ANALIZA I IMPLEMENTACJA PROCEDUR KWALIFIKACYJNYCH LOTNICZYCH REJESTRATORÓW ... · 2018. 12....

6
Technologia i Automatyzacja Montażu 4/2012 19 ANALIZA I IMPLEMENTACJA PROCEDUR KWALIFIKACYJNYCH LOTNICZYCH REJESTRATORÓW POKŁADOWYCH DO BADAŃ MATERIAŁÓW KOMPOZYTOWYCH Paweł Przybyłek, Andrzej Komorek, Magdalena Świercz Pierwszy rejestrator parametrów lotu skonstruowany przez braci Wright umożliwiał rejestrację prędkości lotu oraz prędkości obrotowej śmigła. Był zainstalowany na pokładzie samolotu Flyer już podczas jego pierwszego lotu, w dniu 17.12.1903 r. Kolejne historyczne loty rów- nież zostały potwierdzone zapisami z urządzeń, nazwa- nych później rejestratorami pokładowymi, jak np. ba- rograf samolotu Spirit of St. Louis zapisujący wartość ciśnienia barometrycznego na obracającym się papiero- wym bębnie (rys. 1). Rys. 1. Barograf samolotu Lindbergha Spirit of St. Louis Intensywny rozwój lotnictwa podczas drugiej wojny światowej był impulsem do rozwoju rejestratorów pokła- dowych, które zaczęto wykorzystywać do odtwarzania przebiegu zdarzeń lotniczych. W 1940 r. rozpoczęto pra- ce nad budową rejestratora odpornego na działanie ob- ciążeń dynamicznych i termicznych, będących skutkiem katastrofy lotniczej. Do zapisu informacji w pierwszym rejestratorze katastroficznym (1954 r.) wykorzystano igłę, znaczącą linię zapisu na metalowej folii. Czas trwania zapisu określano na podstawie jego długości i prędkości przesuwania folii (~ 6 cali/godz.). W Anglii opracowano rejestrator, w którym wykorzystano zapis danych na cien- kim drucie z materiału ferromagnetycznego. Drut, jako nośnik informacji, był odporny na wysoką temperaturę, jednak łatwo ulegał zniszczeniu pod wpływem przecią- żeń. Równolegle we Francji używano rejestratorów z optycznym systemem zapisu danych na papierze świa- tłoczułym, jednak taki nośnik był łatwopalny i wrażliwy na prześwietlenie w przypadku pęknięcia obudowy. Przez kolejne lata udoskonalano metody zapisu i ochrony zarejestrowanych informacji, tak że obecnie cechy konstrukcyjne rejestratorów umożliwiają zachowa- nie, a także odtworzenie informacji, nawet w przypadku zniszczenia konstrukcji statku powietrznego. Wymagania dotyczące zabezpieczenia rejestratorów pokładowych W 1957 r., po serii katastrof, wprowadzono w USA przepisy nakazujące instalowanie pokładowych reje- stratorów parametrów lotu na wszystkich statkach po- wietrznych. Przepisy odwoływały się do dokumentu Technical Standards Order (TSO C51), określającego jakość i rodzaj zapisywanych parametrów oraz wyma- gania dotyczące zdolności rejestratora do przetrwania, w przypadku wystąpienia obciążeń udarowych i wyso- kotemperaturowych. Na początku lat sześćdziesiątych zmodyfikowano kryteria dotyczące dodatkowej ochrony rejestratorów przed skutkami uderzenia i zniszczeniem w wyniku oddziaływania intensywnego strumienia ciepl- nego. Zalecono także montaż rejestratora w tylnej części kadłuba, co zwiększało szanse na skuteczną ochronę nośnika danych. Procedury kwalifikacyjne lotniczych rejestratorów pokładowych Obudowy ochronne rejestratorów lotniczych muszą zabezpieczać moduły archiwizujące informacje rejestro- wane podczas lotu statku powietrznego. W celu oceny jakości ochrony danych po zdarzeniu lotniczym (szcze- gólnie wypadku lub katastrofie), konieczne jest przepro- wadzenie testów rejestratorów, określających: dopuszczalne, bezpieczne obciążenie udarowe pod- czas katastrofy, wytrzymałość na obciążenie statyczne, odporność na oddziaływanie cieczy agresywnych, odporność na przebicie, odporność na ciśnienie hydrostatyczne, odporność na oddziaływanie wysokotemperaturowe- go strumienia cieplnego, wpływ długotrwałego oddziaływania ognia o niskiej intensywności. Szczegółowe wymagania dotyczące zabezpieczenia zapisanych danych ustanowione przez FAA (Federal Aviation Administration) obowiązujące obecnie zostały zapisane w dokumentach TSO C123a i C124a. Normy wojskowe MIL-STD-2124A w tym zakresie pokrywają się z cywilnymi.

