Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M....

134
Politechnika WROCŁAWSKA WYDZIAŁ MECHANICZNY PRACA DYPLOMOWA MAGISTERSKA TEMAT: Analyses of linear encoder application (glass scale) on quality of machining centre Promotor: Realized by: Dr inż. Zbigniew Kowal Santiago Manuel Vilar Blanco WROCLAW, Poland July 2010

description

Thermal deformation at machining centre induces errors that reduce the accuracy in precision machining. This thermal deformation is caused by high speed spindles rotation and environment changes. There are a lot of studies in order to reduce these errors and increase accuracy of machining centre, which information was taking as a knowledge base for this project.The solution proposed in this project to reduce the errors caused by thermal deformation in the way to increase accuracy precision machining is to use linear encoders, glass scale, to determine position of headstock and work piece by reading heads to these linear encoders.

Transcript of Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M....

Page 1: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

 

Politechnika  

WROCŁAWSKA  

 

 

WYDZIAŁ  

MECHANICZNY  

 

PRACA  DYPLOMOWA  MAGISTERSKA  

 

TEMAT:  

Analyses  of  linear  encoder  application  (glass  scale)  on  quality  of  machining  centre  

 

 

 

 

Promotor:                                                                                                                                                                                          Realized  by:  

Dr  inż.  Zbigniew  Kowal                                                                                                  Santiago  Manuel  Vilar  Blanco  

 

WROCLAW,  Poland      July  2010  

 

Page 2: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

1    

Index  

1.  Introduction……………………………………………………………………………………………………………..3  

2.  Aim  and  range  of  necessary  analyses  of  linear  encoder  application  (glass  scale)  on  

quality  of  machining  centre………………………………………………………………………………………….3    

3.  Define  by  drawing  a  dependency  diagram  quality  of  machining  centre……………………5  

3.1  Issues  needed  to  obtain  quality  of  machining  centre………..……………………………..17  

4.  Design  of  geometric  models  for  simulation  of  machining  centre  in  FEM  method    

4.1  Geometrical  model  of  the  machine  tool  with  ball  screw…………………………...….…19  

    4.1.1  How  to  design  geometrical  model………………………………………………………….20    

4.1.2  Assembly  the  geometrical  model…………………………………………………………..26  

4.2  Geometrical  model  of  the  machine  tool  with  glass  scale…………………………………28  

5.  Boundary  conditions  for  finite  elements  thermal  models……………………………………...37  

5.1  Analysis  of  Power  Losses………………………………………………………………………………...37  

5.1.1  Power  Losses  in  ball  screws…………………………………………………………………..37  

5.1.2  Power  losses  in  motors………………………………………………………………………….41  

5.1.3  Power  losses  in  bearings……………………………………………………………………….43  

5.2  Analysis  of  forced  and  natural  convection………………………………………………………45  

5.3  Machine  tool  model  for  analyze  temperature  with  SimDesigner  R2……………….48  

6.  Machine  Tool  Model  for  analyze  deformation  with  CATIA  V5R17………………………...58  

6.1  Boundary  conditions  for  finite  elements  deformation  models……………….……….58  

6.1.1  Define  connection  property  to  assembly  constrains……………………………..59  

6.1.2  Load  data  of  temperature  distribution  obtained  by  SimDesigner  

R2……………………………………………………………………..………………………………….66  

6.1.3  Define  local  sensors  to  measure  deformations……………………………………..67  

7.  Design  plan  of  computing……………………………………………………………………………………..70  

Page 3: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

2    

7.1  Operating  conditions  and  positions………………………………………………….………........70  

7.2  Design  of  working  cycle…………………………………………………………………….……………..72  

7.3  Selected  data  for  analyses…………………………………………………………….………………...75  

8.  Results  of  computing  and  conclusions……………………………………………………………………75  

8.1  Analyses  of  displacements  at  position  BEH……………………………………………………..77  

8.1.1  Analyses  of  work  cycle  with  initial  temperature  293K  at  BEH………………..77  

8.1.2  Analyses  of  work  cycle  with  initial  temperature  295K  at  BEH………………..81  

8.1.3  Analyses  of  work  cycle  with  initial  temperature  298K  at  BEH………………..82  

8.1.4  Conclusions  at  position  BEH  with  different  initial  temperatures……………83  

8.2  Analyses  of  displacements  at  position  CFG……………………………………………………..85  

8.2.1  Analyses  of  work  cycle  with  initial  temperature  293K  at  CFG…….............85  

8.2.2  Analyses  of  work  cycle  with  initial  temperature  295K  at  CFG…….............87  

8.2.3  Analyses  of  work  cycle  with  initial  temperature  298K  at  CFG…….............89  

8.2.4  Conclusions  at  position  CFG  with  different  initial  temperatures……………90  

8.3  Conclusions  drawn  from  computing  analysis…………………………………………………..91  

9.  Conclusions  leading  to  improve  of  machining  centre  design………………………………….93  

10.  Attachments……………………………………………………………………………………………………..…94  

11.  References………………………………………………………………………………………………………...132  

 

 

 

 

 

 

 

Page 4: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

3    

1.  Introduction  

Thermal  deformation  at  machining  centre   induces  errors   that   reduce  the  accuracy   in  

precision   machining.   This   thermal   deformation   is   caused   by   high   speed   spindles  

rotation  and  environment  changes.  There  are  a  lot  of  studies  in  order  to  reduce  these  

errors  and   increase  accuracy  of  machining  centre,  which   information  was  taking  as  a  

knowledge   base   for   this   project.   Some   of   these   papers   are   Particular   behavior   of  

spindle  thermal  deformation  by  thermal  bending  by  Tae  Jo  Ko,  Tae-­‐weon  Gim  and  Jae-­‐

yong  Ha;  Thermal  behavior  of  a  machine  tool  equipped  with  linear  motors  by  Jong-­‐Jin  

Kim,  Young  Hun  Jeong  and  Dong-­‐Woo  Cho;  Thermal  Error  Measurement  and  Real  Time  

Compensation   System   for   the   CNC  Machine   Tools   Incorporating   the   Spindle   Thermal  

Error  and  the  Feed  Axis  Thermal  Error  by  H.J.  Pahk  and  S.W.  Lee.  The  solution  proposed  

in   this   project   to   reduce   the   errors   caused   by   thermal   deformation   in   the   way   to  

increase   accuracy   precision   machining   is   to   use   linear   encoders,   glass   scale,   to  

determine   position   of   headstock   and   work   piece   by   reading   heads   to   these   linear  

encoders.  

 

2.  Aim  and  range  of  necessary  analyses  of  linear  encoder  application  (glass  scale)  on  

quality  of  machining  centre  

The  main  aim  of  this  project  will  be  to  recognize,  in  operational  conditions,  influence  of  

machining   centre   thermal   behavior   on   machining   error   for   circular   encoder   where  

position  of  headstock  and  work  piece  is  determine  by  number  of  rotations  of  the  ball  

screw  and  linear  encoder  where  this  position  is  determine  by  reading  head  at  the  glass  

scale.  This  aim  involves  the  following  range  of  project:  

§ Working   out   geometric  model   suitable   for   simulation   of  machining   centre   in  

FEM  method.    

§ Preparing   such   data   as   material   constants,   bearings   preload   and   tolerances,  

lubrication,   operating   conditions,   cooling   system   and   data   related   to  

distribution  of  power  losses.  

§ Working  out  FEM  model  for  simulation  of  temperature  distribution.  

Page 5: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

4    

§ Working  out  FEM  model  for  simulation  of  deformation.  

§ Determine  factors  influence  on  values  of  machining  error  for  milling  machine.  

§ Working   out   the   plan   of   computing   in   chosen   operating   conditions   and  

positions.  

§ Working  out  the  result  of  computing.  

§ Creating   a   conclusion   leading   to   improving   of   machining   centre   design   by  

proper  application  of  measuring  system  base  on  linear  encoder.  

 

Once  we   know   the   aim   and   the   range   of   the   project  we   have   to   say   that   the  most  

obvious  characteristic  of  the  design  problem  is  that  it  is  complex  because  there  are  so  

many  aspects   like  power   losses,  ambient   temperature,  materials   thermal   conduction  

and  expansion  coefficients,  forced  and  natural  convection,  etc  to  our  design  problem.  

It  is  impossible  to  deal  with  all  the  aspects  at  once.  Design  problem  have  to  be  broken  

down  into  easy  sub  problems  like  build  different  models  one  for  analyze  temperature  

distribution  and  one   for  analyze  deformation,  which  can  be  analyzed  separately.  The  

design  process  is  open  in  the  sense  that  the  boundaries  of  the  process  are  not  limited.  

There  are  the  undetermined  goals,  the  means  to  achieve  them,  the  issues  and  options  

to   be   considered,   time   and   money   and   so   on.   These   means   that   there   is   not   a  

prescribed  set  of  solutions,  in  other  words,  design  calls  for  creativity  and  ingenuity.  

 

We  are  going  to  design  a  dependency  diagram  from  idea  of  expert  system  creation  as  

an   assessment   guideline   for   this   project.   An   expert   system   is   a   collection   normally  

composed   of   a   knowledge   base,   the   analysis   of   this   knowledge   and   the   end   users  

interface.  Knowledge  acquisition  for  expert  systems  is  a  practical  problem  to  be  solved  

by   experiments   (in   this   project   by   computer   simulation   with   CATIA   V5R17   and  

SimDesigner   R2   software).   The   knowledge   that   the   expert   provides   varies   with   the  

context   and   gets   its   validity   from   its   ability   to   explain   data   and   justify   the   expert  

judgment.      

 

Page 6: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

5    

3.  Define  by  drawing  a  dependency  diagram  quality  of  machining  centre  

A   dependency   diagram   is   a   visual   representation   of   the   factors   that   affects   to   our  

project  and  the  relationship  of  those  factors.  The  dependency  diagram  is  an  essential  

tool   for   representing   information   and   makes   easy   the   rule   creation   process.   The  

diagram  consists  of  multiple  nodes,  rectangles,  each  of  which  represent  an  important  

factor  to  the  problem.  Nodes  are  connected  by  arrows  that  portray  the  dependencies  

which  exist   among   the  data   variables.  Variables  which  make  a  direct   interference   to  

the  goal  variable  are  referred  to  as  first-­‐level  concept  variables.  Bottom-­‐level  concept  

variables   are   affected   by   raw   data   input   variables.   Raw  data   input   variables   directly  

accept  input  data  from  the  expert  system.  

GOAL

values

First LevelConcept  variable

values

First LevelConcept  variable

values

SecondLevelConcept  variable

values

SecondLevelConcept  variable

values

Bottom LevelConcept  variable

values

Bottom LevelConcept  variable

values

Raw input  data  variable

values

Raw input  data  variable

values

Raw input  data  variable

values

Raw input  data  variable

values

 

Fig  3.1  Dependency  diagram  format  [9]  

 

Depending  on  the  problem  that  we  want  to  solve  there  are  three  possible  approaches:  

goal-­‐driven,   relationship-­‐driven  and  data-­‐driven.   In  most  of   the  cases   it   is  enough   to  

construct  the  dependency  diagram  by  using  only  one  of  these  approaches,  but  it  could  

be  possible  also   in   some  cases   to  use  a  combination  of  all   three   to  achieve   the   final  

diagram.   To   use   the   goal-­‐driven   approach,   specify   the   goal   first   and   then   ask   the  

Page 7: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

6    

question  “what  information  does  the  expert  system  need  to  consider  in  order  to  make  

a  decision  about  the  goal?”  In  this  approach  first  specify  top  of  the  diagram  (the  goal  

variable)  and  work  down  toward  the  raw  data  input.  The  data-­‐driven  approach  is  used  

to  construct  a  dependency  diagram  beginning  by  making  a   list  of  all  know  input  data  

and   information   important   to   the   problem   domain.   This   method   of   drawing   the  

dependency  diagram  uses   a   bottom-­‐up   approach.   First   specify   the  bottom   level   and  

work  up  toward  specifying  the  goal  variable.  The  relationship-­‐driven  approach  is  used  

to   describe   problems   by   outlining   existing   relationships   which   directly   affect   the  

outcome   of   a   decision.   With   this   approach,   establish   separate   relationships   by  

grouping  them  as  intermediate,  first  and  bottom-­‐level  concepts  that  eventually  direct  

you  to  the  goal  variable  and  data  input.  Attending  to  the  aim  of  this  project,  analysis  

on   quality   of   a  machine   centre   using   a   glass   scale   as   a   linear   encoder,   it   is   easy   to  

choose  the  appropriate  approach  thinking  that  our  goal  is  the  main  aim  of  this  project.  

That  is  why  we  use  the  goal-­‐driven  approach  to  design  our  dependency  diagram.  

First   step   to   design   the   dependency   diagram   using   the   goal-­‐driven   approach   is   to  

identify  the  goal.  In  this  project  the  goal  is  Analyses  of  application  linear  encoder  (glass  

scale)  on  quality  of  machining  centre.  The  variable  used  to  represent  this  goal  is  called  

quality  of  machine   tool.  Bellow   this   variable   there   is   a   list  of   kind  of   values   that   the  

variable  can  accept  as  in  figure  3.2  

 

Fig  3.2  Identifying  the  goal  variable  

 

Step  two  is  to  make  a  list  of  the  items  that  need  to  be  considered  by  the  expert  system  

to   determine   a   value   for   the   goal.   These   are   the   factors   that   determine   how  much  

quality  of  the  machine  tool  is.  It  is  a  very  important  step  in  this  project:  To  define  in  a  

Page 8: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

7    

correctly  way  these  factors  to  design  the  best  possible  dependency  diagram,  because  

this  diagram  is  going  to  be  the  roadmap  of  the  project.    

To  know  which  factors  have   influence  on  machine  tool  quality   it   is  necessary  to  start  

analyzing  all  the  different  possible  factors  and  then  choose  the  ones  that  really  have  a  

direct  influence  on  the  goal.  

In   general   terms   referring   to   the   accuracy   of   work   pieces,   the   errors   making   on  

accurate   length  or  circle  and   in   testing   these,   should  be  no  greater   than  1.0-­‐0.3  µm.  

The   base   guide   of   precision   surface-­‐grinding   machine   should   be   made   so   that   the  

deviations  from  linearity  should  be  no  greater  than  1-­‐2  µm  in  500  mm.  The  measuring  

errors  in  testing  the  linearity  and  flatness  of  precision  guides  should  be  no  greater  than  

±0.0005  mm.  The  accuracy  of  the  machines  and  tools  depends  on  the  accuracy  of  the  

measuring  systems  built  into  them.  About  the  measuring  systems  we  have  to  consider  

the   errors   in   the  measuring   system   itself   (the   difference   of   the   nominal   and   actual  

value  of   the  total   length  of   the  measuring  system  or  the   length  of   its  scale  divisions)  

and  also  the  errors  in  testing  this  measuring  system.  A  major  proportion  of  the  errors  

in  measuring  systems  depend  on  the  total  length  of  the  measuring  system  according  to  

the  All-­‐Union  State  Standard  12069-­‐66,  should  be  expressed  in  the  form:  

∆= ! + !"  

Where  a  is  the  constant  part  and  bl  is  the  component  of  error  depending  on  the  length  

of  the  measuring  system  (temperature  errors,  misalignment  of  the  measuring  system,  

etc).    

 

Page 9: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

8    

 

Fig  3.3  List  of  the  formulas  for  linear  displacements  in  different  machines  and  also  the  

classes  of  accuracy  of  graduated  measuring  systems  which,  according  to  the  All-­‐Union  

State  Standard  12069-­‐661,  may  be  used  as  scales  for  these  machines  [6].  

 

The  temperature  has  also  a  big  influence  on  the  quality  of  a  machine  tool.  The  effects  

of   the   temperature   must   be   analyzed   to   reduce   thermal   induced   deformations   in  

machine   tools   to   avoid   displacements   between   tool   and   work-­‐   piece.   To   solve   this  

problem   we   need   to   do   an   analysis   of   different   heat   sources   and   how   their  

deformations   are.   Failures   on   geometric   of   the   work-­‐piece   can   be   produced   by  

deformations  on  the  machine  tools,  causes  by  internal  and  external  heat  sources.      

                                                                                                                         1   The   new   standards   for   plane-­‐parallel   end-­‐type   length   measuring   systems   in   general   correspond   to   the  international   norms   indicated   in   the   recommendations   of   the   Comecon   organization   and   also   to   the   1973  recommendation  of  the  International  Organization  for  the  Unification  of  Measurements  MOZM  No.  30.    

Page 10: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

9    

 

Fig  3.4  Illustrates  different  heat  sources  and  different  ways  of  heat  transfer  over  the  

machine  structure  causing  size  and  geometric  errors  in  the  measuring  system,  the  

machine  structure  and  finally  in  the  work-­‐piece.  [5]  

 

Heat   sources  can  be  classified  as   internal  and  external.   Internal   sources  are  basically  

heat  produced  by  running  the  machine  and  the  process  of  machining.  External  sources  

are   changes   in   environment   e.g.   solar   radiation,   lightning   etc.   Referring   to   external  

heat   sources,   variation  of   the  ambient   temperature   causes   temperature   vertical   and  

horizontal   gradients   that   cause   thermo-­‐elastic   deformations   of   the   machine   tools.  

Figure  3.5  shows  the  solar  energy  radiation  over  a  12  month  period  for  Frankfurt  and  

the   temperature   range   over   the   same   time.   Also   shows   the   variation   of   the  

temperature   in   a  machine   shop.   So   the  amplitude  of   the   temperature  will   vary  with  

geographical  location,  the  season  and  the  thermal  characteristics  of  the  machine  shop.  

Page 11: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

10    

 

Fig  3.5  Shows  a  not  unusual  variation  of  5  oC  during  the  winter  and  15  oC  during  the  

summer  time.  [5]  

 

On   figure   3.6   is   illustrated   how   a   rapid   ambient   temperature   of   10   oC   causes   radial  

displacements  on  a   lathe.  During  the  first   three  hours  after   the  temperature  rise  the  

distance   between   tool   and   spindle   reduces   quickly   by   40   µm   followed   by   a   low  

increase   during   the   next   8   hours.   This   means   that   the   machine   has   large   time  

constants  in  reacting  to  ambient  temperature  changes.    

Page 12: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

11    

 

Fig  3.6.  Machine  reaction  to  ambient  temperature  changes.  [5]  

 

Thermal  deformation  also  depends  on  the  geometry  of  the  machine.  It  is  good  to  make  

equal  the  time  constants  for  different  components  of  the  machine  to  reduce  thermal  

deformations  caused  by  external  heat  sources.  Figure  3.7  shows  this  effect  for  a  portal  

of  a  milling  machine.  Because  of  different  wall  thicknesses  of  the  front  and  back  of  the  

column,  the  back  gets  warm  up  faster  in  the  morning  when  the  hall  temperature  rises  

and  cools  down  more  quickly  in  the  afternoon  than  the  front  wall.  This  results  also  on  a  

deformation  of  the  machine.  To  avoid  this  effect,  it  is  possible  to  insulate  the  thin  wall  

with  polystyrene,  so  the  time  constants  can  be  more  equal  and  the  deformation  cause  

by  temperature  changes  were  substantially  reduced.  

Page 13: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

12    

 

Fig  3.7  Shows  thermal  deformations  caused  by  external  heat  sources  on  a  milling  

machine.  [5]  

 

Referring   to   internal   heat   sources,   these   ones   directly   conduct   the   heat   into   the  

machine  structure  and  causes  thermal  deformation.  One  of   the  most   important  heat  

sources   is  the  spindle  system  and   its  bearing.  Depending  on  the  bearing  type  and  on  

the  diameter  of  the  spindle  the  power  losses  can  be  up  100W  for  a  100mm  ball  bearing  

running   at   10000rpm  and  up   to  1kW   for   a  hydrostatic   bearing  of   the   same   size   and  

speed   rotation.   The   roller   bearings,   the   ball-­‐screw   and   its   nut   must   take   in  

consideration.  Due   to  a   study  of  Schulz  and  Schmitt   the  main  heat   source   is   the  ball  

screw   and   its   nut.   Another   internal   heat   source   is   the   cutting   process   itself,   which  

warm  ups  the  tool,  tool-­‐holder,  work-­‐piece  and  clamping  device.    In  the  same  way  the  

table,  machine  and  other  components  can  also  be  heated  up  indirectly  by  hot  chips.    

Making  an  analysis  of  all  these  information  it  is  possible  now  to  define  the  factor  that  

have  a  direct  influence  on  the  quality  of  machine  tool  (goal).  This  quality  depends  on  

one  side  by  the  design  conditions  of  the  work  piece;  this   is   the  accuracy  of  the  work  

piece.  On   the  other   side,  quality  of  machine   tool  also  depends  on   the  error   that   the  

Page 14: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

13    

machine   makes   at   the   production   of   the   work   piece   caused   by   the   different   heat  

sources  and  ambient  temperature  variations.  These  variables  are  referred  to  first  level  

concept   variables.   Variable   names   are   going   to   be   accuracy   of   work   piece   and  

machining  error.  In  this  case  the  values  that  these  variables  can  accept  are  going  to  be  

the  same  in  the  two  cases,  µm,  as  in  figure  3.8.  If  value  of  machining  error  is  X  µm  and  

value  of  accuracy  of  work  piece  is  Y  µm  with  X<Y  then  value  of  quality  of  machine  tool  

is  good.   If  value  of  machining  error  is  X  µm  and  value  of  work  piece  is  Y  µm  with  X>Y  

then  value  of  quality  of  machine  tool  is  poor.    

