Cos o Ksztalcie Dyszy z NASAf

61
8/6/2019 Cos o Ksztalcie Dyszy z NASAf http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 1/61 -. .. * < . ~ ., . , I I! NASA TECHNICAL NOTE 2341 CCIAN COPY: RETURN TO K!RfLAND AI'B, N MI-X J4I-VdL (VVUL-2) A METHOD OF CHARACTERISTICS FOR STEADY THREE-DIMENSIONAL SUPERSONIC FLOW WITH APPLICATION TO INCLINED BODIES OF REVOLUTION by John V. Rdkich Ames Reserzrch Center Moffett Field, Crzhy NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. OCTOBER 1969

Transcript of Cos o Ksztalcie Dyszy z NASAf

Page 1: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 1/61

- . . .

* < .~

., . ,I I!

N A S A T E C H N I C A L N O T E 2 3 4 1

CCIAN COPY: RETURN TO

K! Rf LAND AI'B, N MI-X

J4I-VdL (VVUL-2)

A M E T H O D OF CHARACTERISTICSFOR STEADY THREE-DIMENSIONAL

SUPERSONIC FLOW W I T H A P P L I C A T I O N

TO INCLINED BODIES OF R E V O L U T I O N

by John V. Rdkich

A m e s Reserzrch Center

Moffett Field, Crzhy

N A T I O N A L A E R O N A UT I C S A N D S PA CE A D M I N I S T R A T I O N W A S H I N G T O N , D . C . OCTOBER 1 9 6 9

Page 2: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 2/61

TECH LIBRARY KAFB, NM

19 . Secur i ty Class i f . (of th i s repor t)

Unrlassified

20. Secur i ty Class i f . (of th i s page)

Unrlassified

1. Report No.NASA TN D-5341

4. T i t le ond Subti t le

2. Governmeni Access ion No.I7. Author(s)

John V. Rikich

9. Performing Organizat ion Name and Address

NASA A m e s Rcscarch Ce nterMoffett Field, Calif. 94035

2. Sponsoring Agency Name and Address

Natinnal Arrmi.iotirs and Spare AdiiiiiiistrationWasningtoii, D. C. 20546

15. Supplementary Notes

16 . Abstract

3. Rec ip ien t ' s Cata log No.

-

5. Repor t Date

O r t ~her 1969-

6. Performing Organizat ion Code

-

8. Performing Organizat ion Repor tA-3325

I O . Work Unit No.129-01-03-05-00-21

11 . Cont rac t or Grant No.

13. Type o f Report and Per iod COVI

Terlinical Note

14 . Sponsoring Agency Code

..L-,.-"

1 7 . Key Wards Suggested by Author

Method of rhara cte ris tic sThree-di niensional flowSupersonic flowFluid merhanicsPeronyna mics

18 . Distr ibut ion Statement

Unclassified - Unliiiiited

*For sale by the Clcai inghouse for Federal Scientific andSpringfield, Virginia 22151

Tcrlinical Tniormation

22. P r i c e *

8 3.00

Page 3: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 3/61

TABLE OF CONTENTS

Page

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

P R I N C I P A L SYMBOLS. . . . . . . . . . . . . . . . . . . . . . . . . . . 3

THEORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Basic Equat ions o f I n v i s c i d F lo w. . . . . . . . . . . . . . . . . 5

C h a r a c t e r i s t i c s T h e o r y . . . . . . . . . . . . . . . . . . . . . . 7Nota t i on . . . . . . . . . . . . . . . . . . . . . . . . . . 7

C o o r d i n a t e t r a n s f o r m a t i o n . . . . . . . . . . . . . . . . . . 8

C h a r a c t e r i s t i c d i r e c t i o n s and c o m p a t i b il i t y e q u a t io n s . 8

B i c h a r a c t e r i s t i c M e t h o d . . . . . . . . . . . . . . . . . . . . . 9

C h a r a c t e r i s t i c c on e. . . . . . . . . . . . . . . . . . . . . 10

C o m p a t i b i l i t y e q u a t i o n s . . . . . . . . . . . . . . . . . . . 11

Fundamenta l compl ica t ions . . . . . . . . . . . . . . . . . . 1 3

Reference Plane Method. . . . . . . . . . . . . . . . . . . . . . 14F i n i t e d i f f e r e n c e mesh . . . . . . . . . . . . . . . . . . . 1 4Refe rence p l ane equa t i ons . . . . . . . . . . . . . . . . . 15

C h a r a c t e r i s t i c d i r e c t i o n s . . . . . . . . . . . . . . . . . . 1 7

C o m p a t i b i l i t y e q u a t i o n s . . . . . . . . . . . . . . . . . . . 18

. . .

NUMERICAL METHODS. . . . . . . . . . . . . . . . . . . . . . . . . . . 19F i n i t e D i f f er e n c e E q u a ti o n s . . . . . . . . . . . . . . . . . . . 20

Computat ional Procedure . . . . . . . . . . . . . . . . . . . . . 2 2L o c a l i t e r a t i o n . . . . . . . . . . . . . . . . . . . . . . 2 2

G l o b a l i t e r a t i o n . . . . . . . . . . . . . . . . . . . . . . 2 2S t e p s i z e . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

S t a b i l i t y c o nd i ti o n . . . . . . . . . . . . . . . . . . . . . 23Accuracy and computing t ime. . . . . . . . . . . . . . . . . 23

N u m e r i c a l D i f f e r e n t a t i o n . . . . . . . . . . . . . . . . . . . . . 2 4S t r e a m w i s e a n d r a d i a l d e r i v a t i v e s . . . . . . . . . . . . . . 2 4C i r c u m f e r e n t i a l d e r i v a t i v e s . . . . . . . . . . . . . . . . 25

S t a r t i n g Data . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

C o n e . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29Discon t inuous de r iva t i ve s . . . . . . . . . . . . . . . . . 31

RESULTS A N D DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . 32

Pointed Cone . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Sphe r i ca l l y Blun t ed Cone . . . . . . . . . . . . . . . . . . . . . 33Comparison With Experiment. . . . . . . . . . . . . . . . . . . . 37

C O N C L U D I N G REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . 38

iii

Page 4: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 4/61

TABLE OF CONTENTS - Concluded

Page

APPENDIX A.- DIRECTION COSINES FOR NONORTHOGONAL COORDINATES . . . 40

APPENDIX B.- SHOCK-BOUNDARY CONDITIONS FOR THREE-DIMENSIONAL FLOW. e . 45

APPENDIX C.- SURFACE BOUNDARY CONDITIONS FO R BODIES WITHOUT AXIALSYMMETRY . . . . . . . . . . . . . . . . . . . . . . . . . 49

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1

T A B L E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Page 5: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 5/61

A METHOD O F CHARACTERISTICS FOR STEADY

THREE - DIMENSIONAL SUPE RSON I C FLOW

WITH A PPL I CA T I O N TO INCLINEDBODIES OF REVOLUTION

By John V . Rakich

Ames Research Center

SUMMARY

C h a r a c t e r i s t i c s t h e o r y f o r t h re e - di m e n si o n al c o m pr e ss i bl e f lo w i s

r ev ie we d a nd t h e c o m p a t i b i l i t y e q u a ti o n s a r e d e r i v e d i n terms o f p r e s s u r e a n d

s t r e a m a n g le s as d ep en de nt v a r i a b l e s . The r e l a t i v e m e r i t s o f b i c h a r a c t e r i s t i c

and re f e r en ce plan e methods a r e d i s c u s s e d .developed and demonst ra ted fo r po in t ed and b lun t ed bod i e s a t ang l e o f a t t a ck .

A re fe rence p l ane me thod i s

The fundamenta l compl i ca t i ons a r i s i ng i n a three-dimensional method of

c h a r a c t e r i s t i c s a r e t h a t : (1) t h e c o m p a t i b i l i t y eq u a t io n s c o n t a i n " cr o s s -

d e r i v a ti v e s " i n a n o n c h a r a c t e r i s t i c d i r e c t i o n ; and ( 2 ) t h e r e i s an i nc rea sed

n ee d f o r i n t e r p o l a t i o n t o p r e v e n t t h e computed d a t a s u r f a c e s fro m b eco min gskewed. These problems a r e minimized by us i ng a re f e re nce p l an e method wi th apre sc r ibe d and un ifo rm spac i ng o f mesh po i n t s . The f i n i t e d i f f e r en ce mesh

employed con si st s of an equ al number of po in ts between t h e body and shock su r-

f a c e s i n ea ch r e f e r e n c e p l a n e . N um er ica l p r oc e du r es f o r d i f f e r e n t i a t i o n an d

in t e rp o l a t i o n ensure second-orde r accuracy i n t erms of mesh spac ing . Four i e ra n a l y s i s i s employed i n t h e c i r c u m f e r e n t i a l d i r e c t i o n and i s f ou nd t o b e e f f e c -

t i ve i n r educ ing t h e number o f r e f e re nce p l an es and computing t imes . A t y p i -

ca l mesh c on s i s t s o f 7 p l a n e s w i t h 1 5 p o i n t s i n ea ch p l a n e . The u n i t

computation time i s about 0 .0013 minute pe r poi nt on an I B M 7094 computer.

R e s u lt s f o r t h e f lo w ar ou nd i n c l i n e d , c i r c u l a r c o n es , b o th b l u n t e d an d

p o i n t e d , a r e p r e s e n t e d t o de m o ns t ra te t h e method d e s c r i b e d . P r e d i c t i o n s o f

s u r f a c e a nd p i t o t p r e s s u r e s a r e i n g ood a gr ee me nt w i t h a v a i l a b l e e x p e ri m en t alr e s u l t s f o r a 15' sphere-cone a t 1 0" a n g l e o f a t t a c k . B l un t ne s s e f f e c t s on

s h o c k - l a y e r p r o p e r t i e s f a r f rom the nose a r e r ea sonab ly w e l l p r e d i c t e d .

INTRODUCTION

The method of c h a r a c t e r i s t i c s ha s b ee n w e l l known f o r many ye ar s an d

e x c e l l e n t t h e o r e t i c a l d ev el op me nt s c a n b e f ou nd i n numerous t e x t s a nd r e p o r t sof which re fe r enc es 1 through 3 gi ve t h e most complete reviews o f mult idimen-

s i o n a l t h e o r y . However, u n t i l r e c e n t y e a r s t h e r e h av e b e en r e l a t i v e l y f e w

p r a c t i c a l a p p l i c a t i o n s o f t h e m etho ds t o t h r ee - d im e n s io n a l f l o w s . T h is i s

p ro b ab ly due p a r t l y t o t h e l a r g e number o f o p e r a t i o n s i n vo l ve d i n f i n i t e d i f -

f e r e n c e c a l c u l a t i o n s i n t h r e e d i me ns io ns , and p a r t l y t o t h e e x t r a d e gr ee o ffreed om t h a t r e s u l t s fr om t h e e x i s t e n c e o f c h a r a c t e r i s t i c s u r f a c e s r a t h e r th a n

Page 6: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 6/61

c h a r a c t e r i s t i c l i n e s .

t o per fo rm c a l cu la t io ns f o r th r ee -d imens iona l s t e ady and uns teady f lows and

se ve ra l g roups have r epo r t e d such work.

on t h e method o f c h a r a c t e r i s t i c s a r e r e p o r t e d i n r e f e r e n c e s 4 through 10, and

a s u c c e s s f u l u s e o f a n o n c h a r a c t e r i s t i c f i n i t e d i f f e r e n c e method i s d e s c r i b e d

i n r ef er e nc e 11.

d e s cr i b ed and d i s cu s s e d c r i t i c a l l y i n r e f e r e nc e 1 2 .

High-speed computers have made it t e c h n i ca l l y f e a s i b l e

For example, many re ce nt va r i a t io n s

A number o f th e p roposed ch ar ac te r i s t i c s schemes have been

A l l th e proposed di f fe re nc e schemes f o r t h r e e - d i m e n s i o n a l c h a r a c t e r i s t i c s

can be p laced i n one o f two b road ca t eg or i e s : (1) r e f e re nce p lane methods

( c a l l e d s e m i - c h a r a c t e r i s t i c methods i n r e f . 1 2 ) ; a nd (2 ) b i c h a r a c t e r i s t i c

me th ods . I n r e f e r e n c e p l a n e methods t h e c h a r a c t e r i s t i c l i n e s a r e o b t ai n e d

f rom th e pr oj ec t i on o f Mach cones and s t re am lin es onto a p r e s c r i b e d p l a n e . I n

b i c h a r a c t e r i s t i c methods t h e c h a r a c t e r i s t i c l i n e s are t h e g e n e r a t o r s of t h e

Mach cone and th e ac t ua l s t r eam l in es . S in ce , i n th re e d imensions , t h e equa-

t i o n s w r i t t e n a lo ng th e s e c h a r a c t e r i s t i c l i n e s a r e p a r t i a l d i f f e r e n t i a l equa-

t i o n s , a n um er ic al e v a l u a t i o n o f " c ro s s - d e r i va t i v e s " o f f t h e c h a r a c t e r i s t i c

l i n e s i s n e c e s sa r y . ( I n t h i s s e n s e , t h r ee - d im e n s io n a l c h a r a c t e r i s t i c m eth ods

are s imi la r t o non ch ar ac te r i s t i c methods f o r two-dimens ional f low .)

l e m e n co u nt e re d w i t h mos t b i c h a r a c t e r i s t i c m ethod s a r i s e s from t h e n ee d t oemploy a two-dimensional a r r a y o f d a t a t o e v a l u a t e t h e c r o s s - d e r i v a t iv e s and

t o p erfo rm t h e r e q ui r ed i n t e r p o l a t i o n i n t h e i n i t i a l d a t a s u r f a c e . F ur th er -

more, i f a c o n v en t i on a l c h a r a c t e r i s t i c s mesh i s u se d , t h e d i s t r i b u t i o n o f mesh

po i n t s i n th e d a t a su r f ace s t ends t o become very nonun iform, which causes

a d d i t i o n a l c o m p l i c a t i o n s . For t h es e r easons one i s l e d t o r e f e r en c e p la n e

methods, where a b e t t e r c o n t r o l c an b e m ai nt ai ne d on t h e f i n i t e d i f f e r e n c e

mesh and where cu rv e f i t s can be made wi t h r es pe ct t o a s i n g l e . v a r i a b l e .

Refe rence p lane methods have been c r i t i c i z e d on th e the or e t i c a l g rounds t h a t

t h e i n i t i a l d a t a may b e o u t s i d e t h e domain o f d e pe nd en ce o f t h e c a l c u l a t e d

po in t . However, prob lems r e l a t e d t o t h i s c r i t i c i s m h av e n o t m a t e r i a l i z e d . I n

f a c t , t h e u se o f su ch d a t a i s p r e c i s e l y w h a t i s r e qu i r ed by t h e wel l-known

Courant-Friedrichs-Lewey s t a b i l i t y c on d it io n .

The prob-

I n t h e p r e s e n t work , t h e c o m p a t i b i l i t y e qu a ti o ns o f c h a r a c t e r i s t i c t he o ry

a r e d e r i v e d f o r b o th t h e b i c h a r a c t e r i s t i c a nd r e f e r e n c e p l a n e me th ods.

t i c a l d i f f i c u l t i e s w i t h t h e b i c h a r a c t e r i s t i c method a r e d i s c u ss e d and a f i n i t e

di f f er en ce scheme based on the ref ere nce p la ne method i s proposed.

proposed method abandons t he us ual c h a ra c t e r i s t ic mesh and employs mi fo rm ly

spaced po i n t s a long l i ne s ly ing in equa l ly spaced mer id iona l p l a nes . Numeri-

c a l i n t e r p o l a t i o n and d i f f e r e n t i a t i o n are accomp lished by means of second -

d eg re e p ol yn om ia ls i n t h e r a d i a l d i r e c t i o n and b y F o u r i e r a n a l y s i s i n t h e

c i r c u m fe r e n t i al d i r e c t i o n .

Prac-

The

P r e li m i na r y r e s u l t s b y t h e p r e se n t m eth od w er e d e sc r i b e d i n r e f e r e n c e 1 3and compared wi t h c al cu la t i on s by th e method of re fe re nc e 4.p a r i so n s w i t h e x p er im e nt we re shown i n r e f e r e n c e 1 4 , e s t a b l i s h i n g t h e r e l i -

a b i l i t y o f t h e n um er ic al m et ho ds . I n t h e p r e se n t r e p o r t t h e f lo w e q u a ti o n s

and numerical t ec hn iq ue s a r e d e s c r i be d i n g r e a t e r d e t a i l t h a n was p o s s i b le i n

re fe re nces 13 and 14 .

Extensive com-

2

Page 7: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 7/61

P RINCIP AL SYMBOLS

a

‘1*JC2*

cP

cPP

e x Y e r Y e @ J X i

h

H

k

K-

P

Rn

S *

’ J n Y t

v

X

,.Zi

speed of sound

b i c h a r a c t e r i s t i c d i r e c t i o n s

c h a r a c t e r i s t i c d i r e c t i o n s i n m e ri di on al p l a n e s

p r e s su r e c o e f f i c i e n t

p i t o t - p r e s s u r e c o e f f i c i e n t

u n i t v e c t o r s a lo ng x , r , Q,

e n t h a l p y

t o t a l e n th a lp y

smoothing co ns tan t (eq . (84) )

c o e f f i c i e n t o f n um e ri ca l d i f f u s i o n t e rm ( e q . ( 8 4) )

Mach number

shock normal and tan ge nt vec to rs

p r e s s u r e

body nose radius

p r o j e c t i o n o f s t r e a m l i n e s on m e r i di o n a l p la n e s

s t r e a m l i n e c o o r d i n a t e s

v el o ci ty components a long e . e e

t o t a l v e l o c i t y

a x i a l d i s t a n c e fr om b l u n t n ose (body a x i s )

u n i t v e c t o r s a lo ng s , n y t

c y l i n d r i c a l c o o r d i n a t e s

u n i t v e c t o r s a l o ng c h a r a c t e r i s t i c c o or d i na t e s

u n i t v e c t o r s a lo ng 5 , n , 5

a n gl e o f a t t a c k , d eg

,. A ,.

x’ r ’ @+v = vS^ = vj;,

3

Page 8: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 8/61

t r ans fo rma t ion mat r ix ( eq . (16) )

J iKT

c1i j

B

s p e c i f i c h e a t r a t i o

shock an g le i n cross pla ne (eq . (A6)) 

t r ans fo rma t ion mat r ix ( eq . (A18) )i j

s,rl,s nonor thogonal shock- l a ye r coo rd ina tes ( f ig . 3)

f lo w a n g l e f ro m x a x i s i n m e r id i o na l p l a n e , t a n - l ( v / u ) ( s e e f i g . 1 )e

angle between & and {r

Mach angle , sin- (1/M)-I

1-I" p r o j e c t i o n o f p on mer id ional p lane

t r ans fo rma t ion mat r i x ( eq. (A13))i j

D d e n s i t y

shock ang le i n mer id iona l p l ane ( eq . ( A 5 ) )

c r o s s f l o w a n g l e , s i n - l W / V ( s ee f i g . 1)

a zi mu th al a n g l e , c y l i n d r i c a l c o o r d i n a t e s ( s e e f i g . 1 ) , deg

Subs c r i p t s

i n i t i a l a nd new d a t a l i n e s

body

i n d i c e s f o r r a d i a l p o s i t i o n o f mesh p o i n t s

( j = 1 , 2 , . . . , J - 1, J ) ( s e e f i g . 5)

i n d e x f o r c i r c u m f e r e n t i a l p o s i t i o n o f mesh p o i n t

(k = 1 , 2 , . . . , L - 1, L)

k

body nose

shock

f r e e - s t r e a m c o n d i t i o n

4

Page 9: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 9/61

S u p e r s c r i p t s

i

v i n d ex d e n o ti n g v a r i a b l e s p , 8 , 9 , p f o r v = 1, 2 , 3 , 4

*

i nd e x f o r a x i a l p o s i t i o n o f mesh p o i n t

q u a n t i t y o r component r efe ren ced t o mer id ional p l ane

A u n i t v e c to r

+ g e n e r a l v e c t o r

Note: See equ at i on (14) f o r d ef n i t i o n o f i nd ex n o t a t

THEORY

4

on.

Bas ic Equa tions o f In v i sc id F low

Th e d e r i v a t i o n o f t h e c h a r a c t e r i s t i c r e l a t io n s w i l l b e c a r r i e d ou t i nt h i s s e c t i o n s t a r t i n g w it h t h e e q u at io ns f o r i n v i s c i d e q u il i br i um flow w r i t t e n

i n t h e i r i n t r i n s i c form w i t h p r e s s u r e a nd f lo w a n gl e s as dependen t va r i ab les .

Th is c h o i ce o f v a r i a b l e s e l i m i n a t e s e n t r o p y d e r i v a t i v e s from t h e f lo w eq ua -

t i o n s , t h e re b y s i m p l i f y i n g t h e a n a l y s i s . F ol lo w in g t h e de ve lo pm en t o f r e f e r -

ence 15 , th e combined con t i nu i t y and momentum equat ions ar e w r i t t en i n vec to r

form .