Transcript of ANALIZA I IMPLEMENTACJA PROCEDUR KWALIFIKACYJNYCH LOTNICZYCH REJESTRATORÓW ... · 2018. 12....

Page 1: ANALIZA I IMPLEMENTACJA PROCEDUR KWALIFIKACYJNYCH LOTNICZYCH REJESTRATORÓW ... · 2018. 12. 27. · zapisane w dokumentach TSO C123a i C124a. Normy wojskowe MIL-STD-2124A w tym zakresie

TechnologiaiAutomatyzacjaMontażu4/2012

19

ANALIZA I IMPLEMENTACJA PROCEDUR KWALIFIKACYJNYCH LOTNICZYCH REJESTRATORÓW

POKŁADOWYCH DO BADAŃ MATERIAŁÓW KOMPOZYTOWYCH

Paweł Przybyłek, Andrzej Komorek, Magdalena Świercz

Pierwszy rejestrator parametrów lotu skonstruowanyprzezbraciWrightumożliwiał rejestracjęprędkości lotuoraz prędkości obrotowej śmigła.Był zainstalowany napokładzie samolotu Flyer już podczas jego pierwszegolotu,wdniu17.12.1903r.Kolejnehistoryczne loty rów-nieżzostałypotwierdzonezapisamizurządzeń,nazwa-nych później rejestratorami pokładowymi, jak np. ba-rograf samolotu Spirit of St. Louis zapisującywartośćciśnieniabarometrycznegonaobracającymsiępapiero-wymbębnie(rys.1).

Rys.1.BarografsamolotuLindberghaSpiritofSt.Louis

Intensywny rozwój lotnictwa podczas drugiej wojnyświatowejbyłimpulsemdorozwojurejestratorówpokła-dowych, które zaczęto wykorzystywać do odtwarzaniaprzebieguzdarzeńlotniczych.W1940r.rozpoczętopra-cenadbudowąrejestratoraodpornegonadziałanieob-ciążeńdynamicznychitermicznych,będącychskutkiemkatastrofy lotniczej. Do zapisu informacji w pierwszymrejestratorzekatastroficznym(1954r.)wykorzystanoigłę,znaczącą linię zapisu na metalowej folii. Czas trwaniazapisuokreślanonapodstawiejegodługościiprędkościprzesuwania folii (~6cali/godz.).WAnglii opracowanorejestrator,wktórymwykorzystanozapisdanychnacien-kim drucie z materiału ferromagnetycznego. Drut, jakonośnik informacji, był odporny nawysoką temperaturę,jednak łatwo ulegał zniszczeniu podwpływemprzecią-żeń.

Równolegle we Francji używano rejestratorów zoptycznymsystememzapisudanychnapapierześwia-tłoczułym,jednaktakinośnikbyłłatwopalnyiwrażliwynaprześwietleniewprzypadkupęknięciaobudowy.

Przez kolejne lata udoskonalano metody zapisu i ochrony zarejestrowanych informacji, tak że obecniecechykonstrukcyjnerejestratorówumożliwiajązachowa-nie,atakżeodtworzenieinformacji,nawetwprzypadkuzniszczeniakonstrukcjistatkupowietrznego.

Wymagania dotyczące zabezpieczenia rejestratorów pokładowych

W 1957 r., po serii katastrof, wprowadzono w USAprzepisy nakazujące instalowanie pokładowych reje-stratorów parametrów lotu na wszystkich statkach po-wietrznych. Przepisy odwoływały się do dokumentuTechnical Standards Order (TSO C51), określającegojakość i rodzaj zapisywanych parametrów oraz wyma-gania dotyczące zdolności rejestratora do przetrwania,w przypadku wystąpienia obciążeń udarowych i wyso-kotemperaturowych. Na początku lat sześćdziesiątychzmodyfikowano kryteria dotyczące dodatkowej ochronyrejestratorów przed skutkami uderzenia i zniszczeniemwwynikuoddziaływania intensywnegostrumieniaciepl-nego.Zaleconotakżemontażrejestratorawtylnejczęścikadłuba, co zwiększało szanse na skuteczną ochronęnośnikadanych.

