Newman_GIS poster

1
GIS Analysis of Landslides Near Rocky Mountain National Park, Colorado Connor Newman Department of Geological Sciences and Engineering GIS I Landslides are an important geomorphic process which have the capability to affect both human and natural systems. Landslides and other slope mass movements can be a9ributed to a number of factors including slope angle, aspect, and rock type. During September 2013 the Front Range area of Colorado received an extreme amount of rainfall, this precipitaGon and subsequent flooding caused numerous mass movements in the region. The area south of the town of Estes Park, on the edge of Rocky Mountain NaGonal Park was one of the most impacted areas. Numerous landslides occurred at a variety of scales , and the causaGve factors involved in these landslides has not yet been determined. IntroducGon Study Area Methods Results Conclusions References Cited Figure 1: Map of study area with Colorado map shown in inset. The current study area (seen in red on Figure 1 inset) is located on the northwestern extent of the Colorado Front Range (seen in blue on Figure 1), the most heavily populated area of Colorado. The study area contains three main lithologies with differing strength characterisGcs; granite, gneiss, and glacial driV. The study area also contains a wide variety of slope aspects and angles. GIS analysis was performed in order to determine what factors were associated with the majority of slope mass movements. GIS tools and skills uGlized were: digiGzing polygons; geodatabase feature class and feature dataset; aspect; slope; clip raster; mosaic raster; model builder; reclassify; raster to polygon; buffer line; and intersect. Number Area (km 2 ) % Area Total Landslides 21 0.648 N/A Landslide Sources 39 0.097 15 River 100 m Buffer 1 0.007 1.1 South Facing Sources 37 0.055 56 3060 Degree Slope Sources 37 0.068 70 Granite Sources 35 0.082 84 Glacial DriK Sources 2 0.005 5.2 Gneiss Sources 2 0.011 11 Figure 3: Processing example showing several layers created from DEM raster. Figure 2: Processing steps involved in idenTfying landslide mechanism. Figure 4: Map displaying complex nature and mulTple source points of landslides in north St. Vrain Canyon. Results from GIS analysis has idenGfied the primary causes of all 21 landslides idenGfied in the study area. Results show that landslides commonly have mulGple source areas, can be sourced from mulGple lithologies, and can display complex geometries. Findings of probable causes for landslides are summarized below. South facing slopes and slopes between 30 and 60 degrees contained the same number of landslide source areas, though source areas on 3060 degree slopes were larger. Granite is the lithology which most commonly contributes to landslides. Granite also made up the largest percentage of landslide source area. Proximity to rivers was not a major cause of landslides. Figure 5: Large landslide on Twin Sisters Mountain sourced from a combinaTon of granite and gneiss. Lan, H., Derek MarTn, C., & Lim, C. H. (2007). RockFall analyst: A GIS extension for threedimensional and spaTally distributed rockfall hazard modeling. Computers & Geosciences, 33(2), 262–279. doi:10.1016/ j.cageo.2006.05.013 Stock, G. M., Bawden, G. W., Green, J. K., Hanson, E., Downing, G., Collins, B. D., … Leslar, M. (2011). HighresoluTon threedimensional imaging and analysis of rock falls in Yosemite Valley, California. Geosphere, 7(2), 573–581. doi:10.1130/GES00617.1 Stock, G., Collins, B., Santaniello, D., Zimmer, V., Wieczorek, G., Snyder, J. (2013). Historical Rock Falls in Yosemite Na;onal Park , California (pp. 1–17).

Transcript of Newman_GIS poster

Page 1: Newman_GIS poster

GIS Analysis of Landslides Near Rocky Mountain National Park, Colorado Connor Newman

Department of Geological Sciences and Engineering GIS I

           Landslides  are  an  important  geomorphic  process  which  have  the  capability  to  affect  both  human  and  natural  systems.  Landslides  and  other  slope  mass  movements  can  be  a9ributed  to  a  number  of  factors  including  slope  angle,  aspect,  and  rock  type.            During  September  2013  the  Front  Range  area  of  Colorado  received  an  extreme  amount  of  rainfall,  this  precipitaGon  and  subsequent  flooding  caused  numerous  mass  movements  in  the  region.  The  area  south  of  the  town  of  Estes  Park,  on  the  edge  of  Rocky  Mountain  NaGonal  Park  was  one  of  the  most  impacted  areas.  Numerous  landslides  occurred  at  a  variety  of  scales  ,  and  the  causaGve  factors  involved  in  these  landslides  has  not    yet  been  determined.  