2 grad p + d i v i = 0

PV2

1;grad p + t - c u r l < = 0

Pv2

_ A , . A

where s , n , t a r e o r th o go n al u n i t v e c t o r s w i t h s t a n g e n t t o t h e s t re am -

l i n e s . F or r o t a t i o n a l , i n v i s c i d , no n he a t- c on d uc t in g , a nd n o n r e a c t i n g f lo w ,

en t ropy i s c on se rv ed a l o n g s t r e a m l i n e s a nd t h i s r e q u i r e s

- grad p - a2s grad p = 0 (4)

Page 10: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 10/61

Page 11: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 11/61

G = cos + cos e G + cos + s i n e & + s i n + G Q (7)X r

ii = - s i n e G + cos 0 g rX

A A n n

t = - s i n + cos e e - s i n + s i n 8 eX r

+ cos I$ eQ (9

Using equat ions (7) through (9) wi th t he s tand ard ve ct or formulas i n c y l i n d r i -c a l coord ina t es , one can ob ta in th e fo l lowing f rom equa t ions (1) th rough (4) :

a e s i n 2 I$ cos 0L*+os $,s=p v 2 a n r

C h a r a c t e r i s t i c s Th e o r y

Nota t ion . - C h a r a c t e r i s t i c s t h e o r y i s most conveniently developed,

e s p e c i a l l y f o r t h e m u lt i di m en s io n al c a s e , i f one uses index no t a t i on . There-

fo re , t h e no ta t io n and development o f Couran t and F r i ed r i ch s ( r e f . 1, p . 75)

w i l l b e fo l lowed i n t h i s review. Summation convent ion i s used wherein a sum-

mation symbol i s impl i ed by a r epea ted index . Thus equ ati ons (10) t o (12) may

b e w r i t t e n s im pl y as

Vi au - f

a - -V V axi ?J

7

Page 12: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 12/61

where t h e i n d i c e s r e f e r t o :

v dependen t va r i ab l e (p , 8 , f o r v = 1, 2 , 3)

i

l~ equa t i on (eqs . (10) - (12) fo r p = 1 , 2 , 3)

i ndependen t va r i ab l e ( s , n , t f o r i = 1, 2 , 3)

Coord ina t e t r ans f orma t ion . - Equat ion (14) can b e expre s sed i n terms of

new coord ina t e d i rec t i o ns y j

na te s. Thus one can w r i t eo b t a i n e d b y a r o t a t i o n o f t h e o r i g i n a l coord i -

h A

where x i and y j a re u n i t v e c to r s al on g x i and y j , r e s p e c t i v e l y , a nd t h e

e le me nt s o f t h e t r a n s f o r m a t i o n m a t r i x a r e t h e d i r e c t i o n c o s i n e s d e f i n e d as f o l

lows i n terms o f t h e s c a l a r products of :i and p j :

21 $2

g2 * $2

With th i s t ra nsf orm at io n, equa t ion (14) becomes

where

i

pv'i j' = a

_ _ -h a r a c t e r i s t i c d i r e c t i o n s a nd c o m p a t i b i l i t y e q u at i on s .- I f i n i t i a l d a t a

a r e g iven f o r u" on t he sur fac e y1 = 0 , equat ion ( 1 7 ) can be so lv ed fo r

i n g d e r i v a t i v e s wi th r e s p e c t t o y2 and y3 on t h e r i g h t s i d e o f e q u at i o n ( 1 7 ) ,auV/ayl i n o r d e r t o g e n e r a t e d a t a on an a d j o i n i n g s u r f a c e y1 = Ayl. Plac-

one ob t a ins

8

Page 13: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 13/61

where

= f - bk (k = 2 , 3)g?J ?J Flv a Y k

Equation (19) can be cons ider ed as a s e t o f a l g e b r a i c e qu a ti o ns f o r

auV’/ay1, with a so lu t i on by Cramer ’s r u l e g i v i n g

auv DV

where Ib;t)I i s t h e d e t e r m i n a n t o f b

ob ta ined by r ep lac ing th e v th column of b ( l ) wi th g

and D V i s t he de te rminan t1-1v

lJv 1-1’

I f Ibi:) va ni sh es , th e n y1 i s normal t o a c h a r a c t e r i s t i c s u r f a c e and

the f low equat ions g i v e no i n fo r ma t io n a b ou t d e r i v a t i v e s i n t h i s d i r e c t i o n ;

t h a t i s , auV/ayl may be d is con t in uou s. Th ere for e , th e equat ion of th e char -

a c t e r i s t i c s ur f ac e i s given by

On th e o th e r hand, i f equa t ion ( 2 1 ) i s s a t i s f i e d , t h e n t h e nu me ra to r of

e q u a ti o n (20) must a l so v a n ish i n o r d e r f o r a so l u t i o n t o e x i s t . Th e r ef o re ,

DV = 0 (v = 1 , 2 , 3) (22)

g i v e s t h e so - c a l l e d c o m p a t i b i l i t y e q u a t i o n s . I t may b e n o te d from e q u a ti o n

(19) t h a t t h e c o m p a t i b i l i t y r e l a t i o n s c o n t a i n o ne l e s s d im en si on t h an t h e

o r i g i n a l d i f f e r e n t i a l e q u a t i o n s . F or t h e t h r ee - d im e n s io n a l p ro bl em t h e com-p a t i b i l i t y e qu at io ns i n v ol v e d e r i v a t i v e s i n two d i r e c t i o n s .

B i c h a r a c t e r i s i c Method

The c h a r a c t e r i s t i c r e l a t i o n s r ev ie we d i n t h e pr e vi o us section can now be

sp ec ia l i ze d t o th e p roblem of equ i l ib r iu m th ree -d imens iona l gas flow. Con-

s id e r equa t ions (10) th rough (13) wi th t he supplementa ry cond i t ion s (5) and

( 6 ) . Note th a t equ a t ion (13) i s a l r e a d y i n c h a r a c t e r i s t i c f orm s i n c e i ti n vo l ve s d e r i v a t i v e s i n one d i r e c t i o n ; t h e s t r e a m l i n e , s , i s a l i n e a c r os s

which t h e d e n s i t y g r a d i e n t , a p / a n , may be d is con t in uou s. Therefore , one needo n l y c o n s i d e r e q u a t i o n s ( l o ) , ( l l ) , a nd ( 12 ) f o r w hic h t h e i c o e f f i c i e n tmatrices may be wr it te n

9

Page 14: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 14/61

where t iki i s t h e K ro ne ck er d e l t a

0 k # i

1 k = i

6 k i = {The t ransformed co ef f i c i en t mat r ix given by (18) becomes

03 j 2

PV

C h a r a c t e r i s t i c c on e. - The c h a r a c t e r i s t i c de t e rm i n a n t, e q ua t io n ( 2 1 ) , ca n

now b e e v a l ua t e d t o g i v e t h e e q u a ti o n o f t h e c h a r a c t e r i s t i c s u r f a c e i n termso f t h e c o e f f i c i e n t s o f t h e go ve rn in g d i f f e r e n t i a l e q u a t i o n s , U sing eq u at io n

(24) one obta ins

where B 2 = M2 - 1 .

recognized asNow, from eq u at io n (16) t h e t er ms i n e q u a ti o n ( 2 5 ) are

10

Page 15: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 15/61

whi ch_ are t h e components of a longBlcharocter ts t ic

direct ion t h e x coo rd in a t e s . Thus, equa t i ony 2 (25) ddsc r ibe s a cone a round th e x1

o r s a x i s , as i n d i c a t e d i n f igure2 ( a ) , m akin g t h e a n g l e 90 - ut h e s d i r e c t i o n . T h is co ne i s nor-

m a l t o t h e c h a r a c t e r i s t i c co ne. The

cone

v e c t o r 71 l i e s a l o n g a g e n e r a t o r o ft h e normal cone , and th e vanish ing

determinant (21) means t h a t t h e de r iv -

cone a t i v e s w i t h r e s p e c t t o y1 may b ed i s c o n t i n u o u s ; t h a t i s , t h e d i f f e r e n -

t i a l e q u at i on s ( l ) , ( 2 ) , and (3)

cannot give any informat io n about

w i t h

Chorocteristic

y‘\

1,

Normal

(a) Charac teristi c cone and bicharacteristics.

Figure 2.- Characteristic coordinates. d e r iv a t iv e s i n t h i s d i r e c t io n .

D 1 =

I t f o l l o w s , t h e n , i f t h e yi c o o r d i n at e s a r e o r t h o g o n al , t h a t 72 and

i 3 a r e t an g en t t o t h e c h a r a c t e r i s t i c co ne. I f 72 i s ch os en t o l i e a l o ng a

g e n e r a t r i x o f t h e co ne , t h e n y2 i s c a l l e d a b i c h a r a c t e r i s t i c d i r e c t io n .

gl a21 cos $ “ 3 1

g2 “11 cos 4 0 = o (26)

8 3 0 “ 1 1

Expanding (26) one obtains

where

+ “ 3 3 ay3

)4

- ( “ 3 2 ay2

11

Page 16: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 16/61

g, = f 3 -- a p + a 3 3 -)p - (a12 ay24 + a 1 3z)42 (a32 ay2 a Y 3

P V

The b i c h a r a c t e r i s t i c d i r e c t i o n y2 can b e a r b i t r a r i l y ch osen t o l i e along any

r ay o f t h e c h a r a c t e r i s t i c co ne.

t i o n s c a n b e o b t a i n e d f r o m ( 2 7 ) .

d et er mi ne t h e s o l u t i o n f o r t h e t h r e e d ep en de nt v a r i a b l e s p , e , 4 .

Thi s means t h a t an i n f i n i t e number o f equa -

However , th re e eq ua t ion s are s u f f i c ie n t 1 t o

The b i c h a r a c t e r i s t i c s c an b e c h os en so as t o s i m p l i f y t h e c o m p a t i b i l i ty

e q u a t i o n s .

wi th ( s , n , t ) , t h a tF i r s t it i s n o te d from e q u a t i o n ( 1 6 ) , i d e n t i f y i n g ( x l , x 2 , x 3 )

n * Y 2

A , .

* Y1 t - Y 2 t * Y 3

Thus a number of th e e lements of a .w i l l b e z e r o if y2 i s i n t h e s - n

p l a n e , a n d 7 3 l i e s a l o n g t h e fa x i s . I n t h i s c a se ( s e e f i g . 2(b) )

t h e r e a r e two p o s s i b i l i t i e s g iv en by

l j

-~~

(31)

s i n p cos p

? s i n 1-1

:$0 0

y 2

2( b ) Bicharacteristics in the s- n plane. w here t h e u p p er s i g n r e f e r s t o t h e

l e f t -r u n n i n g c h a r a c t e r i s t i c C 1 , and

t h e l ow er s i g n t o t h e r i g h t - r u n n i n g

c h a r a c t e r i s t i c C 2 .

L e t t i n g 9 2 l i e i n t h e s - tp l a n e s o t h a t p 3 l i e s a lo n g t h e f ia x i s g i v e s

0

( 3 2 )s i nos p

-9

Fw= ( o i n p

i jc) Bicharacteristics in the S-t plane.

Figure 2 . - Concluded. -cos p

where t h e s i g n s c o rr es po nd t o t h e b i c h a r a c t e r i s t i c d i r e c t i o n C 3 which

i n c r e a s e s w i th i n c r e a s i n g s and t as shown i n f i g u r e 2 ( c ) .

'Redundant schemes which make us e of more th an th r e e equ ati on s a r ed i s cu s s e d i n r e f er e n c es 8 , 10 , 1 2 , and 16.

1 2

Page 17: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 17/61

S u b s t i t u t i o n o f c1 from equ ation s (31) and (32) in t o equ atio n (27)i j

r e s u l t s i n t h r e e eq ua ti on s a l o ng t h e b i c h a r a c t e r i s t i c s C 1 , C 2 , an d C 3 .

Using equ atio n (31) f o r C1 an d C 2 , one ob ta ins

where y2 = C1 f o r t h e u pp er s i g n an d y2 = C 2 f o r t h e l ow er s i g n . Simi-

l a r l y , o ne o b t a i n s f ro m e q u a ti o n (3 2) t h e f o l l o w in g e q u a t i o n f o r t h e d i r e c t i o n

c3 :

g1 + c o t 1-1 g3 = 0

def ined i n equa t ions (28) t o (30)g i

t r a ig h t fo r w ar d s u b s t i t u t i o n o f t h e

wi th appro pr i a t e e l ement s o f a . . from equa t ion (31) o r equa t ion (32) y ie ld s ,

with some rearrangement , t h e f o l i o w in g c o m p a t i b i l i t y e q u a ti o n s :1

where , from the r i g h t s id e o f equa t ions (10) th rough (12 ) ,

s i n 2 4 cos e and s i n 4 s i n 8f 3 = -

os s i n er r rf 2 =l = -

For two-dimensional flow (4 = 0 ) , equat ions (33) and (34) reduce t o the usual

co mp at ib i l i t y equa tion s and eq ua ti on (35) becomes th e streamwise momentum

e q u a t i o n .

Fundamental complicat ions .- In compar ison wi th a x i a l l y symmetr ic f lows,

equa tion s (33j-- throu gh (35) have two com plicat ing fe at ur e s which were men-

t i o n e d e a r l i e r . The se a r e (1 ) t h e p r e sen c e o f " c r o s s - d e r i v a t i v e s " a $ / a t anda e/ an on t h e r i g h t s i d e , an d ( 2 ) t h e need t o pe rfo rm a two-paramete r in t e r -

p o la t io n f o r d a t a i n t h e i n i t i a l d a t a s u r f a ce . The second problem a r i s e s

1 3

Page 18: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 18/61

b ec au se b i c h a r a c t e r i s t i c s t hr ou gh a g e n e r a l mesh p o i n t ( i n a p r e s c r i b e d sur -f a c e ) do n o t , i n g e n e r a l , p a s s t hr ou gh mesh p o i n t s i n t h e i n i t i a l d a t a

s u r f a c e .

Many schemes have been proposed us in g equat io ns of t h i s form along

b i c h a r a c t e r i s t i c s ( se e , e . g . , r e f s . 5-8 and 1 2 ). However, t h e programming of

such methods t ends t o be cumbersome, and th e accuracy o f e va lua t in g th e c ross -

d e r i v a t i v e s i s i n most cases l e s s t h an t h a t o f t h e b a s i c c a l c u l a t i o n s. (A n

excep t ion i s t h e r e c e n t work r e p o r t e d i n r e f e r e n c e 1 0 . ) The se p ro bl em s areminimized i f c h a r a c t e r i s t i c s l y i n g i n p r e s c r i b e d r e fe r e n c e pl an es a reemployed. Then t h e i n t e r p o l a t i o n f o r i n i t i a l d a t a and e v a l u a t io n o f c r o s s -

d e r i v a t i v e s c an b e r e du c ed t o a s e t o f one-parameter cu rve f i t s with second-

o r d e r a c c u r a c y .

d e r iv e d f o r c h a r a c t e r i s t i c l i n e s w hich are t h e p r o j e c t i o n s o f b i c h a r a c t e r i s -

t i c s C 1 , C 2 , C 3 o n to r e f e r e n c e p l a n e s .

I n t h e ne xt s e c t i o n , t h e c o m p a t i b i l i t y e q u at i on s w i l l b e

Reference Plane Method

I n t h e f o l l ow i n g d ev el op me nt , t h e f lo w e q u a t i o n s a r e w r i t t e n i n terms of

two components ly i ng i n p redete rmined r e f e re nce p l anes and a th i rd component

d i r e c t e d o u t of t h e s e p l a n e s . F or most pr ob le ms e n c o un t er e d i n e x t e r n a l a e r o -

dynamics i t i s c on v en ie nt t o s p e c i f y t h e r e f e r e n c e p l a n e s as t h e a x i a l p l a n e s,

@ = c o n s t a n t , o f a c y l i n d r i c a l c oo r d in a t e s ys te m (s e e f i g . 1 ) . The s o l u t i o n

of problems with a x i a l symmetry i s determined by c a l c u l a t i o n a l o n g a s i n g l e

p l a n e , b u t t h r e e- d im e n si o na l p ro bl em s r e q u i r e c a l c u l a t i o n a l o n g s e v e r a l

p l a n e s s i m u lt a n e o us l y . C h a r a c t e r i s t i c t h e o ry i s em ployed t o c a l c u l a t e t h e

f low along each pla ne . To a c hi e ve t h i s , t h e c o m p a t i b i l i t y e qu a ti o ns a l on g

t h e p r o j e c t i o n s o f t h e b i c h a r a c t e r i s t i c s on t h e r e f e r e n c e p l an e s must b e

d e r i v e d .

c o m p a t i b i l i t y r e l a t i o n s f ro m t h e i n t r i n s i c momentum e q u a t io n s a p p l i c a b l e t o

t h e r e f e r e n c e p l a n e s . F i r s t , however, i t w i l l b e n ec e ss a ry t o d i s c u s s t h e

co or di na te mesh which w i l l b e u s ed t o d e s c r i b e t h e s h oc k l a y e r .

The procedure w i l l b e t o f i n d t h e p e r t i n e n t c h a r a c t e r i s t i c s and

F i n i t e d i f f e r e n c e m esh. - The c y l i n d r i c a l c o o r d i n a t e sy s t em u sed t o

expand t h e v e c t o r r e l a t i o n s i n e q u a ti o ns (1) through ( 3 ) , a nd t o d e f i n e t h e

r e f e r e n c e p l a n e s , i s n o t i d e a l from t h e c o m p u ta t io n a l s t a n d p o i n t . Th i s s te m s

from the f a c t t h a t s p e c i a l t r e a t m e n t would b e r e q u i r e d f o r bo d ie s w i t h non-

c i r c u l a r c r o s s s e c t i o n s an d, more i m p o r t a n t l y , f o r sho ck su r f a c e s . One i st h e r e f o re l e d t o a f i n i t e d i f f e r e n c e mesh which d i v i d e s t h e s ho ck l a y e r i n t o

a number o f annu la r r in gs which inc lude bo th th e shock and body s u r f a ce s , asshown i n f ig ur e 3 . The r e su l t in g mesh po i n t s a r e connected by a nonorthogonal

5 , n, sy st em o f c o o r d i n a t e s : 5 and n l i e i n t h e r e f e r e n c e p l a ne w i th n

u su a l l y n orm al t o t h e body s u r f a c e ; 5 i s d i r e c t e d o u t o f b u t n o t g e n e ra l l ynormal t o t h e r e f e r e n c e p l a n e .

_ _

'Conver se ly, b i ch ar ac te r i s t i c s th rough known po in t s on a p la ne i n i t i a l

d a t a s u r f a c e w i l l , i n g e ne r al , i n t e r s e c t a t p o i n t s l y i n g i n a nonp lanar su r -

f a c e . The su bse q ue n t d a t a su r f a c e s become i n c r e a s i n g l y d i s t o r t e d as a compu-

t a t i o n p ro ce ed s away from t h e i n i t i a l d a t a p l a n e .

1 4

Page 19: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 19/61

"3,Shock c ;

Bo d

rReference

x p l a n e s

' ' ( W ' n d w o r d '

S h o c kVm

S vmmet rv

a ? - - -

plane

Figure 3.- Nonorthogonal shock-layer coordin ates.

A r e l a t e d s ys te m i s one i n which

5 i s r e p l a c e d l o c a l l y by t h e p r o j e c -

t i o n , s * , o f s t r e a m l i n e s o nt o t h e

r e f e r e n c e p l a n e s . I t i s t h i s s * , r l ,

< system which i s u s ed t o e x p r e s s

t h e i n t r i n s i c fl ow eq u a ti o ns (10 )

through (13) i n a f or m n ee de d f o r t h e

p r e s e n t r e f e r e n c e p la n e a n a l y s i s .The u n i t v e c t o r s , j ; = (G, 6 , t ) , i n

s t r e a m l i n e c o o r d in a t e s a r e r e l a t e d t o

t h e new s y s t e m b y d i r e c t i o n c o s i n e s ,

E $ d e f i n e d b y

i

ij'

A A

where ^z * = (;* , r \ , z;) .j

W r i t te n i n te rm s o f i t s components , equat ion (36) gives

A

; E T 1 $ * + ET2: + E T 2 <(37)

(38)

A

(391-t = E;+* + E 3 2 r l +

Appendix A de sc r ibe s how E ? i s c a l c u l a t e d i n t e rm s of th e body and

s ho ck -w av e s h a p e s . The d e t a i l e d e x p r e ss i o n s f o r t h e d i r e c t i o n c o s i n es a r e

n o t n e ed ed f o r t h e d ev el op me nt o f t h i s s e c t i o n b u t it s h o ul d b e n o t e d t h a t ,s i n c e t h e sh ock s ha pe i t s e l f i s obta ined f rom a s o l u t i o n o f t h e p ro ble m ( i . e . ,

a d i r e c t as opposed t o an i nv e r se approach), E $

t h e e n t i r e f l ow. However, i n a l o c a l l y s u p e r s o n i c r e g i o n , w he re t h e s ho ck c an

b e c a l c u l a t e d s t e p by s t e p , E X

proceeds downstream from an i n i t i a l d a t a l i n e .

lj

i s no t known beforehand f o rij

can always be determined as t h e c a l c u l a t i o n

i j

Re fe rence p l ane equa t i ons .- R e c a ll i n g t h e r u l e s f o r a d i r e c t i o n a l

d e r i v a t i v e , e q u a t io n s ( 37 ) a nd (39) y i e l d t h e f o l l o w i n g e x p re s si o ns f o r

d e r iv a t iv e s i n t h e s an d t d i r e c t i o n s .

