WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI · 2013-07-02 · Kierunek Elektrotechnika Studia stacjonarne...

23
POLITECHNIKA GDAŃSKA WYDZIAL ELEKTROTECHNIKI I AUTOMATYKI KATEDRA ENERGOELEKTRONIKI I MASZYN ELEKTRYCZNYCH LABORATORIUM MASZYNY ELEKTRYCZNE ĆWICZENIE (TR) TRANSFORMATORY TRANSFORMATOR TRÓJFAZOWY BADANIE CHARAKTERYSTYK Materialy pomocnicze Kierunek Elektrotechnika Studia stacjonarne 1-szego stopnia semestr 3 Opracowali Mieczyslaw Ronkowski Grzegorz Kostro Michal Michna Gdańsk 2012-2013

Transcript of WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI · 2013-07-02 · Kierunek Elektrotechnika Studia stacjonarne...

Page 1: WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI · 2013-07-02 · Kierunek Elektrotechnika Studia stacjonarne 1-szego stopnia semestr 3 Opracowali Mieczysław Ronkowski Grzegorz Kostro Michał

POLITECHNIKA GDAŃSKA WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI

KATEDRA ENERGOELEKTRONIKI I MASZYN ELEKTRYCZNYCH

LABORATORIUM MASZYNY ELEKTRYCZNE

ĆWICZENIE (TR) TRANSFORMATORY TRANSFORMATOR TRÓJFAZOWY

BADANIE CHARAKTERYSTYK

Materiały pomocnicze Kierunek Elektrotechnika Studia stacjonarne 1-szego stopnia semestr 3

Opracowali

Mieczysław Ronkowski Grzegorz Kostro Michał Michna

Gdańsk 2012-2013

Page 2: WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI · 2013-07-02 · Kierunek Elektrotechnika Studia stacjonarne 1-szego stopnia semestr 3 Opracowali Mieczysław Ronkowski Grzegorz Kostro Michał
Page 3: WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI · 2013-07-02 · Kierunek Elektrotechnika Studia stacjonarne 1-szego stopnia semestr 3 Opracowali Mieczysław Ronkowski Grzegorz Kostro Michał

M. Ronkowski, G. Kostro, M. Michna: 1

ĆWICZENIE (TR) TRANSFORMATORY BADANIE CHARAKTERYSTYK TRANSFORMATORA TRÓJFAZOWEGO Program i cel ćwiczenia 1. TEORIA.....................................................................................................................................................1 2. BADANIA.................................................................................................................................................5

2.1. Oględziny zewnętrzne.......................................................................................................................6 2.2. Pomiar rezystancji uzwojeń ..............................................................................................................6 2.3. Badanie przekładni............................................................................................................................8 2.4. Próba stanu jałowego: badanie charakterystyk stanu jałowego......................................................10 2.5. Próba stanu zwarcia: badanie charakterystyk zwarcia....................................................................13 2.6. Wyznaczenie sprawności transformatora metodą strat poszczególnych ........................................17 2.7. Wyznaczenie zmiany napięcia ........................................................................................................18

3. ZADANIA ...............................................................................................................................................19 4. PYTANIA KONTROLNE ......................................................................................................................20 5. LITERATURA POMOCNICZA.............................................................................................................21

1. TEORIA

Budowa, działanie, model fizyczny i model obwodowy transformatora

Podstawowy opis teorii transformatora (TR) zawiera rozdz. 4 e-skryptu: Ronkowski M., Michna M., Kostro G., Kutt F.: Maszyny elektryczne wokół nas: zastosowanie, budowa, modelowanie, charakterystyki, projektowanie. Wyd. PG, Gdańsk, 2011.

TR 1-fazowy jest przetwornikiem elektromagnetycznym (rys. 1.1a) o dwóch wrotach (parach zacisków), które fizycznie reprezentują: zaciski uzwojenia pierwotnego „1” (zasilanego) i zaciski uzwojenia wtórnego „2” (obciążonego).

U1

I1

TRANSFORMATOR U2

I2

S1 S2

S1 > 0 S2 < 0

1

1'

2

2'

I1 > 0 I2 > 0

1 – umowny początek uzwojenia pierwotnego 1' – umowny początek uzwojenia pierwotnego

2 – umowny początek uzwojenia wtórnego 2' – umowny początek uzwojenia wtórnego

Prąd pierwotny o wartości dodatniej (I1 > 0) dopływa do umownego początku uzwojenia pierwotnego „1", a wypływa - z umownego końca uzwojenia pierwotnego „1'".

Prąd pierwotny o wartości dodatniej (I2 > 0) dopływa do umownego początku uzwojenia wtórnego „2", a wypływa - z umownego końca uzwojenia wtórnego„2'".

Rys. 1.1a. Transformator 1-fazowy – dwuwrotowy przetwornik elektromagnetyczny:

wrota (zaciski) obwodu pierwotnego „1” – dopływ mocy elektrycznej S1 przetwarzanej ma moc elektryczną S2, wrota (zaciski) obwodu wtórnego „2” – odpływ mocy elektrycznej S2

Budowę i podstawowe elementy TR 1-fazowego i 3-fazowego przedstawiono na rys. 1.1b. TR składa się z następujących elementów czynnych: rdzenia (obwodu magnetycznego), uzwojenia pierwotnego i uzwojenia wtórnego (obwodów elektrycznych). Np.. TR jednofazowe typu AS2 (rys. 1.1b) posiadają uzwojenia nawinięte na karkasie lub klatce izolacyjnej, oddzielone warstwą materiału izolacyjnego, umieszczone na dwukolumnowym rdzeniu składanym z blach transformatorowych i impregnowane termoutwardzalną żywicą zabezpieczającą przed korozją i wilgocią. Uzwojenia strony pierwotnej i wtórnej są wyprowadzone na zaciski śrubowe.

Na podstawowy model fizyczny TR (rozważane są zjawiska fizyczne zachodzące w TR – istotne dla analizowanego stanu pracy) — pokazany na rys. 1.2a — składają się: elementy czynne: rdzeń, uzwojenia

Page 4: WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI · 2013-07-02 · Kierunek Elektrotechnika Studia stacjonarne 1-szego stopnia semestr 3 Opracowali Mieczysław Ronkowski Grzegorz Kostro Michał

2 Ćwiczenie: Transformator trójfazowy pierwotne i wtórne; oraz zmienne fizyczne: napięcia na zaciskach uzwojeń, prądy płynące w uzwojeniach, strumień magnetyczny główny, strumienie rozproszenia uzwojeń, straty w żelazie i straty w miedzi uzwojeń.

Rys. 1.1b. Budowa i elementy transformatów 1-fazowego (typu AS2) i 3-fazowego (Lab. ME) Producent transformator typu AS2 – AS ELEKTROTECHNIK (http://www.as-elektrotechnik.pl/index3.php)

U2U1

∆PFe

z1 z

I1 I2

ZobΦσ2Φσ1

Φm

∆PCu2∆ PCu1

1

1' 2'

2

Rys.1.2a. Podstawowy model fizyczny transformatora jednofazowego w stanie obciążenia: rdzeń; cewki uzwojeń pierwotnego i wtórnego; rozpływ strumienia głównego Φm oraz strumieni rozproszenia Φσ1 i

Φσ2; straty w żelazie ∆PFe; straty w miedzi uzwojeń ∆PCu1 oraz ∆PCu2

Wyróżnia się trzy podstawowe stany pracy TR: stan jałowy, stan obciążenia i stan zwarcia. Stan obciążenia TR jest stanem pośrednim między dwoma stanami krańcowymi — stanem jałowym a stanem zwarcia.

Stan jałowy transformatora — stan, w którym uzwojenie pierwotne zasilane jest napięciem przemiennym U1, a uzwojenie wtórnego jest otwarte. Prąd płynący w uzwojeniu pierwotnym TR nazywa się

Page 5: WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI · 2013-07-02 · Kierunek Elektrotechnika Studia stacjonarne 1-szego stopnia semestr 3 Opracowali Mieczysław Ronkowski Grzegorz Kostro Michał

M. Ronkowski, G. Kostro, M. Michna: 3 prądem jałowym Io a jego dwie składowe: składową czynną I0cz i bierną (magnesującą) Im. Wartości prądu jałowego zwykle wyraża się w procentach prądu znamionowego IN TR:

[%] 100 Io%N

o

I

I= (1.1)

W TR energetycznych (mocy) wartość znamionowa prąd stanu jałowego zawiera się w zakresie (1 − 10)% prądu znamionowego.

