku

wartości wag dla kaŜdego zegara są odwrotnie proporcjonalne do liczby uŜytych

zegarów w danym miesiącu. Nie moŜna tutaj mówić o promowaniu lepszych

zegarów kosztem gorszych, poniewaŜ wagi dla wszystkich są one jednakowe.

• Wagi GUM – wartości wag określające jakość poszczególnych zegarów zostały

zaczerpnięte z biuletynów GUM. Wartości te są przewaŜnie równe dla wszystkich

zegarów z wyłączeniem tych, których bieg w danym miesiącu był nieprawidłowy;

• Wagi IET – jest to propozycja wyznaczenia wag na podstawie odchylenia

standardowego. Sposób ten został szczegółowo opisany w paragrafie (3.2).

• Średnia wag – ten sposób wyznaczania wag równieŜ wykorzystuje odchylenia

standardowe wyznaczone przy pomocy metody najmniejszych kwadratów MNK.

Na podstawie tych odchyleń zgodnie ze wzorem (3-4) są wyznaczane wagi dla

danego miesiąca. Jednak ostateczna wartość wagi stanowi uśredniona wartość

wcześniej wyznaczonych wag tym sposobem.

Oczywiście te cztery sposoby nie wyczerpują wszystkich moŜliwości. RóŜnice

wynikające z zastosowania róŜnych metod wyznaczania wag dla zegarów widać

w chwili, gdy zaobserwujemy bieg skali czasu TA(IET). Został on przedstawiony

względem skal UTC, TA(PL) oraz TAI na rysunkach: (3.23), (3.24), (3.25).

Rys. 3.23 Relacja UTC – TA(IET) za okres styczeń 2002 ÷÷÷÷ marzec 2004 dla róŜnych metod wyznaczania wag.

Page 79: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

80

Rys. 3.24 Relacja TA(PL) – TA(IET) za okres styczeń 2002 ÷÷÷÷ marzec 2004 dla róŜnych metod wyznaczania wag.

Rys. 3.25 Relacja TAI – TA(IET) za okres styczeń 2002 ÷÷÷÷ marzec 2004 dla róŜnych metod wyznaczania wag.

Niestałość skali czasu TA(IET) względem UTC, TA(PL) oraz TAI została

zaprezentowana na rysunkach: (3.26), (3.27), (3.28). Pominięto na nich przypadek

dla wag równych, ze względu na bardzo niską stabilność skali TA(IET)

dla tego przypadku znacznie odbiegającą od pozostałych wariantów.

Rys. 3.26 Niestałość skali TA(IET) względem UTC za okres styczeń 2002 ÷÷÷÷ marzec 2004 dla róŜnych metod wyznaczania wag.

Page 80: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

81

Rys. 3.27 Niestałość skali TA(IET) względem UTC(PL) za okres styczeń 2002 ÷÷÷÷ marzec 2004 dla róŜnych metod wyznaczania wag.

Rys. 3.28 Niestałość skali TA(IET) względem UTC(PL) za okres styczeń 2002 ÷÷÷÷ marzec 2004 dla róŜnych metod wyznaczania wag.

3.5.5 Wpływ liczby zegarów na parametry skali czasu.

Liczba zegarów biorąca udział w tworzeniu skali czasu powinna wpływać

na jej parametry Wraz ze wzrostem liczby wzorców stabilność skali czasu powinna się

poprawiać. W celu sprawdzenia tej hipotezy przeprowadzono badania skali TA(IET)

dla liczby wzorców ją tworzący równej: 2, 3, 4, 5 oraz wszystkich moŜliwych

pracujących w danym miesiącu zegarów z wagami IET.

Konfiguracje skali czasu względem wzorców, które ja tworzą przedstawia tabela (3.2).

Lp. Liczba wzorców tworz ących skal ę czasu TA(IET)

Uczestnicz ące wzorce

1. 2 CS5, CS2

2. 3 CS5, CS2, AOS

3. 4 CS5, CS2, AOS, CBR

4. 5 CS5, CS2, AOS, CBR, LIT

Tab. 3.2 Konfiguracje skali czasu TA(IET) względem liczby wzorców ją tworzących.

Na rysunkach (3.29), (3.30), (3.31) przedstawiono bieg skali TA(IET) dla róŜnej liczby

zegarów ją tworzacych względem skal: UTC, TA(PL) oraz TAI

Page 81: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

82

Rys. 3.29 Bieg skali TA(IET) względem UTC za okres styczeń 2002 ÷÷÷÷ marzec 2004 dla róŜnej liczby zegarów.