 

Fig  3.8  Representing  first  level  concept  variables.  

 

Step   three   on   designing   dependency   diagram   is   to   list   the   items   that   need   to   be  

considered   by   the   expert   system   to  make   a   decision   about   each   first   level   concept  

variable   listed   in   step   two.   This   step   is   basically   the   same   than   step   two   but   now  

referring   to   the   first   level   concept   variables,   accuracy   of   work   piece   and  machining  

error,  instead  to  the  goal  variable  (quality  of  machine  tool).    

There  are  three  main  factors  that  have  influence  on  the  accuracy  of  work  piece.  First  

one   is   the   final   work   piece   finish.   In   this   case   this   variable   is   going   to   be   called   as  

roughness.  The  values  that  can  be  accepted  by  this  variable  are  going  to  be  also  µm.  

Second   one   is   the   range   of   values   where   dimensions   of   work   piece   must   be   to   be  

considered  as  valid.  This  variable  is  going  to  be  called  tolerance.  There  values  that  can  

be  accepted  by  tolerance  are  going  to  be  standard  tolerances  that  are  common  in  work  

Page 15: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

14    

pieces   for   this  machine   centre,  H/h  7,6,5.  As  we   see  on   figure  3.9,   table   shows   that  

there   is   a   relation   between   tolerance   and   dimension   of   work   piece;   that   is   why  

dimension  of  work  piece  is  going  to  be  another  factor  with  influence  on  the  accuracy  

of  work  piece.  

 

Fig  3.9  Tolerance  table.  As  we  can  see  there  is  a  relation  between  the  tolerances  and  

dimension  of  work  piece.      

 

Referring  to  the  other  first  level  variable,  machining  error,  there  are  two  main  factors  

that   have   influence   on   it.   In   one   hand   we   have   errors   on   the   work   piece   because  

displacement  of  the  tool.  The  tool  of  the  machine  centre  has  direct  dependency  with  

the  spindle,   if   the  spindle  varies   the  position   the   tool  will  move  also.  This  variable   is  

going  to  be  called  end  of  spindle  displacement.  On  the  other  hand  there  are  errors  at  

the  work  piece  because  the  work  piece  itself  is  no  located  at  the  exactly  position.  This  

variable   is  going  to  be  called  as  displacement  of  work  piece.  As  we  can  see  on  figure  

3.10  there  is  now  defined  the  second  level  concept  variables.  

Page 16: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

15    

 

Fig  3.10  Representing  the  second  level  concept  variables.  

 

Next   step   is   to   define   the   factors   that   have   influence   in   the   second   level   concept  

variables.  In  this  case  there  is  only  necessary  to  define  third  level  concept  variables  for  

end   of   spindle   displacement   and   displacement   of   work   piece   because   these   second  

level   variables   have   dependency   on   many   other   factors.   In   case   of   roughness,  

dimension  of  work  piece  and  tolerance  of  work  piece  there   is  no  necessary  to  define  

third  level  concept  variables  because  there  data  and  have  no  dependency  on  any  other  

factors.   End   of   spindle   displacement   and   displacement   of   work   piece   have   their  

dependency  on  the  same  factors  because  both  of  them  are  displacements  at  the  end.  

Depending  on  the  configuration  of  the  machine  centre,  with  or  without  glass  scale,  the  

displacement   at   these   two   points   should   be   different   as   different   should   be   the  

behavior   of   the  machine   centre   during   thermal   deformation   for   these   two   different  

configurations.  This  third  level  concept  variable  is  called  as  equipment  and  as  we  said  

the  values   that  can  be  accepted  by   this  variable  are  ball   screw,   referring   to  machine  

centre   without   glass   scale,   and   glass   scale   for   the   machine   centre   with   this   linear  

encoder.   There   are   also   two   more   factors   that   have   influence   on   end   of   spindle  

displacement   and   displacement   of   work   piece.   These   are   in   one   hand   the   position  

where  the  machine  centre  is  working  and  where  it  is  going  to  work,  in  other  words,  the  

direction  and  position  of  work.  On  the  other  hand  the  displacements  depend  also  on  

Page 17: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

16    

the  state  before  and  during  the  working  conditions  of  the  machine  centre.  This  factor  

is  called  as  time.  We  can  see  third  level  concept  variables  in  the  next  picture.  

 

Fig  3.11  Representing  the  third  level  concept  variables.  

 

Next   step   is   to   define   the   factors   that   have   influence   in   the   third   level   concept  variables,   direction   &   position   and   time.   For   the   first   one   the   factors   are   as   it   said  direction  of  machining  and  position  of  machining.  For  the  variable  time,  this  depends  on   the   cycle   of   machining   and   also   on   ambient   temperature.   All   these   four   level  concept  variables  there  have  no  dependency  on  any  other  factors,  there  are  data,  that  is  why   these   four   level   concept   variables   are  bottom   level   variables   and   that  means  that  the  dependency  diagram  is  finally  designed  as  we  can  see  on  the  next  picture.  

Page 18: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

17    

Quality  of  Machine  Tool

Accuracy  of  work  piece    

Machining  Error

µm

µm

GoodPoor

Roughness

Dimension  of  work  piece

Tolerance  of  work  pieceH7H5H6

End  of  spindle  displacement

Displacement  of  work  piece

Equipment

Direction  and  

Position

Time

Ball  ScrewGlass  Scale

Direction  of  machining

Position  of  machining

Cycle  of  Machining

Ambient  Temperature

XYZ

Xa Ya ZaXb Yb ZbXc Yc Zc

X Y Z

A

B

C

rpm

h

 

Fig  3.12  Dependency  diagram  for  analyses  of  linear  encoder  application  (glass  scale)  on  quality  of  machining  centre  

 

3.1  Issues  needed  to  obtain  quality  of  machining  centre  

The  dependency  diagram   shows  us   now  what   issues  must   take   in   account   to  obtain  

good   or   poor   quality   of   machine   tool.   In   one   hand   we   must   attend   the   design  

conditions  of  the  work  piece,  the  characteristics  that  we  want  the  work  piece  to  own,  

like  the  roughness  and  the  tolerances.  In  the  other  hand  there  are  the  errors  we  made  

during   the   process.   These   errors   at   the   end   depend   on   the   equipment,   direction   of  

machining,  position  of  machining,   cycle  of  machining  and  ambient   temperature.   The  

main  aim  of  this  project  is  to  analyze  all  this  factors  and  how  do  they  affect  together  to  

the  quality  of  machine  tool.  We  will   see  how  errors  changes   if  also  changes  ambient  

temperature.   Also   there   is   important   to   analyze   the   cycle   of  machining,   if   different  

spindle   speed   rotations   has   or   no   influence   on   quality   of  machine   tool   or   if   for   the  

same  spindle  speed  rotations  we  have  or  not  errors  depending  on  cycle  position.  As  we  

see   on   figure   3.1.1,   work   cycle   for   this   project,   point   A   and   point   B   have   the   same  

spindle   speed   rotation  but   the   thermal   conditions  and  deformations  may  not  be   the  

Page 19: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

18    

same  there  are  at  different  positions  in  the  cycle.  We  will  also  analyze  this  in  order  to  

check  if  this  difference  has  influence  on  quality  of  machine  tool.  

 

Fig  3.1.1  Point  A  and  Point  B  have  same  spindle  speed  rotation  but  different  position  in  

the  work  cycle.  

 

Also   it   is   important   to   analyze   how   direction   of   machining   has   influence   or   not   on  

quality   of   machine   tool   as   well   as   the   position   of   the   table   and   headstock   of   the  

machine   centre.   Figure   3.1.2,   illustrates   the   three   direction   of   movement   each   one  

with  a  ball  screw.  Every  ball  screws  as  is  fixed  by  one  side  with  the  motor  and  slides  at  

the  other   side.  When  machine   starts  working   the   thermal  deformation  will   affect   to  

these  ball  screws  and  displacement  also  will  depend  if  the  headstock  or  table   is  near  

the  fixed  point  or  not  in  order  to  the  equation:  

∆! = !"∆!  

Where  ∆L  is  the  total  displacement  of  the  ball  screw,  β  is  the  expansion  coefficient,  L  is  

the  length  between  the  nut  and  the  fixed  point  of  the  ball  screw  and  ∆T  is  the  increase  

of  temperature  of  the  ball  screw.  

Point  B  Point  A  

 

Page 20: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

19    

 

Fig  3.1.2  Directions  of  movement  of  headstock  and  table  of  the  machine  centre.  

 

4.  Design  of  Geometric  Models  for  simulation  of  machining  centre  in  FEM  method  

4.1  Geometrical  Model  of  the  Machine  Tool  with  Ball  Screw  

It  is  necessary  to  design  a  simple  model  of  the  machine  tool  in  order  to  analyze  it  in  the  

computer   system.   If   we   simplify   the   machine   tool   we   will   obtain   short   times   of  

calculation.    

Simplify  the  machine  tool  means  to  delete  all  the  parts  that  do  not  have  influence  on  

thermal   behavior   of   the   machine   centre   and   also   delete   screws,   shapes,   pockets,  

chamfers,  draft  angles  etc,  because  there  are  an  unnecessary  number  of  objects  that  

are   not   necessary   to   be   analyzed   to   compute   displacements   or   Von   Mises   stress,  

because  they  have  not  a  direct  influence  on  the  behavior  of  the  machine  tool.    

Figure  4.1.1  shows  the  production  model  of  the  machine  tool  while  Figure  4.1.2  shows  

the  geometrical  model  of  the  machine  tool  with  ball  screw,  the  one  we  are  looking  for.  

Direction  X  

Direction  Z  

Direction  Y  

Position  of  work  piece  

Page 21: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

20    

   

 

                                                   Fig  4.1.1  Production  model     Fig  4.1.2  Geometrical  model  

 

4.1.1  How  to  design  model  

The  first  step  to  obtain  a  geometrical  model  of  the  machine  tool  suitable  to  analyze  it  

on  CATIA  is  to  delete  all  this  aforementioned  issues  of  the  original  machine  tool  model.  

The  best  way  to  do  this   is  to  start  simplifying  part  by  part.  As  we  see  on  Figure  4.1.1  

there  are  many  parts  and  shapes  that  may  be  susceptible  to  delete,  e.g.  the  holes  of  

the  base,  the  servomotors  or  the  different  chamfers.    

Figure  4.1.1.1  illustrates  all  the  parts  that  have  been  deleted  from  the  production  

model  of  machine  tool:

Page 22: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

21    

           

   

 

     

 

                     

 

                                           

     

 

Page 23: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

22    

                             

   

 

                                   

     

                             

     

 

                             

   

 

Page 24: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

23    

                                   

   

 

                                     

 

                   

     

 

                                     

 

Page 25: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

24    

                 

Fig  4.1.1.1  illustrates  all  the  parts  that  have  been  deleted  from  the  production  model  of  machine  tool.  

   

Second   step   is   to   simplifly   all   the  non-­‐deleted  parts   in  order   to  obtain   short   time  of  computation.   In   some   cases   there   is   only   necessary   to   delete   holes,   pockets   and  chamfers,  but   in  other  cases   is  also  necessary  to  change  the  shape  of  the  part  so  we  can  obtain  a  simple  design.  

Figure   4.1.1.2   illustrates   all   the   parts   that   have   been  modified   from   the   production  model:  

 

 

Page 26: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

25    

 

 

 

 

 

Fig  4.1.1.2  illustrates  all  the  parts  that  have  been  simplify  from  the  production  model.

Page 27: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

26    

Once  we  have  simplified  all  the  parts,  we  need  to  fix  them  in  their  correct  position  by  using  the  assembly  constrains.  After  we  have  totally  assembly  the  machine  tool  we  can  analyze   it  with  SimDesigner  and  create  a   thermal  model   for  determine   temperature.  This  model  is  also  the  start  point  for  create  a  second  model  for  determine  deformation  by  CATIA.  

 

4.1.2  Assembly  the  geometrical  model  

To  obtain   the  machine  tool  model   fully  assembled,  CATIA  allow  us   to  use  a  group  of  

different  assembly  constrains.  In  this  case  it  is  enough  to  use  only  two  of  them  to  have  

assembly  the  machine  tool.  These  are  the  contact  constrain  and  the  offset  constrain.  

Contact  Constrain             Offset  Constrain  

 

Fig  4.1.2.1  Offset  Constrain  

 

There  are  some  cases  where  it  is  important  to  make  sure  the  contact  constrain  makes  

contact  between  two  parts  along  all  the  contact  surface  instead  of  making  the  contact  

only  along  a  line.  These  are  the  cases  of  the  screws  with  the  house  bearings  as  we  see  

on  figure  4.1.2.2.  To  obtain  the  correct  contact  between  these  two  parts  it  is  necessary  

that   both   of   them  have   the   same  diameter.   If   not,   there   are   going   to   be   in   contact  

after  using  the  assembly  constrain  but  the  contact  between  them  is  going  to  be  only  

Page 28: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

27    

along  a   line.  From  the  point  of  view  of  the  assembly  model  this  type  of  contact  does  

not  represent  a  problem,  but  it  is  from  the  point  of  view  of  the  temperature  model  and  

deformation  model,  both  of  them  created  from  this  first  assembly  model.  

 

Fig  4.1.2.2  contact  between  the  screw  and  the  house  bearings  

 

 To  make  sure  that  the  assembly  of  the  machine  tool  is  done  correctly  it  is  necessary  to  

explode  the  machine  tool  as  we  see  on  figure  4.1.2.3  and  then  do  an  update  and  check  

that  all  the  parts  are  fixed  in  their  correct  positions.    

             

Fig  4.1.2.3  final  aspect  of  geometrical  model  with  assembly  constrains  in  green.  

Page 29: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

28    

 

4.2  Geometrical  Model  of  the  Machine  Tool  with  Glass  Scale  

This  is  a  modification  of  the  model  with  ball  screw.  To  build  this  model  it  is  necessary  

to  design  new  parts  and   later  assembly   them  to   the  machine  model  with  ball   screw.  

These  new  parts  fixed  together  forms  the  glass  scale.  The  glass  scale  is  a  linear  encoder  

that   measures   the   position   of   linear   axes   without   additional   mechanical   transfer  

elements.   With   this   linear   encoder   we   eliminate   positioning   error   due   to   thermal  

behavior  of  the  ball  screw.    

Optical   encoders   are   normally   used   for   high   accuracy   position   measure   system.   In  

order   to  determine   the  position,   the  optical  encoders  generate   two  electrical   signals  

that  are  combined  using  the  arctangent  algorithm  [2].    

In  the  case  of  this  project  these  linear  encoders  are  made  up  with  an  aluminum  body  

that   has   inside   the   scale,   the   scanning   unit   and   the   guide  way.   The   scanning   unit   is  

connected  with  the  external  mounting  block  as  we  see  on  figure  4.2.1.  This  encoders  

incorporates  measuring   standards  made   of   periodic   structures   know   as   graduations.  

These  graduations  are  applied  to  the  glass  so  the  absolute  position  information  is  read  

from  the  scale  graduation  as  we  see  on  figure  4.2.2  

 

Fig  4.2.1  Simplified  representation  of  the  LS  186  Sealed  linear  encoder  [1]    

 

Page 30: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

29    

 

Fig  4.2.2  Graduations  of  absolute  linear  encoders  and  absolute  code  structure  [1]  

 

This  linear  encoder  operates  on  the  principle  of  photoelectric  scanning.  As  we  see  on  

figure  4.2.3,  if  the  gaps  between  the  scanning  reticle  and  the  measuring  standard  are  

aligned,   light  passes  through.  If  the  lines  of  one  grating  coincide  with  the  gaps  of  the  

other,   no   light   passes   through.   Photocell   converts   these   variations   on   light   intensity  

into  sinusoidal  electrical  signals.  

 

Fig  4.2.3  Scanning  principle  [1]  

Page 31: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

30    

 

There  are  a  number  of  situations,  optical,  mechanical  and  electronic  that  affects  these  

signals  and  produces  an  error  in  the  position  measurement.  This  error  is  important  not  

only   for   metrological   purposes.   In   this   case   the   encoder   is   used   for   the   position  

feedback  and  additionally  the  control  electronics  normally  uses  the  measured  data  in  

order  to  get  the  speed  of   the  movement.  Then  the  positional  error   is   translated   into  

the  speed  calculation  with  the  result  of  possible  modifications  on  the  dynamics  of  the  

machine.  With  the  two  sinusoidal  electrical  signals,  the  relative  displacement  between  

the  scale  and  the  reading  head  can  be  determined  using  the  arctangent  algorithm   in  

this  way  

!!"#$!% =!!!arctan  (!!

!!)    [2]  

 

where  !!"#$!%  is  the  value  of  the  displacement  when  it  is  calculated  by  the  arctangent  

algorithm.  The  two  electrical  signals  can  be  described  in  this  way  

!! = !!!!(2!!!+ ∅!)+ !!    [2]  

!! = !!!! 2! !!+ ∅! + !!    [2]  

 

where  !!  and  !!  are  the  amplitudes,  !!  and  !!  are  the  background  levels,  ∅!  and  ∅!  

are  the  phases  of  the  signals  and  !!  and  !!  are  the  functions  that  describe  the  shape  of  

the  signals  with  min(Fα)  =  -­‐1  and  max(Fα)  =  1.  For  the  ideal  case  the  parameters  of  the  

equation  are  A1=A2=A,  B1=B2=0,  the  phase  between  signals  ∅!  -­‐  ∅!  =  !  /2  and  the  two  

signals   are   sinusoidal   F1   =   F2   =   sin.   With   non   ideal   electrical   signals,   the   relative  

displacement  obtained  using  the  arctangent  algorithm  is  calculated  by  

!""#" ! = !  !"#  ! −  !!"#$!%    [2]  

 

Page 32: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

31    

where  mod  id  the  modulus  after  division  function.  Then  the   linear  term  of  the  series  

expansion  with  respect  to  the  nominal  values  will  produce  an  error  that  is  described  as  

! ! = !"##$#(!)!" !!

∆!    [2]  

 

where   g   is   any   of   the   parameters   of   the   electrical   signals   that  may   change   from   its  

nominal  value  go  to  go  +  ∆g.    

 

Fig  4.2.4  Experimental  SA  and  SB  sinusoidal  signals.  Theoretical  signals  are  also  shown.  

They  perfectly  fit  the  experimental  data.  [2]  

 

Fig  4.2.5.  Experimental  error  in  the  position  measurement  obtained  when  the  

measurement  of  the  optical  encoder  is  compared  with  an  interferometer.  Theoretical  

error  obtained  for  the  arctangent  algorithm  and  for  linear  series  expansion.  [2]    

Page 33: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

32    

 

In  conclusion  we  can  say  that  the  accuracy  of  the  linear  measurement  is  determined  by  

the  quality  of  the  graduation,  the  quality  of  scanning,  quality  of  the  signal  processing  

electronics  and  the  error  from  the  scale  guide  way  over  the  scanning  unit,  whereas  this  

error  con  be  reduced  by  using  the  arctangent  algorithm.      

Deformations   of   the   glass   of   the   linear   encoder   can   be   caused   by   inappropriate  

assembly  or  as  a  consequence  of  modification  by  the  structure  of  the  machine  tool  in  

which  the  encoder  is  incorporated  during  working  conditions.  

Glass  scale  is  normally  fixe  to  the  machine  tool  in  the  middle  and  both  sides  and  more  

if   it   is   precisely.   To  make   sure   that   the   reading   head   is   going   to  measure   with   the  

correct   accuracy   it   is   necessary   to   assembly   the   linear   encoder   with   deviations   less  

than  0,1  mm  respect  the  measured  direction.    

 

Fig  4.2.6  Different  deformations  of  glass  scale  on  linear  encoder.  [3]  

 

There  are  two  most  common  cases  of  deformation  of  the  glass  scale  (figure  4.2.6).  The  

deformation   at   the   left   side   can   be   produced   by   two   causes.   First   one   because   the  

surface   to   be   fixed   the   reading   head   it   is   not   flat   enough.   Second   one   because   of  

changes   on   the   geometry   of   the   machine   tool   caused   by   changes   on   ambient  

temperature   or   forces   on   the  machine.   Figure   4.2.7   shows   the   lost   of   accuracy   of   a  

glass   scale   of   1   meter   of   length.   In   this   graphic   we   can   see   that   for   each   tenth   of  

Page 34: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

33    

elevation  on  the  middle  of  the  glass  scale,  the  linear  encoder  will  have  an  error  of  1,1  

µm.      

 

Fig  4.2.7  Precision  of  a  glass  scale  fixed  on  the  bottom  (with  two  different  widths)  to  

the  machine  tool.  [3]      

 

In   second   case   (figure   4.2.6,   right   side),   this   kind   of   deformation   makes   variations  

between  the  distances  of  the  graduations  of  the  glass  scale  (figure  4.2.2).  This  situation  

is   typical  of  a  glass  scale  only   fixed  to  the  body  of   the  machine  tool  by  right  and   left  

side.  The  weight  of   the  glass  scale  makes   this  deformation   (figure  4.2.8).   In   this  case  

the  deformation  is  up  to  3,2  µm  for  each  tenth  of  deformation.  