15

Page 20: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 20/61

These d i f f e r e n t i a t i o n r u l e s a ll ow one t o w r i t e t h e i n t r i n s i c f low

e q u a t i o n s i n terms of t h e des i re d p l a na r component s.

( 4 0 ) and (41) i n t o equa t ion s (10) through (13) and regrou ping te rms, one

S u b s t i t u t i n g e q u a t i o n s

o b t a i n sa e

E l l 27 ancos ($ - f , *

82 aP

pv as

1 ap * a e

PV as* - f 2 *an + E l l cos ($--

(43)

(44)-a + - f 3 *

as*

- -p - f 4 * (451as*

The l e f t s i d e s o f t h e s e e q u at io n s c o n t a i n d e r i v a t i v e s i n t h e r e f e r e n c e p la n esand the remaining te rms a re a l l lumped in t o th e f i x , which a r e given by

16

Page 21: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 21/61

The f i * t h u s e x p re s se d c o n t a i n d e r i v a t i v e s a l o n g t h e T and 5 c o o r d i n a t e

d i r e c t i o n s a n d , as a r e s u l t , c an b e e a s i l y e v a l u a t e d w i t h s t a n d a rd one -p ar am et er d i f f e r e n t i a t i o n r o u t i n e s . I t w i l l a l s o b e s e e n , when t h e f i n i t e

di f ference scheme i s d e s cr i b ed , t h a t t h e d e r i v a t i v e s a c $ / a s * a p p e a r i n g i n

fi

equat ions (42) through (45) c ont a in no ad di t i on al approximat ions beyond th os e

i n t h e o r i g i n a l e q u a t i o n s . Only t h e u s ua l a ss um pt io ns p e r t a i n i n g t o v i s c o s i t y

and he at conduct ion ar e made. The bra cke ted [ ] te rm s i n t h e * a l l van i sh

f o r a x i a l l y sym me tr ic fl ow s ( i . e . , f o r c$ = 0 ) , and the equa t ions r educe t ot h e f a m i l i a r i n t r i n s i c e qu at io ns f o r z er o a n gl e o f a t t a c k .

* and ap/as* appear ing i n f ,* and f 4 * a r e e a s i l y t r e a t e d .

I t i s i mp or ta nt t o n o t e t h a t , a l t h o u g h w r i t t e n i n a s i m p l i f i e d f o r m ,

fi

C h a r a c t e r i s t i c d i r e c t i o n s . - C h a r a c t e r i s t i c s t h e or y , as o u t l i ne d i n aprevious s ec t i on , can now be app l ie d t o equat ions (42) through (45) . I t i s

f i r s t o bser ve d t h a t e q u a ti o n s (4 4) an d ( 45 ) a r e a l r e a d y i n t h e d e s i r e d c h a r-

a c t e r i s t i c fo rm. These equa t ions g ive no in fo rma t ion %bout th e normal de r iv -

a t i v e a /a n; t h e r e f o r e , s* i s a c h a r a c t e r i s t i c d i r e c t io n f o r c$ and p . This

i s i n co nt ra s t t o equat ions (42) and (43) , which can be combined to g i ve

d e r i v a ti v e s i n d i f f e r e n t d i r e c t i o n s . W ri ti ng t h e l a t t e r i n t h e form o fequa t ion ( 1 4 ) , one has

VL f *

P V a x . * LI1

Expressed i n terms of new co ord ina tes , *, equ at i on (50) becomes (c f . eqs .

(17) and (24)) :Y i

where

and where a.. a re t h e e le m en ts of t h e t r a n s f o r m a t io n m a t r i x r e l a t i n g x1 3 i

and y . The c h a r a c t e r i s t i c d i r e c t i o n s f o r e q u a t i on ( 51) a r e o b t a i n e d from

the de te rminan tj

17

Page 22: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 22/61

which yie lds

Wri t i ng a i j i n terms of a r o t a t i o n a ng l e as i n e q u a t i o n ( 3 1 ), o ne o b t a i n s

f o r t h i s c as e

where p* i s t h e ang l e between t h e

s t r e a m l i n e a n d t h e c h a r a c t e r i s t i c s

i n t h e r e f e r en c e p la n e as shown i n

f i g u r e 4 . Equat ion ( 5 2 ) shows that

u* i s re l a t e d t o t h e Mach ang l e

accord ing t o

c o t ll* = E T 1 c o t p ( 5 3 )Figure 4 . - Characteristic directions for the

reference planes.

Compa t ib i l i t y equa t i ons . - The c o m p a t i b i l i t y e q u at i on s a p p l i c a b l e t o t h e

d i r e c t i o n s C 1 * an d C 2 *

t h e b i c h a r a c t e r i s t i c s .c a n b e o b t a i n e d i n t h e way p r e v i o u s l y d e s cr ib e d f o r

F o r t h e p r e s e n t c a s e , one h a s i n p l a c e o f e q u a t i on ( 2 7 )

a 2 1

g1* - g2* = 0

where

(54)

and

1 8

A l g eb r a ic d e t a i l s a r e s t r a i g h t f o r w a r d a nd ne ed n o t b e r e p e a t e d .

c o m p a t i b i l i t y e q u at i on s a r e :T h e r e s u l t i n g

Page 23: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 23/61

--p + cos 47e - ( f l * + Bf2*)sin p*2

p v acl* ac1( 5 5 )

Equations (55) and (56) , t o ge th er wi th equa t ions (44) and ( 4 5 ) , a r e th e f i n a l

s e t o f d i f f e r e n t i a l equa t ions programmed f o r numerica l ca l c u l a t io ns . They a resupplemented by t he energy equat ion (eq . ( 5 ) )

h + V 2 / 2 = H

and the equa t ions o f s t a t e ((6a) and (6b))

an d

De ta i l s of th e numerical methods used i n th e computer program ar e descr ib ed

i n t h e n ex t s e c t i o n .

NUMERICAL METHODS

The g e n e ra l t h e o ry o f c h a r a c t e r i s t i c s was d ev el op ed i n t h e p r e vi o u s

se c t i o n , w h e r e it was shown t h a t th e th ree-dimens ional problem can be reduced

t o an equ iva len t two-dimensional form. A numerica l s o l u t io n o f th e prob lemcan then be accompl ished i n th e usual way by numer ical l y e va lu at in g der iva -

t i v e s i n o ne d i r e c t i o n i n o r d e r t o c a l c u l at e a s t e p f or wa rd i n t h e s e co nd

d i r e c t io n . The p rob lem i s ana logous t o t he numer ica l s o l u t io n o f two-d imensiona l hyperb o l i c equa t ions by nonc ha ra c t e r i s t i c s methods.

, There fo re , i n fo rmula t ing a p r a c t i c a l method f o r c a l c u l a t i n g t h r e e -

d im e ns io na l f l ow , t h e n u me r ic a l d i f f e r e n t i a t i o n p r o c e s s i s of primary: impor-

t a n c e . I f t h e d i f f e r e n t i a t i o n i s t o b e pe rf or me d e f f i c i e n t l y a nd a c c u r a t e l y

( i . e . , a t l e a s t second o r d e r i n a ty pi ca l mesh dimension) , th e mesh po in tss h ou l d b e c o n s t r a i n e d t o l i e a lo n g s im pl e c o o r d i n at e l i n e s . S ec on dl y, t h e

b ou nd ary c a l c u l a t i o n s a r e s i m p l i f i e d i f t h e c o o r d i n a t e s l i e on t h e sho ck a nd

body su r f a ce s . These cons idera t ions sugges t th e shoc k- l ay er -o r i en te d , non-or thogonal coord ina te s shown i n f i gu re 3 . The r e su l t in g computat iona l p roce-

dure i s s i m p l i f i e d s i g n i f i c a n t l y c ompared w i t h p r e v i o u s l y p ro po se d t h r e e -

d imehsiona l ch ar ac te r i s t i c s methods ( s ee , e .g . , r e f . 1 2 ).

19

Page 24: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 24/61

P r e s en t e d n e x t a r e t h e d i f f e r e n c e e q u a t i o n s , c o mp u t at i on a l l o g i c , an d

n u me ri ca l d i f f e r e n t i a t i o n p r o c e du r e s d e v el op e d on t h e b a s i s o f t h i s n on or th og -

ona l (< , n , 5) mesh. The problem may b e s t a t e d as f o l l o w s :

Given d a t a on a n i n i t i a l n - 5 s u r f a c e a t 5, where the f low i sl o c a l l y s u p e rs o n ic , it i s r e q u i r e d t o g e n e r a t e , by means o f t h e

f low equat ions and boundary con di t io ns , new da ta on th e adja cen t

n - 5 s u r f a c e a t 5, + A t .

F i n i t e D i f f e r e n c e E q u at io n s

Figure 5 shows th e mesh po in t arrangement f o r a t y p i c a l r e f e r e n c e p la ne

( i - 1 ) a nd ( i ) t h e i n i t i a l d a t a l i n e a t SAand new da ta l i n e a t < B . Le t t he

s u b s c r i p t s j and k d en o te t h e r a d i a l

and c i r c u m f e r e n t i a l p o s i t i o n s o f t h e

mesh po in t s . However, t h e su bs c r ip t

k w i l l b e o m i t te d f o r b r e v i t y i n

w r i t i n g t h e d i f f e r e n c e e q u a t io n s .

The method adopted3 t o c a l cu la te- I , T + I --.

c o n d i t i o n s a t a t y p i ca l mesh po i n t

i , j on Sp, makes use o f i n t e r po l a t ed

d a t a a t t h e p o i n t s o f i n t e r s e c t i o n on

5 , o f t h e c h a r a c t e r i s t i c s th ro ug h

p o i nt i , j . A t h ree -po in t Lagrange

i n t e r p o l a t i o n i s employed t o de te rmine

the necessary da ta f rom known condi -

t i o n s a t neighb or ing mesh p o in t s .Figure 5.- F i n i t e d i f f e r en c e m e s h .

T hree i n t e r s e c t i o n s a r e r e q u i r e d f o r e ach f i e l d p o i n t on S B . To i d e n t i f y

t h e s e p o i n t s t h e c o nv e nt io n i s adopted whe reby t he su bs c r ip t

t h e i n t e r s e c t i o n w it h <A o f t h e s t r e a m l in e p r o j e c t i o n s* t h rough po in t

i , j , and t h e s u b s c r i p ts T - 1 an d ~ + le p r e s e n t i n t e r s e c t i o n s of c h a r a c t e r i s -

t i c s C 1 * an d C 2 * , r e s p e c t i v e l y ( s e e f i g . 5 ) .

T r e p r e s e n t s

With t h i s c o n ve n ti o n t h e c o m p a t i b i l i t y e q u a t i o n s (55) and (56) can be

w r i t t e n i n t h e f o l l o w in g f i n i t e d i f f e r e n c e f orm:

ei- ’ ) = F1 A C l *T-

i

‘ i pi-1)-+l B 2 ( O j i - B T + l-l) = F 2 A C 2 *

(57)

(58)

.._ - -

3This method i s c a l l e d t h e H a r t r e e method ( r e f . 1 7) an d a l s o t h e i n v e r s e

method ( re f . 12) ; it was used by Katskova and Chushkin (ref . 9 ) .

2 0

Page 25: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 25/61

Equat ions (44) and (45) a r e s im i l a r ly wr i t t e n as

an d

The system o f equa t ions i s completed by t h e energy and s t a t e e q u a t i o n s , (5)

and (6 ) . They apply t o a l l o f t h e f i e l d p oi n ts - t h a t i s , f o r t h e i nd ex j

running from 2 up t o J -1 . For the body po i n t , j = 1 , equat ion (57) i s r e p l a c e dby th e equa t ion o f t he body,

rll =

iwhich p e rm i ts t h e c a l c u l a t i o n o f 81

appendix C . I t i s shown the re tha t

where

f (x1 , Qk)

by means o f e q u a ti o n s d e r i v e d i n

For bod ies o f r evo lu t ion equa t ion (6 la ) r educes t o

A t t he shock , j = J , equa t ions (58) , ( 5 9 ) , and ( 6 0 ) a re r e p l a c e d b y t h e

obl ique shock equ at i ons . The jump con di t ion s f o r a genera l th r ee -d imens iona lshock su r f a ce a r e deve loped i n append ix B a nd c a n b e w r i t t e n i n t h e f o l l o w i ng

f u n c t i o n a l f orm f o r f i x e d f r e e - s t r e a m c o n d i t i o n s :

2 1

Page 26: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 26/61

Vw he re u r e p r e s e n t s p , 8 , @, p f o r v = 1, 2 , 3 , 4 . Here 0 and 6 aret h e shock-wave an g les i n th e p lan es CP = c o n s t a n t and x = c o n s t a n t , r e s p e c -

t i v e l y , a n d a i s t h e - a n g l e o f a t t a c k . Equa t ion (62) depends d i r e c t l y on th e

unknown shock angle ol, a nd i n d i r e c t l y on t h e p a r a m e t e rs 6 k, @ k , a nd a. The

shock ang le 6k i s d e te rm i ne d b y n u m e ri c a l d i f f e r e n t i a t i o n o f sho ck c o o r d i -

n a t e s as d e s c r i b e d i n a pp en di x A . The fou r equa t i ons ob ta ine d f rom (62) f o r

v = 1 through 4, t o g e t h e r w i t h e q u at i on ( 57 ) , a r e s u f f i c i e n t t o d et erm in e t h eshock angle 01.

Computat ional Procedure

L oc al i t e r a t i o n . - The d i f f e r e n c e e q u a t i o n s a r e s o l v e d b y a s t a n d a r d E u l e r

An i n i t i a l g u e s s , s a y

_ _ _ _ - . ~ -p r e d i c t o r - c o r r e c t o r method i n which t h e c o e f f i c i e n t s a r e t r e a t e d a s c o n s t a n t s

l o c a l l y a nd e qu a l t o t h e i r a ve ra ge v a l ue o v e r t h e s t e p .

v i - 1(u'): = (u )

v a l u e s o f ( u ' ) ~

p r e d i c t i o n s .

s p e c i f i e d a c c u r a c y .

t i v e e r r o r t o l e s s t ha n l ~ l O - ~ . t i s shown i n s ta n d a r d t e x t s t h a t t h e i t e r -

a t e d r e s u l t h as a t r u n c a t i o n e r r o r o f t h e o r d e r o f t h e s t e p s i z e c ubed.

, i s u se d t o s t a r t an i t e r a t i v e p r o c e d u re b y w hic h c o r r e c t e dj

a r e c a l c u l a t e d u si n g c o e f f i c i e n t s e v a l u a te d w it h t h e p r e vi ou s

F or t y p i c a l mesh p o i n t s t h r e e c o r r e c t o r s r ed uc e t h e r e l a -

jT h e i t e r a t i o n i s c on ti nu ed u n t i l t h e p r e s s u r e r e p e a t s t o a

I n t h i s method t h e c o e f f i c i e n t s i n e q u at i on s (57) t hr ou gh

(60) a r e a ve ra ge d a lo ng t h e c h a r a c t e r i s t i c d i r e c t i o n a p p r o p r i a t e t o e ac h

e q u a t i on . F or e xa mp le , t h e c o e f f i c i e n t F 1 i n d i f f e r e n c e eq u a ti o n ( 57) r e p r e -

s e n t s t h e a ve ra ge o f t h e r i g h t s i d e of d i f f e r e n t i a l e q u a t i on ( 5 5) , t ak en a l on gt h e c h a r a c t e r i s t i c C 1 * , and i s w r i t t e n as

A,,, B y , and F1-I

F 1 = 1 / 2 [ ( f l * + B f 2 * ) ] f + 1 / 2 [ ( f l * + Bf2*)]:::1

i n t h e p r e s e nt n o t a t i o n . S i m i l a r l y , a v er ag es a re e v a l u a t e d u s i n g d a t a a tp o i n t ~ + lo r e q u a t io n (58) and a t p o i n t T f o r e q u a t i o n s (5 9) and ( 6 0 ) .

G lo ba l i t e r a t i o n . - The s e t o f e q u a ti o n s ( 57 ) t hr o u gh ( 60 ) a r e so l v e d

s u c c e s s i v e l y on L r e f e r e n c e p l a n e s , @k (k = 1, 2 , . . . , L) . Th e d i f f e r -

ence equa t ions govern ing th e flow a long 'va r ious r e f e r en ce p lanes a r e coup led

by c r o s s - d e r i v a t i v e s which a r e i n c lu d e d i n t h e f u n c t i o n s

r i g h t s id e o f each equa t ion and by th e shock ang le 6k appear ing i n equa-

t i o n ( 6 2) . I n o r d e r t o s o l v e t h e s e e qu at io ns i n an e x p l i c i t manner,i t i st h e r e f o r e n e c e ss a ry f i r s t t o approximate

a t e d o n < A . Then, us ing ca l cu la t ed va lues on a l l o f t h e L p l a n e s t o

e v a l u a t e c r o s s - d e r i v a t i v e s o n

and 6 k and t h e e n t i r e p r o ce s s c a n b e r e p e a t e d . T h i s i s r e f e r r e d t o as ag lo ba l i t e r a t i o n , i n c o n t r a s t t o t h e p o i n t- b y- p oi n t i t e r a t i o n employed i n t h e

l o c a l s o l u t i o n o f t h e d i f f e r e n c e e q u a ti o n s .

F,, appear ing on the

F,, and 6 k w i t h d e r i v a t i v e s e v a l u -

F,,; B , o ne o b t a i n s t h e n e x t a p pr ox i ma t io n t o

2 2

Page 27: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 27/61

Since computing t imes are g e n e r a l l y l a r g e i n t h r e e - d im e n s i on a l p ro bl em s

( s e e n e xt s e c t i o n ) , t e s t c a se s we re r u n t o d et er mi ne t h e n ee d f o r g l o b a l

i t e r a t i o n . T ab le I shows t h a t e x c e l l e n t r e s u l t s a r e o b t a i n e d w i th o ut i t e r a -

t i o n , t h a t i s , u s i n g d e r i v a t i v e s e v a l u a t e d on E A . I t i s t h e r e f o r e e x p e c t e d

t h a t t h i s i t e r a t i o n would n o t be r e q u i re d i n most problems.

S t e p S i z e

Since t he mesh po in ts are n o t c o n s t ra i n e d t o f ol lo w c h a r a c t e r i s t i c l i n e s

wi th th e p re se n t method, th e s i z e o f a f o r w a r d s t e p , Ag = cB - S A , can be

s t a b l e n um e ri ca l p r o c e s s , t h e s t e p sho u l d n o t e x ce ed a c e r t a i n maximum d et er -

mined by t h e r e g i o n o f i n f l u e n c e o f t h e i n i t i a l d a t a . T h is s t a b i l i t y c on di -

r e q u i r i n g sm a l l e r f or wa rd s t e p s . The l a t e r a l s t e p A5 d oe s n o t a f f e c t t h e

s t a b i l i t y d i r e c t l y , a lt ho ug h i t d o es , o f c o u r se , a f f e c t t h e accuracy . The

e f f e c t of s t e p s i z e on a cc ur ac y i s d i s c u s s e d a f t e r t h e f o ll o wi n g p ar ag ra ph s

on s t a b i l i t y c o n di t io n .

a r b i t r a r y t o some e x t e n t . The o n ly l i m i t a t i o n i s t h a t , i n o r d e r t o have a

t i o n w i l l make A g d ep en d on t h e r a d i a l s t e p A n , s m a l l e r r a d i a l s t e p s

S t a b i l i t y c o nd i t io n .- Although thea n a l y s i s o f n u me ri ca l s t a b i l i t y ha s n ot

been per fo rmed f o r th e genera l non l in -

e a r e q u a t i o n s , h e s t a b i l i t y c r i t e r i o n

f o r l i n e a r h y p e r b o l i c e q ua t io n s ( s e e ,e . g . , r e f . 17) i s a p p a r e n t l y s u f f i c i e n tf o r t h e n o n l i n e a r e q u a t i o n s . T hi s i sthe well-known C - F - L (Courant ,

F r i e d r i c h s , Lewey) c o n di ti on which

e s s e n t i a l l y s t a t e s t ha t t he domain o f

dependence o f t h e c a l cu la t e d po in t mus t

b e i nc lu de d i n t h e i n i t i a l d a ta . T hi s

means t h a t t h e c h a r a c t e r i s t i c C 1 *t hr ou gh p o i n t ( i , 2 ) i n f i g u r e 6 must

p a ss t h ro ug h o r above p o i n t ( i - l , l ) .

S i m i l a r l y, t h e c h a r a c t e r i s i c C 2 *

t hr ou gh p o i n t ( i , - 1) must fa11 through

Figure 6 . - S t e p s i z e limitation. o r below p o i n t ( i - 1 ,J).

S t r i c t l y f ol lo we d, t h e C - F - L c o n d i t i o n w ould r e q u i r e t e s t i n g ev e ry

shock and body p oi nt t o determ ine th e maximum allo wab le s t e p s i z e , Agm, which

would i n s u r e s t a b i l i t y . However, e x p e ri e nc e i n d i c a t e s t h a t t h e c o n d i t i o n i sn ot o v er ly r e s t r i c t i v e i n t h e s e ns e t h a t s t e p s s l i g h t l y l a r g e r t h an do

n o t u su a l l y c a u se a v i o l e n t i n s t a b i l i t y . T h er ef or e, i t i s a de qu at e t o t e s t

o n l y a t t h e body a n d , f o r b o d i e s w i t h c i r c u l a r c r o s s s e c t i o n , on t h e windward

s i de where A g m i s l ik e ly t o be sm al le s t , due t o th e low Mach number. Thes t e p s i z e i s t hen t aken s l i g h t l y l e s s than t he maximum; a v a l u e o f

A < = 0 . 8 A< , works w e l l i n most problems.