Rys. 3.30 Bieg skali TA(IET) względem TA(PL) za okres styczeń 2002 ÷÷÷÷ marzec 2004 dla róŜnej liczby zegarów.

Rys. 3.31 Bieg skali TA(IET) względem TAI za okres styczeń 2002 ÷÷÷÷ marzec 2004 dla róŜnej liczby zegarów.

Page 82: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

83

Niestałość skali czasu TA(IET) względem czterech skal odniesienia dla róŜnej liczby

zegarów ja tworzących przedstawiają rysunki: (3.32), (3.33), (3.34).

Rys. 3.32 Niestałość skali TA(IET) względem UTC za okres styczeń 2002 ÷÷÷÷ marzec 2004 dla róŜnej liczby zegarów.

Rys. 3.33 Niestałość skali TA(IET) względem TA(PL) za okres styczeń 2002 ÷÷÷÷ marzec 2004 dla róŜnej liczby zegarów.

Rys. 3.34 Niestałość skali TA(IET) względem TAI za okres styczeń 2002 ÷÷÷÷ marzec 2004 dla róŜnej liczby zegarów.

Page 83: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

84

3.5.6 Jakość zegarów biorących udział w tworzeniu TA(IET).

Jakość zegarów uczestniczących w generowaniu skali czasu wpływa równieŜ

w pewnym stopniu na samą skalę czasu. Wpływ ten jest minimalizowany

przez sam algorytm tworzenia skali, który jest tak zaprojektowany, aby promował

zegary lepsze kosztem gorszych. Warto jednak wiedzieć czego moŜemy się spodziewać

po wzorcach pracujących na rzecz naszej skali czasu, a w tym przypadku

skali TA(IET).

W celu zróŜnicowania jakości zegarów zostanie przedstawiona w tabeli (3.3) zawartość

dwóch plików „sigma.txt ” oraz „wagi.txt ” – opisanych w paragrafie (3.2.2).

Dodatkowo porównamy ostateczną ocenę zegarów w oparciu o przypisane im wagi

przez GUM oraz wagi wyznaczone w tej pracy – IET, tabela (3.4).

Page 84: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

85

Odchylenie standardowe σσσσ w [ns] Wagi IET w [%] Rok Miesi ąc

CS5 CS2 CS3 AOS CBR IŁ2 LIT ITR IŁ3 CBR2 SOM CS5 CS 2 CS3 AOS CBR IŁ2 LIT ITR IŁ3 CBR2 SOM

1 3.4 5.2 28.3 8.5 5.1 12.7 5.5 - - - - 26.7 17.5 3.2 10.8 17.9 7.2 16.6 - - - -

2 5.6 3.2 4.4 1.7 6 23.5 6.8 5.6 - - - 9.6 16.9 12.4 32.2 9 2.3 7.9 9.7 - - -

3 3.1 1.7 2.8 2.6 7 49.2 6.7 9.9 - - - 15.8 27.9 17.5 18.7 7 1 7.2 4.9 - - -

4 3.1 1.6 3.8 3.7 8.1 193.1 7.2 7.8 2.6 - - 14.3 27.2 11.6 11.9 5.5 0.2 6.1 5.7 17.4 - -

5 4.5 5.4 2.3 3.7 9.1 - 6.5 6.6 4.4 - - 12.5 10.6 24.9 15.5 6.2 - 8.8 8.6 13 - -

6 7.7 6.4 7.3 2.8 9.1 - 11 5.3 4.7 - - 9.4 11.3 10 25.8 7.9 - 6.6 13.7 15.3 - -

7 3.5 2.2 3.9 3.9 5.6 - 8.5 3.6 3.1 - - 13.3 21.2 11.9 11.8 8.2 - 5.5 13 15.1 - -

8 3.2 3.1 1.9 2.9 6.4 - 6.9 5.2 3 - - 13.5 13.6 22.6 14.9 6.7 - 6.2 8.2 14.3 - -

9 2 2.7 4.3 2.9 5.6 - 6.7 5.2 2.8 - - 21.5 15.9 10 14.8 7.7 - 6.4 8.2 15.5 - -

10 2.8 3.2 - 7.9 8.2 - 10.9 993.7 4.1 - - 28.7 24.8 - 10.1 9.7 - 7.3 0.1 19.3 - -