Zasada: im większa moc, tym na ogół mniejszy prąd stanu jałowego.

Przemienny przepływ θ1 = Ioz1 wzbudza strumień, w którym wyróżnia się strumień magnesujący (główny) Φm — strumień sprzężony z obydwoma uzwojeniami — oraz strumień rozproszenia Φσ1 — strumień sprzężony tylko z uzwojeniem własnym (zasilanym).

Efektem sprzężenia przemiennego strumienia głównego Φm z uzwojeniami jest indukowanie w nich SEM:

44,4E 11 fz mΦ= 44,4E 22 fz mΦ= E 202 U= (1.2)

gdzie: z1, z2 − liczba zwojów odpowiednio uzwojenia pierwotnego i wtórnego, f − częstotliwość napięcia zasilania U1.

Model obwodowy (schemat zastępczy) TR 1-fazowego w stanie jałowym przedstawiono na rys. 1.2b.

Im

E1

U'20U1

I0I0cz

RFe Xm

I0

ΦmE’2

Rys.1.2b. Model obwodowy (schemat zastępczy) uproszczony transformatora w stanie jałowym. Uzwojenie wtórne o liczbie zwojów z2 przezwojono(zredukowano) do liczby zwojów z’2 = z1

Właściwości TR w stanie jałowym określone są głównie przez strumień magnesujący (główny) Φm i stratami rdzenia magnetycznego ∆PFe.

Właściwości te odwzorowuje się wielkościami obwodowymi: Xm − reaktancją magnesująca modelującą strumień główny TR, tzn. E1 = Im Xm,

RFe − rezystancją modelującą straty w żelazie (jałowe) ∆PFe TR, tzn. ∆PFe = m I0cz E1.

Uwaga: TR w stanie jałowym jest obiektem nieliniowym, ze względu na zachodzące zjawisko nasycenia obwodu magnetycznego strumienia magnesującego – skutek zasilanie napięciem U1 = U1N.

Dzieląc stronami zależności (1.2) stronami otrzymuje się charakterystyczną wielkość:

zz

z ϑ==2

1

2

1

E

E (1.3)

którą nazywa się przekładnią zwojową zϑ TR. Dla TR jednofazowego napięcie na jego zaciskach wtórnych w stanie jałowym U20 jest równe SEM E2.

Biorąc pod uwagę, że SEM E1 jest w przybliżeniu równa napięciu pierwotnemu U1 (pomijamy spadki napięcia R1I0 oraz Xσ1I0) można napisać:

uU

U ϑ=≈20

1

2

1

E

E (1.4)

Stosunek U1/U20 nazywa się przekładnią napięciową ϑ u TR.

W TR jednofazowym przekładnia napięciowa odpowiada praktycznie stosunkowi liczby zwojów — zgodnie z zależnością (1.4).

Page 6: WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI · 2013-07-02 · Kierunek Elektrotechnika Studia stacjonarne 1-szego stopnia semestr 3 Opracowali Mieczysław Ronkowski Grzegorz Kostro Michał

4 Ćwiczenie: Transformator trójfazowy W TR trójfazowym należy uwzględnić jeszcze współczynnik liczbowy wynikający z zastosowanego

skojarzenia uzwojeń (patrz p. 1.4. ćwiczenia 1).

Stan obciążenia transformatora — stan, w którym uzwojenie wtórne jest zamknięte przez impedancję Zob i w uzwojeniu tym płynie prąd I2 — prąd wymuszony przez SEM E2.

Model obwodowy (schemat zastępczy) TR 1-fazowego w stanie obciążenia przedstawiono na rys.1.2c.

Im

E1

U'2U1

I0I0cz

RFe Xm

I1 I'2 R'2R1 Xσ1 X'σ2

Z'ob

Φ'σ2Φσ1

ΦmE’2

Rys.1.2c. Model obwodowy (schemat zastępczy) transformatora w stanie obciążenia

W TR obciążonym strumień główny Φm powstaje przez współdziałanie przepływów obu uzwojeń: przepływu pierwotnego I1z1 i przepływu wtórnego I2z2.

W zakresie obciążeń znamionowych transformatora suma (geometryczna) przepływów obu uzwojeń jest równa przepływowi stanu jałowego — moduł ma stałą wartość.

[A] I 12211 zIzIz o=+ (1.5)

Powyższe równanie — równanie równowagi przepływów (podstawowe równanie transformatora) — wynika z podstawowej zasady pracy transformatora — tendencji do wzbudzenia ekstremalnego strumienia, innymi słowy tendencji do zmagazynowania ekstremalnego energii w polu magnetycznym transformatora.

Efektem działania przepływu wtórnego I2z2 jest wzbudzenie strumienia rozproszenia uzwojenia wtórnego Φσ2 (strumień sprzężony tylko z uzwojeniem wtórnym), a na skutek wzrostu prądu pierwotnego I1 zwiększa się strumień rozproszenia uzwojenia pierwotnego Φσ1. Strumienie rozproszenia Φσ1 i Φσ2 indukują odpowiednio w uzwojeniu pierwotnym i wtórnym SEM Eσ1oraz Eσ2, które można odwzorować za pomocą wielkości obwodowych — spadku napięcia na reaktancji rozproszenia uzwojenia pierwotnego Xσ1 oraz wtórnego Xσ2:

[V] E 111 IXσσ = [V] E 222 IXσσ = (1.6)

Ponadto prądy w obu uzwojeniach transformatora powodują spadki napięcia na rezystancjach uzwojenia pierwotnego R1 oraz wtórnego R2 .

Istotny wpływ na właściwości transformatora w stanie obciążenia mają straty w miedzi uzwojenia pierwotnego ∆PCu1 i wtórnego ∆PCu2 — nazywane także stratami obciążeniowymi. Za ich miarę można przyjąć wielkości obwodowe — rezystancje uzwojeń — zdefiniowane następująco:

][

R 21

11 Ω∆=

Im

PCu ][ m

R 22

22 Ω∆=

I

PCu (1.7)

gdzie, m − liczba faz transformatora.

Model obwodowy (schemat zastępczy) TR — przedstawiony na rys.1.2c — jest podstawą analizy TR w stanie obciążenia. Model ten odpowiada TR zredukowanemu (sprowadzonemu) do przekładni 1====zϑ .

Topologia i elementy modelu wynikają z podanych wyżej rozważań zjawisk fizycznych (przyjętego modelu fizycznego na rys.1.2a) dotyczących stanu jałowego i stanu obciążenia TR.

Parametry modelu obwodowego TR (rys. 1.2c): rezystancja RFe i reaktancja Xm są wielkościami nieliniowymi

Page 7: WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI · 2013-07-02 · Kierunek Elektrotechnika Studia stacjonarne 1-szego stopnia semestr 3 Opracowali Mieczysław Ronkowski Grzegorz Kostro Michał

M. Ronkowski, G. Kostro, M. Michna: 5 zależnymi od wartości strumienia głównego i rodzaju blachy rdzenia

pozostałe parametry modelu obwodowego można przyjąć jako stałe (liniowe).

Stan zwarcia pomiarowego transformatora (lub krótko stan zwarcia TR) — stan TR, w którym strona wtórna jest zwarta (U2 = 0), zaś uzwojenie pierwotne jest zasilane odpowiednio obniżonym napięciem, tzn. takim, które wymusza w obu uzwojeniach prądy o wartościach znamionowych.

Wartość napięcia, jakie należy przyłożyć do zacisków pierwotnych TR przy zwartym uzwojeniu wtórnym

celem wymuszenia w obu jego uzwojeniach przepływu prądów znamionowych I1N oraz I2N nazywa się napięciem zwarcia.

Napięcia zwarcia jest ważnym parametrem TR — podanym na tabliczce znamionowej, określanym zwykle w procentach napięcia znamionowego, wg następującej zależności:

[%] 100U

Z%100U

1N

z1

1

1z% ⋅=⋅= N

N

z I

U

U (1.8)

gdzie: Uz% − napięcie zwarcia procentowe, U1z − napięcie zwarcia (fazowe) mierzone w woltach, U1N − napięcie znamionowe (fazowe), I1N − prąd znamionowy (fazowy), Zz − impedancja zwarcia transformatora.

Dla normalnych TR energetycznych napięcie zwarcia zawiera się w zakresie (3 − 15)% napięcia znamionowego.

Zasada: im większa moc, tym na ogół większe napięcie zwarcia.