 

Fig  4.2.8  Precision  of  a  glass  scale  fixed  by  right  and  left  side  to  the  machine  tool.  [3]  

 

Page 35: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

34    

The   just  mentioned  errors  are  the  ones  that  owns  to  a  glass  scale  but   in  case  of   this  

project  the  errors  we  want  to  recognize  and  remove  are  the  displacements  produced  

by   thermal   deformation   caused   by   power   losses.   In   case   of   model   with   ball   screw  

these  displacements,  ∆L,  are  calculated  as  the  equation    

∆! = !"∆!  

where  β   is  the  thermal  expansion  coefficient  of  the  ball  screw,  ∆T   is  the  temperature  

variation  in  the  ball  screw  and  L  is  calculated  as  

! = ! ∗ !!  

where  n  are  the  number  of  rotations  at  the  motor  and  lD    is  the  lead  of  the  screw.  

For  machine  tool  with  glass  scale  the  displacements,  ∆L,  are  going  to  be  calculated  in  

the  same  form  

∆! = !"∆!  

but   in   this   case   β   is   the   thermal   expansion   coefficient   of   the   glass,   ∆T   is   the  

temperature  variation  of  the  glass  scale  and  L  is  the  length  from  the  fixed  point  of  the  

glass  scale  (middle  point  of  the  glass  case  in  our  case)  and  the  reading  head.  

To  obtain  the  geometrical  model  of  the  machine  tool  with  glass  scale,  it  is  necessary  to  

design   by   CATIA   V5R17   the   linear   encoder.   This   linear   encoder   is   going   to   be  

represented  three  new  parts,  the  aluminum  body  (figure  4.2.9),  the  glass  scale  (figure  

4.2.10)  and  the  reading  head  (figure  4.2.11).  

 

  Fig  4.2.9  Aluminum  body  of  linear  encoder       Fig  4.2.10  Glass  Scale  

Page 36: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

35    

 

Fig.  4.2.11  Reading  head  

 

It   is  necessary  also   to  do   specific   shapes   to   the  body  of   the  machine   tool  where  we  

want  to  fix  the  linear  encoder.  

 

Fig  4.2.12  New  shapes  at  the  base  of  the  table  for  supporting  the  glass  scale.  

 

Attending   to   the   three   directions   of  movement   of   the  machine   tool   (figure   4.2.13),  

there   are   a   total   number   of   seven   possible   combinations,   glass   scale   on   direction   X  

only,  direction  Y  only,  direction  Z  only,  directions  XY,  directions  XZ,  directions  YZ  and  

directions  XYZ.  

Page 37: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

36    

 

Fig  4.2.13  Shows  glass  scale  X,  Y  and  Z  directions  and  new  shapes  to  fix  the  aluminum  

body  and  reading  head.  

 

The  way  to  simulate  a  real  glass  scale  with  these  three  new  parts  is  to  fix  together  the  

reading  head  and  the  glass.  We  do  this  because   in  a  real   linear  encoder,   the  reading  

head  measures  the  position  of  the  moving  part  in  the  glass  and  send  this  information  

another  time  as  feedback  to  the  motors  at  the  screws  to  correct  the  position  with  the  

new   information.   If  we   fix   the   reading   head   to   the   glass  we   are   simulating   the   real  

behavior  of  the  glass  scale,  because  this  fixed  point  makes  a  dependency  between  the  

glass  and  the  reading  head   like  the  feedback  do.  Also   it   is  necessary  to  assembly  the  

aluminum  body  of  the  glass  scale  to  the  body  of  the  machine  centre  in  a  proper  way.  

The  middle  point  of  the  aluminum  body  must  be  fixed  together  with  the  body  of  the  

machine  centre  and  also  the  aluminum  body  must  by  fixed  at  both  side  but  in  a  way  it  

will  be  possible  to  slide  in  that  two  points  because  of  thermal  deformation  as  we  see  

on  figure  4.2.14  

Page 38: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

37    

 

Fig  4.2.14  In  reality  the  reading  head  at  the  glass  scale  send  feedback  to  the  motors.  

This  is  simulated  in  our  model  by  fixing  the  reading  head  to  the  glass.  Also  are  

illustrated  the  three  points  where  the  aluminum  body  is  fixed  to  the  machine  body.    

 

5.    Boundary  conditions  for  finite  elements  thermal  models  

5.1  Analysis  of  Power  Losses  

There  are  different  power   losses  while   the  machine  centre   is  working.  These  are   the  

power  losses  in  the  ball  screws,  in  the  bearings  and  in  the  motor.  Power  losses  induce  

heat  flux  that  produces  thermal  deformation  on  the  machine  centre.  

The  value  of  some  of  the  parameters  needed  to  calculate  power  losses  in  ball  screws  

are  typical  values  from  real  working  conditions.  It  is  not  necessary  in  this  project  to  use  

the   exact   data   for   this   machine   centre   to   calculate   power   losses   because   the  main  

object  of  the  project  is  to  compare  the  behavior  of  the  machine  with  and  without  glass  

scale.   This  means   that,   using   the   same   data   to   both   different   configurations   of   the  

machine  centre,  it  will  be  possible  to  compare  results  in  a  proper  way.    

5.1.1  Power  Losses  in  ball  screw    

This  kind  of  power  losses  are  calculated  according  to  the  SKF  formulas.  First  step  is  to  

calculate  the  theoretical  efficiency  

Reading  head  is  fixed  to  the  glass  

feedback  

Slider  point  Slider  point  

Fixed  point  

Page 39: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

38    

! =1

1+ !×!!!!

 

where  the  constant  K  is  0.018  for  this  type  of  ball  screw  according  to  SKF  catalog,  d0  is  

47mm  and  the  lead  of  the  screw  is  10mm.  With  these  values  η  is  0,992.  Second  step  is  

to  calculate  the  practical  efficiency    

!! = !×0,9  

 

where  ηp  is  0,8298.  Third  step  is  to  calculate  the  input  torque  in  a  steady  state  (Nm)  by  

the  way  

! =!×!!

2000×!×!!  

 

where   F   is   the   maximum   load   of   the   cycle   (N)   and   according   to   normal   values   of  

working  conditions  is  800  N.  With  these  values  T   is  0,1574Nm.  Next  step  is  necessary  

to  calculate  the  power  required  in  steady  state,  P  

! =!×!×!!60000×!!

 

 

where  n  are  the  rpm  and  in  this  case  is  120  rpm  according  to  normal  values  of  working  

conditions.  With  these  values  P   is  19,28W.  With  this  result  it  is  necessary  to  calculate  

the  preloaded  torque  (Nm)  according  to  the  formula  

!!" =!!"×!!1000×!

1!!− 1  

 

Page 40: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

39    

where  Fpr   is   the  preloaded   force  between  a  nut  and   the   shaft   (N)  and   in   this   case   is  

1019N   according   to   normal   values   of   working   conditions.   With   these   values   Tpr   is  

0,6656Nm.  Now  it  is  possible  to  calculate  the  power  preloaded  (W)  using  the  equation  

!!"# =!×!×!!"

30  

 

where  n  and    Tpr    are  the  same  above  so  Ppre  is  8,36W.  It  is  possible  to  define  the  power  

losses,  ∆P,   as   the  difference  between   the  electric  power  of   the  motor,  Pelec,   and   the  

power   that   we   have   on   the   work   piece,   Pwork.   This   definition   is   represented   by   the  

equation  

∆! = !!"!# −  !!"#$  

 

and  also  in  this  way  it  is  possible  to  define  the  Pwork  as    

!!"#$ = !!"!#$×!!  

 

 so  power  losses  are  

∆! =!!"#$!!

− !!"#$ = !!"#$1!!− 1  

 

At  this  point  it  is  necessary  to  define  what  Pwork  means.  It  is  possible  to  define  it  like  the  

sum  of  power  preloaded,  the  power  required  in  steady  state  and  the  power  of  inertia.  

The  power  of   inertia   is  caused  by  the  masses  of   the  work  piece  and  table  but   in  this  

case  power  of  inertia  is  going  to  be  considered  as  cero,  so  Pwork  can  be  calculated  using  

the  equation  

!!"#$ = !!"# + !  

 

Page 41: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

40    

Considering  last  equation  power  losses  can  finally  be  define  by  the  equation    

∆! = !!"# + !1!!− 1  

 

Attending   to   these   equations   it   is   possible   to   calculate   power   losses   for   different  

preloaded  force  between  nut  and  shaft,  Fpr  ,  as  it  is  illustrated  un  the  graphic  

 

Fig  5.1.1.1  variation  of  power  losses  with  rpm  between  nut  and  shaft  

 

To   introduce  these  power   losses  to  the  model   it   is  necessary  to  put  them  in  the  way  

W/m2,  so  they  can  be  analyzed  by  SimDesigner  as  heat  flux.  To  do  that  it  is  necessary  

to  know   the   surface  where   the  power   losses  are,   so   the  heat   flux  will  be   the  power  

losses  divided  by  this  area.  

0  1  2  3  4  5  6  7  8  

700   1019   1500   1800  

power  losses  [W

]  

preload  [N]    

power  losses  in  ball  screw  

Page 42: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

41    

 

Fig  5.1.1.2  Illustrates  the  power  losses  in  the  ball  screw  X.  

 

5.1.2  Power  losses  in  motors  

According   to   Bernd   Bossmanns   research,   “A   Power   flow   model   for   high   speed  

motorized  spindle”  power  losses  in  motors  can  be  calculated  by  the  equations  

!!"#"$ = !!"#"$  !"#×!!"#$  !"##$×!!"#$  !"#$  

 

where   ηmotor   max   can   be   calculated   from   engineering   handbook   Avallone   and  

Baumeister   and  ηspec   speed   and  ηspec   load   are   dimensionless   values   related   to   efficiency  

related  to  loads  and  speeds.  The  ηspec  speed  can  be  calculated  from  experimental  data  as  

!!"#$  !"##$ = 0,92+ !!"#"$  !"#×0,80  

 

and  the  ηspec  load  can  be  interpolated  from  the  following  table  

Page 43: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

42    

 

 

These   two   dimensionless   values   are   function   of   two   dimensionless   speed   and   load  

variables  respectively  

!!"#"$    !"# =!!"#"$

!!"#"$  !"#                                          !"#$!"#"$  !"# =

!  !"#"$!!"#"$  !"#

 

 

Once  the  ηmotor   is  calculated   it   is  possible  to  calculate  the  power   losses   in  the  motor,  

Qmotor  (W),  by  the  equation  

!!"#"$ = 2!×!!"#"$×!!"#"$×1− !!"#"$!!"#"$

 

 

In  the  case  of  this  project,  calculate  of  power  losses  in  the  motors   it   is  not  necessary  

because  the  Company  provide  us  with  data  from  the  ACE  Series  VMD  450  (Machining  

centre   of   this   project),   where   the   total   values   represents   the   power   losses   in   the  

motor.  

 

 

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 rpms tator 127 246 350 572 776 1090 1423 1796 2250 2701 Wrotor 1 3 9 7 8 14 27 32 33 35 Wtotal 128 249 359 579 784 1104 1450 1828 2283 2736 W

Power  losses  distribution  for  motor  idle  runDelivered  by  Factory

Page 44: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

43    

 

Fig  5.1.2.1  motor  power  losses  as  a  function  of  spindle  speed  

 

It   is   necessary   to   convert   these   power   losses   from  W   to  W/m2   so   that   they   can   be  

introduced  to  the  model  to  analyze  it  with  SimDesigner.  The  heat  flux  will  be  each  of  

the  power  losses  divided  by  the  area  where  each  of  the  power  losses  has  influence.    

 

Fig  5.1.2.2  Values  of  power  losses  at  the  motor  expressed  in  [w]  and  [w/m2]  for  

different  spindle  speed.  

 

5.1.3  Power  losses  in  bearings  

More  over  there  are  another  additional  heat  sources  in  mechanism  elements  like  ball  

bearings   that  we  must   take   in   accounts.   Spindle  of   this  machine   centre  has   five  ball  

Power losses in 20000rpm spindleload 0 kW

0

500

1000

1500

2000

2500

3000

0 5000 10000 15000 20000speed rotational [rpm]

pow

er lo

sses

[W]

statorrotortotal

rpm Power  Losses  [W] Heat  Flux  [W/m2]2000 128 5254000 249 10206000 359 14718000 579 237310000 784 321312000 1104 452514000 1450 594316000 1828 749218000 2283 935720000 2736 11213

Page 45: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

44    

bearings,   four   of   them  at   the   front   and   the   last   one   at   the   rear   side   (figure   5.1.3.1)

 

Fig  5.1.3.1  headstock  section  of  the  machine  centre  with  the  components  that  

generates  heat  during  the  working  conditions  and  also  the  cooling  system.  

 

The  factory  also  provides  data  of  power  losses  at  the  bearings  for  different  loads:    

 

Fig  5.1.3.2  Power  losses  at  the  bearings  as  function  of  spindle  speed  for  load  0KW.  

It  is  also  necessary  again  to  divide  these  values  of  power  losses  by  the  area  of  each  of  

the   bearings   in   the   way   to   have   power   losses   expressed   as   W/m2   so   they   can   be  

introduced  to  the  SimDesigner  model.    

0

10

20

30

40

50

60

0 5000 10000 15000 20000

Pow

er lo

sses

[W]

Spindle speed [rpm]

Power losses in bearings as a function of spindle speed for load 0kW clearance W1= +10um, W2= -10um

bearing 1

bearing 2

bearing 3

bearing 4

bearing rear

Page 46: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

45    

 

Fig  5.1.3.3  Values  for  power  losses  at  bearings  expressed  in  [W]  and  [W/m2]  for  

different  spindle  speed  and  load  0KW.  

 

5.2  Analysis  of  forced  and  natural  convection  

In  terms  of  surface  convection  it  is  necessary  to  define  two  kind  of  surface.  First  one  is  

the  surface  exposed  to  natural  convection.  These  surfaces  are  all  ones  of  the  machine  

centre   in   contact   with   ambient,   called   natural   convection.   Second   kind   is   the   one  

exposed  to  cooling  systems  or  forced  convection.  In  case  of  this  project,  the  machine  

centre  has  a  cooling  system  for  the  motor  and  bearings  that  affect  to  the  surface  of  the  

headstock.  These  two  different  kinds  of  convection  translate  in  two  different  values  of  

α  coefficient  [W/Km2].  

 

Fig  5.2.1  The  sketch  represents  the  pockets  for  the  oil  of  the  cooling  system  for  motor  

and  bearings  (see  figure  5.1.3.1)  

 

It  is  necessary  to  calculate  α  coefficient  in  case  of  forced  convection.  As  it  is  illustrated  

on  figure  5.2.1,  the  sketch  represents  the  ways  for  the  cooling  liquid  around  the  stator  

and  the  bearings.  The  value  of  α  coefficient  it  is  determinate  by  Reynolds  number  and  

load  0KWpower  losses  [w] heat  flux  [W/m2]

rpm bearing  1 bearing  2 bearing  3 bearing  4 rear  bearing bearing  1 bearing  2 bearing  3 bearing  4 rear  bearing2000 7,6 7,6 7,6 7,6 2,8 190 190 190 190 1753000 12 12 12 12 4,6 300 300 300 300 287,58000 19 19 18 19 14,8 475 475 450 475 92512000 30,1 31 28 30,1 22,6 752,5 775 700 752,5 1412,520000 54 55,6 48,6 53,6 35,9 1350 1390 1215 1340 2243,75

Page 47: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

46    

Re*Pr*dhb/l  where  Pr  is  the  Prandtl  number.  According  to  this  there  are  three  possible  

α  coefficient  

§ If  Re*Pr*dhb/l  <  4,5  and    Re  <  Recrit  (laminar  flow)  then:  

 

! = !×0,5×!"×!"×!ℎ!/!×!"#$%"/!ℎ!  

 

§ If  Re*Pr*dhb/l    >  4,5  and  Re  <  Recrit  (laminar  flow)  then:  

 

! = !×1,86× !"×!"×!ℎ!/! !,!!×!"#$%"/!ℎ!  

 

§ If  Re  >  Recrit  (turbulence  flow)  then:  

 

! = !×0,023×!"!,!×!"!,!×!"#$%"/!ℎ!  

 

where  dhb  is  hydraulic  diameter  

!ℎ! = !×ℎ× !!!!

             

the  constant  k  is  calculated  by  the  way  

! = 1+ 1,77×2×!ℎ!!  

There   is   data   of   α   coefficient   for   stator,   rear   and   front   bearings.   As   it   is   illustrated  

forward,  the  value  of  α  coefficient  depend  on  the  quantity  of  cooling  liquid,  in  this  case  

oil.  The  values  of  α  coefficient  used  for  compute  with  SimDesigner  there  are  the  ones  

for  20  l/min  of  oil  quantity.      

For  surface  without  forced  convection,  the  ones  in  contact  with  ambient,  α  coefficient  

has   always   the   same   value,   10  W/Km2,   that   it   is   a   typical   value   from   real   working  

conditions.    

 

Page 48: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

47    

 

Fig  5.2.2  Variation  of  α  coefficient  and  power  losses  with  cooling  liquid  in  stator.  

 

 

Fig  5.2.3.  Variation  of  α  coefficient  and  power  losses  with  cooling  liquid  in  front  

bearings.  

 

 

Fig  5.2.4  Variation  of  α  coefficient  and  power  losses  with  cooling  liquid  in  rear  bearing.  

0

200

400

600

5 10 15 20 25 30 35 40

alfa

[W/m

K]

pow

er lo

sses

[W]

oil quantity [l/min]

stator cooller - oil cooling Convection coef.

0

100

200

300

400

500

5 10 15 20 25 30

alfa

[W/m

K]

pow

er lo

sses

[W]

oil quantity [l/min]

front bearings cooler

Convection coef.

0

100

200

300

400

500

600

700

5 10 15 20 25 30

alfa

[W/m

K]

pow

er lo

sses

[W]

oil quantity [l/min]

rear bearings cooler

alfa

Page 49: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

48    

 

5.3  Machine  Tool  Model  for  analyze  temperature  with  SimDesigner  R2  

The   start   point   of   this  model   is   the   Geometrical  Model   of  Machine   Tool   with   Glass  

Scale.  The  aim  of  this  part  of  the  project   is   to  obtain  the  temperature  distribution  of  

heat  flows  along  the  machine  tool  produced  by  the  power   losses,  natural  and  forced  

convection.  The  election  of  the  geometrical  model  with  glass  scale  against  the  model  

with  ball  screw  it  is  because  it  is  necessary  to  determine  data  of  this  distribution  of  all  

the  parts  of  the  machine  centre.  Geometrical  model  of  machine  tool  with  glass  scale  is  

the   same  model   than   the   ones   with   ball   screw   but   with   extra   parts,   the   ones   that  

represents  the  glass  scale.  Data  for  temperature  distribution  for  geometrical  model  of  

machine   tool  with   glass   scale   it  would  be   suitable   also   for  model  with   ball   screw  as  

long  as  both  model  have  their  moving  parts  in  the  same  position.  

This  analysis  was  do  it  with  SimDesigner  R2  compatible  with  CATIA  V5R17.  

 

Fig  5.3.1  Temperature  distribution  computed  by  SimDesigner  R2  along  the  machine  

tool  produce  by  power  losses  and  natural  and  forced  convection.  

Page 50: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

49    

 

The   process   of   designing   this   model   starts   by   defining   thermal   properties   of   all  

materials   of   the   machine   centre.   It   is   necessary   to   define   up   to   three   properties,  

thermal  conductivity,  specific  heat  and  emissivity.   In  case  of  thermal  conductivity  the  

value  for  all  materials  of  the  machine  centre  is  going  to  be  40  W/mK  that  it  is  a  normal  

value  from  real  experimental  data.  In  case  of  specific  heat  also  there  is  going  to  be  one  

value   for   all   materials,   0,5   KJ/kgK,   and   it   is   also   a   normal   value   for   real   working  

conditions.  In  case  of  the  emissivity  all  materials  are  going  to  have  also  the  same  value,  

cero.  

 

Fig  5.3.2  Thermal  properties  of  materials:  Thermal  conductivity,  Specific  heat  and  

emissivity.  

 

Next   step   is   to  define   the  boundary   conditions.   In   case  of   this   project   the  boundary  

conditions   are   the   initial   temperature .   Initial   temperature   is   a   parameter   that  

affects  the  reaction  of  the  machine  tool  against  the  power  losses,  so  it  is  an  important  

parameter  and  also   it   is  a  parameter  as  we  can  see  along   this  project   susceptible   to  

select   different   values   to   study   different   behaviors.   In   first   case   value   for   initial  

temperature   is   normal   ambient   temperature,   293  K   for   all   the  parts   of   the  machine  

centre.  

Page 51: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

50    

 

Fig  5.3.3  Value  for  initial  temperature  for  all  parts  of  machine  tool.  In  first  case  this  

value  is  ambient  temperature.  This  initial  temperature  is  the  boundary  conditions  of  

thermal  model.  