11 3.2 3.6 - 1.9 5.2 - 11.4 - 1.9 - - 16.3 14.4 - 27.2 9.9 - 4.5 - 27.6 - -

2002

12 3.1 2.4 - 4.7 10.2 - 8.2 - 5.1 - - 23.8 30 - 15.6 7.2 - 8.9 - 14.4 - -

1 5.7 2.5 - 2.5 5 - 4.2 - 2.2 - - 9.5 21.3 - 21.2 10.8 - 12.9 - 24.3 - -

2 2.4 3.9 - 2.6 10.8 - 5.3 - 3.3 - - 25.2 15.7 - 23.5 5.7 - 11.7 - 18.3 - -

3 3.8 3.8 - 4.2 6.8 - 4 - 2.9 - - 17.6 17.6 - 15.8 9.8 - 16.6 - 22.7 - -

4 8.6 2.7 - 2 6.2 - 5.5 - 2.1 - - 6.5 20.4 - 27.5 8.9 - 10 - 26.7 - -

5 4 2.2 - 3 4 - 7.2 - 2.3 - - 13.4 24.6 - 17.9 13.4 - 7.4 - 23.4 - -

6 2.9 2.9 - 4.4 7 - 5.7 - 2 2.5 - 16 16.3 - 10.8 6.7 - 8.2 - 23.1 18.8 -

7 2.9 3.1 - 5 10.8 - 8.8 - 4.3 1.5 - 17.7 16.2 - 10.1 4.7 - 5.8 - 11.7 33.8 -

8 3.1 2.3 2 3.8 11 - 6.4 - 2.7 3 - 13.1 17.2 20.5 10.5 3.7 - 6.3 - 15.2 13.4 -

9 3.1 2.3 2.7 3.6 6.1 - 3.9 - 3.8 1.4 - 11.6 15.6 13.3 10.1 5.9 - 9.2 - 9.4 24.9 -

10 2.8 2.5 3.6 5.3 13.1 - 5.8 - 3 1.9 - 15.2 17.1 12 8.1 3.3 - 7.4 - 14.1 22.7 -

11 4.6 3.1 2.8 3.5 9.1 - 5.6 - 3.7 3.1 11 10 14.8 16.8 13.3 5.1 - 8.3 - 12.6 14.9 4.2

2003

12 2.3 2.5 2 5.2 5.6 - 7.5 - 3.1 1.9 5.9 15.6 14 17.2 6.7 6.3 - 4.7 - 11.5 18.1 5.9

1 2.2 2.6 3.3 4.1 12.8 - 6.5 - 2.5 2.4 10.8 18 15.3 12 9.5 3.1 - 6.1 - 16.1 16.2 3.7

2 2.4 3.3 2.2 2.5 6.7 - 6.3 - 2.8 2.8 1.4 12.5 9.2 13.8 11.9 4.5 - 4.8 - 10.9 10.8 21.5 2004

3 3.1 3.4 8.9 3 9.2 - 6.8 - 2.1 1.6 6.5 12.6 11.6 4.4 12.9 4.2 - 5.8 - 18.1 24.4 6

Średnia sigm/wag: 3.7 3.1 3.2 3.7 7.8 10.3 6.9 38.6 2.7 0.8 1.3 15.5 17.7 8.6 15.5 7.3 0.4 8.1 2.6 15.1 7.3 1.5

Tab. 3.3 Odchylania standardowe σσσσ oraz wyznaczone na ich podstawie wagi.

Page 85: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

86

Wagi IET Wagi GUM Rok Miesi ąc

CS5 CS2 CS3 AOS CBR IŁ2 LIT ITR IŁ3 CBR2 SOM CS5 CS 2 CS3 AOS CBR IŁ2 LIT IŁ3 ITR CBR2 SOM

1 26.7 17.5 3.2 10.8 17.9 7.2 16.6 - - - - 19.914 0 19.914 19.914 19.914 0.428 19.914 - - - -

2 9.6 16.9 12.4 32.2 9 2.3 7.9 9.7 - - - 16.595 16.595 16.595 16.595 16.595 0.428 16.595 - 0 - -

3 15.8 27.9 17.5 18.7 7 1 7.2 4.9 - - - 16.667 16.667 16.667 16.667 16.667 0 16.667 - 0 - -

4 14.3 27.2 11.6 11.9 5.5 0.2 6.1 5.7 17.4 - - 14.286 14.286 14.286 14.286 14.286 0 14.286 0 14.286 - -

5 12.5 10.6 24.9 15.5 6.2 - 8.8 8.6 13 - - 14.286 14.286 14.286 14.286 14.286 - 14.286 0 14.286 - -

6 9.4 11.3 10 25.8 7.9 - 6.6 13.7 15.3 - - 14.286 14.286 14.286 14.286 14.286 - 14.286 0 14.286 - -