W stanie zwarcia transformatora, ze względu znacznie obniżony poziom strumienia magnesującego (zasilanie napięciem zwarcia U1z << U1N), wartość prądu jałowego w bilansie przepływów jest pomijalnie mała:

[A] 0I 2211N ≈+ zIz N lub I 2211N zIz N−≈ (1.9)

Stąd dla modułów mamy:

[A] 1

21

221

zNNN I

z

zII

ϑ=≈ lub [A]

122

zNN II

ϑ=′ (1.10)

a zredukowane wartości rezystancji i reaktancji rozproszenia w tym obwodzie wyznaczają zależności:

22

2 RR zϑ=′ 22

2 σσ ϑ XX z=′ (1.12)

Właściwości transformatora w stanie zwarcia określone są głównie przez strumienie rozproszenia uzwojenia pierwotnego Φσ1 i wtórnego Φσ2

oraz stratami w miedzi ∆PCu1 oraz ∆PCu2 zależnymi od wymiarów i rozmieszczenia uzwojeń.

Właściwości te odwzorowuje się wielkościami obwodowymi: Rz = R1 + R’ 2 − rezystancja zwarcia transformatora, Xz = Xσ1 + X’ σ2 − reaktancja zwarcia transformatora,

zzz XjRZ += − impedancja zwarcia transformatora.

Uwaga: Wstanie zwarcia TR jest obiektem liniowym, ze względu znacznie obniżony poziom strumienia magnesującego (zasilanie napięciem zwarcia U1z << U1N). Stąd zarówno zjawisko nasycenia obwodu magnetycznego jak i straty w rdzeniu (żelazie) są pomijalnie małe. Ponadto, część obwodu magnetycznego strumieni rozproszenia zamyka się przez powietrze, stąd strumienie rozproszenia zależą linowo od odpowiednich prądów uzwojeń. Zatem model obwodowy TR w stanie zwarcia otrzymujemy przez uproszczenie modelu obwodowego TR dla stanu obciążenia (rys. 1.2c) – usuwamy w nim gałąź magnesującą.

Wartości parametrów modelu obwodowego TR (rys. 1.2c) wyznacza się na podstawie wyników dwóch prób: stanu jałowego i stanu zwarcia — opisanych w p. 1.5 oraz 1.6 niniejszego ćwiczenia.

Page 8: WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI · 2013-07-02 · Kierunek Elektrotechnika Studia stacjonarne 1-szego stopnia semestr 3 Opracowali Mieczysław Ronkowski Grzegorz Kostro Michał

6 Ćwiczenie: Transformator trójfazowy

2. BADANIA

2.1. Oględziny zewnętrzne

Należy dokonać oględzin zewnętrznych badanego transformatora i urządzeń wchodzących w skład układu pomiarowego. Przede wszystkim należy dokładnie przeczytać i wynotować dane zawarte w tabliczce znamionowej transformatora. Tabliczka znamionowa transformatora (tabl. 1.1) najczęściej zawiera następujące dane (wg. PN/E-06040):

Tablica 1.1

Lp. Dane znamionowe transformatora Jednostka Wartość 1 nazwę lub znak wytwórcy - 2 nazwę i typ wyrobu - 3 numer fabryczny - 4 rok wykonania - 5 liczba faz - 6 częstotliwość znamionowa Hz 7 moc znamionowa kVA 8 napięcia znamionowe (Ug/Ud) V / 9 prądy znamionowe (Ig/Id) A / 10 zmierzone napięcie zwarcia % 11 zmierzone straty jałowe W 12 zmierzone straty w stanie zwarcia W 13 symbol znamionowego rodzaju pracy - 14 symbol grupy połączeń uzwojeń -

Uwaga !

Przez cały czas ćwiczenia należy pamiętać wartości prądów znamionowych transformatora. Wartości tych nie powinno się niepotrzebnie przekraczać.

Należy spisać dane znamionowe użytych przyrządów pomiarowych (woltomierzy, amperomierzy, watomierzy).

2.2. Pomiar rezystancji uzwojeń

♦ Przebieg pomiaru rezystancji uzwojeń. Zasady pomiaru rezystancji uzwojeń.

• Pomiar wykonać metodą techniczną, uwzględniając układ połączeń uzwojeń transformatora. • Dobrać odpowiednie zakresy mierników:

amperomierza — podstawą doboru są prądy znamionowe transformatora; woltomierza — podstawą doboru są procentowe napięcie zwarcia i procentowa sprawność transformatora.

• Pomiar rezystancji uzwojeń transformatora wykonać dla trzech wartości prądu. • Wyniki pomiarów należy notować w tablicy 1.2a

(dotyczy bezpośredniego pomiaru rezystancji fazowych uzwojeń transformatora). • Należy zanotować temperaturę otoczenia τx

(przy szybkim pomiarze można przyjąć, że pomierzone wartości rezystancji dotyczą temperatury równej temperaturze otoczenia).

Page 9: WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI · 2013-07-02 · Kierunek Elektrotechnika Studia stacjonarne 1-szego stopnia semestr 3 Opracowali Mieczysław Ronkowski Grzegorz Kostro Michał

M. Ronkowski, G. Kostro, M. Michna: 7 Tablica 1.2a

Zaciski a1−a2 Zaciski b1−b2 Zaciski c1−c2 Lp. U I R1a U I R1b U I R1c

V A Ω V A Ω V A Ω

Tablica 1.2b

Zaciski a3−a6 Zaciski b3−b6 Zaciski c3−c6 Lp. U I R2a U I R2b U I R2c

V A Ω V A Ω V A Ω

τx = . . . . . oC

♦ Opracowanie wyników pomiaru rezystancji uzwojeń. Wartości średnie rezystancji uzwojeń (rezystancji fazowych) należy obliczyć wg. podanej niżej

procedury. Wartość średnia rezystancji fazowej strony pierwotnej R1: • obliczyć dla trzech pomierzonych spadków napięć U oraz prądów I odpowiadające im wartości

rezystancji uzwojenia „a1-a2” strony pierwotnej — oznaczone kolejno symbolami R1a1, R1a2, R1a3; • następnie obliczyć wartość średnią rezystancji uzwojenia „a1-a2” wg. zależności:

3

312111 aaa1aśr

RRR R

++= (1.13)

• analogicznie obliczyć wartości średnie rezystancji R1Bśr oraz R1Cśr — odpowiadające uzwojeniu „B1-B2” oraz „C1-C2” strony pierwotnej;

• następnie wyznaczyć wartość średnią rezystancji fazowej strony pierwotnej:

RRR

R cśrbśraśr1 3

111 ++= (1.14)

Wartość średnia rezystancji fazowej strony wtórnej R2: • obliczyć dla trzech pomierzonych spadków napięć U oraz prądów I odpowiadające im wartości

rezystancji uzwojenia „a3-a6” strony wtórnej — oznaczone kolejno symbolami R2a1, R2a2, R2a3; • następnie obliczyć wartość średnią rezystancji uzwojenia „a1-a6” wg. zależności:

3

322212 aaa2aśr

RRRR

++= (1.15)

• analogicznie obliczyć wartości średnie rezystancji R2bśr oraz R2cśr — odpowiadające uzwojeniu „b3-b6” oraz „c3-c6” strony wtórnej;

• następnie wyznaczyć wartość średnią rezystancji fazowej strony wtórnej:

3

222 cśrbśraśr2

RRR R

++= (1.16)

Wyniki obliczeń rezystancji uzwojeń badanego transformatora zestawić w odpowiedniej tabeli. W praktyce wartości rezystancji R1 oraz R2 we wzorach (1.14) i (1.16) — pomierzone w temperaturze

τx — przelicza się do umownej temperatury odniesienia τo (temperatury pracy) wg. zależności:

R [ ] τ τ

ττo x

o

x

R=++

235

235Ω (1.17)

gdzie: Rτx − wartość rezystancji pomierzona w temperaturze τx ,

Page 10: WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI · 2013-07-02 · Kierunek Elektrotechnika Studia stacjonarne 1-szego stopnia semestr 3 Opracowali Mieczysław Ronkowski Grzegorz Kostro Michał

8 Ćwiczenie: Transformator trójfazowy τo − temperatura odniesienia, np. dla klasy izolacji A, E, B wynosi 75oC, a dla klasy izolacji F, H wynosi 115oC.

Należy przeliczyć wg. podanej wyżej zależności wartości średnie rezystancji fazowych R1 oraz R2 do temperatura odniesienia τo odpowiadające klasie izolacji badanego transformatora.