A<,

Accuracy and computing t ime . - The accuracy of a numerical computat ion i su su a l l y e s t i m a t e d b y c o mp ar in g r e su l t s o b t a i n e d w i t h v a r i o u s mesh sp a c i n g s .

23

Page 28: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 28/61

S i nc e t h e e x ac t s o l u t i o n i s us ua ll y unknown, one can only compare with th e

r e su l t s o f t h e f i n e s t mesh a nd o b se r ve how t h e e r r o r d e c r e a se s . I f t h e t r u n -

c a t i o n e r r o r s a r e s e co nd o r d e r i n t erm s o f t h e mesh s i z e , t h e n h a l v i n g t h e

mesh s i z e sh o u ld r ed u ce t h e e r r o r by o n e - q u a r t e r .

To t e s t t h e accuracy o f th e p rese n t method , ca lc u l a t io ns were per fo rmed

from X/Rn = 2 t o x/Rn = 3 , u s i n g 3 , 5 , an d 7 p l a n e s a n d 5 , 10, and 15 po in ts

a long each p lane .X/Rn = 2 . The r e s u l t s o f t h i s s t u d y a re shown i n t a b l e 11. T a b l e I I ( a ) p r e -

s e n t s t h e sh oc k a n gl e s a nd t h e su r f a c e p r e s su r e on t h e

X/Rn = 3 . These r e s u l t s show t h a t th e method i s of second-order accuracy.

Also, i t s ho ul d b e n o te d t h a t t h e r e s u l t s w i t h k = 5 and 7 agree very well

f o r J f i xe d (moving ho r i z on ta l l y in the t a b l e ) . The good accuracy wi th on ly

a f e w p lanes i s a t t r i b u t e d t o t h e u se o f t r i g o n om e t r i c a n a l y s i s f o r t h e

c r o s s - d e r i v a t i v e s .

I n each case the same s t a r t i n g c o n d i t i on s were u s ed a t

@ = 90" plane a t

The computing time n a t u r a l l y i n c r e a s e s as the mesh i s r e f i ne d ; t h i s i si l l u s t r a t e d i n t a b l e I I ( b ) , which l i s t s t h e t o t a l number o f p o i n t s computed,

t h e t o t a l e x e c ut e t i me , an d t h e t im e p e r p o i n t i n m i n ut e s . The c a l c u l a t i o n

was performed on an I B M 7094 Model 1 2 i n FORTRAN I V ( v e r s i o n 1 3 I B J O B proces-s o r ) .

f i n e s t mesh. The u n i t time inc re ases as t h e number o f po i n t s d ecrea ses , p rob-

ab ly because o f f ix ed inpu t /ou tp u t t imes . The ac tu a l and u n i t t imes a r e

almost doubled when one g lo bal i t e r a t i o n i s made a t e a c h s t a t i o n .

A u n i t t im e o f a b ou t 0 .1 3 ~ 1 0 - min p e r p o i n t was o b t a i n e d w i t h t h e

Numeri ca l Di f f e r e n t a t on

Discussed next i s t h e p ro ble m o f e v a l u a t i n g c r o s s - d e r i v a t i v e s a p pe a ri n g i n

t h e e q u a ti o n s. P a r t i a l d e r i v a t i v e s i n t h r e e d i r e c t i o n s a pp ea r i n t h e f u n c t io n s

f i * def ined by equ at i ons (46) through ( 49) . They ar e of th e form a/as*,a / a r , , an d

a / a r ,i n t h e s t re a m, r a d i a l , a nd c i r c u m f e r e n t i a l d i r e c t i o n s . S p e c i a l

t r ea tmen t i s g iv en t o t h e c i r c u m f e r e n t i a l d e r i v a t i v e , f o l l o w i n g t h e d i s c u s s i o n

o f t h e f i r s t two.

S tr ea mw ise a nd r a d i a l d e r i v a t i v e s . - Th e se d e r i v a t i v e s a r e t a ke n t o g e t h e r

s i nc e they a re bo th eva lua ted by th e s t and ard po lynomial approach .

i d e a i s t o employ a d i f f e r e n t i a t i o n fo rm ul a c o n s i s t e n t w i th t h e a cc ur ac y o f t h e

b a s i c c a l c u l a t i o n .

The main

F or t h e s t re a m wi se d e r i v a t i v e t h e approximation

i s c l e a r l y e q u i v a l e n t t o t h e form o f t h e d i f f e r e n c e e q u a t io n s em plo yed .

Eq ua ti on (64) r e p r e se n t s t h e d e r i v a t i v e of

v a l , As*/2, w i th an e r r o r o f t h e o r d e r

each s t e p i n t h e l o c a l i t e r a t i o n pr oc es s p r e v i o u s l y de s c ri b e d.

uv a t t h e mi dp oi nt o f t h e i n t e r -

T h i s d e r i v a t i v e i s e v a l u a t e d a ts * 2 .

24

Page 29: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 29/61

Because of t he eq ua l l y spaced coo rdi nat e mesh pr es en t l y employed, t h e

r a d i a l d e r i v a t i v e i s s i m i l a r l y d et er mi ne d t o t h e same a c cu r ac y b y t h e c e n t r a l

d i f f e r e n c e

Equat ion (65) approx imates th e de r iv a t iv e a t p o i n t ( i , j ) w i th an e r r o r o f

p r e v io u s ly d e s c r ib e d .

o r d e r A n 2 .

SA and SB

Th e a v e r a g e r a d i a l d e r i v a t i v e a t th e midpo int ( i +1 /2 , j ) between

can be o bt ai ne d by means of t h e g l o ba l i t e r a t i o n p ro ce du re

Standar d end-poin t formulas o f e q u iv a l e n t a c c u r a c y a re used a t th e body

and shock where cen t ra l d i f fe rences are n o t p o s s i b l e . The se n ee d n o t b e

w r i t t e n o u t , as th ey can be found i n many books (e .g . , r e f . 1 8 ) .

C i r c u m f e r e n t i a l d e r i v a t i v e s . - I n t h e a er od yn am ic s o f b o d i es i t i s w e l lknown, fro m l i n e a r i z e d an d p e r tu r b a t i o n t h e o r i e s as w e l l as from experiment,

t h a t t h e s o lu t i o n o f most p ro bl em s c an b e r e p r e s e n t e d b y a t r i g o n o m e t r i c

s e r i e s i n t h e m e ri d io n al a n gl e @ . When information such as t h i s i s a v a i l -

a b l e it s h o u ld b e p o s s ib l e , b y c h o ic e of a n a p p r o p r i a t e f u n c t i o n a l form, t o

improve a numerica l proc ess . For example, wi t h da t a known t o have a ne ar ly

c o s in e v a r i a t i o n , it i s c l e a r t h a t f ew er sam ple p o i n t s a r e r e q u i r e d t o

approxima te th e da ta wi th a c o s in e s e r i e s t h a n w i t h a polynomial . A

Four ie r - se r ie s approx ima t ion i s t h e r e f o r e u se d t o e v a l u a t e d e r i v a t i v e s w i t h

r e s p e c t t o 5 . Symmetry cond i t ions , wh ich usua l ly a r i se a t @ = 0 and @ = T ,

a r e e a s i l y s a t i s f i e d i n t h i s way. T h is t e ch n iq u e makes it p o s s i b l e t o c a l -

c u l a t e w i th f e w er r e f e r e n c e p l a n e s , t h e r eb y i n c r e a s in g t h e c o m p uta ti o na l

e f f i c i e n cy ( s e e r e f . 1 3 ) .

F or t h e p r e s e n t a p p l i c a t i o n it i s n e c es s a r y t o d e t er m ine F o u r i e r

approximat ions f o r p re ssu re p , f low ang l e 0 , c ross f low ang le $ , and

d e n s i t y p from t h e i r v a l u e s on E p l a n e s @ k (k = 1 , 2 , . . . , E) w i t h

@ 1= 0 an d @ L = T . Symmetry c o n d i t i o n s f o r t h r e e v a r i a b l e s ( r e p r e s e n t e d by

UkV (v = 1 , 2 , 4 ) ) a r e s a t i s f i e d by a c o s i n e s e r i e s o f t h e form

1.- 1

.\n=o

For th e c ross f low ang le (v = 3) , which i s zero a ts e r i e s

@ = 0 and @ = n , a s i n e

L- 1F

k, =L b n s i n n @

n=1

i s n e c e s s a r y .

25

Page 30: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 30/61

When e qu a l l y spaced meridiona l p la ne s 'k = i ~ ( k 1 ) / (L - l ) ,

(k = 1, 2 , . . . , L) a r e us ed , t h e c a l c u l a t i o n o f t h e F o u r i e r c o e f f i c i e n t s

i s p a r t i c u l a r l y s im p le b ec au s e t h e u s u a l o r t h o g o n a l i t y c o n d i t i o n s a r e

e x a c tl y s a t i s f i e d by a f i n i t e sum ( s e e , e . g . , r e f . 1 8 o r 19 ) . I n t h i s caset h e c o e f f i c i e n t s a r e g i ve n b y

and(n = 0, 1, . . ., L - 1)

( n = 1, 2 , . . . , L - 1)k

b = -n L - 1

k=2

(69)

D e r i v a t i v e s w i t h r e s p e c t t o t h e a n g l e

F o u r i e r s e r i e s , e q u a t io n s ( 6 6) a nd (67) , t o g iv e

CP a r e o b t a in e d by d i f f e r e n t i a t i n g t h e

v L - 1

du k V

__@ =En a n s i n n O

n=1

and

L- 1

d'k

= x n b cos F on=1

The d e s i r e d d e r i v a t i v e s i n t er ms o f d i s t a n c e a lo n g t h e 5 d i r e c t i o n a r e

ob t a ined f rom equa t i ons (70) and (71) ac cordin g t o

where i t i s u n de rs to o d t h a t t h e d e r i v a t i v e on t h e r i g h t s i d e of (72 ) i se v a l u a t e d u s i n g d a t a on t h e 5 c o o r d i n a t e . The s c a l e f a c t o r g c r e l a t e s

th e d i s t an ce a long cor re sponding t o an i nc rementa l change i n @ ,

26

Page 31: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 31/61

and c an b e w r i t t e n i n t er ms of t h e d i r e c t i o n c o s i n es d ev el op ed i n a p pe nd ix A .

From t h e se c o o r d i n a t e r e l a t i o n s o n e ha se A -

r (d@/dy) = e@ * < : 33

a n d t h e r e f o r e ,

g< = ( r /Y33) (73)

S t a r t i n g Data

The method o f c h a r a c t e r i s t i c s , b e i n g a method f o r i n i t i a l v al u e

p ro bl em s, r e q u i r e s s t a r t i n g d a t a w hic h a re usual ly obta ined f rom boundary

c o n d i t i o n s o r from an i n i t i a l s o l u t i o n o b t a i n e d by o t h e r m et ho ds .

These are (1) t h e s p h e r i c a l l y b l u n t e d body w i t h t h e s o n i c l i n e l o c a t e d on t h e

sp he r i ca l nose , and (2) poin ted bodies which can be approximated by a cone i nsome small r e g io n n e a r t h e t i p .

For pres-

e n t a p p l i c a t i o n s two ty p es o f s t a r t i n g c o n d it i o n s a re o f p a r t i c u l a r i n t e r e s t .

S h e r e . - S i n c e a sphere does no t have a2-pr e f e r r e d o r i en ta t i on , t he f low remains symmet-

r i c a ro un d t h e w in d a x i s f o r any a n g le o f a t t a c k .The re fo r e , ax i symmet r ic b lun t-body s o l u t io ns

o b t a i n e d , f o r example , by t h e in ve rs e method of

r e f e r e n c e 20 c an b e use d t o p r o v id e i n i t i a l c on-

d i t i o n s . I t i s n e c e s sa r y , h ow ev er , t o g e n e r a t e

t h e s e ax is ym me tr ic s t a r t i n g d a t a on an i n i t i a l

v - < su r f ace which i s d e f i n e d i n a body axis

sys te m ; t h e d a t a w i l l not be symmetr ic wi th

r e s p e c t t o t h e body a x i s .

data lBlunt body

Bow shock

(a) Wind axes.

Sonic l lne

In i t i a l data

Shockurfoceurfacej

\

c

"lo

,I

\

\ /\

-4X

(b) Body a x e s .

F i g u r e 7 . - S t a r t i n g d a t a for a

s p h e r i c a l n o s e .

The c h a r a c t e r i s t i c s p ro gr am i s s e t up t o

g e n e r a t e body a x i s d a t a from w in d a x i s d a t a

ob ta ined from a b lunt -body so lu t i on . Giventh es e wind axi s d at a on one body normal ( se e

f i g . 7 ( a ) ) wh er e t h e f lo w i s s u p e r s o n i c , s a y

M > 1 .OS, t h e c h a r a c t e r i s t i c s c a l c u l a t i o n i s

performed i n a wind axis system and for a = 0

t o t h e p o s i t i o n X k' , l o c a t i n g t h e body n orm al s

vk ' . (Pr imes denote wind axes .) This i s i l l u s -

t r a t e d i n f i g u r e 7 ( a ) . S i n c e t h e fl ow i s a x i -symmetric i n terms of wind axes , th e normals

may be p la ce d a t an a r b i t r a r y c i r c u m f e r e n ti a l

p o s i t i o n . The v a l u e s o f q.' a re chosen s ot h a t t h e n o r m a l s v k ' match t he r i ng o f normals

'Ik emanat ing f rom the sphere a t ( x o , ro ) i nterms of body axes ( f i g . 7 (b ) ) . They a rer e l a t e d t o t h e m e r i di o n a l a n g l e @k and t h e

a n g l e o f a t t ack c1 by

xk ' = R, + (xo - Rn) cos c1 - ro s i n a cos @ k

where R, i s t h e r a d i u s o f t h e s p h e r i c a l n os e .

rik'

(74)

27

Page 32: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 32/61

S c a l a r d a t a d e r i v e d i n t h i s way on t h e b ody n o rm al s tlk(k = 1, 2 , . . . , L) are r ea dy f o r u s e i n t h e g e n e r a l t hr e e- d im e ns i on a l ca l -cu l a t i o n . However, t he f l ow ang l e s , 0 an d 4 , must b e r e c a l c u l a t e d i n terms of

body axes b y means o f t h e t r a n s f o r m a t i o n r e l a t i o n s h i p s f o r v e l o c i t y c om po nen ts .

By t h e d e f i n i t i o n o f 0 and 4 ( f i g . 1 ) .

- 1 V

v cos (p

= s i n (75)

(76)1 w

(p = s i n -v

The magni tude of t h e ve l oc i t y i s u nc ha ng ed by t h e c o o r d i n a t e r o t a t i o n , s o

t h a t

v = V ' (77)

From ref er en ce 15 , t h e ve l oc i t y components

lows i n terms of wind ax is components:

v , w can be expressed as f o l -

v = ( u ' s i n a + v ' c o s a c o s @ ' ) c o s @ + v ' s i n 0' s i n @ (78)

w = v ' s i n @ ' os @ - ( u ' s i n a + v ' c o s a cos @ ' ) s i n 4, (79)

where 0 ' i s obta ined f rom

(x' -( 8 0 )o t @ s i n @ ' cos a cos a ' - ~-i n a = 0

r '

Equat ions (75) through (80) determine e an d (p, r e l a t i v e t o b od y- ax isc o o r d i n a t e s , fr om u ' a nd v ' c a l c u l a t e d i n t h e w i n d- a xi s s y st em .

Cone. - Conica l so lu t i o ns a r e d e f i n e d as th os e which a r e independept of

5 - t h a t i s , a l l d e r i v a t i v e s w i th r e s p e c t t o 5 van ish . Conica l f lows can

be o bta ine d i n two ways: (1) by so lv in g t h e bounda ry va lu e p rob lem fo r t h e

reduced equa t ions wi th 2/25 = 0 ( s e e, e . g . , r e f . 2 1), o r (2) by the asymp-

t o t i c s o l u t i o n of t h r ee - di m en s io n al i n i t i a l value problem wi th a conica l body

( s ee r e f . 11 o r 2 2 ) . The l a t t e r a pp ro ac h i s p r e s e n t l y t a ke n s i n c e i t f i t s

t he gene ra l computat ion scheme wi th l i t t l e change .

A pproximate i n i t i a l d a t a f o r a co ne a r e s p e c i f i e d an d t h e c a l c u l a t i o n

downstream i s c a r r i e d on u n t i l t h e c o n i c a l f lo w c o n d i t io n i s met t o a s p e c i -

f i e d a c ~ u r a c y . ~ h i s a pp ro ac h h as t h e d i sa d v an t ag e o f b e i n g g e n e r a l l y more

t ime-consuming tha n t h e boundary val ue method, b u t i t avoids many d i f f ic u l -

t i e s i n h e r e n t i n b ou nd ar y v a l u e p ro b le ms . The s i t u a t i o n i s q u i t e s i m i l a r t o

the ca l cu l a t i o n o f t h e supe rson i c b lun t -body prob lem by an a sympto ti c

_ - _ _ ._ ~ - _ _ _ - - - -

41t i s c l e a r p h y s i c a l l y t h a t t h e c o n i c a l c o n d i t i o n must b e o b t a i n e d

f a r downs tream f rom the approx ima te s t a r t i n g co ndi t i o n .

28

Page 33: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 33/61

u ns te ad y c a l c u l a t i o n . A pp ro xim ate s t a r t i n g c o n d i t i o n s a r e o b t a i n e d e i t h e r

from t h e p e r t u r b a t i o n s o l u t i o n f o r c on es a t small a n g l e o f a t t a c k ( r e f . 23)

o r f rom a prev i ous t h ree -d i m ens i ona l so l u t i on f o r a d i f f e r e n t Mach number o rcone angle .

Two mod i f i c a t io ns t o th e gen era l computat ional p rocedure a r e requ i re dt o o b t a i n t h e c o r r e c t c o n ic a l f low s o l u t i o n s f o r c i r c u l a r c o ne s. F i r s t , it

was found neces sa ry t o accoun t f o r t h e F e r r i v o r t i c a l l a y e r ( r e f . 24) bys e t t i n g t h e e n t ro py a t a l l body poin t s , except a t t he l eew ard p l ane o f

symmetry, equ al t o th e ent ropy a t th e windward shock p o in t . The entro py a tt h e l eeward body s t a t io n , which i s a s i ng u l a r po i n t , m ust equa l t he en t ropya t t h e l eeward shock po in t . 5

cones :

Thus t h e fo l l ow i ng cond i t i on s app ly t o c i r c u l a r

and

s = s (k = 2 , 3 , . . . , L )l , k J , L

s = s1,1 J , 1

Secondly, as a r e s u l t o f t h e en tr op y s i n g u l a r i t y a t the leeward body point ,t h e c i r c u m f e r e n t i a l d e n s i t y d e r i v a t i v e th e r e i s a l s o s i n g u l a r . T h er e fo r e,d a t a from t h e s i n g u l a r p o i n t must b e e xc lu de d i n t h e n um er ic al d i f f e r e n t i a t i o n

f o r a p / a g .

Smoothing

Under c e r t a i n cond i t i on s where t he d ens i t y o r crossf low angle deve lop

l a r g e r a d i a l g r a d i e n t s , t h e n um er ic al c a l c u l a t i o n f o r t h e s e q u a n t i t i e s a pp ea rs

t o b e u n s t a b l e . T hi s s i t u a t i o n c an a r i s e i n t h e re g io n o f t h e v o r t i c a l l a y e r

on po i n t ed cones and i n t he so -ca l l e d en t ropy l a ye r ove r b l un t ed cones. A

s t a b i l i z i n g d i f f e r e n c e scheme s i m i l a r t o tha t known as t he Lax , o r Lax-Wendroff method ( r e f s . 26 and 27) i s t h e r e f o r e u se d i n t h e s e c a s e s .

Equat ions (59) and (60) a r e modi f ied fo r t h i s purpose accord ing t o the

fo l l ow i ng d i f f e re nce approx im a ti on:

where 4 o r p , r e s p e c t i v e l y .b r a c k e t i s p r o p o r t i o n a l t o t h e s eco nd d e r i v a t i v e o f

v = 3 o r 4 r e p r e s e n t s The second term i n th euv , so t h a t t h e

5 A dd it io n al s i n g u l a r p o i n t s a r i s e i n more g e n e r a l c o n i c a l f lo ws ( s e e ,

e . g . , r e f . 24 o r r e f . 2 5 ) .

29

Page 34: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 34/61

d i f f e r e n c e e q u a t i o n (8 2) a p pr ox ima te s t h e d i f f e r e n t i a l e qu a t i o n6

where

and n J i s t h e v a l ue o f q a t the shock riJ = (J - 1 ) A q .

