Kuliah Spec 3 Spectra El Kompleks

36
Coordination Chemistry Electronic Spectra of Metal Complexes

Transcript of Kuliah Spec 3 Spectra El Kompleks

Page 1: Kuliah Spec 3 Spectra El Kompleks

Coordination ChemistryElectronic Spectra of Metal Complexes

Page 2: Kuliah Spec 3 Spectra El Kompleks

Electronic spectra (UV-vis spectroscopy)

Page 3: Kuliah Spec 3 Spectra El Kompleks

Electronic spectra (UV-vis spectroscopy)

ΔEhν

Page 4: Kuliah Spec 3 Spectra El Kompleks

The colors of metal complexes

Page 5: Kuliah Spec 3 Spectra El Kompleks
Page 6: Kuliah Spec 3 Spectra El Kompleks

Electronic configurations of multi-electron atoms

What is a 2p2 configuration?

n = 2; l = 1; ml = -1, 0, +1; ms = ± 1/2

Many configurations fit that description

These configurations are called microstatesand they have different energies

because of inter-electronic repulsions

Page 7: Kuliah Spec 3 Spectra El Kompleks

Electronic configurations of multi-electron atomsRussell-Saunders (or LS) coupling

For each 2p electronn = 1; l = 1

ml = -1, 0, +1ms = ± 1/2

For the multi-electron atomL = total orbital angular momentum quantum numberS = total spin angular momentum quantum number

Spin multiplicity = 2S+1

ML = ∑ml (-L,…0,…+L)MS = ∑ms (S, S-1, …,0,…-S)

ML/MS define microstates and L/S define states (collections of microstates)

Groups of microstates with the same energy are called terms

Page 8: Kuliah Spec 3 Spectra El Kompleks

Determining the microstates for p2

Page 9: Kuliah Spec 3 Spectra El Kompleks

Spin multiplicity 2S + 1

Page 10: Kuliah Spec 3 Spectra El Kompleks

Determining the values of L, ML, S, Ms for different terms

1S

2P

Page 11: Kuliah Spec 3 Spectra El Kompleks

Classifying the microstates for p2

Spin multiplicity = # columns of microstates

Next largest ML is +1,so L = 1 (a P term)

and MS = 0, ±1/2 for ML = +1,2S +1 = 3

3P

One remaining microstateML is 0, L = 0 (an S term)and MS = 0 for ML = 0,

2S +1 = 11S

Largest ML is +2,so L = 2 (a D term)

and MS = 0 for ML = +2,2S +1 = 1 (S = 0)

1D

Page 12: Kuliah Spec 3 Spectra El Kompleks

Largest ML is +2,so L = 2 (a D term)

and MS = 0 for ML = +2,2S +1 = 1 (S = 0)

1D

Next largest ML is +1,so L = 1 (a P term)

and MS = 0, ±1/2 for ML = +1,2S +1 = 3

3P

ML is 0, L = 0 2S +1 = 1

1S

Page 13: Kuliah Spec 3 Spectra El Kompleks

Energy of terms (Hund’s rules)

Lowest energy (ground term)Highest spin multiplicity

3P term for p2 case

If two states havethe same maximum spin multiplicity

Ground term is that of highest L

3P has S = 1, L = 1

Page 14: Kuliah Spec 3 Spectra El Kompleks

Determining the microstates for s1p1

Page 15: Kuliah Spec 3 Spectra El Kompleks

Determining the terms for s1p1

Ground-state term

Page 16: Kuliah Spec 3 Spectra El Kompleks

Coordination ChemistryElectronic Spectra of Metal Complexes

cont.

Page 17: Kuliah Spec 3 Spectra El Kompleks

Electronic configurations of multi-electron atomsRussell-Saunders (or LS) coupling

For each 2p electronn = 1; l = 1

ml = -1, 0, +1ms = ± 1/2

For the multi-electron atomL = total orbital angular momentum quantum numberS = total spin angular momentum quantum number

Spin multiplicity = 2S+1

ML = ∑ml (-L,…0,…+L)MS = ∑ms (S, S-1, …,0,…-S)

ML/MS define microstates and L/S define states (collections of microstates)