2.3. Badanie przekładni

♦ Definicja przekładni. Zgodnie z normą PN /E-06040 przekładnia transformatora trójfazowego jest równa stosunkowi

(wartość większa od jedności) napięć międzyprzewodowych, odpowiednio górnego i dolnego napięcia:

uϑ =U

Ug

do

(1.18)

Znajomość przekładni transformatora jest niezbędna przy analizie jego pracy samodzielnej i równoległej. Pozwala ona określić napięcia strony wtórnej przy zadanych napięciach strony pierwotnej oraz przeliczać parametry schematu zastępczego, dane dla jednej strony, na stronę drugą.

Przekładnie napięciowa ϑ u transformatora trójfazowego, w związku z różnymi kombinacjami połączeń

jego uzwojeń, różni się na ogół od przekładni zwojowej zϑ . Poniżej podano zależności między tymi

przekładniami dla różnych układów połączeń. W zależnościach tych symbole U1 i U2o oznaczają napięcia międzyprzewodowe stanu jałowego, a U1f i U2fo odpowiednie napięcia fazowe. 1. Układy z uzwojeniem pierwotnym połączonym w gwiazdę:

• układy Yy

u z

fo

f

o z

z

U

U

U

U ϑϑ ====≈≈≈≈========2

1

2

1

2

1

3

3 (1.19)

• układ Yd

u 333

2

1

2

1

2

1 ⋅⋅⋅⋅====≈≈≈≈======== zfo

f

o z

z

U

U

U

U ϑϑ (1.20)

• układ Yz

3

2

3

1

233

3

3

3

2

1

2

1

2

1

2

1zx

fo

f

fo

f

ozz

U

U

U

U

U

U ϑϑ ====≈≈≈≈⋅⋅⋅⋅

⋅⋅⋅⋅============

)(u (1.21)

gdzie:

U fox2 − napięcie połowy zwojów fazy wtórnej.

2. Układy z uzwojeniem pierwotnym połączonym w trójkąt: − układ Dy

ϑ ϑu = = ≈ =U

U

U

U

z

zo

f

fo

1

2

1

2

1

23

1

3

1

3 (1.22)

• Układ Dd

ϑ ϑu = = ≈ =U

U

U

U

z

zo

f

fo

1

2

1

2

1

2

(1.23)

• Układ Dz

ϑ ϑu = = = =⋅

≈⋅ ⋅

=U

U

U

U

U

U

U

U

zz

o

f

fo

f

fo

f

fox

1

2

1

2

1

2

1

2

1

23 3 32

3 3

2

3( ) ( ) (1.24)

♦ Przebieg pomiaru przekładni. Pojęciem ścisłym jest pojęcie przekładni zwojowej. Natomiast pojęcie przekładni napięciowej jest

związane z uproszczeniem (dopuszczalnym w praktyce), wynikającym z pominięcia spadków napięć: w uzwojeniu pierwotnym (od przepływu prądu jałowego) i w uzwojeniu wtórnym (od przepływu prądu pobieranego przez woltomierz) w czasie pomiaru napięć na zaciskach transformatora. Zatem, celem

Page 11: WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI · 2013-07-02 · Kierunek Elektrotechnika Studia stacjonarne 1-szego stopnia semestr 3 Opracowali Mieczysław Ronkowski Grzegorz Kostro Michał

M. Ronkowski, G. Kostro, M. Michna: 9 ograniczenia błędu pomiarowego, pomiary przekładni napięciowej należy wykonać w zakresie prostoliniowej części charakterystyki magnesowania rdzenia transformatora, a więc przy obniżonym napięciu.

Schemat układu pomiarowego dla układu połączeń Yy przedstawiony jest na rys. 1.3.1)

a6

b6

PW V

V

~3 X 380 V

RN

R

S

T

a1 a3 a4 a5

b3 b4 b5

c3 c4 c5 c6

a2

b1 b2

c1 c2

Uwaga: mierzymy napięcia przewodowe

Rys. 1.3. Schemat dla pomiaru przekładni transformatora: RN − regulator napięcia; PW - przełącznik watomierzowy

Uwagi ogólne do pomiaru przekładni transformatora.

• Transformator powinien być zasilany napięciem trójfazowym, możliwie symetrycznym, po stronie górnego napięcia.

• Pomiar przekładni należy wykonać metodą woltomierzową. • Ze względu na dopuszczalny błąd pomiaru ± 0,5% należy zastosować woltomierz klasy 0,2 o

stosunkowo dużej wartości rezystancji wewnętrznej. • Wg. normy PN/E-06040 pomiary należy przeprowadzić dla wszystkich par uzwojeń. • Woltomierze należy przyłączyć bezpośrednio do zacisków transformatora. • Celem zmniejszenia uchybu, spowodowanego niesymetrią napięć, należy włączyć woltomierze

między zaciski oznakowane tymi samymi literkami po stronie pierwotnej i wtórnej, np. pary zacisków oznakowane „a1-b1/a6-b6” itp.

• Pomiary przekładni należy wykonać dla co najmniej dwu różnych układów połączeń uzwojeń (dla celów porównawczych) — podanych przez prowadzącego ćwiczenia.

W czasie pomiarów należy:

• Zmieniać wartość napięcia zasilania za pomocą regulator napięcia RN. • Celem zmniejszenia uchybu przypadkowego, przeprowadzić pomiary dla trzech wartości napięcia,

zawartych w przedziale od 0,1 do około 0,7 napięcia znamionowego. • Wyniki pomiarów notować w tablicy 1.3.

Tablica 1.3

a1−b1/a6−b6 b1−c1/b6−c6 c1−a1/c6−a6

Lp. U1 U2o ϑuab U1 U2o ϑubc U1 U2o ϑuca Układ V V − V V − V V − połącz.

♦ Opracowanie wyników pomiaru przekładni Wartość średnią przekładni napięciowej należy obliczyć wg. podanej niżej procedury. • obliczyć dla trzech pomierzonych napięć U1 oraz U2o odpowiadające im kolejne wartości przekładni

pary uzwojeń „a1−b1/a6−b6” wg zależności:

1) Oznaczenia końców uzwojenia pierwotnego i wtórnego nie są zgodne z normą PN/E-81003.

Page 12: WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI · 2013-07-02 · Kierunek Elektrotechnika Studia stacjonarne 1-szego stopnia semestr 3 Opracowali Mieczysław Ronkowski Grzegorz Kostro Michał

10 Ćwiczenie: Transformator trójfazowy

o

uab U

U

2

1=ϑ (1.25)

oznaczone kolejno symbolami ϑuab1, ϑuab2, ϑuab3; • następnie obliczyć wartość średnią przekładni pary uzwojeń „a1−b1/a6−b6”:

3

uabuabuabuabśr

321 ϑ+ϑ+ϑ=ϑ (1.26)

• analogicznie obliczyć wartości średnie przekładni pary uzwojeń „b1−c1/b6−c6” oraz „c1−a1/c6−a6” — oznaczone kolejno symbolami ϑubcśr, ϑucaśr

• następnie wyznaczyć wartość średnią przekładni napięciowej transformatora:

3

ucaśrubcśruabśru

ϑ+ϑ+ϑ=ϑ (1.27)

2.4. Próba stanu jałowego: badanie charakterystyk stanu jałowego

♦ Podstawy próby stanu jałowego

Cel podstawowy próby stanu jałowego transformatora: pomiary wartości strat jałowych i prądu jałowego przy napięciu znamionowym.

Próba stanu jałowego polega na zasilaniu transformatora z dowolnej strony i pomiarze pobieranego przez transformator prądu i mocy. W czasie pomiaru uzwojenie wtórne transformatora jest otwarte.

Charakterystyki stanu jałowego (rys. 1.4) przedstawiają zależności prądu jałowego Io oraz mocy czynnej Po, pobieranych przez transformator, i współczynnika mocy cos ϕo od napięcia zasilania U1 o przebiegu sinusoidalnym i stałej częstotliwości f, przy nieobciążonym (otwartym) uzwojeniu wtórnym (I2 = 0):

Io = f (U1) Po = f (U1) cos ϕo = f (U1)

przy: f = const I2 = 0

Na podstawie charakterystyk stanu jałowego transformatora, wyznaczonych pomiarowo, określa się straty jałowe ∆PFe — straty w żelazie rdzenia (potrzebne do wyznaczenia sprawności) i parametry schematu zastępczego stanu jałowego (patrz: p.1.1 ćwiczenia 1).

