Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

84
Introduction Mathematical preliminaries Locally covariant quantum field theory Quantum gravity Conclusions Lokalnie kowariantna kwantowa teoria pola jako podej´ scie do kwantowej grawitacji Katarzyna Rejzner II. Institute for Theoretical Physics, Hamburg University Kraków, 08.01.2010 Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Transcript of Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

Page 1: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Lokalnie kowariantna kwantowa teoria pola jakopodejscie do kwantowej grawitacji

Katarzyna Rejzner

II. Institute for Theoretical Physics, Hamburg University

Kraków, 08.01.2010

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 2: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Outline of the talk

1 Introduction

2 Mathematical preliminariesCategory theory

3 Locally covariant quantum field theoryQFT on curved spacetimeLocal covariance

4 Quantum gravityConservative approachBackground independence

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 3: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Problems with quantum gravity

Spacetime is dynamical

"Points" lost their meaning

It is not clear what should be anobservable

"background independance"

Renormalizability

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 4: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Problems with quantum gravity

Spacetime is dynamical

"Points" lost their meaning

It is not clear what should be anobservable

"background independance"

Renormalizability

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 5: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Problems with quantum gravity

Spacetime is dynamical

"Points" lost their meaning

It is not clear what should be anobservable

"background independance"

Renormalizability

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 6: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Problems with quantum gravity

Spacetime is dynamical

"Points" lost their meaning

It is not clear what should be anobservable

"background independance"

Renormalizability

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 7: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Problems with quantum gravity

Spacetime is dynamical

"Points" lost their meaning

It is not clear what should be anobservable

"background independance"

Renormalizability

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 8: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Problems with quantum gravity

Spacetime is dynamical

"Points" lost their meaning

It is not clear what should be anobservable

"background independance"

Renormalizability

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 9: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Problems with quantum gravity

Spacetime is dynamical

"Points" lost their meaning

It is not clear what should be anobservable

"background independance"

Renormalizability

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 10: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Problems with quantum gravity

Spacetime is dynamical

"Points" lost their meaning

It is not clear what should be anobservable

"background independance"

Renormalizability

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 11: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Objectives

formulate a consistent theory that is valid in a given physicalsituation

answer some interpretational questions

find a relation to experiment

understand better problems of other approaches

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 12: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Objectives

formulate a consistent theory that is valid in a given physicalsituation

answer some interpretational questions

find a relation to experiment

understand better problems of other approaches

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 13: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Objectives

formulate a consistent theory that is valid in a given physicalsituation

answer some interpretational questions

find a relation to experiment

understand better problems of other approaches

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 14: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Objectives

formulate a consistent theory that is valid in a given physicalsituation

answer some interpretational questions

find a relation to experiment

understand better problems of other approaches

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 15: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Category theory

Category

A category C consists ofa class Obj(C) of objects,a class hom(C) of morphisms between the objects. Eachmorphism f has a unique source object a and target object bwhere a, b ∈ Obj(C).Notation: if f : a→ b then we write f ∈ hom(a, b)

for a, b, c ∈ Obj(C), a binary operationhom(a, b)× hom(b, c)→ hom(a, c) called composition ofmorphisms. Notation: f ◦ g.

such that the following axioms hold:associativity if f : a→ b, g : b→ c and h : c→ d thenh ◦ (g ◦ f ) = (h ◦ g) ◦ fidentity for every object c, there exists a morphism idc : c→ c,such that for every hom(a, b) 3 f we have: idb ◦ f = f ◦ ida=f.

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 16: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Category theory

Category

A category C consists ofa class Obj(C) of objects,a class hom(C) of morphisms between the objects. Eachmorphism f has a unique source object a and target object bwhere a, b ∈ Obj(C).Notation: if f : a→ b then we write f ∈ hom(a, b)

for a, b, c ∈ Obj(C), a binary operationhom(a, b)× hom(b, c)→ hom(a, c) called composition ofmorphisms. Notation: f ◦ g.

such that the following axioms hold:associativity if f : a→ b, g : b→ c and h : c→ d thenh ◦ (g ◦ f ) = (h ◦ g) ◦ fidentity for every object c, there exists a morphism idc : c→ c,such that for every hom(a, b) 3 f we have: idb ◦ f = f ◦ ida=f.

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 17: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Category theory

Category

A category C consists ofa class Obj(C) of objects,a class hom(C) of morphisms between the objects. Eachmorphism f has a unique source object a and target object bwhere a, b ∈ Obj(C).Notation: if f : a→ b then we write f ∈ hom(a, b)

for a, b, c ∈ Obj(C), a binary operationhom(a, b)× hom(b, c)→ hom(a, c) called composition ofmorphisms. Notation: f ◦ g.

such that the following axioms hold:associativity if f : a→ b, g : b→ c and h : c→ d thenh ◦ (g ◦ f ) = (h ◦ g) ◦ fidentity for every object c, there exists a morphism idc : c→ c,such that for every hom(a, b) 3 f we have: idb ◦ f = f ◦ ida=f.