The add i t iona l term i n e q ua t io n (83) r e p r e s e n t s a d i f f u s io n p ro c e s s a nd

i s t h e s t a b i l i z i n g term i n th e type o f d i f fe r enc e scheme g iven by equa-

t i o n ( 82 ) . The a r b i t r a r y c o n s t a n t k i n e q u a t i o n ( 84) i s i n c l u d e d t o a ll ow

c o n t r o l o f t h e d i f f u s i o n term. I f k = 0 , equa t ion (83 ) reduces t o equa -

t i o n (59) o r equa t ion (60) . For k = ~ J / A T - I , equa t ion (83 ) i s e s s e n t i a l l y t h esame as the Lax scheme (ref . 2 6 ) .

I t i s known ( t h i s i s demonst ra ted below) t h a t t he Lax d i f fe re nc e scheme

prov ides too much d i f f us io n ; th e r e f o r e , i t i s d e s i r a b l e t o choose k between

0 an d q ~ / A r l i n o r d e r t o p r ov i de n um er ic al s t a b i l i t y w i t ho u t undue l o s s o f

accu racy . In most app l ic a t i ons k has been s e t e q ua l t o 1 , and th i s cond i -

t i o n i s p r e s e n t l y t e r m e d a second-o rder Lax smoothing because i n th i s case

-K = A n 2 = O ( A n 2 )

"15

Thus , t h e s e c o nd - or d er d i f f e r e n c e scheme ap pr oa ch es t h e d i f f e r e n t i a l e q u a ti o nl i k e A q 2 as the mesh i s re f i ne d , whereas t he Lax method approaches l i n ea r l y

i n A n . For la rg e Mach numbers , an order-of-magnitude an al ys is rev ea ls t h a t

- = 0 ( - )

-which gives K a v a l u e of about 1 /1000 for a t y p i c a l m e s h .

- - . _.-___

'This argument i s n ot s t r i c t l y r ig o ro u s, as p o i nt e d o u t i n r e f e r en c e 2 7 ,

i f t h e d i s s i p a t i v e t er m i s of t h e same or de r as t h e t r u n c a t i o n e r r o r o f t h e

o t he r t e rms . Never the le ss , th e analogy i s q u a l i t a t i v e l y c o r r e c t , e s p e c i a l l y

when t h e s t e p s i z e i s n o t smal l . A lso , when t h e i n t e g r a t i o n i s c a r r i e d o v er

l a r g e d i s t a n c e s t h e t r u n c a t i o n e r r o r m ig ht t e n d t o b e random, w h i l e t h e

d i s s i p a t i v e t e r m i s a lways add i t ive .

30

Page 35: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 35/61

Page 36: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 36/61

Curve xb/R,t h e i n i t i a l d a t a l i n e . T hi s problem

@ 0.4i5450 w a s t h e r e f o r e i n v e s t i g a t e d a nd i t was0 .505 found t h a t th e proposed method does@ ~ 4 5 p r o v i d e a n a c c u r a t e r e so l u t i o n o f known

flow d e t a i l s o b t a i n e d w i th a s t a n d a r d

0 .735 method o f c h a r a c t e r i s t i c s f o r ax isym -

m e t r i c f l o w ( r e f . 29) .

@ ,605

@ 6 7 0

D i sc o n t i n u o u s d e r i v a t i v e s a r i s ep r i m a r i l y on t h e body su r f a c e a t p o i n t s

w he re t h e s u r f a c e c u r v a t u r e i s n o t

30 a n a l y t i c . A s an example , f ig u re 9

shows a map o f t h e p r e s s u r e i n t h e

f o r a b l u n t e d c o n e a t 5" a n g l e o f

s u r e v a r i a t i o n a l on g a body normal, n ,between t h e body and th e shock wave.

The o r i g i n f o r ea ch l i n e i s d i s p l a c e d

i n p r o p o r t i o n t o t h e x c o o r di n a te o f

th e body po i n t s o t h a t t h e c i r c u l a r

sym bols r e p r e s e n t t h e a c t u a l s u r f a c e -

p r e s s u r e d i s t r i b u t i o n . The s u r f a c e

p r e s su r e d e c r e a s e s un i fo r m ly o n t h e

s p h e r i c a l n o s e u n t i l t h e s p he re -c on e

j u n c t u r e i s r eached , a t

w he re t h e p r e s su r e g r a d i e n t , a p / a s ,

c ha ng es a b r u p t l y . The d i s c o n t i n u i t y

f i e l d a lo ng a Mach wave.

mate p o s i t i o n o f t h e wave i s i n d i c a t e d

by the a r rows . )con s tan t beh ind th e wave and var i e sa c c o r di n g t o t h e b lu n t - no se f lo w a h ea d

mals, q ; 30" sphere-cone, M_ = 10, a = 5 " . o f t h e w av e. The c u rv e s t h e o r e t i c a l l y

A s s ee n i n t h e f i g u r e , t h e c u rv es

- 40Pa)

v i c i n i t y o f t h e s ph e re -c on e j u n c t u r e0 0 0 0 0 0 0 .2 .4 .6 .8 1.0

7)-7 s a t t ack . Each l i n e r e p r e s e n t s t h e p r e s -

0000 8 0Zeros for curve

(a) Leeward plane, 0 = 0 " .

xb = 0 .5 ,

8 O - r i i r i I I I 1 I

Shock point

7 0

P

Pa)-

40 -

I I ! I l I I 1 1 I fro m t h a t p o i n t moves o u t i n t o t h e f l ow

(The approxi-

The pressure i s n e a r l y

0 0 0 0 0 .2 .4 .6 .87)-7)s

00000 @ 0Zeros for curve 0

(b) Windward plane, Q = 180".

Figure 9 . - pressure distribution on surface nor-

should have a d i sc o n ti n uo u s s l o p e t h e r e ,

are o nl y s l i g h t l y r ou nd ed by t h e q u a d r a t i c i n t e r p o l a t i o n p r e s e n t l y e mployed.

RESULTS A N D DISCUSSION

Many numerical so lu t i on s have been obt a in ed wi th t h e de sc r ib ed method of

c h a r a c t e r i s t i c s , and t h e s e r e s u l t s compare f a v o r a b l y w i th o t h e r p u b li s he dworks (see, r e f . 1 3 ) . P re se n te d i n t h i s s e c t i o n a re t h e d e t a i l s o f a t y p i c a l

c a l c u l a t i o n f o r a 15" sphere-cone a t 10" ang le o f a t t ack and a Mach number

of 10.

t e s t o f t h e t h e o r y .

i l l u s t r a t e d a nd compared w i t h p r e d i c t i o n s o f p e r t u r b a t i o n m eth od s f o r small

ang les o f a t t ack .

po in ted cone so lu t ion , which i s d e s c r i b e d f i r s t .

This i s c on s id e re d t o b e s u f f i c i e n t l y n o n l i n e a r t o p ro v id e a good

The dominant three-dimensional fe a tu re s of th e flow are

B l u n t n e s s e f f e c t s are i l l u s t r a t e d b y c om pa ris on w i t h a

32

Page 37: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 37/61

Po int ed Cone

The s o l u t i o n f o r a poin ted 15" cone a t a Mach number of 10.6 and 10"

a n g l e o f a t t a c k i s p r es e nt e d i n t a b l e 111.

0 = c o n s t a n t , a re the shock ang les , 0 and 6 . Below th e shock angle s a r e

tab u la ted th e x , r coo r d ina te s o f each mesh po i n t runn ing f rom t he shock t o

th e body and th e co r respond ing f low va r ia b l es a t t h o s e p o i n t s , as l a b e l e d .

The quan t i ty M* i s t h e component o f Mach number d ef in ed by t h e Mach a ng le

p* i n equat ion (53) . Remaining va r i ab le s are d e f i n e d i n t h e l i s t o f

L i s t e d f o r e a ch p l a n e ,

symbols.

T hi s c o n i c a l s o l u t i o n was o b t a i n e d w i t h a coor d ina te mesh co ns i s t i ng o f

9 mer id iona l p l anes and wi t h 11 po in ts on each p l an e . Second-order smooth-

i n g was u s e d o n t h e d e n s i t y p and the c ross f low ang le $ (smooth constant

k = 1 ) . I n i t i a l d a t a f o r t h e p r e s e n t case were ob ta ined f rom a prev ious

s o l u t i o n a t M = 7 w hich a g r ee d w i th t h e t a b u l a t e d r e s u l t s o f r e f e r e n c e 11.

The fr ee -s tr e am Mach number w a s changed from 7 t o 10 and th e computa t ion w a sc a r r i e d dow nstr eam u n t i l t h e f lo w r e l a x e d t o t h e new c o n i c a l s o lu t i o n . Th is

was accomplished i n a number o f s t a g e s , w i th e a ch s t a g e c o n s i s t i n g o f a com-

p u ta t i o n f r o m

i n i t i a l d a t a .

x = 0 . 8 t o 1 . 0 , u s i n g t h e o u t p u t of t h e pr e vi o us s t a g e as

Final Star l ing

I9t ,O 0" (leeward) i -/q I

I I 1

0 .2 .4 .6 .8 1.0

I /N

Ii

Figure 10.- Relaxation of conical solution a f t e r

N stages of calculation from x = 0.8 t o

x = 1 . 0 ; 15" cone, M_ = 10.6, a = 10".

The a c cu r ac y o f t h e s o l u t i o n i sin d i ca te d by f i gu re 10 which shows

th e s ho ck a n g l e i n t h r e e m e r idio n a l

p l a n e s as a f u n c t i o n o f t h e r e c i p r o c a l

o f t he number o f s t ag es . I t i s s e e n

t h a t t h e a pp ro xi ma te s t a r t i n g c on di -

t i on s cause th e shock ang les t o change

a b ru p tl y i n t h e f i r s t s t a g e w i t h aslow decay t o a l i m i t i n g v a l ue as 1/M

t e nd s t o zero. Condit ions on the Pee

s i d e a r e s l o w e st t o a p pr oa ch a l i m i t .The shock angle a t @ = 0 r e p e a t e d t o

an accuracy of

t h e l a s t s t a g e o f c a l c u l a t i o n and

r e p e a t e d t o a n a c c ur a cy o f l ~ l O - ~

d u r i n g t h e l a s t s t e p of t h e t e n t h

s t a g e .

Aa/o = 0 . 4 5 ~ 1 0 - ~n

The m ain f e a tu r e s o f t h i s c o n i c a l f lo w w i l l b e i l l u s t r a t e d i n c on ju nc ti on

w i t h t h e b l u n t e d c one r e s u l t s d e s c r i b e d n e x t .

Sp her ica l ly Blun ted Cone

The c a l c u l a t i o n f o r a s p h e r i c a l l y b l u n t e d cone w i t h a 15" semiver tex

a n g l e i n a i r (y = 1.4) a teach p lane .

o f - a t t a c k s o lu t i o n when

s o l u t i o n s p r e s en t e d .

M, = 10 used 7 m e r id io n a l p l a n e s w i th 1 5 p o i n t s i n

Second-order smoothing, k = 1 , w a s employed fo r t he 10" angle-

x/R, > 10; no smoothing w a s n e ce s sa r y f o r t h e o t h e r

33

Page 38: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 38/61

Page 39: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 39/61

'1I I I I I I

I I I I I I I I d

0 2 4 6 8 I O 12 14 16 18 20X

KFigure 14.- Axial distribution of surface cross-

flow angle; 15' spherc- cone, M_ = 10,

a = 100, 0 = g o o .

f a m i l i a r c r os s fl o w v e l o c i t y ac c o rd in gt o @ = s i n - l ( w / V ) . Figure 14 shows

t h e a x i a l d i s t r i b u t i o n of c r o ss f lo wa n g le a lon g t h e s i d e m e r idi a n @ = 90" .

The crossflow angle i s a minimum a t t h es ph er e- co ne j u n c t u r e a nd t h e n r i s e s t o

a maximum value about 2 . 4 t imes the

a n gl e o f a t t a c k . Thu s, t h e s u r f a c e

upwash f o r b lu n te d bod ies can be g r ea te r

th an t h e maximum va l ue of 2ci given by

s lender -body the o ry , wh ich ap p l ie s t o

po in t ed bod ies a t low supe rson i c speeds .

I t i s i n t e r e s t i n g a l s o t o compare t h e

r e s u l t of t h e l i n e a r iz e d c h a r a c t e r i s t i c s

30 -1

4 0Ltneorized(Ref. 13)

20

Th r e e dimensional

0 2 0 40 60 80 I O 0 120 140 160 I80

0- de g

Figurc 15.- Circumfcrent ial distri bution of

surface crossflow angle; 15" sphere-cone,

Mm = 10 , = loo.

method (ref . 15) which i s i n good agreement near t h e nose. Agreement extends

t o abou t X/Rn = 10, where t he l i n ea r method s t a r t s t o break down.

The reason f o r t he breakdown i s ev ide n t i n f ig u r e 15 which shows t he

c i r c u m f e re n t i a l v a r i a t i o n of @ f o r ci = 10" a t v a ri o us a x i a l s t a t i o n s . Neart h e no se t h e v a r i a t i o n i s n e a r l y s i n u s o i d a l , as assumed i n t h e l i n e a r i z e d

method. However, th e exa ct three-d imen sional ca lc u l a t io ns show a l a r g e

d e v i a t i o n f rom th e s i n u s o id a l v a r i a t i o n beyond x/Rn = 10.

Figu re 16 shows th e va r i a t io n o f c ross f low ang le no rmal t o t he body.

The curve f o r

shock, n/vs = 1 , b u t d e v i a t e s by a la rg e amount ne ar th e body. This i s duet o t h e low d e n s i t y o f t h e f lo w i n t h e e n t ro p y l a y e r which i s genera ted nea r

the body su r fac e by th e b l un t nose . The f low i n th i s r eg ion has l e s s momen-

tum tha t tha t away f rom the su r face , and i s t h e r e f o r e t u r n e d more by t h e c i r -

c u m f er e n t ia l p r e s s u r e g r a d i e n t . The s i t u a t i o n i s analogous t o boundary- layer

xb/Rn = 20 a pp ro ac he s t h e p o int e d- c on e s o lu t i o n n e a r t h e

35

Page 40: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 40/61

IO 15 20

Figure 16.- Radial distribution of crossflowangle; 15 ' sphere-cone, bl_ = 10, a = l o " ,

0 = 9 0 " .

-Po0

Figure 18.- f ladinl distribution of d c n s i t y ;

xB/Iln = 16.7; 15 " sphere-conc, &lm = 10,

11 = i o " .

I.o

.a

7) .6-

.4

.2

7 s

0 .I .2

CP

.3 .4

Figure 17.- Radial distribution of static p r essu r e ;

xg/Rn = 16.7, 15" sphere-cone, M_ = 10, u = 1 0 " .

f low over an in c l in ed body.7 There fo re ,

b e ca us e o f t h e e n tr o py l a y e r , t h e b l u n t -cone crossf low does not approach the

p o in t e d- c on e d i s t r i b u t i o n u n i fo r m ly .

The en t ropy l ayer i s c h a r a c t e r i z e d

b y a n e a r l y c o n s t a n t p r e s s u r e , as i sshown i n f i g u re 17. On th e o t he r hand,

t h e d e n s i t y v a r i e s s t r o n g l y on t h e wind-

ward s id e o f th e body as may be se en i n

f i g u r e 1 8 f o r xb/Rn = 16.7 . The th ic k-

ness o f t h e en t ropy l a ye r may be t aken

as t h e d i s t a n c e t o t h e p o i n t where t h e

de ns it y has a l oc a l maximum. Thise n t r o p y l a y e r i s s i m i l a r t o t h a t fo und

i n ax i symmetr i c flow excep t t h a t i t

develops f a s t e r ( i . e . , c l o s e r t o t he

nose) on th e windward s i d e and more

slowly on t h e l e e s i d e o f t h e b od y.

Smoothing, which was used t o s t a b i l i z e

t h e c a l c u l a t i o n , c a us e s t h e pea k i n d e n s i t y t o b e r ou nd ed o f f . A t h e o r e t i c a l

maximum f o r = 180" c an b e c a l c u l a t e d b y u s i n g t h e e n tr o py c o r re sp on d in g t o

th e minimum shock an gle and by making use o f th e f a c t t h a t th e pre ss ur e i snea r ly con s ta n t . The th eo re t i ca l maximum i s a b ou t 1 5 p e r c e n t h i g h e r t h a n t h e

c a l c u l a t e d v a l u e . I t i s e s t i m a t e d t h a t t h e s mo ot hi ng h ad n e g l i g i b l e e f f e c t on

t h e d e n s i t y a nd c r o s s fl o w a n g l e f o r rl/qS g r e a t e r t h a n a bo ut 0 . 3 ( s e e f i g , 8 ) .

~ . -. . .. . .. I .~ . .

7Comparison i s made i n refe re nc e 1 4 between in v i sc id and exper imen ta l

( v is c o us ) s u r f a c e s t r e a m l i n e s .

36

Page 41: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 41/61

Comparison With Experiment

De ta i led exper imen ta l su rveys o f th e f low f i e l d around b lu n te d cones

have been pre vio usl y re po r t ed by Cleary ( r ef s . 30 and 31) . Experimental

r e s u l t s f r o m r e f e r e n c e 30 a re u se d t o c ompare w i th t h e p r e s e n t t h e o r e t i c a l

r e s u l t s i n o r d e r t o c o nf ir m th e v a l i d i t y o f t h e pr op os ed n um er ic al m etho ds .More complete comparisons between theo ry and experim ent can be found i n

r e f e r e n c e s 31 and 1 4 , f o r b o th a i r a nd h e li u m f l ow s .

.61 I I I I I I I I r--I

0 1800xperiment (Ref. 30)

Vmrb /vm = 0.6 X IO6

(0 180") 0 I

L+.++2 4 6 8 I O 12 14 I6 18 2 0

" = 0 " )

x /R,

F i gu re 1 9 . - S u rf a ce p r e s s u r e d i s t r i b u t i o n ; 15"

s phere -cone , M _ = 10 , a = 1 0 " .

Fig u re 19 p r e s e n t s t h e s u r f a c e

p r e s s u r e d i s t r i b u t i o n a lo n g each o f t h e

7 merid iona l p lanes a long which t h eca lc ul at io ns were made. Theory and

exper iment a re i n exc e l le n t agreement

a l though the exper imen ta l d a t a t end t o

b e s l i g h t l y above t h e t h e o r y . Th is i sc o n s i s t e n t w i th t h e u s u a l b ou nd ar y-

l a y e r d i sp la ce me nt e f f e c t . A t

x/Rn = 20 t h e blu n t- c o ne p r e s s u r e i s

very nea r l y equa l t o th e poin ted-cone

va lue shown on the f a r r i g h t o ff i g u r e 1 9 .

Flow proper t ies o f f t h e body

s u r f a c e a r e most e a s i l y s t u d i e d

experimentally by means of the impact

o r p i t o t p re ss u re , as shown i n f i g -

u r e 20. The p i t o t - p r e s s u r e d i s t r i b u t i o n

normal t o t he body i s p r e s e n t e d f o r a l l7 mer id iona l p lanes and f o r an ax i a l

s t a t i o n of xb/Rn = 16 .7 . The theo ry

ex tends a l l th e way t o th e shock i n

each case , wh i le t he d a t a do no t , excep tf o r @ = 60" and @ = 150" where e xp er i-

m en ta l s hoc k p o s i t i o n s a r e i n d i c a t e d by

a s h a r p dr op i n p r e s s u r e .

I n t h e v i s c ou s bo un da ry l a y e r t h e p i t o t p r e s s u r e i s low, going t o zero a t

On the remain-th e body su r f ac e . Ev idence o f a v e ry t h i c k v i s co u s l a y e r i s i n d i c a t e d by t h e

e xp er im en ta l d a t a f o r t h e l e e s i d e of th e body, @ = 0 and 30".

in g mer idional p lan es t he boundary la ye r i s very th in . The en t ropy la ye r i sc l e a r l y i n d i c a t e d i n t h e e xp er im en ta l d a t a by t h e peak i n t h e p i t o t p r e s s u r e

j u s t o f f th e windward s i de of th e body . The theo ry underp r ed ic t s th e peak

va lue because o f th e p rev iou s ly desc r ibed smoo th ing employed i n t he ca l cu l a -

t i o n . A theoretical maximum of C = 9 . 0 3 f o r @ = 180" i s determined by t he

u se o f t h e t o t a l p r es s u r e a t th e ca lc u l a t ed minimum shock angle ( f i g . 13 ) .PP

37

Page 42: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 42/61

3.2 I I

2.4

2.0 t

I I I I I I I

0

0 P 6 0 0 Experiment (Ref. 30)V c O r b / ~ m = 0 , 6 x 1 0 6

.8

.4

0 0 0 0 0 0 I 2 3 4 5 6 7 8

PPZeros for 0 = C

0" 30" 60° 90" 120° 150" 180'

Figure 20.- Shock-layer pitot-pressure distribution; 15" sphere-cone, M _ = 10,

a = lo", xB/R, = 16.7.

Aside f rom th e no ted d i f f e re nce s due t o t he boundary l a y e r a n d t h e e n t r o p y

la ye r , th e proposed numerica l method appears t o g i v e a n a d eq ua te p r e d i c t i o n

o f s ho ck - l a y e r p r o p e r t i e s .