Moc Po pobierana przez transformator w stanie jałowym zamienia się, praktycznie, całkowicie na straty w żelazie. Z kolei straty w żelazie są w przybliżeniu proporcjonalne do kwadratu indukcji B, czyli w przybliżeniu także do kwadratu przyłożonego napięcia U1 (dopuszczalne jest pominięcie spadku napięć na uzwojeniu w stanie jałowym). Zatem moc Po może być z jednej strony wyrażona jako:

P [W]o ≈ = ≈ ≈∆P f U c B c UFe ( )1 12

2 12 (1.28)

U1 [V]0

P0 [W]

ImI0 I0cz [A]

P0 I0

Im

I0cz

cosϕ0

cosϕ0

U1N

I0N

P0N

Rys. 1.4. Charakterystyki stanu jałowego transformatora

z drugiej strony przez wyrażenie: P [W]o = m U Iocz1 (1.29)

Page 13: WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI · 2013-07-02 · Kierunek Elektrotechnika Studia stacjonarne 1-szego stopnia semestr 3 Opracowali Mieczysław Ronkowski Grzegorz Kostro Michał

M. Ronkowski, G. Kostro, M. Michna: 11 gdzie składowa czynna prądu jałowego Iocz jest proporcjonalna do napięcia U1:

I [A] ocz = ⋅ ≈I c Uo ocosϕ 3 1 (1.30)

przy czym współczynnik mocy stanu jałowego:

cos oϕ =P

m U Io

o1

(1.31)

Natomiast prąd magnesujący Im rośnie wg. odwróconej krzywej magnesowania B = B(H), co oznacza szybki jego wzrost w zakresie dużych wartości indukcji (dla wartości napięcia U1 zbliżonych do wartości znamionowej UN). Wyjaśnia to malejący przebieg krzywej cos ϕo = f (U1) na rys. 1.4. W zakresie małych wartości napięcia współczynnik mocy cos ϕo osiąga wartość maksymalną — wynika to z zagięcia krzywej magnesowania.

♦ Przebieg próby stanu jałowego Schemat układu pomiarowego przedstawiony jest na rys. 1.5.

PW

~3

X 3

80 V

RN

R

S

T

W**

A

V

a1 a3 a4 a5

b3 b4 b5

c3 c4 c5 c6

a2

b1 b2

c1 c2

a6

b6

Rys. 1.5. Schemat połączeń do próby stanu jałowego transformatora: RN − regulator napięcia; PW - przełącznik watomierzowy (układ z poprawnie mierzonym prądem !)

Uwagi ogólne do próby stanu jałowego.

• Podstawą doboru zakresu pomiarowego amperomierza i watomierza są procentowe wartości prądu jałowego badanego transformatora.

• Woltomierz, amperomierz i watomierz połączyć w układzie z poprawnie mierzonym prądem. • Celem ograniczenia prądu włączania transformatora należy go załączać przy znacznie obniżonym

napięciu. • Przy włączaniu transformatora na pełne napięcie (znamionowe) cewki prądowe watomierzy i cewki

amperomierzy należy zewrzeć. • Ze względu na niesymetrię prądów jałowych (efekt niesymetrii magnetycznej rdzenia), moc

pobieraną przez transformator należy mierzyć w trzech fazach lub w układzie Arona. • Dla jednej z faz wychylenie watomierza może być ujemne, szczególnie w zakresie napięć

znamionowych, należy zmienić kierunek wychylenia watomierza przełącznikiem PW, a do bilansu mocy pobieranej przez transformator wskazanie to należy brać ze znakiem ujemnym.

W czasie pomiarów należy:

• Regulatorem napięcia RN zmieniać wartości napięcia zasilającego transformator w zakresie od wartości bliskich zera do wartości 1,05 UN napięcia znamionowego (w tym dla napięcia znamionowego).

• Wyniki zanotować w tablicy 1.4a.

Page 14: WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI · 2013-07-02 · Kierunek Elektrotechnika Studia stacjonarne 1-szego stopnia semestr 3 Opracowali Mieczysław Ronkowski Grzegorz Kostro Michał

12 Ćwiczenie: Transformator trójfazowy Tablica 1.4a

Wielkości pomierzone Lp. Ua Ub Uc Ioa Iob Ioc Poa Pob Poc

V V V A A A W W W 1 2 3 4 5 6 7 8

♦ Opracowanie wyników próby stanu jałowego

W czasie wykonywanych pomiarów napięcia i prądy poszczególnych faz mogą się różnić między sobą. Ich wartości średnie, podane w tablicy 1.4a, należy obliczyć – wg. podanych poniżej zależności – i zestawić w tablicy 1.4b.

• Napięcie zasilania:

[A] 3

UUUU cba

1

++++++++==== (1.32)

• prąd stanu jałowego:

[A] 3

IIII ocoboa

o++= (1.33a)

• znamionowy prąd stanu jałowego (dla napięcia U1 = U1N):

% 100 I

II

N

oNoN% ==== (1.33b)

• sumaryczną moc pobieraną przez transformator:

[V] PP PP ocoboao ++++++++==== (1.34a)

• znamionowe starty jałowe (dla napięcia U1 = U1N)

100S

PP

N

oNoN% ==== (1.34b)

• składową czynną prądu stanu jałowego:

[A] U

P

E

PI oFe

ocz11 33

≈∆= (1.36)

• prąd magnesujący

I [A]m o oczI I= −2 2 (1.37)

• współczynnik mocy stanu jałowego

cos oϕ =P

U Io

o3 1

(1.38)

• rezystancję modelującą straty w żelazie

][ I

U

I

E R

oczoczFe Ω≈= 11 (1.39)

• reaktancję magnesującą

Page 15: WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI · 2013-07-02 · Kierunek Elektrotechnika Studia stacjonarne 1-szego stopnia semestr 3 Opracowali Mieczysław Ronkowski Grzegorz Kostro Michał

M. Ronkowski, G. Kostro, M. Michna: 13

][ I

U

I

EX

mmm Ω≈= 11 (1.40)

Uwaga: Zależności (1.36), (1.38), (1.39) i (1.40) obowiązują przy założeniu, że uzwojenie pierwotne połączone jest w gwiazdę (Y), a pomierzone napięcia i prądy są wielkościami fazowymi.

Tablica 1.4b

Wielkości obliczone Lp. U1 Io Po ∆PFe cos ϕo Im Iocz Xm RFe

V A W W − A A Ω Ω 1 2 3 4 5 6 7 8

2.5. Próba stanu zwarcia: badanie charakterystyk zwarcia

♦ Podstawy próby stanu zwarcia

Cel podstawowy próby stanu zwarcia transformatora – pomiary wartości strat w uzwojeniach (miedzi) i napięcia zwarcia dla prądu znamionowego.

Próba stanu zwarcia transformatora polega na zasilaniu transformatora z dowolnej strony i pomiarze pobieranego przez transformator prądu Iz i mocy Pz oraz napięcia zasilania. W czasie próby uzwojenie wtórne jest zwarte. Charakterystyki zwarcia (rys. 1.6) przedstawiają zależności prądu zwarcia Iz, mocy zwarcia Pz, pobieranych przez transformator, i współczynnika mocy cos ϕz od napięcia zasilania U1 o przebiegu sinusoidalnym i stałej częstotliwości f, przy zwartym uzwojeniu wtórnym (U2 = 0):

Iz = f (U1) Pz = f (U1) cos ϕz = f (U1) przy: f = const U2 = 0

U1 [V]0

Pz [W]Iz [A]

Pz

Iz

cosϕz

cosϕz

IN

UzN

PzN

Rys. 1.6. Charakterystyki zwarcia transformatora

Page 16: WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI · 2013-07-02 · Kierunek Elektrotechnika Studia stacjonarne 1-szego stopnia semestr 3 Opracowali Mieczysław Ronkowski Grzegorz Kostro Michał

14 Ćwiczenie: Transformator trójfazowy Na podstawie charakterystyk zwarcia, wyznaczonych z pomiarów, określa się wartość strat w miedzi

uzwojeń (podstawa do wyznaczenia sprawności) i napięcia zwarcia, a także parametry schematu zastępczego stanu zwarcia (patrz: p.1.1 ćwiczenia 1).