 

After  defining  the  boundary  conditions   it   is  necessary   to  define  thermal   loads.  These  

are  going  to  be  the  all   the  heat   flows  and  different   type  of  convections   the  machine  

tool  is  affected.  In  case  of  this  machine  tool  as  it  is  define  on  this  project,  is  going  to  be  

affected  by  power  losses,  forced  and  natural  convection.  Power  losses  are  heat  flows  

and  CATIA  V5R17  gives  us  the  possibility  to  introduce  heat  flows  by  two  different  ways.  

In  our  case  the  proper  way  to  do  this  is  selecting  Heat  Flux    ,  because  there  are  in  

the  form  [W/m2].  This  is  the  correct  way  to  introduce  power  losses  [W]  to  the  model,  if  

we  know  the  area  [m2]  where  the  power  losses  are,  finally  we  will  know  power  losses  

as  heat  flux.  As  we  seen  on  figure  5.3.4  read  arrows  indicates  power  losses  as  heat  flux  

through  the  selected  surface.  For  power  losses  in  the  ball  screw  the  selected  area  for  

the  heat  flux  are  the  spindles,  because  the  ball  screw  moves  along  the  spindle  so  the  

power  losses  affect  along  this  surface.  In  this  machine  tool  there  are  going  to  be  power  

losses   in   the   three   different   ball   screws   and   also   power   losses   in   the   motor.   It   is  

important   to  define   as  much  heat   flux   as  power   losses   are   in   the  way   to  be  able   to  

select  different  values  of  heat  flux  for  each  different  power  losses.    

Page 52: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

51    

 

Fig  5.3.4  Indicates  heat  flux  by  red  arrows  in  the  ball  screw  X.  

 

There  are  also,  apart  from  power   losses   in  the  three  ball  screws,  power   losses   in  the  

motor.  These  power  losses  are  the  ones  at  the  stator  and  the  ones  at  the  bearings.    In  

case   of   the   motor   of   this   machine   tool   we   have   five   different   bearings,   four   front  

bearings   and   one   rear   bearing.   This   makes   a   total   of   six   different   heat   fluxes   to  

represent   the  power   losses   in   the  motor,   the  ones  at   the  stator  and  the  ones  at   the  

five   different   bearings.   To   introduce   these   power   losses   the   area   selected   is   the  

interior  of  the  heat  stock  as  we  see  on  figure  5.3.5  for  all  the  six  different  heat  fluxes  

that  represents  power  losses  in  the  motor  and  bearings.  

Page 53: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

52    

 

Fig  5.3.5  Power  losses  in  the  motor  represented  by  red  arrows  as  heat  flux  through  the  

heat  stock.  

 

Once  all   of   the  different  power   losses   are   introduced  as  different  heat   fluxes   to  our  

model  it  is  necessary  to  define  the  different  convections   the  model  is  affected  by.  

This   model   has   two   different   types   on   convection,   natural   and   forced.   All   natural  

convections  are  marked  with  blue  cones  along  the  selected  surface  as  we  can  see  on  

figure  5.3.5.  There  is  natural  convection  in  all  the  surfaces  in  contact  with  ambient  and  

it   is   not   necessary   to   define   as   much   convection   loads   as   surface   in   contact   with  

ambient  for  natural  convection  because  for  all  of  them  the  properties  are  the  same,  10  

W/Km2  for  convection  film  coefficient  and  293  K  for  reference  sink  temperature.  The  

values   for   these   convection   properties   are   normal   values   from   typical   working  

conditions.  

Page 54: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

53    

 

Fig  5.3.6  Typical  values  from  working  conditions  for  natural  convection  properties.    

 

There   is   forced   convection   in   the   motor,   particularly   in   the   stator   and   in   the   five  

different   bearings.   This   means   that   we   need   to   define   up   to   six   different   forced  

convections.  As  we  did  with  power  losses  in  the  motor,  the  selected  area  to  introduce  

these  six  convections  is  the  interior  of  the  head  stock.    

 

Fig  5.3.7  Shows  forced  convection  in  the  stator.  It  is  represented  by  the  blue  cones  inside  the  head  stock.    

Page 55: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

54    

 

To   make   sure   that   the   machine   tool   for   analyze   temperature   with   SimDesigner   is  

proper  done,   this  means,   that   the  different  heats   flows  perfect  with  no   interruption  

along  all  the  surface  of  the  machine  tool  it  is  necessary  in  some  parts  of  the  machine  

tool   to   select   the  proper  mesh   in   order   to   obtain   this   correct   flow  of   the  heat.   This  

means  that  in  some  parts  of  the  machine  tool  because  of  the  difference  between  the  

size  of  the  mesh  of  two  parts   in  contact,   if  this  difference  is  too  big,  could  happened  

that  the  heat  do  not  flows  in  the  correct  way  along  the  two  surface  in  contact.  Better  

solution  to  solve  this  problem  is  to  define  local  mesh  in  one  of  the  surface  in  contact  to  

make  more  similar  to  the  other  surface  so  in  this  way  there  will  be  no  problems  of  bad  

connection  between  nodes.  To  do   this   it   is  necessary   to  add  to   the  mess  of   the  part  

where  we  want  to  change  the  mesh  at  the  surface,  a  local  size  and  local  sag  and  define  

the  supported  surface  and  the  values  for  local  mesh  sag  and  local  mesh  size  as  we  see  

on   figure  5.3.8.  The  advantage  of   changing  only   the  mesh  of   the  surface   instead   the  

mesh  of  all  one  part  it  is  that  compute  time  is  going  to  be  shorter.    

 

Fig  5.3.8.  Definition  of  local  mesh  

 

Page 56: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

55    

 

Fig  5.3.9  Shows  local  mesh  at  the  base  of  the  machine  tool  next  to  the  house  bearing  

and  also  local  mesh  at  the  house  bearing  next  to  the  end  of  spindle  in  order  to  have  

good  contact  between  nodes.  

 

To  prove  that   the  contact  between   local  mesh  as  we  see  on   figure  5.3.9   is  correct   is  

possible  to  choose  a  value  for,  in  this  case  heat  flux  at  the  ball  screw  X,  big  enough  to  

see  if  the  heat  flows  in  a  correct  way  from  one  part  to  the  other.  This  is  illustrated  on  

figure  5.3.10,  as  we  can  see  the  temperature  values  is  not  important  in  this  case  but  it  

is  the  fact  that  there  is  a  flow  of  heat  from  the  spindle  to  the  house  bearing  and  from  

this   to   the   base   of   the   machine   tool.   That   means   that   there   is   a   correct   contact  

between  parts  because  of  the  new  local  mesh.  

 

Correct  contact  between  different  mesh  

Page 57: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

56    

 

Fig  5.3.10.  Shows  how  heat  flows  in  a  correct  way  from  the  spindle  to  the  house  

bearing  and  from  this  one  to  the  base  of  the  machine  tool.  

 

Once  the  model  is  ready  is  possible  to  compute    and  generate  image    

to  obtain  the  temperature  field  fringe  and  after  it  will  be  possible  to  export  data  as  a  

text   file  to  use   it  as  temperature  field  and  analyze  deformation  of  machine  tool  with  

CATIA  V5R17.  

Page 58: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

57    

                                           

Fig  5.3.11  Shows  how  to  select  temperature  field  fringe  and  save  it  as  data  on  to  a  text  

file  to  analyze  it  later  with  CATIA  V5R17.  

 

 

Fig  5.3.12  Machine  tool  model  with  glass  scale  temperature  distribution  at  positions  BEH  (left)  and  CFG  (right)  with  initial  temperature  293K.  

 

 

 

 

 

Page 59: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

58    

6.  Machine  Tool  Model  for  analyze  deformation  with  CATIA  V5R17  

6.1  Boundary  conditions  for  finite  elements  deformation  models  

The  aim  of  this  part  of  the  project  is  to  obtain  two  different  models,  one  for  ball  screw  

configuration  and  other  for  glass  scale,  ready  to  analyze  them  with  CATIA  V5R17  and  

obtain  the  deformation  produced  by  power  losses  and  natural  and  forced  convection  

on   the  machine   centre.   The   starting   point   is   going   to   be   the   geometrical   model   of  

machine  tool,  one  for  each  configuration.  Basically  we  need  to  do  three  steps  to  obtain  

each   model.   First   step   is   to   add   to   every   assembly   constrain   a   proper   connection  

property   so   the   relative   move   between   the   parts   in   contact   will   be   the   one   in   the  

correct  direction.  Second  step  is  to  load  the  data  of  temperature  distribution  obtained  

by  SimDesigner  R2  in  a  proper  way.  This  data  represents  the  temperature  distribution  

of  heat  flow  caused  by  power  losses  and  natural  and  forced  convection.  Third  and  final  

step  is  to  create  as  much  as  local  sensors  needed  to  measure  the  deformation  of  the  

machine  centre  in  a  correct  way  so  we  can  compare  results  for  both  model  in  the  way  

to  decide  which  model  has  more  accuracy  for  which  working  condition.  

 

Fig  1.  Shows  deformation  computed  by  CATIA  VR517  produced  by  power  losses  and  

forced  and  natural  convection  of  the  machine  tool.  

Page 60: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

59    

6.1.1  Define  connection  property  to  assembly  constrains  

The  process  of  designing  this  model  begins  with   the  necessity  of  using  one  restraint,  

the  clamp ,  and  it  is  necessary  to  add  it  to  the  base  on  the  machine  tool  in  order  to  

simulate  that  it  is  fixed  to  the  ground  as  it  is  illustrates  in  figure  6.1.1.1  

 

Fig  6.1.1.1  Illustrates  the  clamp  at  the  base  of  the  machine  tool.  The  clamp  fixes  the  

machine  tool  to  the  ground.  

 

To   add  properties   to   the   assembly   constraints   in   case  of   this  machine   tool   it   is   only  

necessary   to  use   two   types  of   connection  property.  These  connection  properties  are  

the   slider   connection  property    and   the   fastened  connection  property .  With  

the   first   one,   slider   connection   property,   the   bodies   in   contact   by   the   assembly  

constrain,  will  move  one  through  the  other  during  the  deformation  but  always  keeping  

the   contact   between   them.   As   we   will   see   later   it   will   be   important   to   define   the  

direction   where   we   want   to   move   the   parts   when   we   use   the   slider   connection  

property.   With   the   fastened   connection   property   the   bodies   in   contact   by   the  

assembly   constrain   will   keep   the   same   relative   position   between   them   during   the  

deformation.  There   is  only  one  way  of  thinking  at  the  time  to  choose  between  slider  

and  fastened  connection  property.  This  means  that  all  part  that  is  fixed  to  another  part  

by  right  and  left  side   it   is  going  to  deform  by  the  two  sides,  so   in  one  side  should  be  

fixed  to  the  other  body  as  fastened  connection  property  and  on  the  other  side  should  

be  fixed  as  slider  connection  property  in  order  to  avoid  that  the  part  breaks  during  the  

deformation  as  we  can  see  on  figure  6.1.1.2  

Page 61: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

60    

 

Fig  6.1.1.2  The  house  bearing  is  fixed  to  the  base  of  the  machine  tool  on  the  right  side  

by  fastened  connection  and  on  the  left  side  by  slider  connection  property  in  order  to  

avoid  that  the  part  breaks  during  the  deformation  of  machine  tool.  

 

This  approach  must  be  for  all  the  parts  in  the  same  situation.  In  case  of  screws  the  way  

of  thinking   is  the  same  but  the  slider  connection  property  must  be  at  the  side  of  the  

bearing   and   it   must   be   also   fastened   at   the   side   of   the  motor.   This   is   because   the  

fastened  connection  property  simulates  that  the  motor  moves  the  screw  and  only  the  

screw  can  deforms  in  the  side  of  the  bearing.  

 

Fig  6.1.1.3  Illustrates  how  the  screw  is  fixed  as  fastened  on  the  right  side  where  it  is  the  

motor  (not  illustrated)  and  also  fixed  as  slider  connection  on  the  left  side  where  it  is  

the  house  bearing    

fixed  moves  

fixed  

moves  

Page 62: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

61    

In  case  of  the  blocks,  first  it  is  necessary  to  define  the  behavior  against  the  rail.  The  

block  must  slide  by  the  rail  in  all  the  surfaces  where  there  is  contact  between  the  two  

parts  as  we  see  on  figure  6.1.1.4  

 

Fig  6.1.1.4  Shows  the  relative  move  of  a  block  against  the  rail.  It  must  be  slider  in  all  

surface  where  there  is  contact  between  block  and  rail.  

 

Second  it  is  necessary  to  define  the  behavior  of  the  blocks  against  the  table,  headstock  

and  body  of  the  machine  tool.  In  all  cases  the  approach  is  the  same  than  in  the  other  

cases.  Blocks  of  one   side  must  be   fixed   to   the  part   as   fastened  and  blocks   from   the  

other   side  must  be   fixed  as   slider   connection  property.   It   is   important  as  we   said   to  

define  the  direction  where  we  want  to  make  the  blocks  slides  through.  In  case  of  the  

blocks  of  the  table  the  ones  at  the  right  side  are  fixed  as  fastened  connection  property  

to   the   table  as  we  can  see  on   figure  6.1.1.5  The  ones  at   the   left   side  must  slide   in  Y  

direction.  To  force  the  blocks  from  the  left  side  to  move  in  the  correct  direction  during  

the  deformation  it  was  necessary  to  design  a  special  shape  to  the  bottom  side  of  the  

table  as  we  can  see  on   figure  6.1.1.6.  To  make   this  apart   from  the  special   shape  we  

need  to  add  slider  connection  property  to  the  assembly  constrain  between  the  left  side  

blocks  and  the  new  shape.  

moves  

moves  

Page 63: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

62    

 

Fig  6.1.1.5  Shows  the  blocks  that  must  be  fixed  in  their  position  and  the  ones  that  must  

slide  through  the  correct  direction  in  order  to  avoid  that  the  guide  breaks  during  the  

deformation.  

 

 

Fig  6.1.1.6  Shows  how  the  blocks  at  the  left  side  of  the  table  slide  through  the  new  

shape  in  the  correct  direction.  

 

 

fixed  

fixed  

moves  

moves  

moves  

moves  

Page 64: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

63    

These   special   shapes   are   also   necessary   on   the   headstock   and   on   the   other  moving  

part.  

 

Fig  6.1.1.7  Shows  the  direction  of  movement  of  the  blocks  through  the  new  shapes  at  

the  backside  of  the  headstock.  

 

 

Fig  6.1.1.8  Shows  the  direction  of  movement  of  the  blocks  through  the  new  shapes  at  

the  backside  of  this  moving  part.  

moves  

moves  

moves  moves  

fixed  

fixed  

fixed   fixed  

Page 65: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

64    

Once  all  the  assembly  constrains  have  their  own  connection  property  it  is  important  at  

this  point   to  make  a  difference  between   the   configuration  of  model  with  glass   scale  

and  the  one  without  glass  scale  (ball  screw  model).  For  model  of  machine  tool  with  ball  

screw  the  property  associated  to  the  assembly  constrain  between  the  ball  screw  and  

the  spindle  itself  must  be  fastened  connection  property  so  that  the  ball  screw  moves  

together   with   the   spindle   during   the   deformation   as   we   see   on   figure   6.1.1.9.   This  

approach  must   be   the   same   for   the   rest   of   the   ball   screws   and   spindles   in   case   of  

machine  tool  with  ball  screw  configuration.  

 

Fig  6.1.1.9  Illustrates  the  fastened  connection  property  for  the  assembly  constrain  

between  the  ball  screw  and  the  spindle  in  the  machine  tool  model  with  ball  screw.  

 

In  case  of  model  of  machine  tool  with  glass  scale,  the  connection  property  associated  

to   the   assembly   constrain   between   the   ball   screw   and   the   spindle   must   be   slider  

connection,  but  at  the  same  time,  the  connection  property  of  the  assembly  constrain  

between  the  reading  head  and  the  glass  scale  must  be  fastened  connection,  as  we  see  

on  figure  6.1.1.10.  Doing  this,  we  are  simulating  the  effect  that  the  reading  head  has  

on  the  machine  tool.  This  means  that  if  we  fastened  the  reading  head  to  the  glass  scale  

itself,  we  are  simulating  the  feedback  that  the  reading  head  sends  to  the  motors  to  act  

through  the  position  of  the  ball  screw.  This  approach  must  be  the  same  for  the  rest  of  

ball  screws  and  reading  heads  in  case  of  machine  tool  with  glass  scale  model.  

fixed  

Page 66: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

65    

 

Fig  6.1.1.10  Shows  the  reading  head  fastened  to  the  glass  scale  while  the  ball  screw  is  

slider  through  the  spindle  for  the  machine  tool  with  glass  scale  model.  

 

Continue  with  model  of  machine  tool  with  glass  scale  it  is  necessary  to  define  how  they  

are  the  connection  properties  of  the  assembly  constrains  of  the  glass  scale.  For  all  of  

the   tree   glass   scale   that   the   machine   tool   is   up   to   be   equipped,   the   connection  

properties  for  the  assembly  constrains  are  always  the  same.  The  glass  scale  it  is  formed  

by  two  parts,   the  aluminum  body  and  the  glass   itself.  The  aluminum  body   is  the  one  

fixed  to  the  body  of  the  machine  tool.  This  part  must  be  fastened  in  the  middle  point  

and  slider  at  left  and  right  side.  The  glass  must  be  fixed,  normally  in  the  middle  point,  

to   the   aluminum   body   by   fastened   connection   property   as   we   can   see   on   figure  

6.1.1.11  

moves  

fixed  

Page 67: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

66    

 

Fig  6.1.1.11  Shows  how  connection  properties  of  assembly  constrain  of  glass  scale  

must  be.  

6.1.2  Load  data  of  temperature  distribution  obtained  by  SimDesigner  R2  

At   this   point,   where   all   the   assembly   constrains   have   their   own   proper   connection  

property   for   both   models,   one   with   ball   screw   and   other   with   glass   scale,   it   is  

necessary   to   load   the   data   with   temperature   distribution   that   we   obtain   from   the  

computing  of  SimDesigner  R2.    To  do  this,  first  is  necessary  to  modify  this  data  in  the  

correct  way  to  make  it  compatible  for  CATIA  V5R17.  As  we  see  on  figure  6.1.2.1,  it  will  

be   necessary   to   delete   the   marked   lines   to   make   it   compatible   with   CATIA   V5R17  

before  load  it.  

 

Fig  6.1.2.1  Shows  data  with  temperature  distribution  computed  by  SimDesigner  R2.  It  

is  necessary  to  delete  the  marked  parts  to  make  it  compatible  with  CATIA  V5R17.  

moves  

moves  

fixed  

Page 68: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

67    

Once  this  data  is  ready  we  can  load  it  to  our  model  for  analyze  deformation  with  CATIA  

V5R17  as  temperature   field .    As  we  can  see  on  figure  6.1.2.2  the  correct  way  to  

load   this   data   is   by   selecting   1   Kdeg   the   temperature.   Doing   this   CATIA   V5R17  

multiplies   the   values   from   the   data  with   the   value   on   Temperature.   If   we   select   as  

Temperature   1   kdeg   we   will   have   the   same   values   from   the   data   on   our   model   at  

CATIA  V5R17.  

 

Fig  6.1.2.2  Shows  how  to  load  the  data  from  SimDesigner  R2  to  CATIA  V5R17  in  the  

correct  way.  

 

6.1.3  Define  local  sensors  to  measure  deformations    

At   this   point   it   is   now  possible   to   add   local   sensors   to   both  models   to  measure   the  

deformation  produce  by  the  power  losses  and  natural  and  forced  convection.  It  is  only  

necessary   to   add   the   sensor  we   think   they  will   give   us   useful   data.   The   sensors   are  

going  to  be  in  the  same  points  for  both  models,  with  and  without  glass  scale,  in  order  

to  compare  results.  There  are  going  to  be  three  sensors  per  selected  point  so  we  can  

measure  the  displacement  on  the  three  directions.  The  selected  points  are  going  to  be  

the   end   of   spindles,   one   corner   of   the   table   and   also   the  middle   point   of   the   head  

stock.  This  makes  a  total  of  15  sensors  per  model.  In  case  of  the  sensors  of  the  middle  

point   of   the   headstock   it   is   necessary   to   design   a   new   shape   at   the   end   of   the  

headstock  so  we  can  select  the  middle  point.  Figure  6.1.3.1  illustrates  the  new  shape  

at  the  end  of  the  head  stock  and  the  values  of  the  sensors.  It  was  chosen  this  point  to  

Page 69: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

68    

simulate   the  measure   at   the   tools   so  we   can   obtain   their   displacements   during   the  

deformation.  

 

Fig  6.1.3.1  Shows  the  new  shape  at  the  end  of  the  headstock  and  the  value  of  sensors  

at  the  middle  point.  

 

There   are   two   kind   of   sensors   that  measures   displacement   as  we   can   see   on   figure  

6.1.3.2.  These  are  the  Displacement  Magnitude  and  the  Displacement  Vector.  

 

Fig  6.1.3.2  Illustrates  the  two  types  of  sensor  that  CATIA  V5R17  allows  to  choose  to  

measure  displacement.  

 

Page 70: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

69    

To   choose  between   these   two  kinds  of   sensors   in  our   case  we  want   to  measure   the  

displacement   in   the   three   directions   of   each   point.   As  we   see   on   figure   6.1.3.3,   the  

displacement  could  be  different  (black  arrows)  at  the  time  that  the  magnitude  vector  

(red   arrows)   could   be   the   same.   Attending   to   this,   in   our   case   we   must   choose  

displacement  vectors.  