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 18: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Category theory

Category

A category C consists ofa class Obj(C) of objects,a class hom(C) of morphisms between the objects. Eachmorphism f has a unique source object a and target object bwhere a, b ∈ Obj(C).Notation: if f : a→ b then we write f ∈ hom(a, b)

for a, b, c ∈ Obj(C), a binary operationhom(a, b)× hom(b, c)→ hom(a, c) called composition ofmorphisms. Notation: f ◦ g.

such that the following axioms hold:associativity if f : a→ b, g : b→ c and h : c→ d thenh ◦ (g ◦ f ) = (h ◦ g) ◦ fidentity for every object c, there exists a morphism idc : c→ c,such that for every hom(a, b) 3 f we have: idb ◦ f = f ◦ ida=f.

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 19: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Category theory

Category

A category C consists ofa class Obj(C) of objects,a class hom(C) of morphisms between the objects. Eachmorphism f has a unique source object a and target object bwhere a, b ∈ Obj(C).Notation: if f : a→ b then we write f ∈ hom(a, b)

for a, b, c ∈ Obj(C), a binary operationhom(a, b)× hom(b, c)→ hom(a, c) called composition ofmorphisms. Notation: f ◦ g.

such that the following axioms hold:associativity if f : a→ b, g : b→ c and h : c→ d thenh ◦ (g ◦ f ) = (h ◦ g) ◦ fidentity for every object c, there exists a morphism idc : c→ c,such that for every hom(a, b) 3 f we have: idb ◦ f = f ◦ ida=f.

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 20: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Category theory

Functor

Let C and D be categories. A covariant functor F from C to D is amapping that:

associates to each object c ∈ Obj(C) an object F (c) ∈ Obj(D),

associates to each morphism hom(C) 3 f : a→ b ∈, a morphismhom(D) 3 F (f ) : F (a)→ F (b)

such that the following two conditions hold:

F (idc) = idF (c) for every object c ∈ C.

F (g ◦ f ) = F (g) ◦F (f ) for all morphisms f : a→ b andg : b→ c.

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 21: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Category theory

Functor

Let C and D be categories. A covariant functor F from C to D is amapping that:

associates to each object c ∈ Obj(C) an object F (c) ∈ Obj(D),

associates to each morphism hom(C) 3 f : a→ b ∈, a morphismhom(D) 3 F (f ) : F (a)→ F (b)

such that the following two conditions hold:

F (idc) = idF (c) for every object c ∈ C.

F (g ◦ f ) = F (g) ◦F (f ) for all morphisms f : a→ b andg : b→ c.

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 22: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Category theory

Functor

Let C and D be categories. A covariant functor F from C to D is amapping that:

associates to each object c ∈ Obj(C) an object F (c) ∈ Obj(D),

associates to each morphism hom(C) 3 f : a→ b ∈, a morphismhom(D) 3 F (f ) : F (a)→ F (b)

such that the following two conditions hold:

F (idc) = idF (c) for every object c ∈ C.

F (g ◦ f ) = F (g) ◦F (f ) for all morphisms f : a→ b andg : b→ c.

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 23: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Category theory

Functor

Let C and D be categories. A covariant functor F from C to D is amapping that:

associates to each object c ∈ Obj(C) an object F (c) ∈ Obj(D),

associates to each morphism hom(C) 3 f : a→ b ∈, a morphismhom(D) 3 F (f ) : F (a)→ F (b)

such that the following two conditions hold:

F (idc) = idF (c) for every object c ∈ C.

F (g ◦ f ) = F (g) ◦F (f ) for all morphisms f : a→ b andg : b→ c.

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 24: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Category theory

Functor

Let C and D be categories. A contravariant functor F from C to D isa mapping that:

associates to each object c ∈ Obj(C) an object F (c) ∈ Obj(D),

associates to each morphism hom(C) 3 f : a→ b, a morphismhom(D) 3 F (f ) : F (a)→ F (b)

such that the following two conditions hold:

F (idc) = idF (c) for every object c ∈ C.

F (g ◦ f ) = F (f ) ◦F (g) for all morphisms f : a→ b andg : b→ c.