Procedury kwalifikacyjne lotniczych rejestratorów pokładowych

Obudowy ochronne rejestratorów lotniczych muszązabezpieczaćmodułyarchiwizująceinformacjerejestro-wanepodczas lotu statku powietrznego.W celu ocenyjakościochronydanychpozdarzeniu lotniczym(szcze-gólniewypadkulubkatastrofie),koniecznejestprzepro-wadzenietestówrejestratorów,określających:•• dopuszczalne,bezpieczneobciążenieudarowepod-

czaskatastrofy,

•• wytrzymałośćnaobciążeniestatyczne,

•• odpornośćnaoddziaływaniecieczyagresywnych,

•• odpornośćnaprzebicie,

•• odpornośćnaciśnieniehydrostatyczne,

•• odpornośćnaoddziaływaniewysokotemperaturowe-gostrumieniacieplnego,

•• wpływ długotrwałego oddziaływania ognia o niskiejintensywności.

Szczegółowe wymagania dotyczące zabezpieczeniazapisanych danych ustanowione przez FAA (FederalAviation Administration) obowiązujące obecnie zostałyzapisanewdokumentachTSOC123a iC124a.NormywojskoweMIL-STD-2124Awtymzakresiepokrywająsięz cywilnymi.

TiAM_4_2012.indd 19 2012-11-08 12:05:05

Page 2: ANALIZA I IMPLEMENTACJA PROCEDUR KWALIFIKACYJNYCH LOTNICZYCH REJESTRATORÓW ... · 2018. 12. 27. · zapisane w dokumentach TSO C123a i C124a. Normy wojskowe MIL-STD-2124A w tym zakresie

4/2012TechnologiaiAutomatyzacjaMontażu

20

Dopuszczalne bezpieczne obciążenie udarowe pod-czas katastrofy

Rejestrator jest poddawany obciążeniu udarowemudziałającemuwkierunkunajwiększejpodatnościobudo-wyochronnejnazniszczenie.Wartośćenergiiobciążeniapowinna być równa uderzeniu rejestratora w aluminio-wą tarczęwykonaną z elementów typu „plastermiodu” zprzyspieszeniem33342m/s2trwającym6,5ms.Spo-sóbprzyłożeniaobciążeniasymulujeobciążenie,jakiemumożebyćpoddany rejestrator podczas katastrofy lotni-czej.

Wytrzymałość na obciążenie statyczne Metodykaprzeprowadzaniatestuuzależnionajestod

kształtuobudowyochronnej.Liczbatestówkoniecznychdorealizacjiwynosiczterydlakształtusferycznegoorazco najmniej siedem dla wieloboku. Badanie polega nasprawdzeniuwytrzymałości obudowyochronnej podda-nejobciążeniu22,25kNprzez5minutwzdłużokreślo-nychdladanegokształtukierunków.

Odporność na oddziaływanie cieczy agresywnychSprawdzeniemożebyć realizowaneprzez poddanie

badaniutestowemusamejobudowylubcałegorejestra-toralotniczego.Rejestratorzanurzanyjestna48godzinw płynach eksploatacyjnych stosowanych w lotnictwie(paliwo lotnicze, benzyna lotnicza, alkohol metylowy,olejsilnikowy,płynhydrauliczny).Wprzypadkuobudowyochronnej,badaniepowinnobyćpoprzedzonesprawdze-niemjejwytrzymałościnaobciążeniestatyczneorazuda-rowe.Ponadtozalecanejestsprawdzenieodpornościre-jestratorawrazzobudowąnaoddziaływanienajbardziejdestrukcyjnegoześrodkówgaśniczych.Badaniepoleganazanurzeniu rejestratorawwyselekcjonowanejcieczyna8godzin.Poupływietegoczasusprawdzasięmożli-wośćodzyskaniazarchiwizowanychinformacji.