C O N C L U D I N G REMARKS

C h a r a c t e r i s t i c s t h e o r y f o r t h r ee - d im e n s io n a l s t e a d y f lo w was reviewed and

th e c o m p a t ib i l i t y e qu a t i on s w er e d e r iv e d i n t e rm s o f p r e s s u r e and s t re a m

ang les as dependen t va r iab le s . I t was a rg ue d t h a t t h e m aj or p r a c t i c a l d i f -

f i c u l t y e n co un te re d i n b i c h a r a c t e r i s t i c methods r e s u l t s from t h e n ee d f o r

n um er ic al d i f f e r e n t i a t i o n and i n t e r p o l a t i o n o f randomly sp a ce d d a t a . Fu r th e r -

more, i t was o b se r ve d t h a t s h o c k - la y e r c o o r d in a t e s a re e s s e n t i a l t o a s imple

t r e a t m e n t o f c i r c u m f e r e n t i a l d e r i v a t i v e s on t h e s ho ck s u r f a c e , A r e f e r e n c e

plane method was t h e r e f o r e a do pt ed i n w hich an equa l number o f po in t s a re

equ al l y spaced between th e body and shock a long each re fe re nc e p la ne . This

mesh in t rod uce s th e added complica t ion of nonor thogonal coo rdi nat es i n t o the

equa t ions bu t a l lows the use o f s imp l e r numer ica l t echn i ques .

With t h e c o n s t r a in t o f a u ni fo rm ly sp a ce d mesh, p a r t i c u l a r c h a r a c t e r i s t i c

l i n e s a r e no t f o l l ow e d as i n more s t a n d a r d c h a r a c t e r i s t i c s m etho ds . The

r o l e o f c h a r a c t e r i s t i c s t h eo r y i n t h e r e f e r e n c e p la n e method i s t o de te rmine

how t h e f i n i t e d i f f e r e n c e e q ua t io ns a r e t o b e l o c a l l y s o l v ed . S i nc e t h e

c h a r a c t e r i s t i c s a r e no t t r a c e d t hr ou gh ou t t h e sh ock l a y e r , t h e p o s s i b l e

coal esce nce of waves t o form embedded shocks i s no t de te rmined du r ing the

38

Page 43: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 43/61

Page 44: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 44/61

APPENDIX A

D I RE CT I O N COSINES FOR NONORTHOGONAL COORDINATES

I n t h e d e r i v a t i o n o f t h e c o m p a t i b i li t y e q ua t i on s f o r t h e r e f e r e n c e p l a nemethod it was n e c e s sa r y t o t r a n s fo r m f ro m s t r e a m l i n e c o o r d i n a t e s t o a non-

or thogona l sys t em co ns i s t i ng of s* , TI, and 5. Th e d i r e c t i o n s* i s t h e

p r o j e c t i o n o f t h e s t r e a m l i n e on t h e m e r i di o na l p l a n e , n runs from body t o

shock i n t h e m e ri d i o na l p l a n e , a nd 5 i s t h e ou t -o f -p l an e d i r e c t i o n ( s e e

f i g . 3 ) . Th i s t r a n s f o r m a t i o n i s expressed as

A ,.

x = & * Z * (Alli i j j

where

and

,. A , . , .

x = ( s , n , t )i

I t i s t h e p ur po se o f t h i s a pp en di x t o w r i t e o u t t h e e x p r e s s i o n s f o r t h e

d i r e c t i o n c o n s i n e s E: . The ana lys i s i s made f o r t h e more ge ne ral E , n , <

c o o r d i n a t e s a nd i s l a t k r s p e c i a l i ze d t o t h e case where 5 = s * .

The d i r ec t i on s o f th e nonorthogona l S,q,c c o o r d i n a t e s a r e d et er mi ne d

s t e p by s t e p d u r in g t h e c a l c u l a t i o n as t he shock shape i s c o n s t r u c t e d ( s e e

se ct io n on Computational Procedure) , When th e lo ca t i on of th e shock i s known

i n te rm s o f x , r , @ , t h e l o c a t i o n s o f f i e l d p o i n t s be tw ee n t h e sh oc k a nd body

a r e a l s o d e te rm in e d b y t h e p r e sc r i b e d sp a c i n g o f t h e p o i n t s a l o n g t h e bodynormals . The d i r e c t io n cos ines can then be ob ta in ed by numer ica l d i f f e r e n t i -

a t i o n as descr ibe d below. This process i s des cr ibe d f o r th e shock wave bu t

a p p l i e s g e n e r a l l y t o e ach 5 curve .

Let th e shock su r f ac e be g iven by

The i n t e r s e c t i o n o f t h e c o o r d i n a t e s u r f a c e 5 = con s tan t wi th th e shock

s u r f a c e d e f i n e s a c ur ve d l i n e i n s p a ce (a 5 c ur ve ; s e e f i g . 3 ) . The x ,rcoord ina tes of t h i s space cu rve depend on th e mer id iona l a ng le , @ , and on

the body s t a t io n , Xb, which lo ca tes th e 5 = cons tan t su r f ac e . For each body

s t a t i o n t h i s d ep en den ce i s denoted by

40

Page 45: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 45/61

Equati ons (A3a) and (A%) d e f i n e two ang les

1 %t a n Ax = --

r d@S

1 drs

t a n A r = --r d@S

which can be eva lua ted numerica l ly .

d e s c r ib e d i s ? s ed . ) I n f i g u r e 2 1 t h e

u n i t v e c to r 5 i s r e l a t ed t o e

th r o u g h tw o r o t a t i o n s , t h e f i r s t r o t a -

t i o n by Ax and t h e second by 6 .I t may a l s o b e v e r i f i e d from t h i s f i g -

6 er

7 (The F ou r i er method pr evi ous ly

@-

E^, u r e t h a te,

Shock surface

r = r s ( x . Q)

-t a n 6 =-r cos Ax

r d@

and, by equation (A4),

F i g u r c 2 1 . - C oorJ i na t c v ec to r s a n d a n g l c s . t a n g = t a n A r cos Ax (A6)

,.The remaining, .two unit , .vec tors a r e def in ed by angles

by X from e and 5 i s r o t a t e d by cr from ex . Thus, one may w r i t e

X and 0 ; rl i s r o t a t e d

r

,. ,. ,.

5 = cos cr e + s i n cr e (A71X r

,. h

r) = - s i n x e + cos AX r

A

The angle

s p e c i f i e d . I t i s u s u a l l y s e l e c t e d s o t h a t

The angles 0 and 6

shaee, and a t th e body by t h e gi ven body sh ape.

between t h e body and shock, 0 and gx , r ,Q coord ina te s o f th e mesh po in t s . These coord ina te s a r e known f o r any

sp ec i f ie d mesh sp ac ing once th e shock po s i t i on i s determined.

X , which de te rmines the d i r ec t i on of q , may b e a r b i t r a r i l y,.

i s normal t o th e body su r f ac e .

are de termined a t th e shock by t he ca lc u l a t ed shockA t i n t e r m e d i a t e p o i n t s

can be s i m i l a r l y c a l c u l a t e d f rom t h e

I t must be no ted , however , th a t6 i s

d i s t i n c t f r o m t h e a n g l e 6 whichi s used i n th e shock con d i t i ons deve loped i n append ix E .

i s found tha t

From figure 2 1 it

o r

d r - dx tan 0

r d@a n 6 = - - -

t a n 6 = t a n A r - t a n 0 t a n Ax 1-

When 6 i s chosen t o be normal t o t he body ax is , Ax = 0 and 6 = 6 .

4 1

Page 46: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 46/61

n . . n

H av ing s p e c i f i e d t h e d i r e c t i o n s o f 5 , n ,C by equat ions (A7) , (A8) , and

(A9), th e t a sk of de te rmin ing " f j , a p p e ar in g i n e q u a t i o n ( Al ) , ca n now be

completed. Equat ions (A7) , (A8) , and (A9) a re more conven ien t ly wr i t t e n wi th

i n d e x n o t a t i o n as

n - A

z = v xi

i j jwhere

cos (5 s i n (5 0

- s i n X cos A 0" i j

- = ( cos i s i n A X s i n c o s 6 co s Ax

The in ve r se t r a ns fo rma t ion may be wr i t t e n

h n

i j ' j. = v1

where

-1v i j = (Vij)

A ltho ug h t h e m a t r i x i n v e r s io n c an b e p er fo rm e d n u m e r i c a l l y , f o r t h i s p ro bl em

it i s more e f f i c i e n t t o do t h e a lg e b r a b e f o re h a n d, oncehand fo r a l l . This i sdone by taking s c a l a r produc ts -f e q u a t i o n ( A l l ) w i th Xj t o o b t a in t er ms

l i k e z 1 - X1 = v11, 2 1 * R2 = v12, an d so on . On th e o the r hand , th e s ca la r

products of equation (A13) with 2 g iv e e x p r e s s io n s s u c h asj

h n n n n

. x 1 = v11 + v12(5 17) -I-v13(5 * 5).

i2 - i 1 = v& * i) + VI2 + V l 3 ( f i - aand s o on.

v i j .w r i t t e n as ( s e e, e . g . , r e f . 18)

I n t h i s way, o ne o b t a in s n in e e q u a t i o n s f o r t he n in e unknowns

The s o lu t i o n o f t h i s s e t o f e q u a t i o ns b y C ra m er 's r u l e c an b e f o r m a l ly

-v f

D

Z i Z jv =

i j

Page 47: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 47/61

where

f = fZ j j Z

and the de terminant D i s given by

A A

D = 1 - (6 * i ) 2 - (i - ;)2 - (i ;)’ - 2 ( i * i ) ( i C ) ( n * t ) (A16)

Equation (A14) provides th e d i re c t io n cos ine s be tween S , n ,c and

x , r ,@ c o o r d in a t e s . The c o rr e sp o nd ing r e l a t i o n s h i p s w i th s , n , t c o o r d in a t e s

are ob ta ined by use o f equa t i9ns 5 7 ) , A ( 8 ) ’ and (9) which exp ress t he s t ream-l i n e d i re c t io n s i n terms of e e e and may b e w r i t t e n

x’ r J CP

where

COS + C O S e cos + s i n 0 s i n +- s i n 0 COS e

- s i n + cos 0 - s i n + s i n 0 co s 0

The su bs t i t u t io n of equat ion (A13) i n t o (A17) y i e l ds

A A

x -i - ‘ik’k

where E . i s ob ta ined f roml k

Eik = T i j V j k

Equation (A20) g ive s th e d ir ec t i on cos i nes between € , , n , ~ and s , n , t c o o r d i -

n a t e s . The e x p l i c i t e x pr e ss i on s f o r t h e s e d i r e c t i o n c o s i n e s a r e i n vo l ve d , s o

th e f i n a l combina tion o f t e rms i nd i ca t ed by equa t ion -A20) i s l e f t f o r t he

computer. The proc edur e i s as fo l l ows . The ma t r ix v i j , de fi ne d by (A121, i s

ca lc ul at ed with equa tion s (A4), (AS), and (A6). The va ri ou s s c a l a r produc ts

i n equation s (A15) and (A16) a r e ca lc ul at ed from

i s then ca lc u l a t ed f rom equa t ion (A14) . F i na l l y , E ik i s determined fromequations (A18) and (A20).

V i j , and t h e m a t r i x

v i j

The p rocedure desc r ibed app l ie s t o ge ne ra l nonor thogonal coo rd ina te s

S , r l , < .5 d i r e c t i o n i s t h e s t r e a m l i ne p r o j e c t i o n s * . I n t h i s case, equation (A9) i s

rep laced by

43

The t rans f o rma t ion used i n equa t ion (36) i s a s p e c i a l c a s e w he re t h e

Page 48: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 48/61

i * = cos e + s i n 0 GX r

Then th e subsequent r e l a t i on s w i l l b e m o d i f ie d a c c o r d i n g l y a nd t h e r e i s

ob ta ined

E" = T *i k i j ' jk

which d e te rm i ne s t h e d e s i r e d t r a n s f o r m a t i o n r e l a t i o n s h i p i n d i c a t e d by

equa t ion ( A l ) .

44

Page 49: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 49/61

APPENDIX B

SHOCK-BOUNDARY CONDITIONS FOR THREE-DIMENSIONAL FLOW

Con2 ider an e lemen ta l po r t i on o f th e shock su r fac e wi th an ou t e r un i t

normal N , as shown in f i gu re 2 2 , and wizh un i t vec to rs ? and completingan o r thogona l s e t . The tangen t ve c t o r T can be chosen such tha t the N-T

p lane i s p a r a l l e l t o t h e d i r e c t i o n of t h e

f r e e - s t r e a m v e l o c i t y . Th i s c h oi c e w i l l

permit eva lu a t ion o f t he jump cond i t ions

./- i n t he N-T plane with two-dimensional

s ho ck r e l a t i o n s . Let zm be a u n i t v e c -

cl,; ” ‘ A X t o r p a r a l l e l t o t h e f r e e- s tr e am v e l o c i ty

vector and with components

yPyf.- k~ -,f”

c.-

_ d l

hh haQf”~*

F i gu re 2 2 . - Shock-wave normal and tangent

sw = cos c1 ex + s i n ci cos @ e,

(B1)@

e c t o r s . - s i n ci s i n Q

i n a c y l i n d r i c a l c o o r d in a t e f ra me . The d e s i r e d t a n ge n t v e c to r ?? can be

cons t ruc ted f rom G m and fi by means of two vec to r - o r c ross -p ro duc ts . The

f i r s t product

h h

aL = x N (B2)

p ro du ce s a v e c t o r p a r a l l e l t o f., and the second product

h h

r e s u l t s i n a vector which i s normal t o both N and L , and which l i e s i n t h e

s w - N p lan e . Tbe fa c t o r a i n equa t ion (B2) i s e qu al t o t h e s i n e of t h e

angle between sw and fi and may b e e v a lu a t e d from th e s c a l a r p r o du c t

h h

b = sw * N = COS (sm,N)

t o g iv e

a = ,,/l - b 2 = / l - ( g w - $2

Combining equations ( B 2 ) and (B3) and expand ing the r e s u l t i ng ve c t o r t r i p l e

product one obta ins

o r

,. 1 ^T = - [Nx(^S, x f i ) ]

a

- 1T = - ( g - bN)

a m

Page 50: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 50/61

In terms of components T,, Tr , and TQ, , equation (B6) becomes

Equation (B7) p e rm i ts e v a l u a t i o n of t h e t r u e i n c l i n a t i o n o f t h e s ho ck s u r f a c e ,

and th e r e f o re a l lows th e jump c ond i t ions t o be de te rmined wi th s t a ndard p lana r

sh o c k r e l a t i o n s ( see , e . g . , r e f . 3 2 ) . The angle cr ' between and ? i sgiven by

h h

C O S 0' = sa, - T

o r

+ s Tos 0 ' = s x T x + s r T rC P Q ,

In the fol lowing development 0' i s expressed i n terms o f two angles

m easured i n t h e c y l i n d r i c a l c o o r d i n a t e s .

Let 0 be t he angle between g x and t h e t r a c e o f t h e sho ck su r f a c e on

t h e p l a n e @ = c o n s t a n t , a n d l e t 6 be th e angle between eQ, and th e shock*

t r a c e o n t h e p l a n e x = c o n st a n t a s i l l u s -t r a t ed in f i gu re 23 . The shock ang le 6 i so b t ai n e d by nu me ri ca l d i f f e r e n t i a t i o n asd e sc r i b e d i n a pp en di x A ( s e e e q . (A10) and

f i g . 2 1) . I t i s e a s i l y v e r i f i e d t h a t t h e f o l -

lowing r e l a t i on s ho ld be tween th e ang les"'N .

e?.

N = N cos 0

r m

N = - N cos 0 t a n 6 (B11)Q, m

..

x = Constantwhere N m i s t h e p r o j e c t i o n o f N on the

x- r p lane and s a t i s f i e s t h e r e l a t i o n= Constant

F i g u r e2 3 . -

Shock a n g l e s .N m 2 + N = 1

Q,

S u b s t i t u t i o n o f N @ f rom equat ion (Bl l ) g ives

46

Page 51: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 51/61

and the shock normal v ec to r may f i n a l ly be wr i t t en i n t e rms o f CJ and 6 as

*

( - s i n o e + cos a G r - cos o t a n 6 e a )A_ _ XN =

41 + cos2 CJ tan' 6

The t r u e shock ang le can now be e va lua ted i n terms of IS and 6 by equa t ions(Bl ) , (B7) , (BS), and (B13), and th e jump con di t ion s can be ca lc ul a t ed .

I t i s now neces sary t o determine th e f low angles 8 and (p measuredr e l a t i v e t o t h e m e ri di on a l p l a n e s .

The s t r e a m l i n e d i r e c t i o n , m ea su re d i n

t h e N-T p l a n e ( f i g . 2 4 ) , i s t u rned f rom the

s t r e a m l i n e t a n g e nt G2 l i e s , by d e f i n i t i o n , i n

t h e N-T pl an e, one may w r i t e

I f r e e stream by the ang le 82'. S i n c e t h e

,. * *

s 2 = - s i n ( a ' - 0,')N + c o s ( a l

-0,')T

Figure 24.- Shock and flow angles in the

n-t plane.

Using equ atio ns (B7) and (B13), th e ve ct or s

o f t h e i r c om ponents t o g i v e

and ? c an be w r i t t e n i n t er ms

: 2 = (ANx + BTX)gx + (AN, + BTr)er + (ma + BTa)ga (B15)

where

A = - s i n ( a ' - 8'1)

B = cos(^' - e,!)

Equat ion (7 ) , on th e o th er hand , g ives s 2 i n t erms o f 8 and 4 asfo l lows :

G 2 = cos $ 2 cos 0 2 ex + cos 4 2 s i n 0 2 G r + s i n $ 2 2 @16)

Thus, by equa ting components of eq uat ion s (B15) and (B16) one ob ta in s f i n a l l y

- s i n ( o ' - e 2 ' ) N r + c o s ( o ' - e2 ' )Tr

- s i n ( o ' - e2 ' )Nx + c o s ( a ' - e21)Txa n 8 = (E3171

and

I f f o r g i ve n free-stream co nd i t i on s , p,, p,, V,, t h e s t a n d a r d p l a n a r s ho ck

c o n d i t i o n s are w r i t t e n i n t h e f orm ( se e r e f . 32) :

47

Page 52: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 52/61

t h e n t h e e q u a t i o n s d ev e lo p ed i n t h i s a pp en di x a l l o w t h e t h r ee - d im e n s io n a l

s ho ck c o n di t i on s t o b e f u n c t i o n a l l y w r i t t e n as

7= P(a ;6 ,@,4

This i s t he fo rm of th e shock condi t ions employed i n equa t ion (62) .

The overa l l shock ca lcu la t ion i s performed i n a s t r ai g h tf o rw a r d i t e r a t i v e

manner . This proc edur e i s s t a r t e d w i t h known f i e l d d a t a , i n c l u d i n g 0 and 6 ,

on an i n i t i a l d a t a s u r f a c e . A shock poi nt on the new dat a sur fa ce i sdetermined by t h e average val ue of 0 between th e i n i t i a l and new shock

p o i n t s ,

-0 = 1/2(01 + 0 2 )

To beg in , 0 2 i s s e t e q u a l t o 01 and th en subsequen t es t im ates a r e made

(e i t h e r by t h e Newton method o r by th e b i s ec t i ng method) u n t i l t h e p r es s ur e

f rom equat ion ( B 2 0 ) a g r e es w i t h t h e p r e s s u r e c a l c u l a t e d f rom t h e c o m p a t i b i l i t yequa t ion ( 5 7 ) . D uring e ac h i t e r a t i o n t h e c u r r e n t v a l u e o f CJ = 0 2 and the

o l d v a l u e o f 6 = 61 a r e use d t o d e te r mi n e t h e t r u e sh oc k a n g l e C J ' by

equa t ion ( B 8 ) . The p r e s su r e a nd o t h e r v a r i a b l e s a re t hen ca lcu la t ed f rom

equa t ions (B19) . When th i s has been done fo r a l l t he shock po i n t s on the

new dat a sur f ac e , new valu es f o r S can be dete rmined by numer ical d i f f er en -

t i a t i o n wi th r e s p e c t t o 0 as descr ibed i n append ix A . The e n t i r e p r o c e s s

can t he n b e re p ea t ed t o r e f i n e t h e r e s u l t s ; t h i s i s d i s cu s s ed i n t h e s e c t i o n

on G lo ba l I t e r a t i o n .

4 8

Page 53: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 53/61

AP P ENDI X C

SURFACE B O U N D A R Y CONDITIONS FOR BODIES WITHOUT A X I A L SYMMETRY

For nonc i r cu la r bod ies t h e su r f ac e boundary i s compl ica ted by th e f a c t

t h a t t h e s u r f a c e n ormal i s n o t i n t h e m e r i d i o n a l p l a n e . Th i s means t h e

boundary condi t ion w i l l i nvo lve bo th f low ang les 8 an d 4 . ( I n terms o f

v e l o c i t i e s , a l l th re e components, u , v , w , e n t e r i n t o t h e c o n d i t i o k s i n c e

none of t h e components a r e p a r a l l e l t o t h e body s u r f a c e . ) I n t h i s a ppe nd ixthe boundary c ond i t ion f o r 8 , which was g i v e n p r e v i o u s l y i n e q u a t i o n ( 6 1 a ),

i s d e r i v e d from t h e t an g e nc y c o n d i t i o n on t h e v e l o c i t y v e c t o r .