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 25: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Category theory

Functor

Let C and D be categories. A contravariant functor F from C to D isa mapping that:

associates to each object c ∈ Obj(C) an object F (c) ∈ Obj(D),

associates to each morphism hom(C) 3 f : a→ b, a morphismhom(D) 3 F (f ) : F (a)→ F (b)

such that the following two conditions hold:

F (idc) = idF (c) for every object c ∈ C.

F (g ◦ f ) = F (f ) ◦F (g) for all morphisms f : a→ b andg : b→ c.

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 26: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Category theory

Functor

Let C and D be categories. A contravariant functor F from C to D isa mapping that:

associates to each object c ∈ Obj(C) an object F (c) ∈ Obj(D),

associates to each morphism hom(C) 3 f : a→ b, a morphismhom(D) 3 F (f ) : F (a)→ F (b)

such that the following two conditions hold:

F (idc) = idF (c) for every object c ∈ C.

F (g ◦ f ) = F (f ) ◦F (g) for all morphisms f : a→ b andg : b→ c.

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 27: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Category theory

Functor

Let C and D be categories. A contravariant functor F from C to D isa mapping that:

associates to each object c ∈ Obj(C) an object F (c) ∈ Obj(D),

associates to each morphism hom(C) 3 f : a→ b, a morphismhom(D) 3 F (f ) : F (a)→ F (b)

such that the following two conditions hold:

F (idc) = idF (c) for every object c ∈ C.

F (g ◦ f ) = F (f ) ◦F (g) for all morphisms f : a→ b andg : b→ c.

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 28: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Category theory

Functor

Covariance:a

f−−−−→ b

F

y yF

F (a)F (f )−−−−→ F (b)

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 29: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Category theory

Natural transformation

Let F and G be functors between categories C and D, then a naturaltransformation η from F to G associates to every object a ∈ C amorphism hom(D) 3 ηa : F (a)→ G (a), such that for everymorphism C 3 f : a→ b we have:

ηb ◦F (f ) = G (f ) ◦ ηa

This equation can be expressed by the commutative diagram:

F (a)F (f )−−−−→ F (b)

ηa

y yηb

G (a)G (f )−−−−→ G (b)

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 30: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

QFT on curved spacetimeLocal covariance

Algebraic formulation

QFT on Minkowski spacetime can be formalized with the use ofHaag-Kastler axioms. Main features of this framework:

Theory formulated in terms of nets ofC∗-algebras (algebras of observables)associated to subsets of Minkowskispacetime: A(O), O ∈ M.

Physical interpretation through states(functionals on observables’ algebras).

There is a special state, that respectssymmetries of M: vacuum state.

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 31: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

QFT on curved spacetimeLocal covariance

Algebraic formulation

QFT on Minkowski spacetime can be formalized with the use ofHaag-Kastler axioms. Main features of this framework:

Theory formulated in terms of nets ofC∗-algebras (algebras of observables)associated to subsets of Minkowskispacetime: A(O), O ∈ M.

Physical interpretation through states(functionals on observables’ algebras).

There is a special state, that respectssymmetries of M: vacuum state.

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 32: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

QFT on curved spacetimeLocal covariance

Algebraic formulation

QFT on Minkowski spacetime can be formalized with the use ofHaag-Kastler axioms. Main features of this framework:

Theory formulated in terms of nets ofC∗-algebras (algebras of observables)associated to subsets of Minkowskispacetime: A(O), O ∈ M.

Physical interpretation through states(functionals on observables’ algebras).

There is a special state, that respectssymmetries of M: vacuum state.

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 33: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

QFT on curved spacetimeLocal covariance

Algebraic formulation

QFT on Minkowski spacetime can be formalized with the use ofHaag-Kastler axioms. Main features of this framework:

Theory formulated in terms of nets ofC∗-algebras (algebras of observables)associated to subsets of Minkowskispacetime: A(O), O ∈ M.

Physical interpretation through states(functionals on observables’ algebras).

There is a special state, that respectssymmetries of M: vacuum state.

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 34: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

QFT on curved spacetimeLocal covariance

Algebraic formulation

QFT on Minkowski spacetime can be formalized with the use ofHaag-Kastler axioms. Main features of this framework:

Theory formulated in terms of nets ofC∗-algebras (algebras of observables)associated to subsets of Minkowskispacetime: A(O), O ∈ M.

Physical interpretation through states(functionals on observables’ algebras).

There is a special state, that respectssymmetries of M: vacuum state.

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 35: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

QFT on curved spacetimeLocal covariance

Algebraic formulation

QFT on Minkowski spacetime can be formalized with the use ofHaag-Kastler axioms. Main features of this framework:

Theory formulated in terms of nets ofC∗-algebras (algebras of observables)associated to subsets of Minkowskispacetime: A(O), O ∈ M.