Odporność na przebicieProcedurasprawdzeniaodpornościrejestratora(obu-

dowy)naprzebiciejestuzależnionaodrodzajurejestra-tora (odrzucane, nieodrzucane).Najczęściej,w celu jejrealizacji,obciążnikomasie227kilogramów,zakończo-ny odpowiednio ukształtowaną końcówką o szerokości

6,5mm zrzucany jest z wysokości 3m (10 stóp), abyzbadać odporność obudowy rejestratora na obciążenieoddziałujące w najbardziej podatnym na uszkodzeniakierunku.Rejestratorumieszczanyjestnapodłożuzpia-sku(zgodnieznormąMIL-S-17526A).Odporność na ciśnienie hydrostatyczne

Badanie jest zwykle przeprowadzane w połączeniuze sprawdzeniem odporności obudowy ochronnej nakorozyjneoddziaływaniewodymorskiej.Informacjezar-chiwizowanew rejestratorze powinny przetrwać 30 dniprzebywaniawwodziemorskiejnagłębokości6000m,gdzieobudowapoddawanajestoddziaływaniuciśnienia30MPa.Samaprocedurabadaniaodpornościrejestrato-ranaoddziaływanieciśnieniahydrostatycznegopoleganaumieszczeniuurządzeniawzbiornikuhiperbarycznymwypełnionym odpowiednio dobranym płynem na okres24godzin.Oddziaływanie wysokotemperaturowego strumienia cieplnego (rys.2)

Obudowa zabezpieczająca rejestrator lub elementrejestratora zawierający pamięć, w której zapisano in-formacje, jest poddawana oddziaływaniu płomienia o temperaturze 1100°C przez 60minut (płomień powi-nienwytwarzaćstrumieńciepłaowartości158kW/m2).Liczba,wydajnośćirozmieszczeniepalnikóworazpara-metryczynnikaroboczego,dostarczanegodopalników,muszą zapewnić właściwy stopień przykrycia testowa-nego obiektu oraz średnią temperaturę na właściwympoziomie, tak aby zapewnić strumień ciepła określonyzależnością:

CASHFdTQ

⋅⋅⋅=

(1.1)

gdzie:dT –przyrosttemperaturyczynnikachłodzącego(wody)[°C];F – natężenie przepływu czynnika chłodzącego (wody)[kg/s];SH – ciepło właściwe czynnika chłodzącego (wody)[J/°C];

Rys.2.Stanowiskodobadaniaodpornościrejestratoranaoddziaływaniewysokichtemperatur

TiAM_4_2012.indd 20 2012-11-08 12:05:05

Page 3: ANALIZA I IMPLEMENTACJA PROCEDUR KWALIFIKACYJNYCH LOTNICZYCH REJESTRATORÓW ... · 2018. 12. 27. · zapisane w dokumentach TSO C123a i C124a. Normy wojskowe MIL-STD-2124A w tym zakresie

TechnologiaiAutomatyzacjaMontażu4/2012

21

A –powierzchniakalorymetru[m2];C –współczynnikabsorpcji(najczęściej0,5).

Przed testem dokonywana jest kalibracja zestawupalnikazapomocąwodnegokalorymetru,którypóźniej,podczasprzeprowadzaniabadańzastępujewłaściwyre-jestratorwewnątrztestowanejobudowy.

Długotrwałe oddziaływanie ognia o niskiej intensywności

Od 1990 r. wszystkie rejestratory pokładowemusząspełnićdodatkowywarunek,określającyodpornośćosłontermicznychpodczasoddziaływaniastrumieniacieplne-gootemperaturze t=260°Cigęstościq(t)=134kW/m2

przez10godzin.Sumaryczna ilośćciepła, jakamożebyćpochłonięta

przez powierzchnię zewnętrzną obudowy rejestratora,wedługnormC124iEd112,jestorządwielkościwiększaodciepłaQw,jakiedopuszczałynormy:C51,C84iC51a(rys.3).

Rys. 3. Ciepło przejmowane przez jednostkową powierzchnięobudowyrejestratoradlakolejnychnormTSO(wartościwzględ-ne)[1]

Implementacja procedur kwalifikacyjnych rejestratorów do badań materiałów kompozytowych

Przedstawione metody stosuje się podczas badańobudówochronnychrejestratorówparametrówlotu.Jed-nakżenależyzaznaczyć,żenadrzędnymwarunkiemdlawszystkichbadańrejestratorówjestmożliwośćodczyta-niapotestachzapisanejwpamięciinformacji,zatemna-leżyprzyjąć,żezaprezentowaneproceduryzaliczająsiędoprocedurkontrolnych,aniebadawczych.

Wykorzystując ww. metodę kontrolną rejestratorówparametrów lotu, opracowano procedurę badawcząumożliwiającąokreśleniewybranychwłaściwości icecheksploatacyjnych polimerowych kompozytów włókni-stych.