Let t h e e q u a t i o n o f t h e bod y b e g i v e n by

g ( x , r , @ ) = r - f ( x , @ )

The un i t o u te r normal t o th e s u r f a ce may be expressed

where V i s t h e v e c t o r g r a d i e n t o p e r a t o r . I n terms o f c y l i n d r i c a l

c o o r d i n a t e s , o n e o b t a i n s

h

N =I

I (@ constant)

( x cons t an t )

Figure 25.- Surface inclination angles.

The der iva t ives o f f i n equa t io n (C3)a r e r e l a t e d t o t h e s u r f a c e i n c l i n a t i o n

From equation (7) t h e s t r e a ml i n e d i r e c t i o n i s e x p r es s e d i n terms o ff low angles 0 and cp

< = cos cp cos e 2. + cos cp s i n e 2X r

+ s i n cp

49

Page 54: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 54/61

The tangency condi t ion ,

o f equa t ions (C3) and ( C6 ) . This g ives

- f i = 0 , may now be obt ai ne d from th e s c a l a r prod uct

N cos + cos 0 + N . cos + s i n 8 + N s i n + = 0 (C7)X r cp

A h *where N x , N r , N Q a re the components of along e,, e,, e @ , and are

i d e n t i f i e d by e q u a ti o n (C3 ) . Equation (C7) may be writ ten as a q u a d r a t i cr e l a t i on i n t a n 8

(Nr2 - N o 2 t a n 2 + ) t a n 2 9 + 2 N x N r t a n 0 + (Nx2 - N c p 2 t a n 2 +) = 0 (C8)

The so lu t ion i s

Rewri t ing equat ion (C9) i n t er ms o f t h e s u r f a c e i n c l i n a t i o n a n gl e s g iv en

by equations (C4) and (CS), one ob ta ins

( 1 - t a n 2 & Q t an2 +)

w her e t h e p o s i t i v e r o o t i s chosen s o t h a t 0 i s decreased when $ < 0 and

6@ ’ .

Equations (ClO), (C4), and (C5) de te rmine the f low ang le 0 i n t er ms o f

the c ross f low ang le + and t h e body geometry. I t i s e a s i l y v e r i f i e d t h a t

f o r z e r o c r o s s f l o w , (9 = 0 , equa t ion (C10 ) reduces t o

t a n 0 = t a n 6x

which i s t h e u su a l c o n d i t i on f o r c i r c u l a r b o d ie s .

50

Page 55: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 55/61

REFERENCES

1 . Courant, R . ; a n d F r i e d r i c h s , K . 0 . : Supersonic Flow and Shock Waves.

I n t e r s c i e n c e , N e w York, 1948.

2 . Courant , R . ; a n d H i l b e r t , D . : Methods of Mathematical Ph ys ic s. Vol.

I1 P a r t i a l D i f f e r e n t i a l E q ua ti on s . I n t e r s c i e n c e , N e w York, 1962.

3. F e r r i , Anton io : Ch ar ac te r i s t i c s Methods f o r P roblems i n Three

Independent Va ri ab le s. Ch. 5, s e c . G of General Theory of High Speed

Aerodynamics, W . R . S e a r s , e d . , P r i n c e t o n U n i v e r s i t y Pres s , 1954,

pp. 642, 657.

4 . M o r e t t i , G . ; San lo renzo , E . A . ; Magnus, D . E . ; a nd W e i l e r s t e i n , G . :

Flow Fi el d Analys is o f Reentry Conf igur at io ns by a General Three-

Dimensional Method of Character is t ics . A i r Force Systems Command,

Aero. Systems Di v. , TR-67-727, v o l . 111, Feb. 1962.

5. Powers, S . A . ; Niemann, A . F . , J r . ; and Der, J . , J r . : A NumericalProcedure fo r Determining t h e Combined Vi sc id- Inv isc id Flow Fi ei ds

Over Ge ne ral ize d Three-Dimensional Bodies. A i r Force Systems Command,

AFFDL-TR-67-124, v o l . I , Dec. 1967.

Strom, Charles R . : The Method of Ch ar ac te r i s t ic s f o r Three-DimensionalReal-Gas Flows. F in a l Report 1 , Apr 1963-Nov. 1966. A i r Force Sys-

tems Command, AFFDL-TR-67-47, J u l y 19 67 .

Sauerwein , Harry: Numerical Calc ula t io n of Mul t id imensional and

Unsteady Flows by th e Method of Ch ar a c te r i s t i c s . J . Computat ional

Phys . , vo l . 1, Feb. 1967, pp. 406-432.

B u t l e r , D . S . : The Numerical Solution of Hyperbolic Systems o f P a r t i a l

D i f f e r e n t i a l Eq u at i on s i n Th re e -I n de p e nd e n t V a r i a b l e s . P r o c . Roy.

SOC. A 255, no. 1281, Ap ri l 1960, pp. 232-252.

Katskova, 0 . N . ; and Chushkin, P . I . : Three Dimensional Supersonic

Equ il ib r ium Flow of a Gas Around Bodies a t An gl e' of At ta ck . NASA

TT F-9790, 1965 .

10. Ransom, V . H . ; Thompson, H . D . ; and Hoffman, J . D . : Analys i s o f Three-

Dimensional Scramjet Exhaust Nozzle Flow Fields by a New Se co nd -O rd er

M e t h o d o f C h a r a c t e r i s t i c s . A I A A Paper 69-5 , p res en te d a t t h e S e v e n t h

Aerospace Sc ien ce s Meeting , Jan. 20-22 , 1969.

11 . Babenko, K . I . ; Voskresenskiy , G . P . ; Lyubimov, A . N . ; and Rusanov,

V . V . : Three-Dimensional Flow of I d e a l Gas P a s t Smooth Bodies . NASATT F-380, 1966 .

12. Chushkin, P . I . : Numerical Method o f C h a r a c t e r i s t i c s f o r Th re e-

Dimensional Supers onic F lows. Prog. i n Aeron. Sc i . , vo l . 9 ,

K . Kcchemann, ed., Pergamon Pr e s s , 1968.

51

Page 56: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 56/61

13.

14 .

15.

16 .

17.

18 .

19 .

20.

2 1 .

22.

2 3 .

24.

25.

26.

Rakich, John V . : Three-Dimensional Flow C al cu la t i on by t h e Method of

C h a r a c t e r i s t i c s . A I A A J . , v o l . 5, no . 10, Oct. 1967, pp. 1906-1908.

Rakich, John V . ; and Cleary , Joseph W . : Theore t i ca l and Expe r imenta l

Study of Super sonic Steady Flow Around In c l in ed Bodies o f Revolu t i on .

Seven th Aerospace Scie nce s Meet ing, Ja n. 20-22, 1969, Paper 69-187.

Rakich, John V . : Numer ical Ca l cu l a t i on o f Supe rs on i c Flows o f a Perfec t

Gas Over Bodies of Revolut ion a t Small Angles of Y a w . NASA TN D-2390,

1964.

Chu, Chong-Wei: Co mp ati bi l i ty Re la t i on s and a G e n e r al i ze d F i n i t e

Dif fe rence Approximation f o r Three-Dimensional Stea dy Super son ic Flow.

A I A A J . , v o l . 5, no. 3 , March 1967, pp. 493-501.

Fox, L . : N um er ic al S o l u t i o n o f O r d i n ar y a nd P a r t i a l D i f f e r e n t i a l

Equat io ns . Ch. 18 of Fin i te - Di ffe ren ce Methods f o r Hyperbol ic

Equ at io ns. Pergamon Pr ess , 1962.

Hildebrand, F . B . : In t ro du c t i on t o Numerica l An alys i s . McGraw-Hill

Book Co., I n c ., 1956.

Hamming, Richard W . : Numer ical Methods f o r S c i en t i s t s and Enginee rs .

McGraw-Hi 11 Book Co. , Inc . , 1962.

Lomax, Ilarv ard ; and Ino uye , Mamoru: Numerical An al ys is of Flow Proper-

t i e s About Blunt Bodies Moving a t Su per son ic Speeds i n an Equi l ibr ium

Gas. NASA TR R-204, 1964.

Briggs, Benjamin R . : The Numerical C al cu la t io n of Flow Past Conica l

Bodies Su ppor t i ng El l i p t i c Conica l Shock Waves a t F in i t e Angles o f

In ci d en ce . NASA TN D - 3 4 0 , 1960.

Ylore t t i , G . : I n v i s c i d F l o w F i e l d P a s t a Po in ted Cone a t an Angle of

At t ack . A I A A J . , vol . 5 , no . 4 , Apri l 1967, pp. 789-791.

Rakich, John V . : C al cu la ti o n of Hypersonic Flow Over Bodies of Revolu-

t i o n a t Small Angles of A t t a c k . A I A A J . , v o l . 3 , n o . 3, March 1965,

p p . 458-464.

F e r r i , Anto nio: Co ni cal Flow. Ch. 3 , s e c . H of General Theory o f High

Speed Aerodynamics, W . R . S e a r s , e d . , P r i n c e t o n U n i v e r s i t y P r e s s ,1954.

Gonidou, Ren6: Su pe rs on ic F l o w s Around Cones a t Inc iden ce. NASA TTF-11,473, 1967.

Lax, P . ; and Wendroff, B . : Systems of Conservat ive Laws. Commun. Pure

Appl . Math. , vol . 13, May 1960, p p . 217-237.

5 2

Page 57: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 57/61

27. Richtmyer, Robert D . : A Survey of Di ffe re nc e Methods f o r Non-Steady

Flu id Dynamics. Nat ion al Center f o r Atmospheric Research Technical

Note 63-2, Bo uld er, Colorado, Aug. 1962.

28. Gal lo , W i l l i a m F . ; and Rakich, John V . : I n v e s t i g a t i o n o f M ethods f o r

Pr ed ic t i ng Flow i n th e Shock Layer Over Bodies a t Smal l Angles o f

A t t a c k .NASA TN D-3946, 1967 .

29. Ino uye , Mamoru; Rak ich , Joh n V . ; and Lomax, Harvard: A D e s c r i p t i o n o f

Numerical Methods and Computer Programs f o r Two-Dimensional and Axisym-

m et r i c Super son ic F l o w Over Blun t-Nosed and F l a r e d Bod ie s. NASA TN

D-2970, 1965.

30. Cleary , Josep h W . : An Exper imen ta l and Th eo re t i ca l Inv es t ig a t i on o f t h e

Pressu re D is t r ib u t io n and Flow F ie lds o f Blun ted Cones a t Hypersonic

Mach N h b e r s . NASA TN D-2969, 1965.

31. Cleary , Joseph W . : E f f e c t s of Angle of At tack and Bluntness on the

Shock-Layer Pr op er t i es of a 15' Cone a t a Mach Number o f 10 .6 . NASA

TN D-4909, 1968.

3 2 . A m e s Research S t a f f : Equa t ions , Tables , and C har t s f o r Compress ib le

Flow. NACA Rep. 1135, 1953.

53

Page 58: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 58/61

TABLE I . - EFFECT OF GLOBAL ITERATION O N SHOCK ANGLE

[15" sphere-cone; M = 10 , a = l o o , 1 5 p o i n t s a nd 7 p l a n e s ]

( a ) C a l c u l a t i o n from x/Rn = 2.0 t o X /Rn = 3.0

.- . .

r I

I t e r a t i o n s

@, 1

'lane'eg k d e g t ' x / b = 3.0

120

150i80

29.0763

27.6271

23.7124

18.8404

15.5193

14.2633

13.9813

29,0763

27.6275

23.7137

18.8417

15.5194

14.2633

13.9813. - ..

(b) C a l c u l a t i o n from x/Rn = 1 0 . 0 t o x /R ,

P l a n e ,@ ,

de g

0

30

60

90

12 0

150180

-- - I t e r a t i o n s . _ _

1I .0~~.- . . -

c r , de g a t x/Rn = 11 .0

21.2083

19.5249

16.1617

16.0245

17.4741

17.4404

17.4416- -._

.- _ _ _ _ _

21.2083

19.5273

16.1651

16.0260

17.4756

17.4407

17.4415-. - . . .

= 1 1 .0

54

Page 59: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 59/61

TABLE 11.- ACCURACY AND COMPUTING TIME

[15" sphere-cone; M = 10, 01 = 10". Ca lc u l a t io n f rom x/Rn = 2 t o X / R n = 3.1

19.3114

18.9847

18.9138

(a ) S hock a n g l e s a n d s u r f a c e p r e s s u r e o n @ = 90" plane, X/Rn = 31-10.3313 840.42

-10.3961 861.15

-10.4090 864.56

[ P o i n t s

J = 5

J = 10

J = 15

19.5919

18.9337

18.8482

-10.1783

-10.5549

-10.6017

Uni t

t ime , t / N. .

(b) Computing t ime

Tota l T ime , Unit

min

p o i n t s ,t y t ime , t / N

Planes

K = 3 I K = 5

iI

P o i n t s

To ta l T ime ,

p o i n t s , t ,N min

J = 5

J = 10

J = 15

1 - I

90 0.36

420 .75

1035 1.35

853.39 18.8 404 -10.6294 853.44I 1 I I

. 1 7 9 ~ 1 0 - ~ 1 00 1 1. 17 I .167x10-*

. 1 3 0 ~ 1 0 - ~ 1725 I 2.30 1 . 1 3 3 ~ 1 0 - ~

K = 7

Tota l T ime ,

t i m e , t / N

! !

55

Page 60: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 60/61

TABLE 111.- 15' POINTED CONE SOLUTION

PERFECT GAS

GAS CONSTANT = 0.1716OE 04 GAMMA = 0.140OOE 01

FREE-STREAM CONDITIONS

M- 0.1DbD3E D2 V= 0.396b2E 04 P= 0.10000E 0 1 RHO- 0 . 10030E- 04 1- 0.58275E

EUUISPACEQ STARTING DATA 11 POINTS 9 PLANES

PLANES EQUALLY SPACED

STLRTING DATA NORHAL TO BODY SURFACE

ANGLE OF ATTACK 10.00 DEG

CHARLCTERlSTIC METHOD

I N l 2 1 I = 3 COR. N2 2 = 0 I T R . I N I 2 5 1 = . 2 BC , I N X 1 6 1 = 3 BODY OENSITV

F L 1 4 ) = D . 18WE 01 STEP SIZE. FL ( 8 1 = 0.1009E 01 SMOOTH

0 2 0.35000E Ob HT= 0.82152E 07

PLAN t I AN6L = 0.00 DEGLEEYARO PLANE

FI ELD D ATA

SHOCK ANGLtS, D€G SIGMA= 18.5124 DELTA= -0.0003

x R THbTA PH I P RHO H V M M "

0 . 9 8 3 9 5 t 30 W.32785E 00 0.24764E 00 -0.OOOOOE-38 0.27055E 0 1 0 . 19796E- 04 0 . 47836E 06 0.39337E 04 0.89927E 0 1 3.89927E

0.98555t OW 0.32186E 00 0.24945E 00 -0.00003E-38 0.27456E 0 1 0 . 1 9 9 8 9 E - 3 4 0 . 4 80 1 4 E O b 0.39331E 04 0.89690E 01 0.89690E

0 . 9 8 l l b E OD 0.31587E 00 0 . 2 5 1 0 l E 00 -0.00000E-38 0.27781E 01 0.20145E-34 0.48267E 06 0.3932bE 04 0 . 89499E 0 1 0 . 09499E

3.9807f& 00 0.30988E 00 0.25257E 00 -0.000006-38 0 - 2 8 0 4 7 E 01 0.20269E-04 O.48432E O b 0.39321E 04 0.89337E 0 1 0.89337E

D.99031E OW W.30389E 00 0.254OOE 00 -0.OOQOOE-38 0.28266E 01 0.20366E-34 0.48577E 06 0.39318E 04 0 . 89196E 0 1 0 . 89196E

3.991976 OW 0.29790E 30 0.25543E OD -0.OOOOOE-38 0.28L45E 01 0 . 20441E- 0 4 0 . 48704E 06 0.39315E 04 0.89072E 01 O a 0 9 0 7 2 E

0 . 9 9 3 5 8 t 00 0 . 2 9 1 9 l E OD 0.25b90E 00 -0.00000E-38 D.28589E 0 1 0.20505E-04 0.48799E O b 0.39312E 04 3.88983E 0 1 0.88980E

0.99518E OD W.28592E OD 0.25844E 00 -3.00000E-38 0.28701E 01 0.20570E-04 3 -48836E 06 0.39311E 04 0.88944E 0 1 0.88944E

0.99b7PE OW O.27993E DO 0.25994E 00 -0.00000E-38 0.28786E 01 0.20640E-04 0.48813E 06 0.39312E 04 0.88966E 0 1 0.88966E

0. 9983% OW 0.27394E 00 0.26116E 00 -0.0000OE-38 0.28855E 01 0.20706E-34 0 . 4 8 7 7 4 t O b 0 . 3 9 3 1 3 t 0 4 0.89004€ G l J . 8 9 0 0 4 6

O.IODO3F 01 0.26795f OD 0.2bL8OE 00 -0.DOODOE-38 0.28922E 0 1 0 . 2 0 1 6 2 E - 3 4 0 - 4 8 7 5 7 E 06 0.39313E 04 0 . 8902 I E 0 1 3 . 8 9 0 2 l E

PLANE 2 AN

FI ELD D ATA

SHDCK ANGLES ,

X

0.98339€ 000.98505E 03

0.98671E 093.98837E OD0.99033E OD0.99169E OD0.99335E 00

0.99531E OD0.99668E OW

0.9983- OD0.100ODE 0 1

PLAVE 3 AN

FIELO DATA

SHUCK ANGLES.

X

0.98331E 00

0.9849TE OD0.98664E OD0.98831E 000 . 9 8 W 8 E 00

3.99165E 000.99332E 000 . 9 9 4 9 9 t OD0.9966bE O W

0 . 9 9 8 3 3 t 90

O.lOOD36 01

GL - 22.50 Of

DEG S I G M A .

R

0.32995E 00

0.32375E DO0.31755E 00

0.31135E 000.30515E 00

0.29-095E 00O.29275E 003.28655E 00

0.28035E 000.27415E 00

0.26795E Do

it

18.5966

THETA

0.24898E

0.24930E

0.24990E

0 . 2 5 0 7 5 E

0.25182E

0.25312E

0 . 2 5 6 b l E

0.25629E

0.2581 1E0.26000E

0. 2 b l8O E

GL = 45.10 1

O t G S IGMA .