7 13.3 21.2 11.9 11.8 8.2 - 5.5 13 15.1 - - 14.286 14.286 14.286 14.286 14.286 - 14.286 0 14.286 - -

8 13.5 13.6 22.6 14.9 6.7 - 6.2 8.2 14.3 - - 14.286 14.286 14.286 14.286 14.286 - 14.286 0 14.286 - -

9 21.5 15.9 10 14.8 7.7 - 6.4 8.2 15.5 - - 12.5 12.5 12.500 12.500 12.5 - 12.5 12.5 12.5 - -

10 28.7 24.8 - 10.1 9.7 - 7.3 0.1 19.3 - - 16.692 16.692 - 16.692 16.692 - 16.54 16.692 0 - -

11 16.3 14.4 - 27.2 9.9 - 4.5 - 27.6 - - 16.667 16.667 - 16.667 16.667 - 16.667 16.667 - - -

2002

12 23.8 30 - 15.6 7.2 - 8.9 - 14.4 - - 16.667 16.667 - 16.667 16.667 - 16.667 16.667 - - -

1 9.5 21.3 - 21.2 10.8 - 12.9 - 24.3 - - 16.667 16.667 - 16.667 16.667 - 16.667 16.667 - - -

2 25.2 15.7 - 23.5 5.7 - 11.7 - 18.3 - - 16.667 16.667 - 16.667 16.667 - 16.667 16.667 - - -

3 17.6 17.6 - 15.8 9.8 - 16.6 - 22.7 - - 16.667 16.667 - 16.667 16.667 - 16.667 16.667 - - -

4 6.5 20.4 - 27.5 8.9 - 10 - 26.7 - - 16.667 16.667 - 16.667 16.667 - 16.667 16.667 - - -

5 13.4 24.6 - 17.9 13.4 - 7.4 - 23.4 - - 16.667 16.667 - 16.667 16.667 - 16.667 16.667 - - -

6 16 16.3 - 10.8 6.7 - 8.2 - 23.1 18.8 - 16.667 16.667 - 16.667 16.667 - 16.667 16.667 - - -

7 17.7 16.2 - 10.1 4.7 - 5.8 - 11.7 33.8 - 14.286 14.286 - 14.286 14.286 - 14.286 14.286 - 14.286 -

8 13.1 17.2 20.5 10.5 3.7 - 6.3 - 15.2 13.4 - 14.286 14.286 12.5 14.286 14.286 - 14.286 14.286 - 14.286 -

9 11.6 15.6 13.3 10.1 5.9 - 9.2 - 9.4 24.9 - 12.5 12.5 12.5 12.5 12.5 - 12.5 12.5 - 12.5 -

10 15.2 17.1 12 8.1 3.3 - 7.4 - 14.1 22.7 - 12.5 12.5 12.5 12.5 12.5 - 12.5 12.5 - 12.5 -

11 10 14.8 16.8 13.3 5.1 - 8.3 - 12.6 14.9 4.2 12.5 12.5 12.5 12.5 12.5 - 12.5 12.5 - 12.5 0

2003

12 15.6 14 17.2 6.7 6.3 - 4.7 - 11.5 18.1 5.9 12.5 12.5 12.5 12.5 12.5 - 12.5 12.5 - 12.5 0

1 18 15.3 12 9.5 3.1 - 6.1 - 16.1 16.2 3.7 11.111 11.111 11.111 11.111 11.111 - 11.111 11.111 - 11.111 11.111

2 12.5 9.2 13.8 11.9 4.5 - 4.8 - 10.9 10.8 21.5 11.111 11.111 11.111 11.111 11.111 - 11.111 11.111 - 11.111 11.111 2004

3 12.6 11.6 4.4 12.9 4.2 - 5.8 - 18.1 24.4 6 11.111 11.111 11.111 11.111 11.111 - 11.111 11.111 - 11.111 11.111

Średnia wag: 15.5 17.7 8.6 15.5 7.3 0.4 8.1 2.6 15.1 7.3 1.5 14.7 14.1 13.7 14.8 14.8 0.2 11.4 9.3 14.8 12.4 6.7

Tab. 3.4 Wagi wyznaczone przez GUM oraz wagi IET.

Page 86: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

87

Na rysunku (3.35) zamieszczono wykres przedstawiający porównanie średnich wartości

wag GUM oraz IET w skali 27 miesięcy trwania skali TA(IET) dla poszczególnych

zegarów.