 

Fig  6.1.3.3  Shows  the  difference  between  displacement  and  magnitude  vectors.  In  our  

case  we  need  to  choose  sensors  as  Displacement  vector  in  order  to  measure  the  

displacement  of  the  point  in  the  tree  axis.  

Now   it   is   possible   to   compute,   ,   and   generate   image,   ,   of   the  

deformed  mesh  to  have  final  model  for  analyze  deformation  with  CATIA  V5R17  as  it  is  

illustrated  on  figure  6.1.3.4.  

 

Fig  6.1.3.4  Shows  deformed  mesh  of  geometrical  model  with  glass  scale.  The  values  

marked  as  red  indicates  position  and  measure  by  the  local  displacement  sensors.    

Page 71: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

70    

 

7.  Design  plan  of  computing  

Before   starts   work   cycle   there   are   no   power   losses   in   bearings/motor   and   spindle  

speed   rotation   equals   to   zero   so   there   will   be   no   thermal   displacements.   Working  

conditions  starts  with  initial  temperature  equals  to  ambient.  These  conditions  changes  

gradually  with  time  due  to  machine  working  cycle,  because  of  different  spindle  speed  

rotations,  variations  in  ambient  temperature,  different  headstock  and  table  positions.  

All   these   phenomena   are   the   sources   of   different   power   losses   and   different  

displacements  causes  by  thermal  deformation.    

As  we  see  on  the  dependency  diagram  we  focus  on  the  factors  that  we  consider  have  

influence  on  quality  of  machine  tool.  But  there  is  impossible  to  study  the  influence  of  

these   factors   all   at   the   same   time.   It   is   necessary   to   separate   analyses   for   different  

working  conditions  in  order  to  obtain  relations  between  these  working  conditions  and  

displacements  so  we  can  define  behavior  of  machining  centre.    

 

7.1  Operating  positions  and  conditions  

The  proposed  studies  are  analyzing  changing  of  displacements  in  chosen  points  during  

work  cycle  with  three  different  Ambient  Temperatures  (293K,  295K  and  298K)  and  two  

different  headstock/table  positions,  position  BEH  and  position  CFG,  as  we  see  on  figure  

7.1.1.   These   studies   were   done   with   software   CATIA   V5R17,   for   analyze   thermal  

deformation,  and  SimDesigner  R2  for  analyze  temperature  distributions.  Positions  are  

defined   in   picture   7.1.1.   The   positions   are   not   random   positions,   there   are   in   the  

middle  and   in  both   sides  of   glass   scale.  Machine   centre  has  one  glass   scale   for  each  

direction  X,  Y  and  Z.  We  select  three  points  per  glass  scale,  one  in  the  middle  and  two  

at  both  sides.  Also  there  are  not  random  points.  The  ones  at   the  middle  of   the  glass  

scale   it   were   chosen   because   we   suppose   it   is   the   point   where   glass   scale   makes  

smaller  error  because  glass  scale  is  fixed  in  the  middle  as  fastened  connection  property  

so  in  this  point  L≈0  so  the  displacement  should  be  the  smallest  in  order  to  

∆! = !"∆!  

Page 72: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

71    

If  we  select  three  points  per  glass  scale,  this  makes  a  total  of  27  possible  combinations  

of  different  headstock/table  positions.  The  two  selected,  BEH  and  CFG  were  selected  

to   analyze   behavior   of  machine   centre   in   two  different   positions.   First   one,   position  

BEH,  was  chosen  because  it  is  the  one  in  the  middle  of  the  three  glass  scales.  Second  

position,  CFG,  was  chosen  in  order  to  analyze  other  position  different  to  the  first  one.  

In  this  case  no  one  of  the  reading  heads  are  in  the  middle  of  the  glass  scales.  Ball  screw  

X  and  ball  screw  Z  are  at  the  opposite  side  of  the  motor  and  ball  screw  Y  is  close  to  the  

motor.   This   should  means   that   for   ball   screw   X   and   ball   screw   Z  must   be   L=Lmax   so  

displacement  should  be  maximum  in  order  to  

∆! = !"∆!  

but  for  ball  screw  Y  must  be  L≈0  so  the  displacement  should  be  minimum  according  to  

the  same  equation.  

   

Fig  7.1.1  Shows  the  two  selected  positions  of  the  headstock  and  table,  BEF  and  CFG,  

for  our  studies.  

 

A   B   C  

D  

E  

F  

G  H   I  

C  

F  

G  

Page 73: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

72    

7.2  Design  of  working  cycle  

To   reach   proposed   studies   it   is   necessary   to   design   a   work   cycle   that   imitates   real  

machine   working   conditions.   Once   we   have   designed   this   cycle,   we   can   compute  

temperature  distribution  and  thermal  deformation  for  defined  FEM  models.  The  work  

cycle   must   have   some   requirements   such   as   representative   spindle   speed   rotation  

along  all  speed  range;  realistic  machining  times  in  order  to  observe  real  machine  tool  

displacements  and  enough  time  steps  to  extract  as  much  data  as  necessary.   In  figure  

7.2.1  we  can  observe   the  work  cycle   that   is   going   to  be  used   for  our   studies.   In   this  

work  cycle  machine  centre  starts  working  8000  r.p.m.  during  first  hour.  This  value  of  

spindle   speed   rotation   was   chosen   in   order   to   analyze   behavior   of   machine   centre  

working  nearly  the  middle  range  of  r.p.m.  During  the  second  hour  the  machine  centre  

stops   working   so   we  will   analyze   what   happens   with   thermal   deformation   during   a  

time   without   heat   sources   and   after   that   stars   working   at   maximum   spindle   speed  

rotation,  20000  r.p.m.  during  another  hour.  After  the  third  hour  continues  working  at  

8000  r.p.m.  for  another  hour  and  finish  the  work  cycle.  

 

Fig  7.2.1  Work  cycle  used  in  the  different  analyses  of  this  project.  

 

Page 74: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

73    

Attending   to   the   work   cycle   it   is   necessary   to   introduce   the   power   losses   not   as  

constant  but  as  transient  values  to  machine  tool  model  for  analyze  temperature  with  

SimDesigner  R2  as  we  see  on  figure  7.2.2  and  figure  7.2.3  

 

Fig  7.2.2  Shows  how  to  introduce  power  losses  as  a  transient  value  to  SimDesigner  

model.  

     

Fig  7.2.3  Illustrates  how  to  introduce,  in  this  case  for  stator,  transient  power  losses  and  

transient  forced  convection  according  to  our  work  cycle.    

 

Page 75: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

74    

 

Fig  7.2.4  Power  losses  as  heat  flux  in  stator  during  work  cycle.  The  graphic  has  the  

same  form  than  the  work  cycle.  

 

Fig  7.2.5  Forced  convection  at  stator.  This  graphic  do  not  have  the  same  form  that  the  

work  cycle  because  forced  convection  does  not  depends  on  spindle  speed  rotation,  

depends  of  quantity  of  oil  cooling  flow.  

Page 76: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

75    

7.3  Selected  data  for  analyses  

§ Power  losses  at  the  motor  

 

§ Power  losses  at  the  bearings  

 

§ Constant  ball  screw  (X,  Y  and  Z)  power  losses:  64,04  W/m2    

§ Oil  cooling  flow:  20  L/min  

§ Free  film  convection  value:  10  W/Km2  

8.  Results  of  computing  and  conclusions  

All  the  results  and  graphics  of  the  project  are  shown  in  the  attachment.  In  this  section  

there   are   shown   only   the   ones   which   can   give   us   information   about   behavior   of  

machine  centre.    

 

Fig  8.1Machine  tool  model  with  glass  scale  temperature  distribution  at  position  BEH  

with  initial  temperature  293K.  

rpm Power  Losses  [W] Heat  Flux  [W/m2]8000 579 237320000 2736 11213

power  losses  [w] heat  flux  [W/m2]rpm bearing  1 bearing  2 bearing  3 bearing  4 rear  bearing bearing  1 bearing  2 bearing  3 bearing  4 rear  bearing8000 19 19 18 19 14,8 475 475 450 475 92520000 54 55,6 48,6 53,6 35,9 1350 1390 1215 1340 2243,75

Page 77: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

76    

 

Fig  8.2  Machine  tool  model  with  glass  scale  deformation  at  position  BEH  with  initial  

temperature  293K.  

 

Fig  8.3  Machine  tool  model  with  glass  scale  temperature  distribution  at  position  CFG  

with  initial  temperature  293K.  

Page 78: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

77    

 

Fig  8.4  Machine  tool  model  deformation  at  position  CFG  with  initial  temperature  293K.  

 

8.1  Analyses  of  displacements  at  position  BEH  

8.1.1  Analyses  of  work  cycle  with  initial  temperature  293K  at  BEH  

Result   for   displacements   (mm)   during   work   cycle   with   initial   temperature   293K   at  

position  BEH:  

 

 

GLASS SCALE T=293K Position BEH

time (s)sensor displacement direction 0 3600 7200 10800 14400

dispacement (mm) ball screw X X 0 0,0120 0,0170 0,0190 0,0200Y 0 0,0003 0,0005 0,0005 0,0005Z 0 0,0009 0,0009 0,0008 0,0008

ball screw Y X 0 0,0009 0,0010 0,0010 0,0010Y 0 0,0300 0,0480 0,0600 0,0700Z 0 0,0020 0,0010 0,0001 -0,0006

ball screw Z X 0 0,0020 0,0030 0,0080 0,0110Y 0 0,0040 0,0040 0,0090 0,0090Z 0 0,0210 0,0290 0,0470 0,0500

tool X 0 0,0030 0,0110 0,0240 0,0500Y 0 0,0170 0,0110 0,0630 0,0260Z 0 0,0370 0,0250 0,1270 0,0530

table X 0 -0,0010 -0,0009 -0,0008 -0,0007Y 0 0,0006 0,0005 0,0004 0,0003Z 0 0,0010 0,0010 0,0010 0,0010

Page 79: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

78    

 

 

Attending  to  these  results  we  can  observe  that:  

§ Displacement  of  ball  screw  X  (ball  screw  in  X  direction)  of  course  is  the  same  for  

ball  screw  configuration  (without  glass  scale)  and  with  glass  scale  in  the  three  X,  

Y  and  Z  directions  because  glass   scale  has  no   influence  at   the  end  of   the  ball  

screws.  This  is  useful  to  probe  that  both  models,  with  and  without  glass  scale,  

are  well  done.  

Conclusion:  Glass  scale  does  not  improve  ball  screw  X  displacement  in  X,  Y  and  

Z  directions.  

 

§ Displacement  of  ball  screw  Y  (ball  screw  in  Y  direction)  is  of  course  the  same  for  

ball  screw  and  for  glass  scale  in  X,  Y  and  Z  directions.  

Conclusion:  Glass  scale  does  not  improve  ball  screw  Y  displacement  in  X,  Y  and  

Z  directions.  

 

§ Displacement  of  ball  screw  Z  (ball  screw  in  Z  direction)   is  practically  the  same  

for   ball   screw   and   for   glass   scale   in   X   and   Z   direction   but   not   in   Y   direction  

where  there  is  displacement  for  ball  screw  bigger  than  the  one  for  glass  scale  of  

0,01  mm  at  the  first  hour,  0,016  mm  at  the  second  hour,  0,019  mm  at  the  third  

hour  and  0,024  mm  at  the  fourth  hour.  

BALL SCREW T=293K Position BEH

time (s)sensor displacement direction 0 3600 7200 10800 14400

dispacement (mm) ball screw X X 0 0,0110 0,0160 0,0190 0,0200Y 0 0,0003 0,0004 0,0004 0,0005Z 0 0,0009 0,0008 0,0008 0,0007

ball screw Y X 0 0,0009 0,0010 0,0010 0,0010Y 0 0,0300 0,0470 0,0600 0,0700Z 0 0,0020 0,0009 0,0003 -0,0008

ball screw Z X 0 0,0010 0,0030 0,0070 0,0110Y 0 0,0140 0,0200 0,0280 0,0330Z 0 0,0200 0,0270 0,0450 0,0490

tool X 0 0,0040 0,0110 0,0260 0,0510Y 0 0,0280 0,0280 0,0830 0,0510Z 0 0,0450 0,0380 0,1500 0,0810

table X 0 0,0080 0,0130 0,0150 0,0160Y 0 0,0006 0,0005 0,0004 0,0003Z 0 0,0010 0,0010 0,0010 0,0010

Page 80: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

79    

 Conclusion:  Glass  scale  does  not  improve  ball  screw  Z  displacement  in  X  and  Z  

directions  but  it  has  nearly  0,020  mm  less  displacement  than  ball  screw  in  Y  

direction.    

 

§ Displacement  of  Tool   (end  of   spindle  displacement)  of   course   is   the   same   for  

ball  screw  and  for  glass  scale  in  X  direction  because  glass  scale  has  no  influence  

in  this  direction,  but  not  in  Y  and  Z.  Displacement  for  ball  screw  is  bigger  than  

for   glass   scale   in   0,011  mm   to   0,025  mm  when   spindle   speed   increase   from  

8000  r.p.m.  to  20000  r.p.m.  respectively  for  Y  and  Z  directions.  

 

0,00000  

0,00500  

0,01000  

0,01500  

0,02000  

0,02500  

0,03000  

0,03500  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  Z,  displacement  in  Y  during  work  cycle  with  iniaal  temperature  293K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

0,00000  0,01000  0,02000  0,03000  0,04000  0,05000  0,06000  0,07000  0,08000  0,09000  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Tool,  displacement  in  Y  during  work  cycle  with  iniaal  temperature  293K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

Page 81: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

80    

 Conclusion:   Glass   scale   does   not   improve   end   of   spindle   displacement   in   X  

direction  but  has  nearly  0,020  mm  less  displacement  than  ball  screw  in  Y  and  Z  

direction.  This  displacement  increase  when  we  raise  spindle  speed  rotation.  

 

§ Displacement   for   Table   is   the   same   for   ball   screw   and   glass   scale   in   Y   and   Z  

directions.   In   X   direction   displacement   for   glass   scale   is   practically   zero   but  

there   is  a  big  displacement   for  ball   screw  from  0,013  mm  second  hour,  0,015  

mm  third  hour  and  0,016  mm  forth  hour.    

 

Conclusion:    Glass  scale  does  not  improve  Table  displacement  in  Y  and  Z  

directions  but  it  does  in  X  direction.  

0,00000  

0,02000  

0,04000  

0,06000  

0,08000  

0,10000  

0,12000  

0,14000  

0,16000  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Tool,  displacement  in  Z  during  work  cycle  with  iniaal  temperature  293K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

-­‐0,005  

0  

0,005  

0,01  

0,015  

0,02  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Table,  displacement  in  X  during  work  cycle  with  iniaal  temperature  293K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

Page 82: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

81    

 

8.1.2  Analyses  of  work  cycle  with  initial  temperature  295K  at  BEH  

Result   for   displacements   (mm)   during   work   cycle   with   initial   temperature   295K   at  

position  BEH:  

 

 

§ Displacement   of   ball   screw   X:   Same   case   than   for   293K   but   displacements  

increase  with  temperature.  

§ Displacement  of  ball  screw  Y:  Same  case  than  for  293K.  

§ Displacement  of  ball  screw  Z:  Same  case  than  for  293K.  The  difference  between  

displacement  of  ball  screw  and  glass  scale  in  Y  direction  continues  being  0,020  

mm  but  level  of  displacement  increase  with  temperature.  

GLASS SCALE T=295K Position BEH

time (s)sensor displacement direction 0 3600 7200 10800 14400

dispacement (mm) ball screw X X 0 0,0230 0,0280 0,0310 0,0320Y 0 0,0020 0,0020 0,0020 0,0020Z 0 -0,0100 -0,0100 -0,0100 -0,0090

ball screw Y X 0 -0,0070 -0,0070 -0,0060 -0,0060Y 0 0,0260 0,0430 0,0550 0,0650Z 0 -0,0510 -0,0510 -0,0510 -0,0500

ball screw Z X 0 0,0020 0,0030 0,0080 0,0100Y 0 -0,0100 -0,0100 -0,0060 -0,0060Z 0 -0,0190 -0,0110 0,0070 0,0110

tool X 0 0,0100 0,0160 0,0280 0,0530Y 0 0,0020 -0,0040 0,0470 0,0100Z 0 -0,0090 -0,0180 0,0830 0,0100

table X 0 0,0120 0,0120 0,0120 0,0120Y 0 -0,0080 -0,0080 -0,0080 -0,0080Z 0 -0,0130 -0,0130 -0,0130 -0,0120

BALL SCREW T=295K Position BEH

time (s)sensor displacement direction 0 3600 7200 10800 14400

dispacement (mm) ball screw X X 0 0,0230 0,0280 0,0300 0,0310Y 0 0,0020 0,0020 0,0020 0,0020Z 0 -0,0100 -0,0100 -0,0100 -0,0090

ball screw Y X 0 -0,0070 -0,0070 -0,0060 -0,0060Y 0 0,0260 0,0420 0,0540 0,0640Z 0 -0,0510 -0,0510 -0,0510 -0,0500

ball screw Z X 0 0,0020 0,0030 0,0070 0,0100Y 0 0,0020 0,0080 0,0160 0,0210Z 0 -0,0210 -0,0130 0,0050 0,0100

tool X 0 0,0100 0,0160 0,0300 0,0540Y 0 0,0150 0,0150 0,0700 0,0370Z 0 -0,0008 -0,0060 0,1050 0,0370

table X 0 0,0220 0,0260 0,0280 0,0290Y 0 -0,0080 -0,0080 -0,0080 -0,0080Z 0 -0,0130 -0,0130 -0,0130 -0,0120

Page 83: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

82    

§ Displacement   of   Tool:   Same   case   than   293K.   The   difference   between  

displacement  of  ball  screw  and  glass  scale  in  Y  and  Z  directions  continues  being  

0,020  mm.  

§ Displacement  of  Table:    Same  case  than  for  293K  but  now,  even  if  the  

difference  between  glass  scale  and  ball  screw  is  the  same,  displacement  for  

glass  scale  is  medium  value  of  0,012  mm  in  X  direction.  

   

 

8.1.3  Analyses  of  work  cycle  with  initial  temperature  298K  at  BEH  

Result   for   displacements   (mm)   during   work   cycle   with   initial   temperature   298K   at  

position  BEH:  

 

0,0000  

0,0050  

0,0100  

0,0150  

0,0200  

0,0250  

0,0300  

0,0350  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Table,  displacement  in  X  during  work  cycle  with  iniaal  temperature  295K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

GLASS SCALE T=298K Position BEH

time (s)sensor displacement direction 0 3600 7200 10800 14400

dispacement (mm) ball screw X X 0 0,0410 0,0460 0,0480 0,0490Y 0 0,0040 0,0040 0,0040 0,0040Z 0 -0,0260 -0,0260 -0,0250 -0,0240

ball screw Y X 0 -0,0180 -0,0180 -0,0180 -0,0180Y 0 0,0200 0,0350 0,0470 0,0560Z 0 -0,1310 -0,1300 -0,1270 -0,1240

ball screw Z X 0 0,0030 0,0040 0,0080 0,0100Y 0 -0,0310 -0,0320 -0,0280 -0,0280Z 0 -0,0800 -0,0710 -0,0520 -0,0460

tool X 0 0,0190 0,0240 0,0340 0,0570Y 0 -0,0210 -0,0270 0,0220 -0,0150Z 0 -0,0780 -0,0830 0,0160 -0,0540

table X 0 0,0310 0,0310 0,0300 0,0300Y 0 -0,0210 -0,0210 -0,0210 -0,0210Z 0 -0,0360 -0,0350 -0,0340 -0,0330

Page 84: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

83    

 

   

§ Displacement  of  ball  screw  X:  Same  case  than  for  293K  and  295K  but  

displacements  increase  with  temperature.  

§ Displacement  of  ball  screw  Y:  Same  case  than  for  293K  and  295K.  

§ Displacement   of   ball   screw   Z:   Same   case   than   for   293K   and   295K.   The  

difference   between   displacement   of   ball   screw   and   glass   scale   in   Y   direction  

continues   being   0,020   mm   but   level   of   displacement   increase   with  

temperature.  

§ Displacement   of   Tool:   Same   case   than   for   293K   and   295K.   The   difference  

between   displacement   of   ball   screw   and   glass   scale   in   Y   and   Z   directions  

continues  being  0,020  mm.  

§ Displacement  of  Table:  Same  case  than  for  293K  and  295K  but  293K  but  now,  

even  if  the  difference  between  glass  scale  and  ball  screw  is  the  same,  

displacement  for  glass  scale  is  medium  value  of  0,031  mm  in  X  direction.  

 

8.1.4  Conclusions  at  position  BEH  with  different  initial  temperatures  

We  can  say  as  general  conclusions  at  position  BEH  that:  

§ For  ball  screw  X  glass  scale  does  not  improves  displacements  in  any  direction  

and  these  displacements  increase  with  initial  temperature  in  all  directions.  