Wkonstrukcjistatkówpowietrznychwykorzystujesięróżne,m.in.kompozytowe,materiałydozabezpieczaniaróżnychelementówprzedwpływemwysokotemperaturo-wegostrumieniacieplnegoiczęstokorzystasięzmate-riałówowłaściwościachablacyjnych[4].

Ablacja jest samoregulującym się procesemwymia-nyciepłaimasy,wwynikuktórego,naskutekprzemianfizycznych oraz reakcji chemicznych, dochodzi do nie-

odwracalnychzmianstrukturalnychichemicznychmate-riałuzrównoczesnympochłanianiemciepła.Procestenjest inicjowany ipodtrzymywanyzzewnętrznychźródełenergiicieplnej.Termicznadestrukcjatworzywajestpro-cesemendotermicznym.

Gdypowłokaablacyjnawejdziewkontaktzstrumie-niem ciepła o wysokiej temperaturze, zainicjowany zo-staje proces ablacyjny. Wówczas warstwa ablacyjnapodwpływemtemperaturyulegawewnętrznymzmianomstrukturalnym,którechroniągłębszewarstwyiwpływająnawłaściwości termoochronnemateriału.Jeślipowłokaablacyjna zbudowana jest warstwowo, proces odbywasię cyklicznie: wierzchnia warstwa z czasem przepalasię,odpadaodcałości,anastępniekolejnawarstwaule-gaprzemianomablacyjnym.

Mimo wieloletniego stosowania materiałów ablacyj-nych,nadalniepełne jestokreślenie jakościowych i ilo-ściowych zależności między składem rodzajowo-fazo-wymawłaściwościamiablacyjnymiwkontekścieinnychcecheksploatacyjnychkompozytówużywanychnaosło-nytermochronne[1…3].

W literaturze można odnaleźć dwie metody badaw-czedookreślaniawłaściwościablacyjnychkompozytów, wktórychdowytworzeniastrumieniaciepławykorzystujesię:•• palnikacetylenowo-tlenowy[6…9],•• palnikplazmowy[5,11].Kształtowanie ablacyjnych właściwości termochron-

nych polega na poszukiwaniu materiałów o dużymcieplewłaściwym cp(t) i dużej gęstości r (dużej pojem-nościcieplnej)orazoniskimwspółczynnikuprzewodze-niaciepła l(t) (czylimałejdyfuzyjności cieplneja(t)) [2]. Wceluocenywłaściwościablacyjnychautorzyprzedsta-wiająocenędyfuzyjnościmateriałunapodstawiebada-niaprzewodnościcieplnej[5,10]orazokreślająparame-trytermochronne:średniąszybkośćablacjiva[6,8…11],ablacyjnyubytekmasyUa[8…10]oraztemperaturętylnejpowierzchniściankiizolującejts[5,6,11].Ponadtowpra-cy[5]mierzonowspółczynnik izolacjicieplnej jakoczasdoosiągnięciaokreślonejtemperaturytylnejścianki.

Badania

Wstosunkudometodytestowej,naktórejwzorowanoprocedurę,zostaływprowadzonenastępującemodyfika-cje:•• zewzględunamałerozmiarypróbki,liczbapalników

zostałaograniczonadojednego,ostrumieniuskiero-wanymprostopadledopowierzchnipróbki,

•• jakogazuzasilającegopalnikużytomieszaninypro-pan-butan,łatwiejszejdopozyskaniaiaplikacji,

•• zdecydowanozastosowaćstrumieńcieplnydziałają-cynapróbkęotemperaturzeniewyższejniż800°C,

•• założono doświadczalne ustalenie czasu oddziały-wania strumienia cieplnego, na podstawie badańpróbektestowych.

TiAM_4_2012.indd 21 2012-11-08 12:05:05

Page 4: ANALIZA I IMPLEMENTACJA PROCEDUR KWALIFIKACYJNYCH LOTNICZYCH REJESTRATORÓW ... · 2018. 12. 27. · zapisane w dokumentach TSO C123a i C124a. Normy wojskowe MIL-STD-2124A w tym zakresie

4/2012TechnologiaiAutomatyzacjaMontażu

22

Uwzględniając przyjęte założenia, opracowano pro-jekt i zbudowanostanowisko (rys. 4),wktórymdowy-tworzeniastrumieniacieplnegowykorzystanotzw.działoablacyjne.