Physical interpretation through states(functionals on observables’ algebras).

There is a special state, that respectssymmetries of M: vacuum state.

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 36: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

QFT on curved spacetimeLocal covariance

QFT on curved spacetime

Important insights:

Dimock: Haag-Kastler axioms for globally hyperbolicspacetimes, covariance for isometric diffeomorphisms

Kay: Hadamard condition as a local characterization ofadmissible states

Radzikowski (followed by Köhler): Hadamard conditionformulated in terms of wave-front sets.

Methods of microlocal analysis applied to QFT on curvedspacetime (Fredenhagen, Brunetti, . . . )

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 37: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

QFT on curved spacetimeLocal covariance

QFT on curved spacetime

Important insights:

Dimock: Haag-Kastler axioms for globally hyperbolicspacetimes, covariance for isometric diffeomorphisms

Kay: Hadamard condition as a local characterization ofadmissible states

Radzikowski (followed by Köhler): Hadamard conditionformulated in terms of wave-front sets.

Methods of microlocal analysis applied to QFT on curvedspacetime (Fredenhagen, Brunetti, . . . )

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 38: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

QFT on curved spacetimeLocal covariance

QFT on curved spacetime

Important insights:

Dimock: Haag-Kastler axioms for globally hyperbolicspacetimes, covariance for isometric diffeomorphisms

Kay: Hadamard condition as a local characterization ofadmissible states

Radzikowski (followed by Köhler): Hadamard conditionformulated in terms of wave-front sets.

Methods of microlocal analysis applied to QFT on curvedspacetime (Fredenhagen, Brunetti, . . . )

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 39: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

QFT on curved spacetimeLocal covariance

QFT on curved spacetime

Important insights:

Dimock: Haag-Kastler axioms for globally hyperbolicspacetimes, covariance for isometric diffeomorphisms

Kay: Hadamard condition as a local characterization ofadmissible states

Radzikowski (followed by Köhler): Hadamard conditionformulated in terms of wave-front sets.

Methods of microlocal analysis applied to QFT on curvedspacetime (Fredenhagen, Brunetti, . . . )

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 40: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

QFT on curved spacetimeLocal covariance

Local covariance

Ideas developed recently by: Brunetti-Fredenhagen-Verch,Hollands-Wald.

Application of category theory provides a formulation whichdoesn’t fix the background

One constructs the theory simultaneously on all spacetimes (of agiven class) in a coherent way

The theory is fixed by a covariant functor between certaincategories

Fields are natural transformations

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 41: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

QFT on curved spacetimeLocal covariance

Local covariance

Ideas developed recently by: Brunetti-Fredenhagen-Verch,Hollands-Wald.

Application of category theory provides a formulation whichdoesn’t fix the background

One constructs the theory simultaneously on all spacetimes (of agiven class) in a coherent way

The theory is fixed by a covariant functor between certaincategories

Fields are natural transformations

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 42: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

QFT on curved spacetimeLocal covariance

Local covariance

Ideas developed recently by: Brunetti-Fredenhagen-Verch,Hollands-Wald.

Application of category theory provides a formulation whichdoesn’t fix the background

One constructs the theory simultaneously on all spacetimes (of agiven class) in a coherent way

The theory is fixed by a covariant functor between certaincategories

Fields are natural transformations

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 43: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

QFT on curved spacetimeLocal covariance

Local covariance

Ideas developed recently by: Brunetti-Fredenhagen-Verch,Hollands-Wald.

Application of category theory provides a formulation whichdoesn’t fix the background

One constructs the theory simultaneously on all spacetimes (of agiven class) in a coherent way

The theory is fixed by a covariant functor between certaincategories

Fields are natural transformations

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 44: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

QFT on curved spacetimeLocal covariance

Local covariance

Ideas developed recently by: Brunetti-Fredenhagen-Verch,Hollands-Wald.

Application of category theory provides a formulation whichdoesn’t fix the background

One constructs the theory simultaneously on all spacetimes (of agiven class) in a coherent way

The theory is fixed by a covariant functor between certaincategories

Fields are natural transformations

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 45: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

QFT on curved spacetimeLocal covariance

Categories

Man Obj(Man): all four-dimensional, globally hyperbolic orientedand time-oriented spacetimes (M, g).Morphisms: Isometric embeddings that fulfill:• Given (M1, g1), (M2, g2) ∈ Obj(Man), for any causal curveγ : [a, b]→ M2, if γ(a), γ(b) ∈ ψ(M1) then for all t ∈]a, b[ wehave: γ(t) ∈ ψ(M1).

• Preserving orientation and time-orientation of the embeddedspacetime.