W stanie zwarcia pomiarowego, kiedy napięcie przyłożone do uzwojenia jest znacznie mniejsze od znamionowego, można pominąć prąd magnesujący i straty w żelazie. Można więc przyjąć, że moc pobierana w tych warunkach przez transformator zamienia się prawie całkowicie na straty w miedzi uzwojeń:

P I = I Rz ≈ ≈ +∆P R RCu z z z3 321 2

2( )' (1.41)

a dla obwodu napięcia zwarcia zachodzi relacja:

U = I Zz ≈ +I R Xz z z z z2 2 (1.42)

Rezystancja zwarcia Rz zmienia się w wąskich granicach pod wpływem zmian temperatury uzwojeń. Jednak zmiany te można pominąć, gdy próba trwa krótko.

Z kolei reaktancja zwarcia Xz odpowiada strumieniowi rozproszenia, który na znacznej części swej drogi przebiega w ośrodku niemagnetycznym (powietrze, olej): charakteryzuje się on stałą przenikalnością magnetyczną – obwód magnetyczny strumienia rozproszenia jest liniowy/nienasycony. Ponieważ o wartości reluktancji drogi strumienia rozproszenia decyduje ośrodek niemagnetyczny, więc reaktancja zwarcia Xz nie zależy od prądu zwarcia – jest liniowa (utrzymuje wartość stałą). Z powyższych rozważań wynika: impedancja zwarcia transformatora jest stała i nie zależy od poziomu prądu zwarcia; paraboliczny przebieg zależności Pz = f (U1); stałą wartość cos ϕz = f (U1) i prostoliniowy przebieg zależności Iz = f (U1) (podanych na rys. 1.6).

♦ Przebieg próby stanu zwarcia Schemat układu pomiarowego przedstawiono na rys.1.7.

a1 a2

b1 b2

c1 c2

PW

~3

X 3

80 V

RN

R

S

T

a3 a4 a5 a6

b3 b4 b5 b6

c3 c4 c5 c6A

W**

A

V

Rys. 1.7. Schemat połączeń do próby zwarcia transformatora: RN − regulator napięcia; PW - przełącznik watomierzowy (układ z poprawnie mierzonym napięciem !)

Uwagi ogólne do próby stanu zwarcia.

• Podstawą doboru zakresu pomiarowego woltomierza, amperomierza i watomierza (ewentualnie przekładnika prądowego) są wartości prądów znamionowych i procentowe wartości napięcia zwarcia badanego transformatora.

• Woltomierz, amperomierz i watomierz połączyć w układzie z poprawnie mierzonym napięciem. • Przy włączaniu transformatora na napięcie zasilające (wartości winna być zbliżona do zera) cewki

prądowe watomierza należy zewrzeć. • Ze względu na ewentualną niesymetrię prądów zwarciowych (efekt niesymetrii napięć zasilających,

impedancji zwarcia), moc pobieraną przez transformator należy mierzyć w trzech fazach lub w układzie Arona.

• Wychylenie watomierza dla jednej z faz w układzie Arona może być ujemne (dla wartości współczynnika mocy cos ϕz < 0,5): należy zmienić kierunek wychylenia watomierza przełącznikiem

Page 17: WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI · 2013-07-02 · Kierunek Elektrotechnika Studia stacjonarne 1-szego stopnia semestr 3 Opracowali Mieczysław Ronkowski Grzegorz Kostro Michał

M. Ronkowski, G. Kostro, M. Michna: 15 PW, a do bilansu mocy pobieranej przez transformator wskazanie to należy brać ze znakiem ujemnym.

W czasie pomiarów należy:

• Uzwojenie wtórne transformatora należy zewrzeć odpowiednio grubym przewodem o przekroju miedzi większym od przekroju miedzi jego uzwojenia.

• Regulatorem napięcia RN zmieniać wartość napięcia zasilającego od wartości przy której prąd zwarcia osiąga wartości około 1,2 IN, do wartości zbliżonej do zera.

• Wykonać pomiary dla prądu znamionowego transformatora. • Wykonać pomiar mocy pobieranej przez transformator w układzie Arona z wykorzystaniem

przełącznika watomierzowego PW. • Pomiary wykonać możliwie szybko, aby ograniczyć nagrzewanie transformatora. • Wyznaczyć temperaturę uzwojeń na początku τp i na końcu τk pomiarów charakterystyk zwarcia

(pierwszy pomiar należy wykonać przy prądzie największym, a następny pomiar przy prądzie najmniejszym — wtedy temperatury uzwojeń zmieniają się w niewielkich granicach).

• Wyniki pomiarów zestawić w tablicy 1.5a.

Tablica 1.5a

Wielkości pomierzone Lp. Ua Ub Uc Iza Izb Izc Pza Pzb Pzc Iz2

V V V A A A W W W A 1 2 3 4 5 6

τp = . . . . . oC τk = . . . . . oC

♦ Opracowanie wyników próby stanu zwarcia

Tablica 1.5b

Wielkości obliczone Lp. U1 Iz Pz cos ϕz ∆PCup ∆PCud Rz Xz R1 R’2 R2 Xσ1 X’ σ2

V A W − W W Ω Ω Ω Ω Ω Ω Ω 1 2 3 4 5 6

W czasie pomiarów napięcia i prądy poszczególnych faz mogą się różnić między sobą. Ich wartości średnie, podane w tablicy 1.5a, należy obliczyć wg. następujących zależności: • napięcie zasilania:

[V] 3

UUU U cba

1++= (1.43)

• prąd zwarcia:

[A] 3

IIII zczbza

z++= (1.44a)

• znamionowe napięcie zwarcia (wartość prądu Iz = IN):

Page 18: WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI · 2013-07-02 · Kierunek Elektrotechnika Studia stacjonarne 1-szego stopnia semestr 3 Opracowali Mieczysław Ronkowski Grzegorz Kostro Michał

16 Ćwiczenie: Transformator trójfazowy

% 100 U

UU

N

zNzN% ==== (1.44b)

• moc zwarcia pobierana przez transformator:

[W] P +P+PP zczbzaz = (1.45a)

• znamionowa moc zwarcia (wartość prądu Iz = IN):

100S

PP

N

zNzN% ==== (1.45b)

• współczynnik mocy w stanie zwarcia transformatora:

cos zϕ =P

U Iz

z3 1

(1.46)

• straty podstawowe w miedzi uzwojeń dla temperatury τ (wydzielające się w uzwojeniach przy równomiernym przepływie prądu przez cały przekrój przewodu):

(((( )))) [W] P Cup ττ ϑ 22

123 RRI zz ++++====∆∆∆∆ (1.47)

przy czym rezystancje fazowe uzwojeń strony pierwotnej R1τ i wtórnej R2τ odpowiadające temperaturze τ obliczamy z zależności:

R [ ] 1 1

235235τ

ττ

=++

Rx

Ω (1.48)

R [ ] 2 2

235

235τ

ττ

=+

+R

x

Ω (1.49)

τ ττ τ

=śr =

+p k

2 (1.50)

τ − temperatura przy której wykonano pomiary strat, τx − temperatura pomiaru wartości rezystancji R1 oraz R2 (patrz p. 1.3 ćwiczenia 1), ϑz − przekładnia zwojowa transformatora.

• straty dodatkowe w miedzi uzwojeń dla temperatury τ (wywołane prądami wirowymi wewnątrz przewodów):

∆ ∆P [W]Cud ≈ −P Pz Cup (1.51)

• impedancja zwarcia transformatora:

ZU

I zz = 1 (1.52)

• rezystancja zwarcia transformatora:

R Zz z= cos zϕ (1.53)

• reaktancja zwarcia transformatora:

X Zz z= sin zϕ (1.54)

• rezystancja uzwojenia strony pierwotnej transformatora:

R Rz112≈ (1.55)

• zredukowana rezystancja uzwojenia strony wtórnej transformatora:

′ ≈R Rz212 (1.56)

• realna rezystancja uzwojenia strony wtórnej transformatora:

22

z

RR

ϑ′′′′

====2 (1.57)

• reaktancja rozproszenia uzwojenia strony pierwotnej transformatora:

Page 19: WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI · 2013-07-02 · Kierunek Elektrotechnika Studia stacjonarne 1-szego stopnia semestr 3 Opracowali Mieczysław Ronkowski Grzegorz Kostro Michał

M. Ronkowski, G. Kostro, M. Michna: 17 X X zσ1

12≈ (1.58)

• reaktancja rozproszenia uzwojenia strony wtórnej transformatora:

′ ≈X X zσ212 2

2

z

XX

ϑσ

σ′′′′

====2 (1.59)

• procentowe napięcie zwarcia transformatora:

10031

1 /

zN%

N

Nz

U

IZU ==== (1.60)

Uwag: Zależności (1.46), (1.52) obowiązują dla połączenia uzwojenia pierwotnego w gwiazdę (Y), a pomierzone napięcia i prądy są wielkościami fazowymi.