Groups of microstates with the same energy are called terms

Page 18: Kuliah Spec 3 Spectra El Kompleks

before we did:

p2

ML & MS

MicrostateTable

States (S, P, D)Spin multiplicity

Terms3P, 1D, 1S

Ground state term3P

Page 19: Kuliah Spec 3 Spectra El Kompleks

For metal complexes we need to considerd1-d10

d2

3F, 3P, 1G, 1D, 1S

For 3 or more electrons, this is a long tedious process

But luckily this has been tabulated before…

Page 20: Kuliah Spec 3 Spectra El Kompleks

Transitions between electronic terms will give rise to spectra

Page 21: Kuliah Spec 3 Spectra El Kompleks

Selection rules(determine intensities)

Laporte ruleg → g forbidden (that is, d-d forbidden)but g → u allowed (that is, d-p allowed)

Spin ruleTransitions between states of different multiplicities forbidden

Transitions between states of same multiplicities allowed

These rules are relaxed by molecular vibrations, and spin-orbit coupling

Page 22: Kuliah Spec 3 Spectra El Kompleks

Group theory analysis of term splitting

Page 23: Kuliah Spec 3 Spectra El Kompleks

High Spin Ground Statesdn Free ion GS Oct. complex Tet complex

d0 1S t2g0eg

0 e0t20

d1 2D t2g1eg

0 e1t20

d2 3F t2g2eg

0 e2t20

d3 4F t2g3eg

0 e2t21

d4 5D t2g3eg

1 e2t22

d5 6S t2g3eg

2 e2t23

d6 5D t2g4eg

2 e3t23

d7 4F t2g5eg

2 e4t23

d8 3F t2g6eg

2 e4t24

d9 2D t2g6eg

3 e4t25

d10 1S t2g6eg

4 e4t26

Holes: dn = d10-n and neglecting spin dn = d5+n; same splitting but reversed energies because positive.

A t2 hole in d5, reversed energies,

reversed again relative to

octahedral since tet.

Holes in d5

and d10, reversingenergies relative to

d1

An e electron superimposed on a spherical

distribution energies reversed because

tetrahedral

Expect oct d1 and d6 to behave same as tet d4 and d9

Expect oct d4 and d9 (holes), tet d1 and d6 to be reverse of oct d1

Page 24: Kuliah Spec 3 Spectra El Kompleks

Energy

ligand field strength

d1 ≡ d6 d4 ≡ d9

Orgel diagram for d1, d4, d6, d9

0 ΔΔ

D

d4, d9 tetrahedral

or T2

or E

T2g or

Eg or

d4, d9 octahedral

T2

E

d1, d6 tetrahedral

Eg

T2g

d1, d6 octahedral

Page 25: Kuliah Spec 3 Spectra El Kompleks

F

P

d2, d7 tetrahedral d2, d7 octahedral

d3, d8 octahedral d3, d8 tetrahedral

0

Ligand field strength (Dq)

Energy

Orgel diagram for d2, d3, d7, d8 ions

A2 or A2g

T1 or T1g

T2 or T2g

A2 or A2g

T2 or T2g

T1 or T1g

T1 or T1gT1 or T1g

Page 26: Kuliah Spec 3 Spectra El Kompleks

d2

3F, 3P, 1G, 1D, 1S

Real complexes

Page 27: Kuliah Spec 3 Spectra El Kompleks

Tanabe-Sugano diagrams

d2

Page 28: Kuliah Spec 3 Spectra El Kompleks

Electronic transitions and spectra

Page 29: Kuliah Spec 3 Spectra El Kompleks

Other configurations

d1 d9

d3

d2 d8

Page 30: Kuliah Spec 3 Spectra El Kompleks

d3

Other configurations

The limit betweenhigh spin and low spin

Page 31: Kuliah Spec 3 Spectra El Kompleks

Determining Δo from spectra

d1d9

One transition allowed of energy Δo

Page 32: Kuliah Spec 3 Spectra El Kompleks

Lowest energy transition = Δo

mixing

mixing

Determining Δo from spectra

Page 33: Kuliah Spec 3 Spectra El Kompleks

Ground state mixing

E (T1g→A2g) - E (T1g→T2g) = Δo

Page 34: Kuliah Spec 3 Spectra El Kompleks

The d5 case

All possible transitions forbiddenVery weak signals, faint color

Page 35: Kuliah Spec 3 Spectra El Kompleks

Some examples of spectra

Page 36: Kuliah Spec 3 Spectra El Kompleks

Charge transfer spectra

LMCT

MLCT

Ligand character

Metal character

Metal character

Ligand character

Much more intense bands