BALL SCREW T=298K Position BEH

time (s)sensor displacement direction 0 3600 7200 10800 14400

dispacement (mm) ball screw X X 0 0,0410 0,0460 0,0480 0,0490Y 0 0,0040 0,0040 0,0040 0,0040Z 0 -0,0260 -0,0260 -0,0250 -0,0240

ball screw Y X 0 -0,0180 -0,0180 -0,0180 -0,0180Y 0 0,0200 0,0350 0,0470 0,0550Z 0 -0,1310 -0,1300 -0,1270 -0,1240

ball screw Z X 0 0,0030 0,0040 0,0080 0,0100Y 0 -0,0160 -0,0100 -0,0020 0,0020Z 0 -0,0810 -0,0720 -0,0530 -0,0470

tool X 0 0,0190 0,0240 0,0350 0,0580Y 0 -0,0050 -0,0040 0,0490 0,0160Z 0 -0,0690 -0,0710 0,0380 -0,0280

table X 0 0,0420 0,0470 0,0490 0,0490Y 0 -0,0210 -0,0210 -0,0210 -0,0210Z 0 -0,0350 -0,0340 -0,0330 -0,0330

Page 85: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

84    

§ For  ball  screw  Y:  glass  scale  does  not  improve  displacement  in  any  direction.  

§ For  ball  screw  Z:  glass  scale  improves  displacement  between  glass  scale  in  

0,020  mm  in  Y  direction  but  level  of  displacement  increase  with  initial  

temperature  

 § For  Tool:  glass  scale  improves  displacements  in  0,020  mm  in  Y  and  Z  directions  

with  dependency  of  spindle  speed  rotation.  

§ For  Table:  glass  scale  improves  displacement  in  X  direction  but  this  

displacement  increase  with  initial  temperature.  

   

 

 

-­‐0,04000  

-­‐0,03000  

-­‐0,02000  

-­‐0,01000  

0,00000  

0,01000  

0,02000  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  Z,  displacement  in  Y  during  work  cycle  with  different  iniaal  temperatures  at  posiaon  BEH  

glass  scale  YES  293K  

glass  scale  YES  295K  

glass  scale  YES  298K  

-­‐0,005  

0  

0,005  

0,01  

0,015  

0,02  

0,025  

0,03  

0,035  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Table,  displacement  in  X  during  work  cycle  with  different  iniaal  temperatures  at  posiaon  BEH  

glass  scale  YES  293K  

glass  scale  YES  295K  

glass  scale  YES  298K  

Page 86: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

85    

 

8.2  Analyses  of  displacements  at  position  CFG  

8.2.1  Analyses  of  work  cycle  with  initial  temperature  293K  at  CFG  

Result   for   displacements   (mm)   during   work   cycle   with   initial   temperature   293K   at  

position  CFG:  

 

 

   

§ Displacement  of  ball  screw  X:  is  practically  the  same  for  ball  screw  and  for  glass  

scale  in  X,  Y  and  Z  directions.  

GLASS SCALE T=293K Position CFG

time (s)sensor displacement direction 0 3600 7200 10800 14400

dispacement (mm) ball screw X X 0 0,0200 0,0330 0,0400 0,0450Y 0 0,0002 0,0003 0,0004 0,0005Z 0 0,0009 0,0008 0,0008 0,0007

ball screw Y X 0 0,0009 0,0010 0,0010 0,0010Y 0 0,0400 0,0690 0,0920 0,1100Z 0 0,0020 -0,0004 -0,0020 -0,0030

ball screw Z X 0 0,0020 0,0030 0,0090 0,0120Y 0 0,0040 0,0050 0,0100 0,0100Z 0 0,0230 0,0330 0,0490 0,0530

tool X 0 0,0020 0,0100 0,0200 0,0490Y 0 0,0140 0,0090 0,0520 0,0180Z 0 0,0310 0,0230 0,1130 0,0520

table X 0 -0,0010 -0,0010 -0,0010 -0,0010Y 0 0,0006 0,0004 0,0003 0,0003Z 0 0,0010 0,0010 0,0010 0,0010

BALL SCREW T=293K Position CFG

time (s)sensor displacement direction 0 3600 7200 10800 14400

dispacement (mm) ball screw X X 0 0,0200 0,0330 0,0400 0,0450Y 0 0,0001 0,0003 0,0004 0,0004Z 0 0,0008 0,0008 0,0007 0,0007

ball screw Y X 0 0,0009 0,0010 0,0010 0,0010Y 0 0,0390 0,0680 0,0910 0,1100Z 0 0,0020 -0,0004 -0,0020 -0,0030

ball screw Z X 0 0,0020 0,0030 0,0100 0,0120Y 0 0,0050 0,0060 0,0120 0,0130Z 0 0,0230 0,0330 0,0520 0,0540

tool X 0 0,0020 0,0100 0,0210 0,0500Y 0 0,0160 0,0110 0,0550 0,0230Z 0 0,0500 0,0510 0,1630 0,1010

table X 0 0,0200 0,0320 0,0400 0,0440Y 0 0,0006 0,0004 0,0004 0,0003Z 0 0,0010 0,0010 0,0010 0,0010

Page 87: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

86    

Conclusion:  Glass  scale  does  not  improve  ball  screw  X  displacement  in  X,  Y  and  

Z  directions.  

 

§ Displacement  of  ball  screw  Y:  is  practically  the  same  for  ball  screw  and  for  glass  

scale  in  X,  Y  and  Z  directions.  

Conclusion:  Glass  scale  does  not  improve  ball  screw  Y  displacement  in  X,  Y  and  

Z  directions.  

 

§ Displacement  of  ball  screw  Z:  is  practically  the  same  for  ball  screw  and  for  glass  

scale  in  X,  Y  and  Z  directions.  

Conclusion:  Glass  scale  does  not  improve  ball  screw  Y  displacement  in  X,  Y  and  

Z  directions  

 

§ Displacement  of  Tool:  is  practically  the  same  for  ball  screw  and  for  glass  scale  in  

X   and  Y  direction  but  not   in   Z.  Displacement   for  ball   screw   is   bigger   than   for  

glass   scale   in  practically   a   value  of  0,02  mm   to  0,05  mm  when   spindle   speed  

increase  from  8000  r.p.m.  to  20000  r.p.m.  respectively  for  Z  direction.  

 Conclusion:  Glass  scale  does  not  improve  end  of  spindle  displacement  in  X  and  

Y   directions   but   has   nearly   0,020  mm   less   displacement   than   ball   screw   in   Z  

direction.  This  displacement  increase  to  0,05  mm  when  we  raise  spindle  speed  

rotation.    

 

-­‐0,0200  

0,0000  

0,0200  

0,0400  

0,0600  

0,0800  

0,1000  

0,1200  

0,1400  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Tool,  displacement  in  Z  during  work  cycle  with  iniaal  temperature  295K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

Page 88: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

87    

§ Displacement   of   Table:   is   the   same   for   ball   screw   and   glass   scale   in   Y   and   Z  

directions.   In   X   direction   displacement   for   glass   scale   is   practically   cero   but  

there   is  a  big  displacement  for  ball  screw  from  0,02  mm  first  hour,  0,032  mm  

second  hour,  0,040  mm  third  hour  and  0,044  mm  fourth  hour.  

 

Conclusion:    Glass  scale  does  not  improve  Table  displacements  in  Y  and  Z  

directions  but  it  does  in  X  direction.  

 

8.2.2  Analyses  of  work  cycle  with  initial  temperature  295K  at  CFG  

Result   for   displacements   (mm)   during   work   cycle   with   initial   temperature   295K   at  

position  CFG:  

 

-­‐0,0050  0,0000  0,0050  0,0100  0,0150  0,0200  0,0250  0,0300  0,0350  0,0400  0,0450  0,0500  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Table,  displacement  in  X  during  work  cycle  with  iniaal  temperature  293K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

GLASS SCALE T=295K Position CFG

time (s)sensor displacement direction 0 3600 7200 10800 14400

dispacement (mm) ball screw X X 0 0,0330 0,0450 0,0520 0,0570Y 0 0,0010 0,0010 0,0010 0,0010Z 0 -0,0100 -0,0100 -0,0100 -0,0100

ball screw Y X 0 -0,0070 -0,0060 -0,0060 -0,0060Y 0 0,0360 0,0640 0,0870 0,1050Z 0 -0,0520 -0,0530 -0,0530 -0,0530

ball screw Z X 0 0,0020 0,0030 0,0090 0,0120Y 0 -0,0150 -0,0150 -0,0100 -0,0100Z 0 -0,0110 -0,0004 0,0160 0,0210

tool X 0 0,0100 0,0160 0,0250 0,0530Y 0 -0,0030 -0,0080 0,0350 0,0009Z 0 -0,0050 -0,0110 0,0790 0,0190

table X 0 0,0170 0,0170 0,0170 0,0160Y 0 -0,0080 -0,0080 -0,0080 -0,0080Z 0 -0,0100 -0,0090 -0,0090 -0,0080

Page 89: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

88    

 

 

§ Displacement  of  ball  screw  X:  same  case  than  for  293K.  

§ Displacement  of  ball  screw  Y:  same  case  than  for  293K.  

§ Displacement  of  ball  screw  Z:  same  case  than  for  293K.  

§ Displacement   of   Tool:   Same   case   than   for   293K.   The   difference   between  

displacement  of  ball  screw  and  glass  scale  in  Z  direction  continues  being  0,020  

mm  and  increase  to  0,05  mm  when  we  raise  spindle  speed  rotation.  

§ Displacement   of   Table:   Same   case   than   for   293K,   but   now,   even   if   the  

difference   between   glass   scale   and   ball   screw   is   the   same,   displacement   for  

glass  scale  is  medium  value  of  0,017  mm  in  X  direction.  

   

BALL SCREW T=295K Position CFG

time (s)sensor displacement direction 0 3600 7200 10800 14400

dispacement (mm) ball screw X X 0 0,0320 0,0450 0,0520 0,0570Y 0 0,0010 0,0010 0,0020 0,0020Z 0 -0,0100 -0,0100 -0,0100 -0,0100

ball screw Y X 0 -0,0070 -0,0060 -0,0060 -0,0060Y 0 0,0350 0,0640 0,0860 0,1050Z 0 -0,0520 -0,0530 -0,0530 -0,0530

ball screw Z X 0 0,0020 0,0030 0,0090 0,0120Y 0 -0,0150 -0,0140 -0,0080 -0,0070Z 0 -0,0110 -0,0006 0,0190 0,0220

tool X 0 0,0100 0,0160 0,0250 0,0530Y 0 -0,0020 -0,0050 0,0380 0,0060

0 0,0150 0,0180 0,1280 0,0660table X 0 0,0410 0,0530 0,0610 0,0650

Y 0 -0,0080 -0,0080 -0,0080 -0,0080Z 0 -0,0100 -0,0090 -0,0090 -0,0090

0,0000  

0,0100  

0,0200  

0,0300  

0,0400  

0,0500  

0,0600  

0,0700  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Table,  displacement  in  X  during  work  cycle  with  iniaal  temperature  295K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

Page 90: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

89    

 

8.2.3  Analyses  of  work  cycle  with  initial  temperature  298K  at  CFG  

Result   for   displacements   (mm)   during   work   cycle   with   initial   temperature   298K   at  

position  CFG:  

   

 § Displacement  of  ball  screw  X:  Displacement  of  ball  screw  X:  same  case  than  for  

293K  and  295K.  

§ Displacement  of  ball  screw  Y:  same  case  than  for  293K  and  295K.  

§ Displacement  of  ball  screw  Z:  Displacement  of  ball  screw  Z:  same  case  than  for  

293K  and  295K.  

GLASS SCALE T=298K Positions CFG

time (s)sensor displacement direction 0 3600 7200 10800 14400

dispacement (mm) ball screw X X 0 0,0510 0,0630 0,0700 0,0740Y 0 0,0030 0,0030 0,0030 0,0030Z 0 -0,0270 -0,0260 -0,0260 -0,0250

ball screw Y X 0 -0,0180 -0,0180 -0,0180 -0,0180Y 0 0,0290 0,0570 0,0790 0,0970Z 0 -0,1320 -0,1310 -0,1290 -0,1270

ball screw Z X 0 0,0020 0,0030 0,0080 0,0100Y 0 -0,0440 -0,0440 -0,0390 -0,0390Z 0 -0,0620 -0,0500 -0,0330 -0,0270

tool X 0 0,0210 0,0250 0,0320 0,0570Y 0 -0,0280 -0,0320 0,0090 -0,0240Z 0 -0,0580 -0,0600 0,0280 -0,0310

table X 0 0,0440 0,0440 0,0430 0,0430Y 0 -0,0210 -0,0210 -0,0210 -0,0200Z 0 -0,0260 -0,0240 -0,0240 -0,0230

BALL SCREW T=298K Position CFG

time (s)sensor displacement direction 0 3600 7200 10800 14400

dispacement (mm) ball screw X X 0 0,0510 0,0630 0,0700 0,0740Y 0 0,0030 0,0030 0,0030 0,0030Z 0 -0,0270 -0,0260 -0,0260 -0,0250

ball screw Y X 0 -0,0180 -0,0180 -0,0180 -0,0180Y 0 0,0290 0,0570 0,0790 0,0970Z 0 -0,1320 -0,1310 -0,1290 -0,1270

ball screw Z X 0 0,0020 0,0030 0,0080 0,0100Y 0 -0,0450 -0,0440 -0,0380 -0,0360Z 0 -0,0620 -0,0500 -0,0310 -0,0260

tool X 0 0,0210 0,0250 0,0320 0,0580Y 0 -0,0280 -0,0300 0,0120 -0,0200Z 0 -0,0380 -0,0320 0,0760 0,0150

table X 0 0,0730 0,0850 0,0930 0,0970Y 0 -0,0210 -0,0210 -0,0210 -0,0200Z 0 -0,0260 -0,0240 -0,0240 -0,0230

Page 91: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

90    

§ Displacement   of   Tool:   Same   case   than   for   293K   and   295K.   The   difference  

between   displacement   of   ball   screw   and   glass   scale   in   Z   direction   continues  

being   0,020   mm   and   increase   to   0,05   mm   when   we   raise   spindle   speed  

rotation.  

§ Displacement  of  Table:  Same  case  than  for  293K  and  295K,  but  now,  even  if  the  

difference   between   glass   scale   and   ball   screw   is   the   same,   displacement   for  

glass  scale  is  medium  value  of  0,044  mm  in  X  direction.  

 

8.2.4  Conclusions  at  position  CFG  with  different  initial  temperatures  

We  can  say  as  general  conclusions  at  position  BEH  that:  

§ For  ball  screw  X  glass  scale  does  not  improve  displacements  in  any  direction  

and  these  displacements  increase  with  initial  temperature  in  all  directions.  

§ For  ball  screw  Y:  glass  scale  does  not  improve  displacement  in  any  direction.  

§ For  ball  screw  Z:  glass  scale  improves  displacement  between  glass  scale  in  

0,020  mm  in  Y  direction  but  level  of  this  displacement  increase  with  initial  

temperature.  

   § For  Tool:  glass  scale  improves  displacements  in  0,020  mm  in  Z  direction  with  

dependency  of  spindle  speed  rotation.  

-­‐0,0500  

-­‐0,0400  

-­‐0,0300  

-­‐0,0200  

-­‐0,0100  

0,0000  

0,0100  

0,0200  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  Z,  displacement  in  Y  during  work  cycle  with  different  iniaal  temperatures  at  posiaon  CFG  

glass  scale  YES  293K  

glass  scale  YES  295K  

glass  scale  YES  298K  

Page 92: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

91    

§ For  Table:  glass  scale  improves  displacement  in  X  direction  but  this  

displacement  increase  with  initial  temperature.  

   

8.3  Conclusions  drawn  from  computing  analysis    

Attending  to  conclusions  draw  from  position  BEH  and  position  CFG  we  are   looking   in  

this  section  for  common  or  different  aspects  of  behavior  of  machine  centre  in  function  

of  position  of  headstock  and  table.  

 

§ For  ball  screw  X:  glass  scale  of  course  does  not   improve  displacements   in  any  

direction.  This  is  useful  to  probe  that  both  models,  with  and  without  glass  scale,  

are   well   done.   These   displacements   increase   with   initial   temperature   in   all  

directions.   If   ball   screw  X   is   in  point  G,   then  LG=Lmax   (where  Lmax   is  measured  

from  the  motor  to  the  nut)  and  in  order  to    

∆! = !"∆!  

end  of  spindle  displacements  in  X  direction  are  maximum  and  double  than  in  

point  H    because  LH=LG/2  

 

§ For  ball   screw  Y:  glass  scale  of  course  does  not   improve  displacements   in  any  

directions  and  has  no  dependency  on  position.  Is  important  here  to  notice  that  

displacements  in  Y  direction  there  are  for  each  point  in  the  range  of  0,030  mm  

to  0,110  mm.  These  are  quite  big  displacements  that  did  not  been  reduced  with  

the  glass  scale.    

-­‐0,0100  

0,0000  

0,0100  

0,0200  

0,0300  

0,0400  

0,0500  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Table,  displacement  in  X  during  work  cycle  with  different  iniaal  temperatures  at  posiaon  CFG  

glass  scale  YES  293K  

glass  scale  YES  295K  

glass  scale  YES  298K  

Page 93: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

92    

 

§ For  ball  screw  Z:  glass  scale  improves  displacement  in  0,020  mm  in  Y  direction  

but   level   of   displacement   increase   with   initial   temperature   and   has   no  

dependency   of   position   but   increase   in   a   constant   value   of   0,020   mm   from  

293K  to  295K  and  0,020  mm  from  295K  to  298K  so  it  is  possible  to  correct  these  

displacements.  

 

§ For  Tool:  glass  scale  improves  displacement  depending  on  position  and  spindle  

speed  rotation.  For  position  BEH  glass  scale   improves  displacement  in  Y  and  Z  

direction  but  for  position  CFG  only  improves  in  Z  direction.  This  means  that  in  

positions  at  middle  point  of  glass  scale,  L≈0  (in  case  of  glass  scale  we  measure  L  

from  the  middle  point  to  the  reading  head)  displacements  are  smaller  in  order  

to  

∆! = !"∆!  

 

§ For   Table:   glass   scale   improves   displacement   only   in   X   direction   and   with  

dependency   on   ambient   temperature   which   makes   level   of   displacement  

increase  in  constant  values  so  it  is  possible  to  correct  these  displacements.  

 

In  general  terms,  a  glass  scale  at  X  direction  (the  one  with  the  reading  head  fix  to  the  

table)   improves  displacements  of  the  table   in  X  direction  and  although   level  of  these  

displacements   increase   with   initial   temperature,   it   is   possible   to   compensate   them  

because  increases  in  constant  values.  

There  is  a  big  displacement  in  the  range  of  0,030  mm  to  0,110  mm  for  ball  screw  Y  in  Y  

direction  with  or  without  glass  scale  with  any  dependency  of  position.  

Glass  scale  at  the  headstock  improves  displacement  of  headstock  always  in  Z  direction  

with  dependency  of  spindle  speed  rotation  and  in  Y  direction  only  when  headstock  is  

at  the  middle  of  glass  scale.  

 

Page 94: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

93    

 

9.  Conclusions  leading  to  improve  of  machining  centre  design  

In   order   to   conclusions   on   section   8.3   we   know   that   glass   scale   improves  displacements  when  heat   fluxes   do  not   increase   too  much   temperature  of   the   glass  scale.   This   happens   with   the   glass   scale   on   X   direction,   the   one   in   the   base   of   the  machine  centre  and  with   the   reading  head   fixed   to   the   table.  This  glass   scale   is  only  influenced  by  power   losses  of  ball   screw  X.  This  power   losses  are  not   too  big   so   the  thermal  deformation  of  the  glass  scale  is  small,  in  other  words,  glass  scale  at  the  table  does   not   increase   its   own   temperature   too   much.   When   this   happens   glass   scale  improves   displacements   like   glass   scale   at   the   table   with   table   displacements   in   X  direction.  

According  to  this,  we  know  that  it  is  important  that  glass  scale  do  not  increase  it  own  temperature  during   thermal  deformation.  Power   losses  at   the  headstock  are  big  and  produces   hit   fluxes   that   increase   temperature   of   glass   scale   on   Z   direction.   One  solution  to  avoid  this  problem  is  to  isolate  the  glass  scale  at  the  head  stock.  This  can  be  made  by  using  low  thermal  conductivity  materials  between  the  aluminum  body  of  the  linear  encoder  and  the  special  shapes  to  fix  it  to  the  body  of  the  machine  tool.  Doing  this,  heat  fluxes  from  power  losses  at  the  headstock  will  increase  temperature  of  glass  scale  in  Z  direction  but  not  too  much  so  thermal  deformation  of  the  glass  scale  will  be  smaller.  

Position  of  glass   scale   is  also   important.  As  we  see  after   computation,  when   reading  head   is   at  middle  point  of   glass   scale   (the  point   that   is   fixed  as   fastened  connection  property)  displacements  are  smaller.   If  we  change  position  of  glass  scale  so  the  fixed  point  will  be  closer  to  end  of  spindle,  displacements  at  this  point  will  be  better,  but  it  will  be  worst   in   the  middle  and   in   the  other  side  of   the  spindle.  Better  solution   is   to  keep  glass  scale  positions  as  in  our  models  so  displacements  will  be  smaller  when  table  and  headstocks  are  at  position  BEH.    