Alg Obj(Alg): C∗ unital algebrasMorphisms: faithful, unit-preserving ∗-homomorphisms.

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 46: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

QFT on curved spacetimeLocal covariance

Categories

Man Obj(Man): all four-dimensional, globally hyperbolic orientedand time-oriented spacetimes (M, g).Morphisms: Isometric embeddings that fulfill:• Given (M1, g1), (M2, g2) ∈ Obj(Man), for any causal curveγ : [a, b]→ M2, if γ(a), γ(b) ∈ ψ(M1) then for all t ∈]a, b[ wehave: γ(t) ∈ ψ(M1).

• Preserving orientation and time-orientation of the embeddedspacetime.

Alg Obj(Alg): C∗ unital algebrasMorphisms: faithful, unit-preserving ∗-homomorphisms.

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 47: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

QFT on curved spacetimeLocal covariance

Categories

Man Obj(Man): all four-dimensional, globally hyperbolic orientedand time-oriented spacetimes (M, g).Morphisms: Isometric embeddings that fulfill:• Given (M1, g1), (M2, g2) ∈ Obj(Man), for any causal curveγ : [a, b]→ M2, if γ(a), γ(b) ∈ ψ(M1) then for all t ∈]a, b[ wehave: γ(t) ∈ ψ(M1).

• Preserving orientation and time-orientation of the embeddedspacetime.

Alg Obj(Alg): C∗ unital algebrasMorphisms: faithful, unit-preserving ∗-homomorphisms.

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 48: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

QFT on curved spacetimeLocal covariance

Categories

Man Obj(Man): all four-dimensional, globally hyperbolic orientedand time-oriented spacetimes (M, g).Morphisms: Isometric embeddings that fulfill:• Given (M1, g1), (M2, g2) ∈ Obj(Man), for any causal curveγ : [a, b]→ M2, if γ(a), γ(b) ∈ ψ(M1) then for all t ∈]a, b[ wehave: γ(t) ∈ ψ(M1).

• Preserving orientation and time-orientation of the embeddedspacetime.

Alg Obj(Alg): C∗ unital algebrasMorphisms: faithful, unit-preserving ∗-homomorphisms.

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 49: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

QFT on curved spacetimeLocal covariance

Categories

Man Obj(Man): all four-dimensional, globally hyperbolic orientedand time-oriented spacetimes (M, g).Morphisms: Isometric embeddings that fulfill:• Given (M1, g1), (M2, g2) ∈ Obj(Man), for any causal curveγ : [a, b]→ M2, if γ(a), γ(b) ∈ ψ(M1) then for all t ∈]a, b[ wehave: γ(t) ∈ ψ(M1).

• Preserving orientation and time-orientation of the embeddedspacetime.

Alg Obj(Alg): C∗ unital algebrasMorphisms: faithful, unit-preserving ∗-homomorphisms.

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 50: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

QFT on curved spacetimeLocal covariance

Categories

Man Obj(Man): all four-dimensional, globally hyperbolic orientedand time-oriented spacetimes (M, g).Morphisms: Isometric embeddings that fulfill:• Given (M1, g1), (M2, g2) ∈ Obj(Man), for any causal curveγ : [a, b]→ M2, if γ(a), γ(b) ∈ ψ(M1) then for all t ∈]a, b[ wehave: γ(t) ∈ ψ(M1).

• Preserving orientation and time-orientation of the embeddedspacetime.

Alg Obj(Alg): C∗ unital algebrasMorphisms: faithful, unit-preserving ∗-homomorphisms.

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 51: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

QFT on curved spacetimeLocal covariance

Categories

Man Obj(Man): all four-dimensional, globally hyperbolic orientedand time-oriented spacetimes (M, g).Morphisms: Isometric embeddings that fulfill:• Given (M1, g1), (M2, g2) ∈ Obj(Man), for any causal curveγ : [a, b]→ M2, if γ(a), γ(b) ∈ ψ(M1) then for all t ∈]a, b[ wehave: γ(t) ∈ ψ(M1).

• Preserving orientation and time-orientation of the embeddedspacetime.

Alg Obj(Alg): C∗ unital algebrasMorphisms: faithful, unit-preserving ∗-homomorphisms.

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 52: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

QFT on curved spacetimeLocal covariance

Categories

Man Obj(Man): all four-dimensional, globally hyperbolic orientedand time-oriented spacetimes (M, g).Morphisms: Isometric embeddings that fulfill:• Given (M1, g1), (M2, g2) ∈ Obj(Man), for any causal curveγ : [a, b]→ M2, if γ(a), γ(b) ∈ ψ(M1) then for all t ∈]a, b[ wehave: γ(t) ∈ ψ(M1).