Rys. 3.35 Średnie wartości wag GUM i IET dla zegarów za okres styczeń 2002 ÷÷÷÷ marzec 2004.

3.5.7 Predykcja skali czasu.

Ze względu na fakt pojawiania się informacji o Polskiej Atomowej Skali Czasu

TA(PL) w postaci Informatora SłuŜby Czasu publikowanego przez Główny Urząd Miar

w Warszawie z miesięcznym opóźnieniem w stosunku do czasu rzeczywistego warto

zastanowić się nad moŜliwością przewidywania biegu skali czasu. Zabieg taki pozwala

na przewidzenie relacji biegu naszej skali czasu w stosunku do skali TAI. Znając

tą relacje mamy moŜliwość przewidzenia biegu dowolnego wzorca atomowego

względem dowolnej skali czasu. Wystarczy jedynie w odpowiedni sposób posłuŜyć się

dostępnymi relacjami skal czasu, które są dostępne na stronie internetowej BIPM’u

[26]. Przykład operowania relacjami między skalami czasu został opisany

w paragrafie (3.3.1).

Predykcji najprościej dokonać wykorzystując opisaną w paragrafie (3.2.1) metodę

najmniejszych kwadratów (MNK). Przy jej pomocy moŜna wyznaczyć parametry a i b

równania liniowego y = ax + b opisującego przybliŜony bieg wyznaczonej skali czasu

i określić na jego podstawi przewidywany bieg skali na bieŜący miesiąc.

W pracy tej zbadano predykcję skali czasu TA(IET) względem TAI na podstawie

danych opisujących relację TAI – TA(IET) za okres: 1, 2, 3, 4, 5, 6 ostatnich

wyznaczonych miesięcy.

Wyniki uśrednionych wartości bezwzględnych błędów predykcji za okres 27 zbadanych

miesięcy dla wszystkich trzech przypadków zostały przedstawione w tabeli (3.5).

Page 87: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

88

Średnia warto ść bezwzgl ędnego bł ędu predykcji [ns]

Predykcja wyznaczana na podstawie: Rok Miesi ąc

1 miesi ąca 2 miesi ęcy 3 miesi ęcy 4 miesi ęcy 5 miesi ęcy 6 miesi ęcy

1 - - - - - - 2 5.49 - - - - - 3 22.53 14.65 - - - - 4 9.68 4.79 11.24 - - - 5 15.04 27.60 24.25 24.61 - - 6 8.36 4.65 20.45 28.65 29.24 - 7 2.24 12.73 10.84 18.06 20.93 23.02 8 6.17 2.62 6.15 18.32 17.95 19.69 9 15.31 13.26 9.83 16.46 18.81 14.69 10 7.40 15.56 22.15 23.67 29.72 34.57 11 14.50 11.14 5.74 17.83 19.46 23.52

2002

12 23.99 8.63 5.27 6.57 10.75 16.53

1 17.61 4.87 5.56 16.15 16.34 17.39 2 18.32 5.73 6.19 8.53 7.23 9.23 3 12.27 9.26 8.72 15.84 18.04 17.94 4 17.92 2.57 6.46 9.12 11.88 16.89 5 7.96 5.75 5.86 14.25 14.74 15.75 6 17.57 5.32 5.21 4.85 3.38 3.70 7 7.73 15.41 12.69 12.20 10.79 12.46 8 6.08 10.43 2.24 9.69 10.00 10.07 9 8.65 3.21 4.00 4.73 5.32 6.55 10 2.76 6.27 7.17 7.61 9.04 10.38 11 1.95 5.34 2.43 8.53 8.31 8.83

2003

12 6.65 5.89 10.10 7.89 5.88 6.86

1 8.38 9.10 8.39 9.80 9.64 9.78

2 19.35 7.94 14.28 16.58 14.71 14.45 2004

3 9.94 7.21 9.82 18.92 23.34 24.03

Błąd średni: 11.27 8.84 9.39 13.89 14.38 15.12

Błąd maksymalny: 46.70 46.60 42.20 61.50 51.40 51.50

Warto ści bezwzgl ędnego bł ędu predykcji wzgl ędem całego okresu trwania skali czasu: stycze ń 2002 ÷÷÷÷ marzec 2004

Błąd średni: 11.30 8.80 9.38 13.86 14.34 15.06

Błąd minimalny: 1.95 2.57 2.24 4.73 3.38 3.70

Błąd maksymalny: 23.99 27.60 24.25 28.65 29.72 34.57

Tab. 3.5 Błąd predykcji w okresie styczeń 2002 ÷÷÷÷ marzec 2004.