 

 

 

 

 

 

Page 95: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

94    

 

10.  Attachments    

Here  are  shown  all  the  results  of  computation.    

           

   

GLASS SCALE T=293K Position BEH

time (s)sensor displacement direction 0 3600 7200 10800 14400

dispacement (mm) ball screw X X 0 0,0120 0,0170 0,0190 0,0200Y 0 0,0003 0,0005 0,0005 0,0005Z 0 0,0009 0,0009 0,0008 0,0008

ball screw Y X 0 0,0009 0,0010 0,0010 0,0010Y 0 0,0300 0,0480 0,0600 0,0700Z 0 0,0020 0,0010 0,0001 -0,0006

ball screw Z X 0 0,0020 0,0030 0,0080 0,0110Y 0 0,0040 0,0040 0,0090 0,0090Z 0 0,0210 0,0290 0,0470 0,0500

tool X 0 0,0030 0,0110 0,0240 0,0500Y 0 0,0170 0,0110 0,0630 0,0260Z 0 0,0370 0,0250 0,1270 0,0530

table X 0 -0,0010 -0,0009 -0,0008 -0,0007Y 0 0,0006 0,0005 0,0004 0,0003Z 0 0,0010 0,0010 0,0010 0,0010

GLASS SCALE T=295K Position BEH

time (s)sensor displacement direction 0 3600 7200 10800 14400

dispacement (mm) ball screw X X 0 0,0230 0,0280 0,0310 0,0320Y 0 0,0020 0,0020 0,0020 0,0020Z 0 -0,0100 -0,0100 -0,0100 -0,0090

ball screw Y X 0 -0,0070 -0,0070 -0,0060 -0,0060Y 0 0,0260 0,0430 0,0550 0,0650Z 0 -0,0510 -0,0510 -0,0510 -0,0500

ball screw Z X 0 0,0020 0,0030 0,0080 0,0100Y 0 -0,0100 -0,0100 -0,0060 -0,0060Z 0 -0,0190 -0,0110 0,0070 0,0110

tool X 0 0,0100 0,0160 0,0280 0,0530Y 0 0,0020 -0,0040 0,0470 0,0100Z 0 -0,0090 -0,0180 0,0830 0,0100

table X 0 0,0120 0,0120 0,0120 0,0120Y 0 -0,0080 -0,0080 -0,0080 -0,0080Z 0 -0,0130 -0,0130 -0,0130 -0,0120

Page 96: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

95    

     

     

   

GLASS SCALE T=298K Position BEH

time (s)sensor displacement direction 0 3600 7200 10800 14400

dispacement (mm) ball screw X X 0 0,0410 0,0460 0,0480 0,0490Y 0 0,0040 0,0040 0,0040 0,0040Z 0 -0,0260 -0,0260 -0,0250 -0,0240

ball screw Y X 0 -0,0180 -0,0180 -0,0180 -0,0180Y 0 0,0200 0,0350 0,0470 0,0560Z 0 -0,1310 -0,1300 -0,1270 -0,1240

ball screw Z X 0 0,0030 0,0040 0,0080 0,0100Y 0 -0,0310 -0,0320 -0,0280 -0,0280Z 0 -0,0800 -0,0710 -0,0520 -0,0460

tool X 0 0,0190 0,0240 0,0340 0,0570Y 0 -0,0210 -0,0270 0,0220 -0,0150Z 0 -0,0780 -0,0830 0,0160 -0,0540

table X 0 0,0310 0,0310 0,0300 0,0300Y 0 -0,0210 -0,0210 -0,0210 -0,0210Z 0 -0,0360 -0,0350 -0,0340 -0,0330

GLASS SCALE T=293K Position CFG

time (s)sensor displacement direction 0 3600 7200 10800 14400

dispacement (mm) ball screw X X 0 0,0200 0,0330 0,0400 0,0450Y 0 0,0002 0,0003 0,0004 0,0005Z 0 0,0009 0,0008 0,0008 0,0007

ball screw Y X 0 0,0009 0,0010 0,0010 0,0010Y 0 0,0400 0,0690 0,0920 0,1100Z 0 0,0020 -0,0004 -0,0020 -0,0030

ball screw Z X 0 0,0020 0,0030 0,0090 0,0120Y 0 0,0040 0,0050 0,0100 0,0100Z 0 0,0230 0,0330 0,0490 0,0530

tool X 0 0,0020 0,0100 0,0200 0,0490Y 0 0,0140 0,0090 0,0520 0,0180Z 0 0,0310 0,0230 0,1130 0,0520

table X 0 -0,0010 -0,0010 -0,0010 -0,0010Y 0 0,0006 0,0004 0,0003 0,0003Z 0 0,0010 0,0010 0,0010 0,0010

GLASS SCALE T=295K Position CFG

time (s)sensor displacement direction 0 3600 7200 10800 14400

dispacement (mm) ball screw X X 0 0,0330 0,0450 0,0520 0,0570Y 0 0,0010 0,0010 0,0010 0,0010Z 0 -0,0100 -0,0100 -0,0100 -0,0100

ball screw Y X 0 -0,0070 -0,0060 -0,0060 -0,0060Y 0 0,0360 0,0640 0,0870 0,1050Z 0 -0,0520 -0,0530 -0,0530 -0,0530

ball screw Z X 0 0,0020 0,0030 0,0090 0,0120Y 0 -0,0150 -0,0150 -0,0100 -0,0100Z 0 -0,0110 -0,0004 0,0160 0,0210

tool X 0 0,0100 0,0160 0,0250 0,0530Y 0 -0,0030 -0,0080 0,0350 0,0009Z 0 -0,0050 -0,0110 0,0790 0,0190

table X 0 0,0170 0,0170 0,0170 0,0160Y 0 -0,0080 -0,0080 -0,0080 -0,0080Z 0 -0,0100 -0,0090 -0,0090 -0,0080

Page 97: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

96    

     

     

 

GLASS SCALE T=298K Positions CFG

time (s)sensor displacement direction 0 3600 7200 10800 14400

dispacement (mm) ball screw X X 0 0,0510 0,0630 0,0700 0,0740Y 0 0,0030 0,0030 0,0030 0,0030Z 0 -0,0270 -0,0260 -0,0260 -0,0250

ball screw Y X 0 -0,0180 -0,0180 -0,0180 -0,0180Y 0 0,0290 0,0570 0,0790 0,0970Z 0 -0,1320 -0,1310 -0,1290 -0,1270

ball screw Z X 0 0,0020 0,0030 0,0080 0,0100Y 0 -0,0440 -0,0440 -0,0390 -0,0390Z 0 -0,0620 -0,0500 -0,0330 -0,0270

tool X 0 0,0210 0,0250 0,0320 0,0570Y 0 -0,0280 -0,0320 0,0090 -0,0240Z 0 -0,0580 -0,0600 0,0280 -0,0310

table X 0 0,0440 0,0440 0,0430 0,0430Y 0 -0,0210 -0,0210 -0,0210 -0,0200Z 0 -0,0260 -0,0240 -0,0240 -0,0230

BALL SCREW T=293K Position BEH

time (s)sensor displacement direction 0 3600 7200 10800 14400

dispacement (mm) ball screw X X 0 0,0110 0,0160 0,0190 0,0200Y 0 0,0003 0,0004 0,0004 0,0005Z 0 0,0009 0,0008 0,0008 0,0007

ball screw Y X 0 0,0009 0,0010 0,0010 0,0010Y 0 0,0300 0,0470 0,0600 0,0700Z 0 0,0020 0,0009 0,0003 -0,0008

ball screw Z X 0 0,0010 0,0030 0,0070 0,0110Y 0 0,0140 0,0200 0,0280 0,0330Z 0 0,0200 0,0270 0,0450 0,0490

tool X 0 0,0040 0,0110 0,0260 0,0510Y 0 0,0280 0,0280 0,0830 0,0510Z 0 0,0450 0,0380 0,1500 0,0810

table X 0 0,0080 0,0130 0,0150 0,0160Y 0 0,0006 0,0005 0,0004 0,0003Z 0 0,0010 0,0010 0,0010 0,0010

BALL SCREW T=295K Position BEH

time (s)sensor displacement direction 0 3600 7200 10800 14400

dispacement (mm) ball screw X X 0 0,0230 0,0280 0,0300 0,0310Y 0 0,0020 0,0020 0,0020 0,0020Z 0 -0,0100 -0,0100 -0,0100 -0,0090

ball screw Y X 0 -0,0070 -0,0070 -0,0060 -0,0060Y 0 0,0260 0,0420 0,0540 0,0640Z 0 -0,0510 -0,0510 -0,0510 -0,0500

ball screw Z X 0 0,0020 0,0030 0,0070 0,0100Y 0 0,0020 0,0080 0,0160 0,0210Z 0 -0,0210 -0,0130 0,0050 0,0100

tool X 0 0,0100 0,0160 0,0300 0,0540Y 0 0,0150 0,0150 0,0700 0,0370Z 0 -0,0008 -0,0060 0,1050 0,0370

table X 0 0,0220 0,0260 0,0280 0,0290Y 0 -0,0080 -0,0080 -0,0080 -0,0080Z 0 -0,0130 -0,0130 -0,0130 -0,0120

Page 98: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

97    

     

   

 

BALL SCREW T=298K Position BEH

time (s)sensor displacement direction 0 3600 7200 10800 14400

dispacement (mm) ball screw X X 0 0,0410 0,0460 0,0480 0,0490Y 0 0,0040 0,0040 0,0040 0,0040Z 0 -0,0260 -0,0260 -0,0250 -0,0240

ball screw Y X 0 -0,0180 -0,0180 -0,0180 -0,0180Y 0 0,0200 0,0350 0,0470 0,0550Z 0 -0,1310 -0,1300 -0,1270 -0,1240

ball screw Z X 0 0,0030 0,0040 0,0080 0,0100Y 0 -0,0160 -0,0100 -0,0020 0,0020Z 0 -0,0810 -0,0720 -0,0530 -0,0470

tool X 0 0,0190 0,0240 0,0350 0,0580Y 0 -0,0050 -0,0040 0,0490 0,0160Z 0 -0,0690 -0,0710 0,0380 -0,0280

table X 0 0,0420 0,0470 0,0490 0,0490Y 0 -0,0210 -0,0210 -0,0210 -0,0210Z 0 -0,0350 -0,0340 -0,0330 -0,0330

BALL SCREW T=293K Position CFG

time (s)sensor displacement direction 0 3600 7200 10800 14400

dispacement (mm) ball screw X X 0 0,0200 0,0330 0,0400 0,0450Y 0 0,0001 0,0003 0,0004 0,0004Z 0 0,0008 0,0008 0,0007 0,0007

ball screw Y X 0 0,0009 0,0010 0,0010 0,0010Y 0 0,0390 0,0680 0,0910 0,1100Z 0 0,0020 -0,0004 -0,0020 -0,0030

ball screw Z X 0 0,0020 0,0030 0,0100 0,0120Y 0 0,0050 0,0060 0,0120 0,0130Z 0 0,0230 0,0330 0,0520 0,0540

tool X 0 0,0020 0,0100 0,0210 0,0500Y 0 0,0160 0,0110 0,0550 0,0230Z 0 0,0500 0,0510 0,1630 0,1010

table X 0 0,0200 0,0320 0,0400 0,0440Y 0 0,0006 0,0004 0,0004 0,0003Z 0 0,0010 0,0010 0,0010 0,0010

BALL SCREW T=295K Position CFG

time (s)sensor displacement direction 0 3600 7200 10800 14400

dispacement (mm) ball screw X X 0 0,0320 0,0450 0,0520 0,0570Y 0 0,0010 0,0010 0,0020 0,0020Z 0 -0,0100 -0,0100 -0,0100 -0,0100

ball screw Y X 0 -0,0070 -0,0060 -0,0060 -0,0060Y 0 0,0350 0,0640 0,0860 0,1050Z 0 -0,0520 -0,0530 -0,0530 -0,0530

ball screw Z X 0 0,0020 0,0030 0,0090 0,0120Y 0 -0,0150 -0,0140 -0,0080 -0,0070Z 0 -0,0110 -0,0006 0,0190 0,0220

tool X 0 0,0100 0,0160 0,0250 0,0530Y 0 -0,0020 -0,0050 0,0380 0,0060

0 0,0150 0,0180 0,1280 0,0660table X 0 0,0410 0,0530 0,0610 0,0650

Y 0 -0,0080 -0,0080 -0,0080 -0,0080Z 0 -0,0100 -0,0090 -0,0090 -0,0090

Page 99: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

98    

   

   

   

BALL SCREW T=298K Position CFG

time (s)sensor displacement direction 0 3600 7200 10800 14400

dispacement (mm) ball screw X X 0 0,0510 0,0630 0,0700 0,0740Y 0 0,0030 0,0030 0,0030 0,0030Z 0 -0,0270 -0,0260 -0,0260 -0,0250

ball screw Y X 0 -0,0180 -0,0180 -0,0180 -0,0180Y 0 0,0290 0,0570 0,0790 0,0970Z 0 -0,1320 -0,1310 -0,1290 -0,1270

ball screw Z X 0 0,0020 0,0030 0,0080 0,0100Y 0 -0,0450 -0,0440 -0,0380 -0,0360Z 0 -0,0620 -0,0500 -0,0310 -0,0260

tool X 0 0,0210 0,0250 0,0320 0,0580Y 0 -0,0280 -0,0300 0,0120 -0,0200Z 0 -0,0380 -0,0320 0,0760 0,0150

table X 0 0,0730 0,0850 0,0930 0,0970Y 0 -0,0210 -0,0210 -0,0210 -0,0200Z 0 -0,0260 -0,0240 -0,0240 -0,0230

Page 100: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

99    

   

   

   

0,0000  0,0050  0,0100  0,0150  0,0200  0,0250  0,0300  0,0350  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  X,  displacement  in  X  during  work  cycle  with  iniaal  temperature  295K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

0,0000  

0,0005  

0,0010  

0,0015  

0,0020  

0,0025  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  X,  displacement  in  Y  during  work  cycle  with  iniaal  temperature  295K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

Page 101: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

100    

   

   

   

-­‐0,0105  

-­‐0,0100  

-­‐0,0095  

-­‐0,0090  

-­‐0,0085  3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  X,  displacement  in  Z  during  work  cycle  with  iniaal  temperature  295K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

0,0360  0,0380  0,0400  0,0420  0,0440  0,0460  0,0480  0,0500  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  X,  displacement  in  X  during  work  cycle  with  iniaal  temperature  298K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

0,0000  

0,0010  

0,0020  

0,0030  

0,0040  

0,0050  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  X,  displacement  in  Y  during  work  cycle  with  iniaal  temperature  298K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

Page 102: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

101    

   

   

   

-­‐0,0265  

-­‐0,0260  

-­‐0,0255  

-­‐0,0250  

-­‐0,0245  

-­‐0,0240  

-­‐0,0235  

-­‐0,0230  3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  X,  displacement  in  Z  during  work  cycle  with  iniaal  temperature  298K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

0,0000  

0,0100  

0,0200  

0,0300  

0,0400  

0,0500  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  X,  displacement  in  X  during  work  cycle  with  iniaal  temperature  293K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

0,0000  

0,0001  

0,0002  

0,0003  

0,0004  

0,0005  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  X,  displacement  in  Y  during  work  cycle  with  iniaal  temperature  293K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

Page 103: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

102    

   

   

   

0,0000  

0,0002  

0,0004  

0,0006  

0,0008  

0,0010  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  X,  displacement  in  Z  during  work  cycle  with  iniaal  temperature  293K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

0,0000  

0,0100  

0,0200  

0,0300  

0,0400  

0,0500  

0,0600  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  X,  displacement  in  X  during  work  cycle  with  iniaal  temperature  295K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

0,0000  

0,0005  

0,0010  

0,0015  

0,0020  

0,0025  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  X,  displacement  in  Y  during  work  cycle  with  iniaal  temperature  295K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

Page 104: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

103    

   

   

   

-­‐0,0120  

-­‐0,0100  

-­‐0,0080  

-­‐0,0060  

-­‐0,0040  

-­‐0,0020  

0,0000  3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  X,  displacement  in  Z  during  work  cycle  with  iniaal  temperature  295K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

0,0000  0,0100  0,0200  0,0300  0,0400  0,0500  0,0600  0,0700  0,0800  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  X,  displacement  in  X  during  work  cycle  with  iniaal  temperature  298K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

0,0000  0,0005  0,0010  0,0015  0,0020  0,0025  0,0030  0,0035  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  X,  displacement  in  Y  during  work  cycle  with  iniaal  temperature  298K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

Page 105: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

104    

   

   

   

-­‐0,0275  

-­‐0,0270  

-­‐0,0265  

-­‐0,0260  

-­‐0,0255  

-­‐0,0250  

-­‐0,0245  

-­‐0,0240  3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  X,  displacement  in  Z  during  work  cycle  with  iniaal  temperature  298K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

0,0009  0,0009  0,0009  0,0009  0,0010  0,0010  0,0010  0,0010  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame(s)  

ball  screw  Y,  displacement  in  X  during  work  cycle  with  iniaal  temperature  293K  at  posiaon  BEH  

ball  screw  YES  

ball  screw  NO  

0,0000  0,0100  0,0200  0,0300  0,0400  0,0500  0,0600  0,0700  0,0800  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  Y,  displacement  in  Y  during  work  cycle  with  iniaal  temperature  293K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

Page 106: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

105    

   

   

   

-­‐0,0010  

-­‐0,0005  

0,0000  

0,0005  

0,0010  

0,0015  

0,0020  

0,0025  

3600   7200   10800   14400  displacemen

t  (mm)  

ame  (s)  

ball  screw  Y,  displacement  in  Z  during  work  cylce  with  iniaal  temperature  293K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

-­‐0,0072  -­‐0,0070  -­‐0,0068  -­‐0,0066  -­‐0,0064  -­‐0,0062  -­‐0,0060  -­‐0,0058  -­‐0,0056  -­‐0,0054  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame(s)  

ball  screw  Y,  displacement  in  X  during  work  cycle  with  iniaal  temperature  295K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

0,0000  0,0100  0,0200  0,0300  0,0400  0,0500  0,0600  0,0700  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  Y,  displacement  in  Y  during  work  cycle  with  iniaal  temperature  295K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

Page 107: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

106    

   

   

   

-­‐0,0512  -­‐0,0510  -­‐0,0508  -­‐0,0506  -­‐0,0504  -­‐0,0502  -­‐0,0500  -­‐0,0498  -­‐0,0496  -­‐0,0494  

3600   7200   10800   14400  displacemen

t  (mm)  

ame  (s)  

ball  screw  Y,  displacement  in  Z  during  work  cylce  with  iniaal  temperature  295K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

-­‐0,0200  

-­‐0,0150  

-­‐0,0100  

-­‐0,0050  

0,0000  3600   7200   10800   14400  

displacemen

t  (mm)  

ame(s)  

ball  screw  Y,  displacement  in  X  during  work  cycle  with  iniaal  temperature  298K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

0,0000  

0,0100  

0,0200  

0,0300  

0,0400  

0,0500  

0,0600  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  Y,  displacement  in  Y  during  work  cycle  with  iniaal  temperature  298K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

Page 108: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

107    

   

   

   

-­‐0,1320  

-­‐0,1300  

-­‐0,1280  

-­‐0,1260  

-­‐0,1240  

-­‐0,1220  

-­‐0,1200  3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  Y,  displacement  in  Z  during  work  cylce  with  iniaal  temperature  298K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

0,0008  

0,0009  

0,0009  

0,0010  

0,0010  

0,0011  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame(s)  

ball  screw  Y,  displacement  in  X  during  work  cycle  with  iniaal  temperature  293K  at  posiaon  CFG  

ball  screw  YES  

ball  screw  NO  

0,0000  

0,0200  

0,0400  

0,0600  

0,0800  

0,1000  

0,1200  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  Y,  displacement  in  Y  during  work  cycle  with  iniaal  temperature  293K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

Page 109: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

108    

   

 

 

 

-­‐0,0040  

-­‐0,0030  

-­‐0,0020  

-­‐0,0010  

0,0000  

0,0010  

0,0020  

0,0030  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  Y,  displacement  in  Z  during  work  cylce  with  iniaal  temperature  293K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

-­‐0,0072  -­‐0,0070  -­‐0,0068  -­‐0,0066  -­‐0,0064  -­‐0,0062  -­‐0,0060  -­‐0,0058  -­‐0,0056  -­‐0,0054  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame(s)  

ball  screw  Y,  displacement  in  X  during  work  cycle  with  iniaal  temperature  295K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

0,0000  

0,0200  

0,0400  

0,0600  

0,0800  

0,1000  

0,1200  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  Y,  displacement  in  Y  during  work  cycle  with  iniaal  temperature  295K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

Page 110: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

109    

 

 

 

 

 

-­‐0,0532  -­‐0,0530  -­‐0,0528  -­‐0,0526  -­‐0,0524  -­‐0,0522  -­‐0,0520  -­‐0,0518  -­‐0,0516  -­‐0,0514  

3600   7200   10800   14400  displacemen

t  (mm)  

ame  (s)  

ball  screw  Y,  displacement  in  Z  during  work  cylce  with  iniaal  temperature  295K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