• Preserving orientation and time-orientation of the embeddedspacetime.

Alg Obj(Alg): C∗ unital algebrasMorphisms: faithful, unit-preserving ∗-homomorphisms.

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 53: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

QFT on curved spacetimeLocal covariance

Locally covariant quantum field theory

A locally covariant quantum field theory is defined as a covariantfunctor A between Man and Alg. This means that the followingdiagram commutes for all morphismsψ ∈ homMan((M1, g1), (M2, g2)) and all objects of Man:

(M1, g)ψ−−−−→ (M2, g′)

A

y yA

A (M1, g)A (ψ)−−−−→ A (M2, g′)

Denoting αψ ≡ A (ψ), the covariance property reads:

αψ′ ◦ αψ = αψ′◦ψ , αidM = idA (M,g) ,

for all morphisms ψ′ from homMan((M2, g2), (M3, g3)),ψ ∈ homMan((M1, g1), (M2, g2)) and all objects of Man.

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 54: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

QFT on curved spacetimeLocal covariance

Further axioms

One can also include two further axioms which are important in QFT:causality and time-slice axiom.

Causality: If there exist morphismsψj ∈ homMan((Mj, gj), (M, g)), j = 1, 2, such that the setsψ1(M1) and ψ2(M2) are causally separated in (M, g), then:

[αψ1(A (M1, g1)), αψ2(A (M2, g2))] = {0},

where [., .] is the commutator of given C∗ algebras.

Time-slice axiom: If the morphismψ ∈ homMan((M, g), (M′, g′)) is such that ψ(M) contains aCauchy-surface in (M′, g′), then αψ is an isomorphism.

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 55: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

QFT on curved spacetimeLocal covariance

Further axioms

One can also include two further axioms which are important in QFT:causality and time-slice axiom.

Causality: If there exist morphismsψj ∈ homMan((Mj, gj), (M, g)), j = 1, 2, such that the setsψ1(M1) and ψ2(M2) are causally separated in (M, g), then:

[αψ1(A (M1, g1)), αψ2(A (M2, g2))] = {0},

where [., .] is the commutator of given C∗ algebras.

Time-slice axiom: If the morphismψ ∈ homMan((M, g), (M′, g′)) is such that ψ(M) contains aCauchy-surface in (M′, g′), then αψ is an isomorphism.

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 56: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

QFT on curved spacetimeLocal covariance

Fields

Let D be a functor that associates to each spacetimeM a space of testfunctions D(M) ∈ Obj(Test). A field Φ is defined as a naturaltransformation between D and A . To any object (M, g) ∈Man itassociates a morphism Φ(M,g) : D(M, g)→ A (M, g) in such a way,that for each given isometric embedding χ : (M1, g1) −→ (M2, g2)following diagram commutes

D(M1, g1)Φ(M1,g1)−−−−−→ A (M1, g1)

χ∗

y yαχD(M2, g2)

Φ(M2,g2)−−−−−→ A (M2, g2)

where χ∗ is the push forward under D . This means:

αχ ◦ Φ(M1,g1) = Φ(M2,g2) ◦ χ∗ .

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 57: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Conservative approachBackground independence

Perturbative quantum gravity

splitting a metric gµν into backgroundmetric ηµν and fluctuation hµν :

gµν = ηµν + hµν

The fluctuation metric is to be quantized

The renormalization scheme:Epstein-Glaser renormalization (valid infinite order).

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 58: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Conservative approachBackground independence

Perturbative quantum gravity

splitting a metric gµν into backgroundmetric ηµν and fluctuation hµν :

gµν = ηµν + hµν

The fluctuation metric is to be quantized

The renormalization scheme:Epstein-Glaser renormalization (valid infinite order).

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 59: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Conservative approachBackground independence

Perturbative quantum gravity

splitting a metric gµν into backgroundmetric ηµν and fluctuation hµν :

gµν = ηµν + hµν

The fluctuation metric is to be quantized

The renormalization scheme:Epstein-Glaser renormalization (valid infinite order).

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 60: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Conservative approachBackground independence

Perturbative quantum gravity

splitting a metric gµν into backgroundmetric ηµν and fluctuation hµν :

gµν = ηµν + hµν

The fluctuation metric is to be quantized

The renormalization scheme:Epstein-Glaser renormalization (valid infinite order).

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 61: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Conservative approachBackground independence

Perturbative quantum gravity

splitting a metric gµν into backgroundmetric ηµν and fluctuation hµν :

gµν = ηµν + hµν

The fluctuation metric is to be quantized

The renormalization scheme:Epstein-Glaser renormalization (valid infinite order).