3.5.8 Omówienie wyników.

• Charakterystyka skal UTC(PL) oraz TA(PL):

- Ze względu na zupełnie odmienny charakter skal czasu UTC(PL) oraz TA(PL)

trudno jest je porównywać między sobą. Do czynników, które je łączą moŜemy

zaliczyć ich atomowy charakter oraz oficjalny statut obu skal czasu.

- Skala UTC(PL) jest realizowana przez zegar CS5 i podobnie jak skala UTC(AOS)

tworzona przez zegar AOS stanowi niezaleŜną realizację polskiego czasu UTC.

Page 88: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

89

- Skala UTC(PL) podlega regulacji, która ma na celu maksymalne dopasowanie

jej biegu do biegu międzynarodowego czasu UTC.

- Bieg skali UTC(PL) jest bardziej zbliŜony do biegu skali UTC, jak to ma miejsce

w przypadku biegu skali TA(PL) względem TAI.

- Skala TA(PL) jest tworzona przez zespół zegarów, a jej bieg określa specjalny

algorytm maksymalizujący jej stabilność.

- Stabilność skali TA(PL) względem TAI oraz UTC(PL) względem UTC

jest na podobnym poziomie.

• Porównanie skali czasu TA(IET) z TA(PL):

- Bieg skali czasu TA(IET) jest bliŜszy biegowi skali TAI jak bieg skali TA(PL).

- Bieg skali czasu TA(IET) ma tendencje do zachowania równoległości w stosunku

do TAI, co w przypadku skali TA(PL) nie ma miejsca.

- Niestałości skal czasu TA(PL) i TA(IET) względem TAI są na zbliŜonym

poziomie. W przypadku stabilności krótkookresowej lepiej wypada skala TA(PL),

a dla długookresowej lepszą jest skala TA(IET).

• Wpływ wyboru wzorca roboczego na skalę TA(IET):

- Bieg skali czasu TA(IET) względem skal UTC, TA(PL) oraz TAI praktycznie się

pokrywa dla obu koncepcji wyboru wzorca roboczego.

- Stabilność skali czasu TA(IET) w odniesieniu do skal UTC, TA(PL) oraz TAI

jest wyŜsza w przypadku pełnienia roli wzorca roboczego przez zegar CS5.

• RóŜne metody wyznaczania wag, a skala czasu:

- Sposób wyznaczania wag ma decydujący wpływ na parametry skali czasu.

- Sposób polegający na przypisaniu wszystkim zegarom jednakowych wag

w znaczący sposób odbiegał pod względem zbadanej stabilności skali TA(IET)

względem UTC, TA(PL), TAI od trzech pozostałych sposobów.

- Stabilność skali TA(IET) wyznaczona względem skal: UTC(PL), UTC, TA(PL),

TAI osiąga najlepsze wyniki dla wag wyznaczonych przez GUM. Minimalnie

słabsze wyniki osiągnął sposób wyznaczania wag IET zaprezentowany

w paragrafie (3.2). Jeśli chodzi o sposób polegający na wyznaczaniu średnich wag

to jest on gorszy od obu poprzednich, ale i tak znacznie lepszy od sposobu

z równymi wagami.

Page 89: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

90

- Sposób wyznaczania wag IET zaproponowany w paragrafie (3.2) pozwolił

na zróŜnicowanie zegarów w większym stopniu jak miało to miejsce w przypadku

wag GUM.

• Wpływ liczby zegarów na parametry skali czasu:

- Postawiona hipoteza o polepszaniu się parametrów skali czasu przy zwiększaniu

liczby wzorców atomowych uczestniczących w jej tworzeniu nie znalazła

definitywnego potwierdzenia w osiągniętych wynikach. Sprawdziła się

ona jedynie w przypadku odniesienia skali TA(IET) względem TAI.

- Stabilność skali TA(IET) względem UTC(PL) oraz UTC osiągnęła najlepszy

wynik w chwili, gdy tworzyły ją dwa wzorce CS5 oraz CS2.

- Skali czasu zbudowna w oparciu o 4 zegary (CS5, CS2, AOS, CBR)

oraz 5 zegarów (CS5, CS2, AOS, CBR, LIT) osiągnęła praktycznie identyczny

poziom niestałości w odniesieniu do wszystkich czterech skal odniesienia.

- Stabilność skali czasu TA(IET) zbudowanej z 3 statystycznie najlepszych

wzorców (CS5, CS2, AOS) jedynie w odniesieniu do skali TA(PL) nie osiągnęła

najgorszego wyniku.