-­‐0,0200  

-­‐0,0150  

-­‐0,0100  

-­‐0,0050  

0,0000  3600   7200   10800   14400  

displacemen

t  (mm)  

ame(s)  

ball  screw  Y,  displacement  in  X  during  work  cycle  with  iniaal  temperature  298K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

0,0000  

0,0200  

0,0400  

0,0600  

0,0800  

0,1000  

0,1200  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  Y,  displacement  in  Y  during  work  cycle  with  iniaal  temperature  298K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

Page 111: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

110    

 

 

     

   

-­‐0,1330  -­‐0,1320  -­‐0,1310  -­‐0,1300  -­‐0,1290  -­‐0,1280  -­‐0,1270  -­‐0,1260  -­‐0,1250  -­‐0,1240  

3600   7200   10800   14400  displacemen

t  (mm)  

ame  (s)  

ball  screw  Y,  displacement  in  Z  during  work  cylce  with  iniaal  temperature  298K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

0,00000  

0,00200  

0,00400  

0,00600  

0,00800  

0,01000  

0,01200  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  Z,  displacement  in  X  during  work  cycle  with  iniaal  temperature  293K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

0,00000  0,00500  0,01000  0,01500  0,02000  0,02500  0,03000  0,03500  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  Z,  displacement  in  Y  during  work  cycle  with  iniaal  temperature  293K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

Page 112: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

111    

   

   

   

0,00000  

0,01000  

0,02000  

0,03000  

0,04000  

0,05000  

0,06000  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  Z,  displacement  in  Z  during  work  cycle  with  iniaal  temperature  293K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

0,0000  

0,0020  

0,0040  

0,0060  

0,0080  

0,0100  

0,0120  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  Z,  displacement  in  X  during  work  cycle  with  iniaal  temperature  295K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

-­‐0,0150  -­‐0,0100  -­‐0,0050  0,0000  0,0050  0,0100  0,0150  0,0200  0,0250  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  Z,  displacement  in  Y  during  work  cycle  with  iniaal  temperature  295K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

Page 113: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

112    

   

   

   

-­‐0,0250  -­‐0,0200  -­‐0,0150  -­‐0,0100  -­‐0,0050  0,0000  0,0050  0,0100  0,0150  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  Z,  displacement  in  Z  during  work  cycle  with  iniaal  temperature  295K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

0,0000  

0,0020  

0,0040  

0,0060  

0,0080  

0,0100  

0,0120  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  Z,  displacement  in  X  during  work  cycle  with  iniaal  temperature  298K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

-­‐0,0350  -­‐0,0300  -­‐0,0250  -­‐0,0200  -­‐0,0150  -­‐0,0100  -­‐0,0050  0,0000  0,0050  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  Z,  displacement  in  Y  during  work  cycle  with  iniaal  temperature  298K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

Page 114: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

113    

   

   

 

-­‐0,1000  

-­‐0,0800  

-­‐0,0600  

-­‐0,0400  

-­‐0,0200  

0,0000  3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  Z,  displacement  in  Z  during  work  cycle  with  iniaal  temperature  298K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

-­‐0,04000  

-­‐0,03000  

-­‐0,02000  

-­‐0,01000  

0,00000  

0,01000  

0,02000  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  Z,  displacement  in  Y  during  work  cycle  with  different  iniaal  temperatures  at  posiaon  BEH  

glass  scale  YES  293K  

glass  scale  YES  295K  

glass  scale  YES  298K  

-­‐0,020000  

-­‐0,010000  

0,000000  

0,010000  

0,020000  

0,030000  

0,040000  

3600   7200   10800   14400  displacemen

t  (mm)  

ame  (s)  

ball  screw  Z,  displacement  in  Y  during  work  cycle  with  different  iniaal  temperatures  at  posiaon  BEH  

glass  scale  NO  293K  

glass  scale  NO  295K  

glass  scale  NO  298K  

Page 115: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

114    

   

   

 

0,0000  0,0020  0,0040  0,0060  0,0080  0,0100  0,0120  0,0140  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  Z,  displacement  in  X  during  work  cycle  with  iniaal  temperature  293K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

0,0000  0,0020  0,0040  0,0060  0,0080  0,0100  0,0120  0,0140  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  Z,  displacement  in  Y  during  work  cycle  with  iniaal  temperature  293K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

0,0000  

0,0100  

0,0200  

0,0300  

0,0400  

0,0500  

0,0600  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  Z,  displacement  in  Z  during  work  cycle  with  iniaal  temperature  293K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

Page 116: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

115    

   

   

 

0,0000  0,0020  0,0040  0,0060  0,0080  0,0100  0,0120  0,0140  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  Z,  displacement  in  X  during  work  cycle  with  iniaal  temperature  295K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

-­‐0,0160  

-­‐0,0140  

-­‐0,0120  

-­‐0,0100  

-­‐0,0080  

-­‐0,0060  

-­‐0,0040  

-­‐0,0020  

0,0000  3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  Z,  displacement  in  Y  during  work  cycle  with  iniaal  temperature  295K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

-­‐0,0150  -­‐0,0100  -­‐0,0050  0,0000  0,0050  0,0100  0,0150  0,0200  0,0250  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  Z,  displacement  in  Z  during  work  cycle  with  iniaal  temperature  295K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

Page 117: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

116    

   

   

 

0,0000  

0,0020  

0,0040  

0,0060  

0,0080  

0,0100  

0,0120  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  Z,  displacement  in  X  during  work  cycle  with  iniaal  temperature  298K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

-­‐0,0500  

-­‐0,0400  

-­‐0,0300  

-­‐0,0200  

-­‐0,0100  

0,0000  3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  Z,  displacement  in  Y  during  work  cycle  with  iniaal  temperature  298K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

-­‐0,0700  

-­‐0,0600  

-­‐0,0500  

-­‐0,0400  

-­‐0,0300  

-­‐0,0200  

-­‐0,0100  

0,0000  3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  Z,  displacement  in  Z  during  work  cycle  with  iniaal  temperature  298K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

Page 118: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

117    

   

   

   

-­‐0,0500  

-­‐0,0400  

-­‐0,0300  

-­‐0,0200  

-­‐0,0100  

0,0000  

0,0100  

0,0200  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  Z,  displacement  in  Y  during  work  cycle  with  different  iniaal  temperatures  at  posiaon  CFG  

glass  scale  YES  293K  

glass  scale  YES  295K  

glass  scale  YES  298K  

-­‐0,0500  

-­‐0,0400  

-­‐0,0300  

-­‐0,0200  

-­‐0,0100  

0,0000  

0,0100  

0,0200  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

ball  screw  Z,  displacement  in  Y  during  work  cycle  with  different  iniaal  temperatures  at  posiaon  CFG  

glass  scale  NO  293K  

glass  scale  NO  295K  

glass  scale  NO  298K  

0,00000  

0,01000  

0,02000  

0,03000  

0,04000  

0,05000  

0,06000  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Tool,  displacement  in  X  during  work  cycle  with  iniaal  temperature  293K  at  posaaon  BEH  

glass  scale  YES  

glass  scale  NO  

Page 119: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

118    

   

 

 

 

0,00000  

0,02000  

0,04000  

0,06000  

0,08000  

0,10000  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Tool,  displacement  in  Y  during  work  cycle  with  iniaal  temperature  293K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

0,00000  0,02000  0,04000  0,06000  0,08000  0,10000  0,12000  0,14000  0,16000  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Tool,  displacement  in  Z  during  work  cycle  with  iniaal  temperature  293K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

0,0000  

0,0100  

0,0200  

0,0300  

0,0400  

0,0500  

0,0600  

3600   7200   10800   14400  

dispacem

ent  (mm)  

ame  (s)  

Tool,  displacement  in  X  during  work  cycle  with  iniaal  temperature  295K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

Page 120: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

119    

 

 

 

-­‐0,0200  

0,0000  

0,0200  

0,0400  

0,0600  

0,0800  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Tool,  displacemtent  in  Y  during  work  cycle  with  iniaal  temperature  295K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

-­‐0,0400  -­‐0,0200  0,0000  0,0200  0,0400  0,0600  0,0800  0,1000  0,1200  

3600   7200   10800   14400  displacemen

t  (mm)  

ame  (s)  

Tool,  displacement  in  Z  during  work  cycle  with  iniaal  temperature  295K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

0,0000  0,0100  0,0200  0,0300  0,0400  0,0500  0,0600  0,0700  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Tool,  displacement  in  X  during  work  cycle  with  iniaal  temperature  298K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

Page 121: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

120    

 

 

 

 

-­‐0,0400  

-­‐0,0200  

0,0000  

0,0200  

0,0400  

0,0600  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Tool,  displacement  in  Y  during  work  cycle  with  iniaal  temperature  298K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

-­‐0,1000  -­‐0,0800  -­‐0,0600  -­‐0,0400  -­‐0,0200  0,0000  0,0200  0,0400  0,0600  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Tool,  displacement  in  Z  during  work  cycle  with  iniaal  temperature  298K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

-­‐0,10000  

-­‐0,05000  

0,00000  

0,05000  

0,10000  

0,15000  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Tool,  displacement  in  Z  during  work  cycle  with  different  iniaal  temperatures  at  posiaon  BEH  

glass  scale  YES  293K  

glass  scale  YES  295K  

glass  scale  YES  298K  

Page 122: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

121    

 

 

 

-­‐0,100000  

-­‐0,050000  

0,000000  

0,050000  

0,100000  

0,150000  

0,200000  

3600   7200   10800   14400  displacemen

t  (mm)  

ame  (s)  

Tool,  displacement  in  Z  during  work  cycle  with  different  iniaal  temperatures  at  posiaon  BEH  

glass  scale  NO  293K  

glass  scale  NO  295K  

glass  scale  NO  298K  

0,0000  

0,0100  

0,0200  

0,0300  

0,0400  

0,0500  

0,0600  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Tool,  displacement  in  X  during  work  cycle  with  iniaal  temperature  293K  at  posaaon  CFG  

glass  scale  YES  

glass  scale  NO  

0,0000  

0,0100  

0,0200  

0,0300  

0,0400  

0,0500  

0,0600  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Tool,  displacement  in  Y  during  work  cycle  with  iniaal  temperature  293K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

Page 123: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

122    

 

 

 

0,0000  

0,0500  

0,1000  

0,1500  

0,2000  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Tool,  displacement  in  Z  during  work  cycle  with  iniaal  temperature  293K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

0,0000  

0,0100  

0,0200  

0,0300  

0,0400  

0,0500  

0,0600  

3600   7200   10800   14400  

dispacem

ent  (mm)  

ame  (s)  

Tool,  displacement  in  X  during  work  cycle  with  iniaal  temperature  295K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

-­‐0,0200  

-­‐0,0100  

0,0000  

0,0100  

0,0200  

0,0300  

0,0400  

0,0500  

3600   7200   10800   14400  displacemen

t  (mm)  

ame  (s)  

Tool,  displacemtent  in  Y  during  work  cycle  with  iniaal  temperature  295K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

Page 124: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

123    

 

 

 

-­‐0,0200  0,0000  0,0200  0,0400  0,0600  0,0800  0,1000  0,1200  0,1400  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Tool,  displacement  in  Z  during  work  cycle  with  iniaal  temperature  295K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

0,0000  0,0100  0,0200  0,0300  0,0400  0,0500  0,0600  0,0700  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Tool,  displacement  in  X  during  work  cycle  with  iniaal  temperature  298K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

-­‐0,0400  

-­‐0,0300  

-­‐0,0200  

-­‐0,0100  

0,0000  

0,0100  

0,0200  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Tool,  displacement  in  Y  during  work  cycle  with  iniaal  temperature  298K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

Page 125: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

124    

 

 

 

 

 

-­‐0,0800  -­‐0,0600  -­‐0,0400  -­‐0,0200  0,0000  0,0200  0,0400  0,0600  0,0800  0,1000  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Tool,  displacement  in  Z  during  work  cycle  with  iniaal  temperature  298K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

-­‐0,1000  

-­‐0,0500  

0,0000  

0,0500  

0,1000  

0,1500  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Tool,  displacement  in  Z  during  work  cycle  with  different  iniaal  temperatures  at  posiaon  CFG  

glass  scale  YES  293K  

glass  scale  YES  295K  

glass  scale  YES  298K  

-­‐0,0500  

0,0000  

0,0500  

0,1000  

0,1500  

0,2000  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Tool,  displacement  in  Z  during  work  cycle  with  different  iniaal  temperatures  at  posiaon  CFG  

glass  scale  NO  293K  

glass  scale  NO  295K  

glass  scale  NO  298K  

Page 126: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

125    

 

 

 

 

-­‐0,005  

0  

0,005  

0,01  

0,015  

0,02  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Table,  displacement  in  X  during  work  cycle  with  iniaal  temperature  293K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

0  0,0001  0,0002  0,0003  0,0004  0,0005  0,0006  0,0007  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Table,  displacement  in  Y  during  work  cycle  with  iniaal  temperature  293K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

0  

0,0002  

0,0004  

0,0006  

0,0008  

0,001  

0,0012  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Table,  displacement  in  Z  during  work  cycle  with  iniaal  temperature  293K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

Page 127: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

126    

 

 

 

 

0,0000  0,0050  0,0100  0,0150  0,0200  0,0250  0,0300  0,0350  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Table,  displacement  in  X  during  work  cycle  with  iniaal  temperature  295K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

-­‐0,0100  

-­‐0,0080  

-­‐0,0060  

-­‐0,0040  

-­‐0,0020  

0,0000  3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Table,  displacement  in  Y  during  work  cycle  with  iniaal  temperature  295K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

-­‐0,0132  -­‐0,0130  -­‐0,0128  -­‐0,0126  -­‐0,0124  -­‐0,0122  -­‐0,0120  -­‐0,0118  -­‐0,0116  -­‐0,0114  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Table,  displacement  in  Z  during  work  cycle  with  iniaal  temperature  295K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

Page 128: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

127    

 

 

 

 

 

0,0000  

0,0100  

0,0200  

0,0300  

0,0400  

0,0500  

0,0600  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Table,  displacement  in  X  during  work  cycle  with  iniaal  temperature  298K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

-­‐0,0250  

-­‐0,0200  

-­‐0,0150  

-­‐0,0100  

-­‐0,0050  

0,0000  3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Table,  displacement  in  Y  during  work  cycle  with  iniaal  temperature  298K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

-­‐0,0370  

-­‐0,0360  

-­‐0,0350  

-­‐0,0340  

-­‐0,0330  

-­‐0,0320  

-­‐0,0310  3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Table,  displacement  in  Z  during  work  cycle  with  iniaal  temperature  298K  at  posiaon  BEH  

glass  scale  YES  

glass  scale  NO  

Page 129: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

128    

 

 

 

0  

0,01  

0,02  

0,03  

0,04  

0,05  

0,06  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Table,  displacement  in  X  during  work  cycle  with  different  iniaal  temperatures  at  posiaon  BEH  

glass  scale  NO  293K  

glass  scale  NO  295K  

glass  scale  NO  298K  

-­‐0,0100  

0,0000  

0,0100  

0,0200  

0,0300  

0,0400  

0,0500  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Table,  displacement  in  X  during  work  cycle  with  iniaal  temperature  293K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

0,0000  

0,0001  

0,0002  

0,0003  

0,0004  

0,0005  

0,0006  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Table,  displacement  in  Y  during  work  cycle  with  iniaal  temperature  293K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

Page 130: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

129    

 

 

 

0,0010  0,0010  0,0010  0,0010  0,0010  0,0010  0,0010  0,0010  0,0010  0,0010  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Table,  displacement  in  Z  during  work  cycle  with  iniaal  temperature  293K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

0,0000  0,0100  0,0200  0,0300  0,0400  0,0500  0,0600  0,0700  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Table,  displacement  in  X  during  work  cycle  with  iniaal  temperature  295K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

-­‐0,0120  

-­‐0,0100  

-­‐0,0080  

-­‐0,0060  

-­‐0,0040  

-­‐0,0020  

0,0000  3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Table,  displacement  in  Z  during  work  cycle  with  iniaal  temperature  295K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

Page 131: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

130    

 

 

 

-­‐0,0100  

-­‐0,0080  

-­‐0,0060  

-­‐0,0040  

-­‐0,0020  

0,0000  3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Table,  displacement  in  Y  during  work  cycle  with  iniaal  temperature  295K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

0,0000  

0,0200  

0,0400  

0,0600  

0,0800  

0,1000  

0,1200  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Table,  displacement  in  X  during  work  cycle  with  iniaal  temperature  298K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

-­‐0,0212  -­‐0,0210  -­‐0,0208  -­‐0,0206  -­‐0,0204  -­‐0,0202  -­‐0,0200  -­‐0,0198  -­‐0,0196  -­‐0,0194  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Table,  displacement  in  Y  during  work  cycle  with  iniaal  temperature  298K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

Page 132: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

131    

 

 

 

 

 

 

-­‐0,0270  

-­‐0,0260  

-­‐0,0250  

-­‐0,0240  

-­‐0,0230  

-­‐0,0220  

-­‐0,0210  3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Table,  displacement  in  Z  during  work  cycle  with  iniaal  temperature  298K  at  posiaon  CFG  

glass  scale  YES  

glass  scale  NO  

-­‐0,0100  

0,0000  

0,0100  

0,0200  

0,0300  

0,0400  

0,0500  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Table,  displacement  in  X  during  work  cycle  with  different  iniaal  temperatures  at  posiaon  CFG  

glass  scale  YES  293K  

glass  scale  YES  295K  

glass  scale  YES  298K  

0,0000  

0,0200  

0,0400  

0,0600  

0,0800  

0,1000  

0,1200  

3600   7200   10800   14400  

displacemen

t  (mm)  

ame  (s)  

Table,  displacement  in  X  during  work  cycle  with  different  iniaal  temperatures  at  posiaon  CFG  

glass  scale  NO  293K  

glass  scale  NO  295K  

glass  scale  NO  298K  

Page 133: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

132    

11.  References  

[1]  Heidenhain  linear  scales  http://www.heidenhain.com  

[2]  Luis  Miguel  Sanchez-­‐Brea  and  Tomas  Morlanes  2008  Metrological  errors  in  optical  encoders    Meas.  Sci.  Technol.  19    

[3]  Ignacio  Alejandre  and  Mariano  Artés  2006  Analysis  of  the  Precision  Lost  in  Optical  Linear  Encoders  as  a  Consequence  of  Reticule  Deformation,  Informacion  Tecnologica  v  17,  n6  La  Serena  2006.  

 [4]  Thomas  P.  Moran  and  John  M.  Carroll  1996  Design  Rationale:  Concepts,  Techniques  and  Use  Lawerence  Erlbaum  Associates.    

[5]  M.  Weck,  P.  McKeown,  R.  Bonse  and  U.  Herbst:    Reduction  and  compensation  of  Thermal  Errors  in  Machine  Tools,  Annals  of  the  CIRP,  Vol  44,  Issue  2,  1995,  pages  589-­‐598.    

[6]  L.K.  Kayak,  E.E.  Sharova  and  O.V.  Yachmentsev:    Linear  and  Angular  measurements.  Metrological  means  of  increasing  the  accuracy  of  precision  machine  tools,  UDC  (531.71=531.74).088:621.9  

[7]  L.K.  Kayak:  Linear  and  Angular  measurements.  Standardization  of  Linear  measurements,  UDC  389.6:531.71  

[8]  P.  Compton  and  R.  Jansen  1989  A  philosophical  basis  for  knowledge  acquisition,  European  knowledge  acquisition  for  knowledge  based  systems  workshop  1989  

[9]  Clyde  W.  Holsapple  and  Andrew  B.  Whinston,  Manager's  Guide  to  Expert  Systems  Using  Guru  

[10]  SKF  Group,  Interactive  engineering  catalog:  http://www.skf.com/portal/skf/home/products?maincatalogue=1&newlink=first&lang=en  

[11]  Tae  Jo  Ko,  Tae-­‐weon  Gim  and  Jae-­‐yong  Ha:  Particular  behavior  of  spindle  thermal  deformation  by  thermal  bending,  International  Journal  of  Machine  Tool  and  Manufacture  43  (2003)  17-­‐23  

[12]  Jong-­‐Jin  Kim,  Young  Hun  Jeong  and  Dong-­‐Woo  Cho:  Thermal  behavior  of  a  machine  tool  equipped  with  linear  motors,  International  Journal  of  Machine  Tool  and  Manufacture  44(2004)  749-­‐758  

[13]  H.J.  Pahk  and  S.W.  Lee:  Thermal  Error  Measurement  and  Real  Time  Compensation  System  for  the  CNC  Machine  Tools  Incorporating  the  Spindle  Thermal  Error  and  the  Feed  Axis  Thermal  Error,  ,  Int  J  Adv  Technol(2002)  20:487-­‐494  

Page 134: Analyses of Linear Encoder Application (Glass Scale) on Quality of Machining Centre by Santiago M. Vilar

133    

[14]  Bernd  Bossmanns  A  Power  flow  model  for  high  speed  motorized  spindle,  J.Manuf.  Sci.  Eng.  2001,  vol  123,  issue  3,  493  

[15]  Eugene  A.  Avallone,  Theodore  Baumeister  Marks'  Standard  Handbook  for  Mechanical  Engineers,  McGraw-­‐Hill  Professional  2006,  ISBN:  0071428674