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 62: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Conservative approachBackground independence

Perturbative quantum gravity

splitting a metric gµν into backgroundmetric ηµν and fluctuation hµν :

gµν = ηµν + hµν

The fluctuation metric is to be quantized

The renormalization scheme:Epstein-Glaser renormalization (valid infinite order).

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 63: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Conservative approachBackground independence

Relative Cauchy evolution

Let N+ and N− be two spacetimes thatembed into two other spacetimes M1 andM2 around Cauchy surfaces, via causalembeddings given by χk,±, k = 1, 2.

Then β = αχ1+α−1χ2+

αχ2−α−1χ1− is an

automorphism of A (M1).

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 64: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Conservative approachBackground independence

Relative Cauchy evolution

Let N+ and N− be two spacetimes thatembed into two other spacetimes M1 andM2 around Cauchy surfaces, via causalembeddings given by χk,±, k = 1, 2.

Then β = αχ1+α−1χ2+

αχ2−α−1χ1− is an

automorphism of A (M1).

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 65: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Conservative approachBackground independence

Relative Cauchy evolution

Let N+ and N− be two spacetimes thatembed into two other spacetimes M1 andM2 around Cauchy surfaces, via causalembeddings given by χk,±, k = 1, 2.

Then β = αχ1+α−1χ2+

αχ2−α−1χ1− is an

automorphism of A (M1).

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 66: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Conservative approachBackground independence

Relative Cauchy evolution

Let N+ and N− be two spacetimes thatembed into two other spacetimes M1 andM2 around Cauchy surfaces, via causalembeddings given by χk,±, k = 1, 2.

Then β = αχ1+α−1χ2+

αχ2−α−1χ1− is an

automorphism of A (M1).

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 67: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Conservative approachBackground independence

Relative Cauchy evolution

Let N+ and N− be two spacetimes thatembed into two other spacetimes M1 andM2 around Cauchy surfaces, via causalembeddings given by χk,±, k = 1, 2.

Then β = αχ1+α−1χ2+

αχ2−α−1χ1− is an

automorphism of A (M1).

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 68: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Conservative approachBackground independence

Background independence

Let M1 = (M, g1) and M2 = (M, g2),where (g1)µν and (g2)µν differ by a(compactly supported) symmetric tensorhµν withsupp(h) ∩ J+(N+) ∩ J−(N−) = ∅,the automorphism depends only on thespacetime between the two Cauchysurfaces

Θµν(x).=

δβh

δhµν(x)|h=0 is a derivation

valued distribution which is covariantlyconserved

background independance condition:Θµν = 0

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 69: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Conservative approachBackground independence

Background independence

Let M1 = (M, g1) and M2 = (M, g2),where (g1)µν and (g2)µν differ by a(compactly supported) symmetric tensorhµν withsupp(h) ∩ J+(N+) ∩ J−(N−) = ∅,the automorphism depends only on thespacetime between the two Cauchysurfaces

Θµν(x).=

δβh

δhµν(x)|h=0 is a derivation

valued distribution which is covariantlyconserved

background independance condition:Θµν = 0

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 70: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Conservative approachBackground independence

Background independence

Let M1 = (M, g1) and M2 = (M, g2),where (g1)µν and (g2)µν differ by a(compactly supported) symmetric tensorhµν withsupp(h) ∩ J+(N+) ∩ J−(N−) = ∅,the automorphism depends only on thespacetime between the two Cauchysurfaces

Θµν(x).=

δβh

δhµν(x)|h=0 is a derivation

valued distribution which is covariantlyconserved

background independance condition:Θµν = 0

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 71: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Conservative approachBackground independence

Background independence

Let M1 = (M, g1) and M2 = (M, g2),where (g1)µν and (g2)µν differ by a(compactly supported) symmetric tensorhµν withsupp(h) ∩ J+(N+) ∩ J−(N−) = ∅,the automorphism depends only on thespacetime between the two Cauchysurfaces

Θµν(x).=

δβh

δhµν(x)|h=0 is a derivation

valued distribution which is covariantlyconserved

background independance condition:Θµν = 0

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 72: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Conservative approachBackground independence

Background independence

Let M1 = (M, g1) and M2 = (M, g2),where (g1)µν and (g2)µν differ by a(compactly supported) symmetric tensorhµν withsupp(h) ∩ J+(N+) ∩ J−(N−) = ∅,the automorphism depends only on thespacetime between the two Cauchysurfaces

Θµν(x).=

δβh

δhµν(x)|h=0 is a derivation

valued distribution which is covariantlyconserved

background independance condition:Θµν = 0

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 73: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Conservative approachBackground independence