Rys.4.Projektstanowiskadobadańpróbekkompozytowych

Pomiar temperatury powierzchni kompozytu wysta-wionejnadziałaniestrumieniacieplnegorealizowanozapomocąpirometru,atemperaturętylnejściankimierzonozapomocątermometrutermoelektrycznego.

Wtrakciebadańwstępnych:•• ustalonoparametrypłomieniadziałającegonaprób-

kę,•• dobrano czas oddziaływania wysokotemperaturo-

wego, któryw literaturzeprzyjmujesięod8do100s[5, 7…11]. Czas wyznaczono z wykorzystaniempróbek o grubości 6,8 mm. Założono czas próby t=90s.Jednakintensywnośćubytkumasykompozy-tuspowodowała,żezmniejszonoczasoddziaływaniastrumieniado60s,abyuniknąćprzepaleniapróbek omniejszejgrubości.

Dobadańwłaściwychprzygotowano16próbekowy-

miarach30x30mm,wykonanychz8rodzajówwarstwo-

wychmateriałów kompozytowych, zróżnicowanych pod

względem składu fazowego oraz liczbywarstw (rys. 5,

rys.6).Osnowęwszystkichkompozytówstanowiłażywi-

caepoksydowaEpidian52(tabl.1).

W trakcie badań zdecydowano się zmniejszyć czas

oddziaływania strumienia cieplnego na próbki o mniej-

szejgruboścido30sekund.

Rys.6.Próbkazwyraźniezaznaczonąwarstwąablacyjną

Termochronne właściwości badanego materia-

łu można zaobserwować m.in. dla próbki wykonanej

z 14 warstw tkaniny wzmacniającej z 3% dodatkiem

montmorylonitu(rys.7).

Niektóre kompozyty wzmocnione siedmioma war-

stwamitkaninyuległycałkowitemuzniszczeniu,pomimo

zmniejszeniaczasu trwaniapróby (rys.8),aw innych

zbudowanychrównieżzsiedmiuwarstwtylnaściankanie

uległaprzepaleniu(rys.9).

Rys.5.Zestawpróbekprzedipobadaniach

TiAM_4_2012.indd 22 2012-11-08 12:05:05

Page 5: ANALIZA I IMPLEMENTACJA PROCEDUR KWALIFIKACYJNYCH LOTNICZYCH REJESTRATORÓW ... · 2018. 12. 27. · zapisane w dokumentach TSO C123a i C124a. Normy wojskowe MIL-STD-2124A w tym zakresie

TechnologiaiAutomatyzacjaMontażu4/2012

23

Tabela1.Parametrypróbekwykorzystywanychwbadaniach

PróbkaOznaczenie

testo-wa

1.1.1.2.

2.1.2.2.

3.1.3.2.

4.1.4.2.

5.1.5.2.

6.1.6.2.

7.1.7.2.

8.1.8.2.

Grubość[mm] 6,8 6,8 6,4 2,6 2,7 11,2 8,9 4,0 3,5

Liczba warstw tkaniny aramido-wej 300 g/m2 4 4 4 – – 10 4 – 5

Liczba warstw ciętego włóknaaramidowego

– – – – – – – 2 –

Liczba warstw tkaniny szklanej300 g/m2 10 10 10 7 5 4 10 5 2

Liczbawarstw tkaninywęglowej160 g/m2 – – – – 2 – – – –

UtwardzaczZ–1 – – – X – X X – –

UtwardzaczPAC X X – – – – – – –

WypełniaczMMT 3% 3% 3% – – 15% 15% – –

Symbol(X)oznacza,żedanymateriałwystępujewkompozycie,natomiastsymbol(–)oznaczabrakobecnościmateriałuwskładziefazowym.