• Jakość zegarów biorących udział w tworzeniu TA(IET):

- Jakość zegarów uczestniczących w tworzeniu skali TA(PL) oraz TA(IET)

jest róŜna pomimo faktu, iŜ są to w znacznej mierze te same modela zegara

HP5071A OPT. 001.

- Statystycznie rzecz biorąc najlepszym wzorcem okazał się zegar CS2. Drugie

miejsce z jednakowym wynikiem zajęły zegary CS5 oraz AOS. Kolejne miejsca

zajęły odpowiednio wzorce: IŁ3, CS3, CBR, CBR2, ITR, SOM, IŁ2.

- Wartości wag IET róŜnią się od wartości wag GUM, jednak w przewaŜającej

liczbie przypadków gradacja zegarów wygląda podobnie.

• Predykcja skali czasu:

- Wyniki przedstawiające predykcje skali czasu TA(IET) względem TAI wykazały,

Ŝe najlepiej przewidywać bieg skali TA(IET) względem TAI na podstawie danych

TAI – TA(IET) za dwa ostatnie miesiące.

- Najgorsze wyniki osiągnęła predykcja skali TA(IET) względem TAI w oparciu

o dane za ostatni wyznaczony miesiąc.

Page 90: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

91

4. Wnioski.

• Skala czasu TA(IET) wyznaczona na podstawie zaproponowanego algorytmu

osiągnęła bardzo dobre wyniki porównywalne do osiąganych przez skalę TA(PL).

• Stabilność długookresowa skali TA(IET) osiągnęła nawet lepszy wynik od skali

TA(PL) w odniesieniu dla TAI.

• Wyznaczanie skali czasu TA(IET) w konfiguracji, gdy rolę zegara roboczego pełni

wirtualny zegar w postaci skali TAI nie spowodowało poprawy jej parametrów

wzglę

Page 91: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

92

5. Podsumowanie.

Głównym celem niniejszej pracy stanowiło stworzenie algorytmu wyznaczania

skali czasu.

Page 92: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

93

5. Literatura.

[1] 5071A Primary Frequency Standard Product Overview, Agilent Technologies [2] Arias Felicitas, BIPM, Considerations for International Timekeeping,

ITU-R SRG Colloquium on the UTC Time Scale Torino (Italy), 28-29 May 2003 [3] Azoubib J., Nawrocki J., Lewandowski W., Independent atomic time in Poland –

organization and results, Metrologia, 4 September 2002; [4] Bergquist James, Jefferrst Steven, Wineland David, Time Measuremet at the Millennium,

Physics Today, March 2001 [5] Dobrogowski A., Sygnały czasu, WPP, Poznań 2003 [6] GPS and Precision Timing Applications, Application Note 1272, Materiały firmy Hawlett

Packard [7] Hanson D. W., Fundamentals, of Two-Way Time Transfer by Satellite, 43rd Annual

Symposium on Frecuency Control – 1989; [8] Holliday David, Resnick Robert, Fizyka 2, PWN, Warszawa 1998 [9] Informatory SłuŜby Czasu, Główny Urząd Miar w Warszawie [10] Itano Wayne, Ramsey Norman, Accerete Measurement of Time, Scientific America July

1993 [11] Kartaschoff P., Częstotliwość i czas, WKŁ, Warszawa 1985 [12] Kazimierz M. Borkowski, Postępy Astronomii,

http://www.astro.uni.torun.pl/~kb/Artykuly/U-PA/Czas1.htm http://www.astro.uni.torun.pl/~kb/Artykuly/U-PA/Czas2.htm http://www.astro.uni.torun.pl/~kb/Artykuly/U-PA/Czas3.htm 16 marca 2004

[13] Lewandowski Włodzimierz, Azoubib Jacques, Klepczyński William, GPS: Primary Tools for Time Transfer, Proceedings of the IEEE, vol. 87, No. 1 Jenuary 1999

[14] Lewandowski Włodzimierz, Najnowsze postępy w dokładnym pomiarze czasu [15] Lombardi Michael, Nelson Lisa, Novick Andrew, Zhang Victor, Time and Frecuency

Measurements Using the Global Positining System, The International Jurnal of Metrology, July, August, September 2001

[16] Łoniewski Dominik, Skonieczny Wojciech, Stachnik Andrzej, Wzorcowe sygnały czasu i częstotliwości, Telekomunikacja i techniki informacyjne, 3-4/2002

[17] Marais E. L., The Development of Multi-Channel GPS Time Receivers, Tiem & Frecuency, CSIR – National Metrology Laboratory, 20 April 2000