IntroducGon  

Study  Area  

Methods  

Results  

Conclusions  

References  Cited      

                             Figure  1:  Map  of  study  area  with    Colorado  map  shown  in  inset.  

                                 The  current  study  area  (seen  in  red  on  Figure  1  inset)  is  located  on  the  north-­‐western  extent  of  the  Colorado  Front  Range  (seen  in  blue  on  Figure  1),  the  most  heavily  populated  area  of  Colorado.  The  study  area  contains  three  main  lithologies  with  differing  strength  characterisGcs;  granite,  gneiss,  and  glacial  driV.  The  study  area  also  contains  a  wide  variety  of  slope  aspects  and  angles.    

             GIS  analysis  was  performed  in  order  to  determine  what  factors  were  associated  with  the  majority  of  slope  mass  movements.  GIS  tools    and  skills  uGlized  were:  digiGzing  polygons;  geodatabase  feature  class  and  feature  dataset;  aspect;  slope;  clip  raster;  mosaic  raster;  model  builder;  reclassify;  raster  to  polygon;    buffer  line;  and  intersect.    

Number  Area  (km2)   %    Area  

Total  Landslides   21   0.648   N/A  

Landslide  Sources   39   0.097   15  

River  100  m  Buffer   1   0.007   1.1  

South  Facing  Sources   37   0.055   56  

30-­‐60  Degree  Slope  Sources   37   0.068   70  

Granite  Sources   35   0.082   84  

Glacial  DriK  Sources   2   0.005   5.2  

Gneiss  Sources   2   0.011   11  

Figure  3:  Processing  example  showing  several  layers  created  from  DEM  raster.  

Figure  2:  Processing  steps  involved  in  idenTfying  landslide  mechanism.  

Figure  4:  Map  displaying  complex  nature  and  mulTple  source  points  of  landslides  in  north  St.  Vrain  Canyon.  

                 Results  from  GIS  analysis  has  idenGfied  the  primary  causes  of  all  21  landslides  idenGfied  in  the  study  area.  Results  show  that  landslides  commonly  have  mulGple  source  areas,  can  be  sourced  from  mulGple  lithologies,  and  can  display  complex  geometries.  Findings  of  probable  causes  for  landslides  are  summarized  below.  

-­‐South  facing  slopes  and  slopes  between  30  and  60  degrees  contained  the  same  number  of  landslide  source  areas,  though  source  areas  on  30-­‐60  degree  slopes  were  larger.  -­‐Granite  is  the  lithology  which  most  commonly  contributes  to  landslides.  Granite  also  made  up  the  largest  percentage  of  landslide  source  area.  -­‐Proximity  to  rivers  was  not  a  major  cause  of  landslides.   Figure  5:  Large  landslide  on  Twin  Sisters  Mountain  

sourced  from  a  combinaTon  of  granite  and  gneiss.    

Lan,  H.,  Derek  MarTn,  C.,  &  Lim,  C.  H.  (2007).  RockFall  analyst:  A  GIS  extension  for  three-­‐dimensional  and  spaTally  distributed  rockfall  hazard  modeling.  Computers  &  Geosciences,  33(2),  262–279.  doi:10.1016/j.cageo.2006.05.013

Stock,  G.  M.,  Bawden,  G.  W.,  Green,  J.  K.,  Hanson,  E.,  Downing,  G.,      Collins,  B.  D.,  …  Leslar,  M.  (2011).  High-­‐resoluTon  three-­‐dimensional  imaging  and  analysis  of  rock  falls  in  Yosemite  Valley,  California.  Geosphere,  7(2),  573–581.  doi:10.1130/GES00617.1

Stock,  G.,  Collins,  B.,  Santaniello,  D.,  Zimmer,  V.,  Wieczorek,  G.,  Snyder,  J.  (2013).  Historical  Rock  Falls  in  Yosemite  Na;onal  Park  ,  California  (pp.  1–17).