R

W.33025E 00

D.32402E OD0.31779E 00

0.3115bE 00

0.30533E DO9.2P910E 000 + 2 9 2 8 7 E 00

0.28664E 00W.28041E 00O.27418E 000 . 2 6 7 9 5 t DO

)EG

18.5775

THETA

0.255D4E

0.2 5413E0.25357E

0.25335E

0.25349E

3.25399E

0.25605E

0.256086

0.2576bE

0.25959E

0 - 2 6 1 8 3 t

D EC TI - 1 . 3917

P H I

00 - 0 . 6 9 2 3 6 E - 0 1

00 - 0 . 6 9 7 4 3 t - 0 1

00 -0. lOO2OE-31

00 -0.10021E-31

00 - 0 . 6 9 6 7 3 E - 0 1

00 -0 .68884E-01

00 -0.67720E-01

00 - 3 . 6 6 9 4 3 E - 0 1

00 -0.68538E-01

00 -5.74793E-01

00 - 0 . 8 5 4 2 2 E - 0 1

DELTA- -1.5218

P H I

OD -3.12197E 00

0 0 -0.12138E00

00 - 0 . l 2 0 5 5 E 0030 -0.11942E 00

00 -0.11793E 0000 -0.1160LE 00

00 -0.11385E 00

O D -0.11203E 00OD -0.11231E 0000 -0.11741E 0000 -0.1278bE 00

PLANE 4 ANGL - 67.50 DEG

F I E L O D l T A

SHOCK ANGLES, O€G SIGMA- 18. 29 94 DELTA= -2.5439

X

0 . 9 8 4 6 4 t O W

0 . 9 8 6 1 8 t OD0.98771E 00

0 . 9 8 9 2 5 t DO0 . 9901% 00

0.99232E OW

0.9938bE OD0.99539E OW

0.996Y3E OD

0.9984bE ODO. l d00M 0 1

R

0.32526E 00

0.31953E 000.31380E 00

0.30806E DO0.30233E 000.29bbOt OD0.29087E 0 00.28514E 000.21941E 00

0.27368E 000 - 2 6 7 9 5 E DO

THETA

0.25140E 00

0.25099E 00

O.2508bE 00

0.25103E ODD.25150E 00

0.25228E 000.25339E 000.25684E 00

0.25170E OD

0 . 2 5 9 0 l E 00O.Zbl8OE 00

P H I

-0.15815E OD-0.15560E 00

-0.1528OE 00

-0.14971E 00

-0.14630E 00

-0.14252E 00

-0.138k5E 00

-0.13660E 00

-0.13230E 00

-0.13318E 00-0.13705E 00

P

0.32071E

0.3176PE

0. 3 152 9E

0.31339E0.31182E

0.31343E

0.3091 1E

0.30774E

0.3061%0 .30438E

0.30238E

P0.50911E

0.49424E0.4802bE

D.46169E

0.45bkOE

0 .44624E

0.k3108E

0.42875E

0 - 4 2 0 9 7 E

0.41344E

3.40623E

0101010101010101010101

01

010101010101010 1

0 1

0 1

P

0.82316E 010.79933E 0 1

0.78012E 01

0.76251E 0 10.74638E 010.13160E 010.71800E 010 . 70548E 0 1

0.69389E 0 1

0.68305E 0 10 - 6 7 2 1 5 E 0 1

RHO

0.21986E-04

0.21793E-04

0.21615E-04

0.21C39E-04

0.21239E-04

0.2D962E-04

0 . 2 0 4 4 7 E - 0 4

0.19309E-04

0.17025E-D4

0.13579E-04

0.10202E-04

RHO

0.20462E-04

0.27594E-05O . 26739 t - 04

0.25879E-04

0 . 2 4 9 9 L E - 0 4

0.24013E-O4

0.22985E-34

0.21 70SE -3 4

0.19913E-04

O . 1 l O b l E - 0 s

0.11596E-04

H

0.51055E 06

0 . 51019E 06

0.51052E 06

0.51163E O b

0.51385E Ob

0.51832E 06

0 . 52910E 06

0 - 5 5 7 8 1 E O b

0.629CBE O b

0.10452E 060.10374E 07

H

0.62687E

0.62689E0.62864E

0.63253E

0.63918E

0.64960E

0.66556E

0.69138E

0.73992E

0.84018E

0 . 1 1 2 8 7 t

O b06

Ob06

0 6

U606

56

06

06

01

RHO H

0. 35355E- 04 0 . 81193E 06

0.34195E-04 0.81815E 06

0.33049E-34 0.82617E 06

0.31909E-04 0.83637E 06

0 . 3@759E- 04 0 . 84930E Ob0.29566E-04 0.86607E 06

0.28239E-04 0.88991E 06

0.26552E-04 0.92994E O b0.24175E-04 O.lOOC6E 07

0 . 21092E- 04 0 . 11335E 070 . 18061E- 04 0 . 13031E 01

3 1

3131313 13 13 1313 1

3 131

V Y5.39255E 04 D.BbBb4E 0 10.39256E 04 0.868976 0 10 . 3 9 2 5 5 t 34 0.86867E 01

D.39252E 04 0.86761E 010.39246E 0 4 3.86567E 0 10.39235€ 04 0 + 8 6 1 6 8 E 010.39201E 94 0.85225E 010.39134E 04 O.82848E 0 1

0.38951E 04 0.77623€ 01D.38550E 04 0 .68817E 010.37889E 04 0.588176 01

M*

0.86659E 3 10.86689E 3 13 . 8 6 6 5 7 € 3 1

0.86557E 313.863636 31

0.85032E 31

0.82665E 0 15.17444E 3 1

3.68629E 3 15.58609E 3 1

3.85966E 31

V M M*

0.38957E 04 0.77798E 01 0.77233E 31

0.38957E04

0.71797E 01 0 . 7 1 2 3 4 E 3 10.38953E 04 0.77680E 01 0.771256 3 1

0.38943E 0 4 0.7lk2OE 31 0.76878E 3 1

0.38899E 04 0.76311E 01 0.15836E 5 10.38858E 0 4 0.75311E 0 1 0 . 1 4 8 3 1 6 J 1

0.38191E 0 4 0.73164E 0 1 0.13313E 11

0.38666E 04 0.71073E 0 1 3.70633E 3 10.38385E 04 0.65900E 01 0.654566 3 10.37647E 04 0.56028E 0 1 3.55585E 3 1

0.38926E 04 0 . 7 6 9 e x 01 0.764576 3 1

V n M *

0.38479E 04 0.67521E 0 1 0.66697E 0 10.38463E 04 0.67236E 0 1 3.66443E 310.38442E 04 0.66872E D l 3.66109E 310.38416E 0 4 0166417E 01 0.65690E 310.38382t 0 4 0.65852E 0 1 3.65164E 0 1

0 - 3 8 3 3 8 t 04 0.65137E 0 1 3.64491E 010.3827bE 04 0.64154E 0 1 0.63554E 3 10.38171E 04 0.6258bE 01 3 . 6 2 3 3 4 E 3 10.37975E 04 O.59907E 01 0.59398E 01

0.37634E 04 0.55892E 0 1 5.55413E 310.37119E O L 0.51485E 0 1 3.51323E 3 1

56

Page 61: Cos o Ksztalcie Dyszy z NASAf

8/6/2019 Cos o Ksztalcie Dyszy z NASAf

http://slidepdf.com/reader/full/cos-o-ksztalcie-dyszy-z-nasaf 61/61

TABLE 111.- 15' POINTED CONE SOLUTION - Concluded

PL4NE 5 ANGL = 90.03 UEG

F I E L O 0 4 1 4

IHUCK 4t ibLESr U E G SI(.HA= lL1.(1Io6 D EL14= - 2 . 3858

PH I00 - 0 . 1 7 3 2 4 t 03

90 - 0 . 16915E 30

03 - 0 . l b 4 8 9 E J O

05 -0.16042E 30

90 - 0 . 15575E 30

00 -0.15C85E 30

00 - 7 . 14568E 0 500 - 0 . 1432bE 00

00 -0.13503E 00

01 - 0 . 1 3 1 2 l E 00

03 - 3 . 12965E ,I 3

U H O1. 41 1 3 4 E - 3 4

1 . 40064E - 04

3 . 39019E- 04

0 . 37958E- 04

0 . 30868E- 34

0 . 35739E- 34

9 . 34566E- 04

0 . 33317E- 04

0 . 31777E- ) 4

9 . 2 9 3 9 1 t - J +

O . 2 5 7 l l E - 0 4

M *j . 2 7 - 5 0 t

3.567s4E

O.ZblR8E

0.55981E

3. 5551- E

3.5496GE

1,5433bE

3. 53593E

O.52515E.53532E

3. 46933E

X0 . 9 1 2 9 1 t

3 . 9 8 7 3 2 t

0 . 98873E

0. )931+E0.99155E

J3O W

3 0

1000

00

7 0

00

R0.32252E

0 .31526E

3 .31L) OLlE

0.30475E

3. 29949E

0. 29423E

0.28898E

00

00

0 3

000000JO

on

THE140. 24354C

0. 24163E

3.24287E

0.24433E

0. 24599E

O.2478bE

0.24997E

0.25235E

H0.10663E0.10778E

3.10913E

0 . l l O b l E

0.11238E

3.1 I 446E0.11689E

0.11984E

V9.3781ZE7 . 3 7 7 8 2 t

9.37747E

0.37707E

0.37660E

9.3 7605E9.37540E

3 . 3 7 4 b i t

9.37345E

14Z . 7 7 d 9 9 t

0.57542E

J.57141E

O.Sbb87E

3 . 56169E

G. 5 5 5 7 b t

0.54899E

D.54137E

0 . 5 2 9 f l l E

3.57,924€

3.47282E

0 2

0 2

02

02029 2

0 20 2

0 202

02

9 7

0 7

0 7

0 7

0 7

0 7

0 7

0 7

0 7

0 7

0 7

5 4

04

04

04

0 404

04

04

0 4

3 4

04

31

91

01010 191

310 10 1')I0 1

:I

3 1

31

112 13 1

3 13 1

3 1

3 1

3 1

~ . ~ -3 - 9 9 2 Y b k

0.99436E

0.99577r: 0.28372E

0.99718E 30 0.27f l46E 90 0.255ObE

0.9985pf 9 0 O.27321E 3 0 O.2581flE

0.10@13€ 9 1 3 . 26795E 30 O.Zbl8Ot

PLANE 6 A NGL i l l Z . 5 3 DE G

F I E L D J ~ T A

5 H O C K 4NCCES1 OtG SIGMA= 17.7465

0.12421E

0 . 1 3 2 7 9 t

0.15015E

l . 3 7 1 1 4 6

0.3 66 4 3E0 . 11151E

J - 1 1 9 3 O E

D t L 1 4 = - 1 . 9 3 6 9

D Y , " Y h ..I

333 300

0 03 03 0

K

0 . 31577E

3.31DP9E

0. 30620E

0. 30142E

0. 29b64E

0.2918t.E

3 0

0000

00

00

00

THETA

0 . 226>46

3 . 22929E

0.23230E

3. 23539E

0.238bOE0.24193E

3.98719E

0 . 9 8 9 7 5 t

0 . 9 9 1 0 3 t

3 . 992318

3.99359E

0 . 9 8 8 4 7 ~

. .. .- 7 . 16273E

- 0 . 1582bE

-0.15365E

-9.1488bE

-9.143HhE

JJ00

0003

. . 00-0.13859E i) O

3 . 1 7 6 2 8 t

0.17593E

0.17547E

3.17492E

3.17431E3.173h-+F

92

0202

0 2

0 20 2

....I'J .42187E-34

0 . 44637E- 04

0 . 4 4 0 4 9 t - 3 5

0 . 43428E- 04

Q.42774E-04

3 . 4LJ76E- 04

5. I 3 6 5 4 E

0. 13795E

0 . 1 3 9 4 2 t

0.14097E

3 .14263E0 . 1 4 4 4 3 E

0 7

0 7

0 7

0 7

0 70 7

0.37J13E

0.36975E

0.36935E

3. 368936

0.36848E3. 367996

3 4

04

04

04

04

0 4

0.50383E

3.4977bE

0.49459E

0 . 4 9 1 3 3 t

3 . 4 8 7 8 4 t0.484 15 F

@ I0 1P I

0 131fl l

3.4944P.i

3.491 77E

3.48898E

2 .4860 7E

0.48310E0.4 7973E

110 1J l

11

> I01

0 . 9 9 4 n ~ E i o i . 2 8 7 0 8 E 00 0 . 2 4 i 4 3E

U . 9 9 6 1 b t 'JV O . 28229 t 00 0 . 24913E

0.99744E O D O . 2 7 7 5 l t 1 0 0.25335E@. '19812t 10 3 . 2 1 2 1 3 5 95 0 . 2 5 7 2 4 t

0 - 1 3 0 1 5 t 0 1 0.26795E 00 O.Zbl8OL

PL 4Nt 7 ANGL ~ 1 3 5 . 0 0 OEG

~ ~.

00 - 0 . 13269E 00 0 ; i72ss ; 52 0 . 41296E- 04 6 .14653€ 07 5.36742; 04 5 i 4 7 9 9 3 ; 01 3.47586E 3 1

OJ - 3 . 127066 OD 9 . 172 lO E 02 0 . 4 0 3 0 2 E - 0 4 0 . 14946E 0 7 0.36662E 0 4 3.47416E 51 3 . 4 7 3 2 3 t 2 1

00 -0.12395E 00 3 . 17127E 02 0 . 31857E- 04 0 . 1 5 4 2 7 f 3 7 3 . 3 6 5 3 l t 04 0.46503E C 1 0 . 461195 3 190 - 0 . 11478E 00 0 . 17338E 0 2 0 . 3 6 9 2 l E - 0 4 O . l b l 5 l E 07 0 . 36332E 04 3 . 45292E 0 1 0 . 4491VE 3 1

3 3 - 0 . 1 0 8 4 5 t J O 3.16937E 32 0 . 34 9 27 E -7 4 3 . 1 6 97 3 E j 7 3 . 3 6 1 0 5 t n4 3 . 4 3 f l l 9E :1 3 . 4 3 5 1 5 i 3 1

F I E L D DA14

5 t 4 U C & A N L L t 5 . DtG SIGM4= 17.5849 U t L l 4 - - 1 . 1 3 3 4

PH I

1 3 - 0 . 1 2 8 3 l E 0030 - 0 . 1 2 c 2 1 t do

03 - 0 . 12327E d 0

03 - 0 . 11617F 3000 - 0 . 1 1 1 8 7 t G O

10 - 0 . 10735E 30

90 - 0 . 1 0 2 5 3 € 00

33 - 1 . 9 7 2 7 2 E - 0 1

03 - 0 . 91283E- 31

00 - 0 . 8 4 5 1 3 E - 0 1

03 - 9 . 7 7 3 8 0 E - 3 1

P R H O

0.22bOBE O L 0 . 477bbE- 04

3 . 22765E 02 0 . 47737E- 34

3 . 22893E 02 0 . 47652E- 04

3.22995E 3 2 0 . 4 7 5 1 2 E - 3 4

3.23373E 02 0 . 4 7 3 l b t - 0 4

0 . 23129E 02 0.41062E -34

3 . 2 3 l b 5 E O Z 7 . 4 6 7 5 1 6 - 0 4

0 . 2 3 1 7 9 t 02 0 . 4 6 3 8 7 E - 5 4

0 . 23 1 7 2E 0 2 0 . 4 2 9 3 9 t - 0 4

O.23144E 92 3 . 45049E- 34

3.23OY7E 02 0 . 43589E- 34

H

O . l b 5 6 b t 0 7

0 . 166915 27

0.16814E 37

J . l b 9 3 9 E 5 7

0 . 1 7 O b I t 6 7

O . 1 7 2 3 l L 3 7~ . 1 7 3 4 2 € 0 7

0.17488E ~7

0 . 17666€ 070 . 17981E @7

0. 18546E 37

V

0 . 3 6 2 1 8 t 04

3.36183E 3 4

1 . 361495 3 4

7.36114E 3 4

0.36179E 04

1 . 3 6 3 4 2 t 0 4

3 . 3 b 2 3 3 t 0 4

5 . 359bZt ;4

3 . 35913E 54

0.35825E 3 4

?.35667E 04

H

0 . 44492E

3 . 4 4 2 8 3 E

3.4437f lE

C.43874t

3 . 4 3 6 6 6 t

3.43451E

0. 43227€

3 . 4 2 9 9 6 t

3.42 I 2 t

0 . 4 2 2 4 2 E' l.41411E

X

J.98192B

0.98913C

5. 990 34 t

3 . 9 9 1 5 4 t

il r Y F T b. .- . ..J O 0 . 3 1 3 0 2 t 90 0.21Zf l4E

00 3 . 3 0 8 5 2 t 00 0 . 2 1 7 5 8 t

J O 0 . 3 0 4 0 1 E 30 3.22229E

03 3 . 2 9 9 5 0 t '30 0.227OOE

0.99275E

0 . 9 9 3 V b t

0.9951 7E

1 . 19638E

0 . 9 9 7 5 8 t

3.998 7 P t

0 . 1 ? 3 3 5 t

90 0 . 2 7 4 9 9 ~ oo 0 . 2 3 ~ 7 ~ ~

3 3 0.29349C 00 0 . 2 3 6 4 9 t

3W 7 . 2 8 5 9 8 t 00 0 . 2 4 1 3 2E

30 3 . 28147E 30 3.24623E

3 0 0 . 2 7 6 9 6 t 00 ~ . 2 5 1 2 6 E

3 3 0 . 27246E 30 0 . 25644E

0 1 O . 26795 t 00 O . Z b l 8 O E

PL4NE 8 A W L = 1 5 7 . 5 3 D t G

F l f L 0 UA14

5 t 4 U C K ANLL6Sr OEG 5 I LH A= 17 . 4726

X R THETA

0.988*5E 30 0.31105E 0 0 0.20345E0. 9896YE 5 3 0.%0674€ 00 0 . 2 0 9 5 1 t

3 . 9 9 3 7 b t J O 0 . 30243E 3 0 0.21645F

0 . 7 9 1 7 1 t 00 0 . 2 9 8 1 2 t 0 0 O . 2 2 1 3 l t

3 . 1 9 3 3 7 t o n 0 . 2 9 3 n i i no 0 . 2 ~ 7 1 2 6

> . 9 9 4 2 2 t 39 7.2895OE 30 3 . 23279E

0 . 9 9 5 3 8 t 00 3 . 2 8 5 1 9 t 00 0 . 2 3 5 b 8 t

0 . 9 9 6 5 3 t 09 O.28388E 00 0.24445E

0.99769C 50 3.27b57 E 30 0.25024E

'J . 91854 t 93 0 . 2 7 7 2 b t 00 O . 2 5 6 0 l t

0 . 10003E 0 1 D . 26T95 t 00 U . Zb lR O €

PLANE 9 ANGL 1180.03 OEG

F 1 f i . U DATA

5 ' . .K 4NLLES. UEC 61GH4= 17.446 7

O C L I 4 = - 1 . 6 0 7 3

P H I P KH 0 " V H M '

03 - 9 . 7 0 9 2 8 f - 0 1 3.26303E 02 3 . 4 9 l b S E - 3 4 0 . 1 8 7 2 5 t 3 7 0 . 3 5 b l 7 E 04 3 . 4 1 1 5 4 t 0 1 3 . 4 1 15 9 C I109 - 3 . 6 7 8 5 7 f - 5 1 3 b b ' t l t 32 D.4Y532t-I4 2 . 1 8 B Z Z t 2 7 0 - 3 5 5 8 9 t 04 i . 4 1 3 1 2 f 0 1 3 . 4JY23 t :103 - 0 . 65606E- 51 J : f 6 9 3 5 t 02 0 . 4Y837L- 34 0.1891bE 0 7 3 . 3 5 5 6 3 t 04 O . I t O R 8 4 t 0 1 3 . 4 3 8 3 1 E 3 1

03 - 0 . 6 3 2 6 7 E - 3 1 O . 2 7 I R 7 E 0 2 3 . 5 3 3 1 3 t - 5 4 0 . 19033L t 7 3 . 35539E 04 3 . 4 S l b b E 31 j . 426H 9E 31

10 - 0 . 5 8 2 6 3 E - 0 1 O . 2 7 58 4 t 0 2 3 . 2 0 4 3 4 t - 0 4 3 . 19 1 54 E C7 5.354966 04 0.40553E 01 7.4348tlk 3 1

33 - 3 . 5 5 5 2 1 E - 0 1 O . Z I I 2 8 E 0 2 0 . 5 0 4 7 4 E - 0 4 0.19227E 07 0 - 3 5 4 7 5 E 04 0.40452E 0 1 3.L.33.?4t 11

3 3 - 3 . 52541E- 31 0 . 27837E 12 0.5J462E-GC 2. 19337E c 7 3 . 35453E 3 4 3 .*0342E 3 1 2.k02'4': 11

OD - 3 . 4 9 1 9 6 E - 0 1 5 . 27912€ 02 0 . 50334E- 04 0 . 19439 t 07 3 . 35k24E 04 3.40234E 3 1 3.43128k 21

03 - 0 . 45313E- 31 3 . 27955E 02 0 . 5 0 1 2 9 E - 3 4 9 . 19518E 3 7 3 . 35393E O k 0 . 43326E 0 1 1 . 4 J 1 1 8 E > 1

OJ - 3 . 4 0 5 8 4 E - 0 1 3 . 2 7 9 5 9 t 02 0 . 49963E- 04 0 . 1 9 5 8 b t 3 7 0 . 3 5 3 7 k t 04 3 . 3 9 9 6 5 t C I 1.37'334t 3 1

03 - 3 . b 0 8 2 7 t - 3 1 0 . 2 74 0 4 5 0 2 0 . 5 0 2 7 L E - 0 4 0 . 1 9 0 7 v f G7 1 . 3 5 5 1 7 t 3 4 3 . 4 5 6 5 6 1 3 1 ? . 4 I > H 5 € 11

V

3.353 )D L3 - 3 5 3 6 5 t

0.35344E

3 . 3 5 3 2 5 t

3 . 3 5 3 0 9 t

?.352V5t

3.35281E

0.2 7683E

3.28387E

3 . 2 8 4 4 4 t

3.28756E

3. 2POZ5E

0. 29252E

7.29439E

1 20 20202

0 20 20202

J . 1 9 5 3 1 t

0.19617E0.19692E

3.19758E

3.19816E

0.19867E

0.19913E

G7

0 7

c 77 7

c 7

3 7

2 70 7

2 4

04

5 4

0

'4

04

7 4

74

3 . 4 G J 39E

3.3Y924E

3.39824E

3.39737E

3.39bb3E

3 . 3 9 2 9 3 t

n. 395 3 I E

0 1

3 1

0 1

J lD l

9 1C l

0 1

3 . 4 3 1 3 9 t

3 . 3?924C

3 . 1 9 8 2 4 t

3.34717E

3.3966:E

3 . 335936

3 13 13 1

J l

3 1-,13 131

. ~~.-.~~

0.9931i; 06 0.29363E 30 0.22538E

cT.99427E 3 9 0.28933E 00 0.23149E

O.99542E JO O.28505E 00 0 . 2 3 7 56E

0.99656E J O 3 . 28078E 00 0.24361E

30 - 0 . 5 0 2 3 4 t - 0 9

00 - 0 . 48757E- 09

00 -9.4728bE-09 3.295876

0 . 51743E- 34

0 . 51 f lBbE- 04.~

3.199Sf lE 6 . 35269E... .~

7.3Y473E

0. 9977LE 10 0.27650E 00 0 . 24967E 00 -3.45122E-09 0.2969CE 0 2 0 . 51983E- 04 O.19993E 0 7 0 . 3 5 2 5 9 t 04 D . 39 4 27 E 0 1 0 . 3 9 4 2 l E 0 1

0 . 9 9 8 8 5 t 00 O.27222E 00 0 . 25574E 00 -0.41598E-69 O.297b2E 02 0 . 52133E- 34 0 . 19994E 07 3 . 3525 9 t U 4 3.39426E 01 3.39426E 71O.l.)033€ 3 1 @ .2 6 79 5 E 30 O . 2 6 1 8 O E 00 - 0 . 3 7 0 2 l E - 0 9 3.29793E 02 O.52282E-34 3.19945E 0 7 7 . 3 5 2 7 2 t 04 3.3949CE 0 1 ' 1 . 39493 t J 1

TH EI A 6 0 D Y =.0.261799E 00