[18] Nawrocki Jerzy, Recent Activities in the Field of Time and Frequency in Poland, 34th Annual Precise Time and Time Interval (PTTI) Meeting, 3-5 December 2002, Reston, Virginia, USA

[19] Niepublikowane materiały Instytutu Elektroniki i Telekomunikacji dostarczone przez dr inŜ. Krzysztofa Lange

[20] Oficjalna strona internetowa International Earth Rotation and Reference Systems Service http://hpiers.obspm.fr/eop-pc/earthor/utc/leapsecond.html z dnia 16.04.2004

[21] Oficjalna strona internetowa BIPM, http://www1.bipm.org/en/scientific/tai/time_server.html 16 marca 2004

[22] Oficjalna strona internetowa BIPM, http://www1.bipm.org/en/scientific/tai/ 16 marca 2004

[23] Oficjalna strona internetowa BIPM, ftp://62.161.69.5/pub/tai/publication/leaptab.txt 16 marca 2004

[24] Oficjalna strona internetowa BIPM, ftp://62.161.69.5/pub/tai/publication/acronyms.pdf 16 marca 2004

[25] Oficjalna strona internetowa BIPM, http://www1.bipm.org/en/scientific/tai/tai.html 16 marca 2004

Page 93: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

94

[26] Oficjalna strona internetowa BIPM, http://www.bipm.org/en/scientific/tai/time_ftp.html z dnia 03.05.2004

[27] Oficjalna strona internetowa Centrum Badań Kosmicznych PAN w Borowcu, http://vega.cbk.poznan.pl/gps/data/2003/index.html z dnia 19.04.2004

[28] Oficjalna strona internetowa European Physical Society (EPS), http://www.eps.org/aps/meet/APR00/baps/abs/S5800001.html z dnia 12.04.2004

[29] Oficjalna strona internetowa firmy Agilent Technologies, http://we.home.agilent.com/cgi-bin/bvpub/agilent/Product/cp_Product.jsp?NAV_ID=-11567.536880128.00&LANGUAGE_CODE=eng&COUNTRY_CODE=US z dnia 07.04.2004

[30] Oficjalna strona internetowa Internetowego Serwisu Prawniczego, http://www.abc.com.pl/serwis/du/2004/0144.htm z dnia 23.04.2004

[31] Oficjalna strona internetowa Miami University, USA, http://www.units.muohio.edu/dragonfly/time/accurate.htmlx z dnia 05.04.2004

[32] Oficjalna strona internetowa NIST, http://www.boulder.nist.gov/timefreq/cesium/atomichistory.htm z dnia 07.04.2004

[33] Oficjalna strona internetowa NIST, http://www.boulder.nist.gov/timefreq/cesium/fountain.htm z dnia 12.04.2004

[34] Oficjalna strona internetowa NIST, http://physics.nist.gov/TechAct.98/Div847/div847h.html z dnia 12.04.2004

[35] Oficjalna strona internetowa NIST, http://www.boulder.nist.gov/timefreq/cesium/parcs.htm z dnia 12.04.2004

[36] Oficjalna strona internetowa NIST, http://www.boulder.nist.gov/timefreq/general/leaps.htm z dnia 16.04.2004

[37] Oficjalna strona internetowa NIST, Słownik, http://www.boulder.nist.gov/timefreq/general/glossary.htm z dnia 13.04.2004

[38] Oficjalna strona internetowa U.S. Naval Observatory, USA, http://tycho.usno.navy.mil/cesium.html z dnia 05.04.2004

[39] Oficjalna strona internetowa University of Liege, Belgia, http://www.ulg.ac.be/ipne/garnir/gps/clock2.html z dnia 05.04.2004

[40] Pace Scott, McNeff Jules, One-Way GPS Time Transfer 2000, 32nd Annual and Time Interval (PTTI) Meeting

[41] Pollastri Fabrizio, The Time of Internet, http://toi.iriti.cnr.it/uk/atomtime.html Torino, 05.03.1996

[42] Smirnow N. W, Dunin-Barkowski W., Krótki kurs statystyki matematycznej dla zastosowań technicznych, PWN, Warszawa 1966

[43] Sullivan D. B., Bergquist J. C., Bollinger J. J., Primary Atomic Frequency Standards at NIST, Journal of Research of the National Institute of Standards and Technology, Volume 106, Number 1, January–February 2001

Page 94: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

95

Załącznik A.

Page 95: „Wyznaczanie algorytmu dla tworzenia skali czasu z krajowych ...

96

Streszczenie