Background independence

Let M1 = (M, g1) and M2 = (M, g2),where (g1)µν and (g2)µν differ by a(compactly supported) symmetric tensorhµν withsupp(h) ∩ J+(N+) ∩ J−(N−) = ∅,the automorphism depends only on thespacetime between the two Cauchysurfaces

Θµν(x).=

δβh

δhµν(x)|h=0 is a derivation

valued distribution which is covariantlyconserved

background independance condition:Θµν = 0

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 74: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Conservative approachBackground independence

Background independence

Let M1 = (M, g1) and M2 = (M, g2),where (g1)µν and (g2)µν differ by a(compactly supported) symmetric tensorhµν withsupp(h) ∩ J+(N+) ∩ J−(N−) = ∅,the automorphism depends only on thespacetime between the two Cauchysurfaces

Θµν(x).=

δβh

δhµν(x)|h=0 is a derivation

valued distribution which is covariantlyconserved

background independance condition:Θµν = 0

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 75: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Conservative approachBackground independence

Problems

Nonrenormalizability: In every order new counter terms. Onehas to show that theory can be applied when QG effects aresmall.

Constraints have to be imposed. Best developped withinperturbation theory: BRST

BRST cohomology has to be formulated for global quantities:Fields (natural transformations)

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 76: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Conservative approachBackground independence

Problems

Nonrenormalizability: In every order new counter terms. Onehas to show that theory can be applied when QG effects aresmall.

Constraints have to be imposed. Best developped withinperturbation theory: BRST

BRST cohomology has to be formulated for global quantities:Fields (natural transformations)

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 77: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Conservative approachBackground independence

Problems

Nonrenormalizability: In every order new counter terms. Onehas to show that theory can be applied when QG effects aresmall.

Constraints have to be imposed. Best developped withinperturbation theory: BRST

BRST cohomology has to be formulated for global quantities:Fields (natural transformations)

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 78: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Conclusions

Locally covariant quantum field theory turned out to besuccessful in describing QFT on CS.

New mathematical tools of LCQFT can be applied toperturbative quantum gravity.

Main mathematical difficulties: BRST cohomology,renormalization procedure.

Relations to other approaches: TQFT, perturbative QG, loops,strings . . .

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 79: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Conclusions

Locally covariant quantum field theory turned out to besuccessful in describing QFT on CS.

New mathematical tools of LCQFT can be applied toperturbative quantum gravity.

Main mathematical difficulties: BRST cohomology,renormalization procedure.

Relations to other approaches: TQFT, perturbative QG, loops,strings . . .

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 80: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Conclusions

Locally covariant quantum field theory turned out to besuccessful in describing QFT on CS.

New mathematical tools of LCQFT can be applied toperturbative quantum gravity.

Main mathematical difficulties: BRST cohomology,renormalization procedure.

Relations to other approaches: TQFT, perturbative QG, loops,strings . . .

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 81: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

IntroductionMathematical preliminaries

Locally covariant quantum field theoryQuantum gravity

Conclusions

Conclusions

Locally covariant quantum field theory turned out to besuccessful in describing QFT on CS.

New mathematical tools of LCQFT can be applied toperturbative quantum gravity.

Main mathematical difficulties: BRST cohomology,renormalization procedure.

Relations to other approaches: TQFT, perturbative QG, loops,strings . . .

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 82: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

Appendix References

References I

K. Fredenhagen, R. Brunetti, Towards a Background IndependentFormulation of Perturbative Quantum Gravity,arXiv:gr-qc/0603079v3

R. Brunetti, K. Fredenhagen, R. Verch, The generally covariantlocality principle - A new paradigm for local quantum fieldtheory, Commun. Math. Phys. 237 (2003) 31-68

Haag, R., Local Quantum Physics, 2nd ed. Springer-Verlag,Berlin, Heidelberg, New York, 1996

Radzikowski, M.J., Micro-local approach to the Hadamardcondition in quantum field theory in curved spacetime, Commun.Math. Phys. 179, 529 (1996)

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 83: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

Appendix References

References II

R.Brunetti, K.Fredenhagen, Microlocal analysis and interactingquantum field theories: Renormalization on physicalbackgrounds, Commun. Math. Phys. 208, 623 (2000)

Segal G., Two-dimensional conformal field theory and modularfunctors,Proc. IXth Intern. Congr. Math. Phys. (Bristol,Philadelphia). Eds. B.Simon, A.Truman and I.M.Davies, IOPPubl. Ltd, 1989, 22-37

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola

Page 84: Lokalnie kowariantna kwantowa teoria pola jako podejscie ...

Appendix References

Thank you for your attention

Katarzyna Rejzner Lokalnie kowariantna kwantowa teoria pola