W praktyce wartości strat w uzwojeniach — pomierzone w temperaturze τ — przelicza się do umownej temperatury odniesienia τo (temperatury pracy – stanu nagrzania transformatora). Przeliczenia strat w uzwojeniach należy wykonać oddzielnie dla strat podstawowych i dodatkowych, ponieważ ze wzrostem temperatury pierwsze z nich rosną, natomiast drugie maleją. Straty podstawowe przelicza się do temperatury odniesienia τo wg. zależności:

∆ ∆P [W] Cup oτ τ

ττ

=++

PCupo235

235 (1.61)

∆ ∆P [W] Cud oτ τττ

=++

PCudo

235235

(1.62)

gdzie, temperatura odniesienia τo, np. dla klasy izolacji A, E, B wynosi 75oC, a dla klasy izolacji F, H wynosi 115oC.

Wyniki powyższych obliczeń zestawić w tablicy 1.5b.

2.6. Wyznaczenie sprawności transformatora metodą strat poszczególnych

♦ Definicja sprawności Sprawność transformatora określa jego własności energetyczne. Można ją określić jako stosunek mocy

czynnej oddanej P2 do mocy czynnej pobranej P1 przez transformator:

η =P

P [%]2

1

⋅100

Sprawność znamionową określa się przy znamionowych parametrach pracy, współczynniku mocy cos ϕ2 = 1, znamionowej wydajności urządzeń pomocniczych i przy temperaturze uzwojeń 75 oC (348,2 oK).

Sprawność transformatora jest na ogół duża – największa ze sprawności wszystkich urządzeń elektrycznych – osiąga wartości do 99%.

♦ Wyznaczenie sprawności W praktyce, sprawności transformatora wyznacza się metodą strat poszczególnych. Metoda ta polega

na określeniu strat w transformatorze w warunkach znamionowych. Sprawność zgodnie z definicją wynosi:

η = −+∑

∑1

2

∆∆

P

PP (1.63)

przy czym

∆ ∆ ∆P = P [W] Fe +∑ PCu (1.64)

gdzie:

∆P∑ − sumaryczne straty mocy czynnej w transformatorze,

∆PFe − straty w żelazie rdzenia, ∆PCu − straty w miedzi (uzwojeniach), P2 − moc czynna wydawana przez transformator.

Page 20: WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI · 2013-07-02 · Kierunek Elektrotechnika Studia stacjonarne 1-szego stopnia semestr 3 Opracowali Mieczysław Ronkowski Grzegorz Kostro Michał

18 Ćwiczenie: Transformator trójfazowy Straty w żelazie rdzenia należą do kategorii strat jałowych (stałych), a straty w miedzi do kategorii strat

obciążeniowych (zmiennych). Podstawą do określenia strat w zależnościach (1.63) i (1.64) są wyniki próby stanu jałowego i stanu

zwarcia transformatora (patrz p. 1.5 i 1.6 ćwiczenia 1). Straty w żelazie wyznacza się na podstawie charakterystyki stanu jałowego, natomiast straty w miedzi

wg. wzoru:

∆ ∆P [W]Cu = α 2 PCuN (1.65)

przy czym: ∆PCuN − znamionowe straty w miedzi w stanie nagrzanym transformatora,

α =I

I N

2

2

− stosunek obciążenia faktycznego do znamionowego.

Moc czynną P2 wyznacza się z zależności:

P S [W]2 N 2= ⋅ ⋅α ϕcos (1.66)

gdzie: SN − moc znamionowa transformatora, cos ϕ2 − współczynnik mocy odbioru.

Sprawność maksymalna transformatora występuje przy takim obciążeniu, przy którym straty w uzwojeniach równe są stratom w żelazie.

Typową charakterystykę sprawności transformatora przy stałym współczynniku mocy, przedstawiono na rys. 1.8.

I2 /I2N0

η [% ]

0 ,5 1 ,0

η m axη N

Rys.1.8. Charakterystyka sprawności transformatora dla cos ϕ2 = 0,8 ind.

2.7. Wyznaczenie zmiany napięcia

♦ Definicja zmiany napięcia Zmiana napięcia wyraża spadek wtórnego napięcia transformatora przy przejściu od stanu jałowego do

stanu obciążenia przy określonym współczynniku mocy, niezmienionym napięciu pierwotnym i niezmienionej częstotliwości. Zmianę tę określa się w procentach napięcia znamionowego:

100U 2

22%

o

o

U

UU −=∆ (1.67)

gdzie: U2o − napięcie wtórne w stanie jałowym, U2 − napięcie wtórne przy obciążeniu.

♦ Wyznaczenie zmiany napięcia Wartość procentową zmiany napięcia oblicza się z zależności przybliżonej:

[%] ) sin cos(U 2%2%% ϕϕα XR UU ±≈∆ (1.68)

gdzie: α =I

I N

1

1

100

1

1R%

fN

Nz

U

IRU = U

XU

z N

fNX%

I = 1

1

100 (1.69)

I1, I1N − prądy fazowe: obciążenia i znamionowy strony pierwotnej, U1fN − fazowe napięcie znamionowe strony pierwotnej,

Page 21: WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI · 2013-07-02 · Kierunek Elektrotechnika Studia stacjonarne 1-szego stopnia semestr 3 Opracowali Mieczysław Ronkowski Grzegorz Kostro Michał

M. Ronkowski, G. Kostro, M. Michna: 19 UR% − wartość procentowa spadku napicia na rezystancji zwarcia, UX% − wartość procentowa spadku napicia na reaktancji zwarcia.

Największa wartość zmiany napięcia transformatora równa jest procentowemu napięciu zwarcia transformatora.

Zależność zmiany napięcia transformatora o napięciu zwarcia 6% od charakteru obciążenia przedstawia rys. 1.9.

1

0

2

6∆U%max

∆U% [%]

4

0,5

-2

-4

-6

0ind. cosϕ20,50poj.

Rys. 1.9. Charakterystyka zmiany napięcia transformatora o napięciu zwarcia Uz% = 6%

3. ZADANIA 1. Dla badanego transformatora przy założeniu jednakowej przekładni zwojowej zϑ i dwóch różnych

układów połączeń uzwojeń wyznaczyć wartości przekładni napięciowej. Następnie sprawdzić czy wartości te spełniają zależności (1.19) do (1.24) oraz wyjaśnić ewentualne różnice.

2. Wykreślić charakterystyki stanu jałowego transformatora (por. rys. 1.4 ćwiczenia) i uzasadnić fizycznie oraz analitycznie ich kształt.

3. Wykreślić charakterystyki zwarcia badanego transformatora (por. rys. 1.6 ćwiczenia) i uzasadnić fizycznie oraz analitycznie ich kształt.

4. Wyznaczyć wartości procentowe: prądu stanu jałowego (także składowe), strat w żelazie i współczynnik mocy stanu jałowego, badanego transformatora dla warunków znamionowych.

5. Wyznaczyć wartości procentowe: napięcia zwarcia (także składowe), straty mocy w miedzi uzwojeń (z podziałem na straty podstawowe i dodatkowe) i współczynnik mocy stanu zwarcia, badanego transformatora dla warunków znamionowych (uwzględnić temperaturę odniesienia dla klasy izolacji transformatora).

6. Oblicz znamionowe straty w żelazie i w miedzi (wartości w [W] i [%]) badanego transformatora. Porównaj wartości obu strat – wyjaśnij występujące różnice między ich wartościami.

7. Obliczyć ustalony prąd zwarcia badanego transformatora zasilanego napięciem znamionowym (zastosować dwie metody obliczeń – w oparciu o impedancję zwarcia Zz i napięcie zwarcia Uz%).

8. Narysować i wyznaczyć parametry (przeliczone na stronę górnego napięcia) modelu obwodowego (schematu zastępczego) badanego transformatora dla warunków znamionowych. Wartości parametrów wyrazić zarówno w jednostkach bezwzględnych jak i względnych (procentach).

9. Sporządzić wykresy wartości parametrów modelu obwodowego badanego transformatora w funkcji napięcia zasilania U1: oddzielnie dla gałęzi magnesującej (podłużnej) i gałęzi zwarciowej (poprzecznej) schematu. Uzasadnić fizycznie oraz analitycznie ich kształt.