Rys.7.Rozkładtemperaturprzedniejitylnejścianki–próbka1.1

Rys.8.Rozkładtemperaturprzedniejitylnejścianki–próbka4.1

TiAM_4_2012.indd 23 2012-11-08 12:05:05

Page 6: ANALIZA I IMPLEMENTACJA PROCEDUR KWALIFIKACYJNYCH LOTNICZYCH REJESTRATORÓW ... · 2018. 12. 27. · zapisane w dokumentach TSO C123a i C124a. Normy wojskowe MIL-STD-2124A w tym zakresie

4/2012TechnologiaiAutomatyzacjaMontażu

24

Wnioski

1. Zaproponowana procedura umożliwia określaniewłaściwościtermochronnychmateriałówkompozyto-wych(rys.9).

2. Zbudowanourządzenie,któremożebyćmodernizo-wane,ajegomożliwościzwiększanewcelurealizacjidalszychbadań.

3. Dobranoparametrybadań,któreumożliwiłyokreśle-niepodstawowychwłaściwościablacyjnych:tempe-ratury tylnej ścianki oraz szybkości ablacji.Wydajesię, że do badań kompozytów na osnowie polime-rowej wystarczające jest zastosowanie strumieniacieplnegootemperaturzedo800ºC.

4. Można stwierdzić, że dla przyjętych parametrówbadania właściwości ablacyjnych istnieje granicz-nawartośćgrubościpróbek (ok.4mm),ponieważ,jakmożnazaobserwowaćnarys.8,próbkaotakiejgrubościpozwoliławewłaściwysposóbokreślićtem-peraturętylnejściankipodczascałegobadania,nieulegajączniszczeniu.Mimozredukowaniaczasuod-działywaniastrumieniacieplnegonapróbkiomniej-szejgrubości(siedmiowarstwowe),trzyznichuległyprzepaleniuprzedupływem30s(rys.7).

5. Zastosowanie jednego palnika, przy przyjętychrozmiarach próbek, pozwala uzyskać zadowalają-cy, równomierny rozkład temperatury na całej po-wierzchnipróbki.

6. Zastosowanie zautomatyzowanego układu groma-dzenia iarchiwizacjidanychzwiększączęstotliwo-ścią (1…2 s) i większą dokładnością oraz pomiarmasypróbekprzedipobadaniach,pozwolizrealizo-waćbadaniaeksperymentalnewceluanalizywpły-wu poszczególnych komponentów kompozytu nawłaściwościtermochronnelaminatów.

LITERATURA

1. OparaT.,PrzybyłekP.:Obudowy ochronne rejestra-torów parametrów lotu. JournalofAeronauticaInte-gra1/2010(7).

2. KucharczykW.:RozprawadoktorskaKształtowanie ablacyjnych właściwości termochronnych kompo-zytów polimerowych z napełniaczami proszkowymi,PolitechnikaRadomska2006.

3. Wojtkun F., Sołncew J. P.: Materiały specjalnego przeznaczenia. Wydawnictwo Politechniki Radom-skiej,Radom2001.

4. Park Jong Kyoo, Cho Donghwan, Kang Tae Jin: A comparison of the interfacial, thermal, and ablative properties between spun and filament yarn type car-bon fabric/phenolic composites.Carbon42(2004).

5. Zhao-ke Chen, Xiang Xiong, Guo-dong Li, Ya-leiWang:Ablation behaviors of carbon/carbon compo-sites with C-SiC-TaC multi-interlayers.AppliedSur-faceScience255(2009).

6. ChenZhaofeng,FangDan,MiaoYunliang,YanBo:Comparison of morphology and microstructure of ablation centre of C/SiCcomposites by oxy-acetyle-ne torch at 2900 and 3550 °C.CorrosionScience50(2008).

7. Shu-PingLi,Ke-zhiLi,He-JunLi,Yu-LongLi,Qin-LuYuan:Effect of HfC on the ablative and mechanical properties of C/C composites.MaterialsScienceandEngineeringA517(2009).

8. XuetaoShen,KezhiLi,HejunLi,HongyingDu,We-ifengCao,FengtaoLan:Microstructure and ablation properties of zirconium carbide doped carbon/carbon composites.Carbon48(2010).

9. VaiaR.A.,PriceG.,RuthP.N.,NguyenH.T.,Lich-tenhanJ.: Polymerrlayered silicate nanocomposites as high performance ablative materials. AppliedClayScience15/1999.

10. ParkJongKyoo,KangTaeJin:Thermal and ablati-ve properties of low temperature carbonfiber–phenol formaldehyde resin composites.Carbon40(2002).

11. MIL-HBK-17-1.

_______________________Drinż.AndrzejKomorekorazmgrinż.PawełPrzybylek iMagdalenaŚwiercz są pracownikamiWyższejSzkołyOficerskiejSiłPowietrznychwDęblinie.

Rys.9.Rozkładtemperaturprzedniejitylnejścianki–próbka7.1

TiAM_4_2012.indd 24 2012-11-08 12:05:05