10. Sporządzić wykresy fazorowe badanego transformatora dla stanu jałowego. 11. Sporządzić wykresy fazorowe badanego transformatora dla stanu zwarcia. 12. Sporządzić wykres fazorowy badanego transformatora w stanie obciążenia, przy współczynniku mocy

cos ϕ2 = 0,8 ind. Transformator zasilany jest napięciem znamionowym i obciążony prądem znamionowym.

13. Sporządzić wykres fazorowy badanego transformatora w stanie obciążenia, przy współczynniku mocy cos ϕ2 = 0,8 poj. Transformator zasilany jest napięciem znamionowym i obciążony prądem znamionowym.

Page 22: WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI · 2013-07-02 · Kierunek Elektrotechnika Studia stacjonarne 1-szego stopnia semestr 3 Opracowali Mieczysław Ronkowski Grzegorz Kostro Michał

20 Ćwiczenie: Transformator trójfazowy 14. Sporządzić wykres krzywej zmiany napięcia badanego transformatora w funkcji współczynnika mocy

cos ϕ2 (((( ))))2/2/ 2 πϕπ ≤≤≤≤≤≤≤≤−−−− (por. rys. 1.9 ćwiczenia). Warunki zasilania i obciążenia jak w zada. 11.

Uzasadnić fizycznie wpływ charakteru obciążenia (cos ϕ2) na wartość zmiany napięcia. 15. Wyznaczyć znamionową wartość zmiany napięcia badanego transformatora dla wartości współczynnika

mocy cos ϕ2 = 0,8 ind. 16. Wyznaczyć znamionową wartość zmiany napięcia badanego transformatora dla wartości współczynnika

mocy cos ϕ2 = 0,8 poj. 17. Sporządzić wykres krzywej sprawności badanego transformatora (por. rys. 1.8 ćwiczenia) dla

znamionowych warunków zasilania i współczynnika mocy cos ϕ2 = 0,8 ind. Uzasadnić wpływ charakteru obciążenia (cos ϕ2) na charakter krzywej sprawności.

18. Dla badanego transformatora wyznaczyć wartość sprawności maksymalnej i znamionowej (dla cos ϕ2 = 1) przy znamionowych warunkach zasilania. Uzasadnić dlaczego transformatory buduje się przy założeniu maksymalnej sprawności dla obciążeń I2 < I2N.

4. PYTANIA KONTROLNE Pytania dotyczące budowy i teorii transformatora.

1. Podać rodzaje budowy transformatorów. Naszkicować rdzeń i uzwojenia, nazwać i podać funkcje podstawowych elementów transformatora.

2. Co to są wielkości pierwotne i wtórne, dolne i górne transformatora? 3. Podać definicję przekładni transformatora. 4. Podać różnicę między transformatorem idealnym a rzeczywistym. 5. Naszkicować rdzeń i uzwojenia i wyjaśnić zasadę działania transformatora. Podać jakie zjawiska są

podstawą jego budowy i działania. 6. Dla stanu jałowego narysować modele transformatora: fizyczny i obwodowy (schemat zastępczy). Podać

i wyjaśnić wzajemne relacje między wielkościami fizycznymi a zmiennymi i parametrami modelu obwodowego.

7. Dla stanu obciążenia narysować modele transformatora: fizyczny i obwodowy (schemat zastępczy). Podać i wyjaśnić wzajemne relacje między wielkościami fizycznymi a zmiennymi i parametrami modelu obwodowego.

8. Dla stanu zwarcia narysować modele transformatora: fizyczny i obwodowy (schemat zastępczy). Podać i wyjaśnić wzajemne relacje między wielkościami fizycznymi a zmiennymi i parametrami modelu obwodowego.

9. Podać i objaśnić podstawowe wielkości charakterystyczne i zależności dotyczące transformatorów (Io, Φm, Φσ1 Φσ2, E1, E2, zϑ , ϑ u , Iz, Uz, ∆PFe, ∆PCu).

10. Podać definicję sprawności transformatora. Od czego zależy jej wartość. Kiedy wystąpi sprawność maksymalna transformatora?

11. Podać definicję zmienności napięcia transformatora. Od czego zależy jej wartość. Kiedy wystąpi maksymalna zmienności napięcia transformatora? Pytania dotyczące przygotowania praktycznego do ćwiczenia

1. Podać najważniejsze dane tabliczki znamionowej transformatora. 2. Podać orientacyjne wartości procentowe dla transformatorów:

• spadku napięcia na rezystancji zwarcia, • prądu stanu jałowego, • napięcia zwarcia, • strat w rdzeniu (żelazie) i w uzwojeniach (miedzi) i relacje między ich wartościami, • sprawności.

3. Wymienić podstawowe próby transformatora. Jakie wielkości eksploatacyjne transformatora wyznacza się na podstawie wyników tych prób

4. Dane są wartości wielkości znamionowych transformatora. Dobrać zakresy woltomierza, amperomierza i watomierza do pomiarów stanu jałowego transformatora.

5. Dane są wartości wielkości znamionowych transformatora. Dobrać zakresy woltomierza, amperomierza i watomierza do pomiarów stanu zwarcia transformatora.

6. Na podstawie jakich prób wyznacza się parametry modelu obwodowego transformatora? Podać zależności między wynikami tych prób i parametrami modelu obwodowego transformatora.

Page 23: WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI · 2013-07-02 · Kierunek Elektrotechnika Studia stacjonarne 1-szego stopnia semestr 3 Opracowali Mieczysław Ronkowski Grzegorz Kostro Michał

M. Ronkowski, G. Kostro, M. Michna: 21 7. Wymienić i narysować podstawowe charakterystyki transformatora, podając współrzędne oraz wielkości

jakie należy utrzymywać stałe. 8. Z jaką dokładnością (wymagana klasa dokładności mierników) i dlaczego należy wyznaczyć przekładnię

transformatora?

5. LITERATURA POMOCNICZA 1. Fitzgerald A.E, Kingsley Ch. (Jr.), Umans S. D.: Electric Machinery. 6th ed. McGraw-Hill, New

York, 2003. 2. Latek W.: Zarys maszyn elektrycznych. WNT, W-wa 1974. 3. Latek W. : Badanie maszyn elektrycznych w przemyśle. WNT, W-wa 1979. 4. Manitius Z.: Transformatory (skrypt). Wyd. Pol. Gd., Gdańsk 1977. 5. Manitius Z.: Maszyny elektryczne. Cz. I. Wyd. Pol. Gd. Gdańsk 1982. 6. Matulewicz W.: Maszyny elektryczne. Podstawy. Wydawnictwo PG 2003. 7. Plamitzer A.: Maszyny elektryczne. Wyd. 7. WNT, W-wa 1992. 8. Praca zbiorowa (red. Manitius Z.): Laboratorium maszyn elektrycznych. Wyd. Pol. Gd., Gdańsk

1990. 9. Rafalski W., Ronkowski M., Zadania z maszyn elektrycznych, Cz. I: Transformatory i maszyny

asynchroniczne, skrypt, wyd. 4, Wyd. Politechniki Gdańskiej, 1994. 10. Ronkowski M., Michna M., Kostro G., Kutt F.: Maszyny elektryczne wokół nas: zastosowanie,

budowa, modelowanie, charakterystyki, projektowanie. (e-skrypt). Wyd. PG, Gdańsk, 2011. http://pbc.gda.pl/dlibra/docmetadata?id=16401&from=&dirids=1&ver_id=&lp=2&QI=

11. Roszczyk S.: Teoria maszyn elektrycznych. WNT, W-wa 1979. 12. Staszewski P., Urbański W.: Zagadnienia obliczeniowe w eksploatacji maszyn elektrycznych.

Oficyna Wyd. Politechniki Warszawskiej, Warszawa, 2009.

Ważniejsze Normy 1. PN-EN 60076-1:2002 Transformatory. Wymagania ogólne. 2. PN-E-81003:1996 Transformatory. Oznaczenia zacisków i zaczepów uzwojeń, rozmieszczenie

zacisków.

Ważniejsze adresy internetowe producentów/dystrybutorów 1 ABB Sp. z o.o., http://www.abb.pl/ProductGuide/ 2 ABB, www.abb.com/transformers 3 AREYA T&D Sp. z o.o. Zakład Transformatorów, www.areva-td.pl 4 AS ELEKTROTECHNIK, http://www.as-elektrotechnik.pl/index3.php 5 Fabryka Transformatorów w Żychlinie Sp. z o.o, http://www.ftz.pl 6 Noratel Sp. z o.o, www.noratel.pl