3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

56

Transcript of 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Page 1: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...
Page 2: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

2

SPIS TREŚCI

1 ZAŁOŻENIA I WPROWADZENIE......................................................................................................................... 5

2 WYZNACZANIE ZAPOTRZEBOWANIE NA MOC I ENERGIĘ ................................................................................. 6

2.1 OBLICZENIE ZAPOTRZEBOWANIA NA CIEPŁA DO OGRZEWANIA ....................................................................................... 6 2.1.1 Dane wejściowe - brzegowe wartości temperaturowe ............................................................................. 6 2.1.2 Określenie strat ciepła ............................................................................................................................... 9 2.1.3 Określenie zysków ciepła ......................................................................................................................... 10 2.1.4 Zapotrzebowania na energię do ogrzewania .......................................................................................... 12

2.2 OBLICZENIE PROJEKTOWEGO OBCIĄŻENIA CIEPLNEGO BUDYNKU - MOC SZCZYTOWA ........................................................ 13 2.3 ZAPOTRZEBOWANIE NA ENERGIĘ I MOC NA POTRZEBY CIEPŁEJ WODY UŻYTKOWEJ ............................................................ 14

2.3.1 Obliczenie zapotrzebowania na ciepło do przygotowania ciepłej wody użytkowej (c.w.u.) ................... 14 2.3.2 Moc szczytowana do przygotowania ciepłej wody użytkowej (c.w.u.).................................................... 15

2.4 NORMATYWNE ZAPOTRZEBOWANIA CIEPLNE W ZALEŻNOŚCI DO ROKU BUDOWY ............................................................. 16 2.4.1 Możliwości termomodernizacyjne ........................................................................................................... 18

3 OBLICZANIA ZAPOTRZEBOWANIA CIEPLNEGO W KALKULATORZE ENERGETYCZNYM .....................................22

3.1 METODYKA WYZNACZANIA ZAPOTRZEBOWANIA NA MOC I ENERGIĘ CIEPLNĄ DO OGRZEWANIA BUDYNKÓW .......................... 22 3.2 METODYKA WYZNACZANIA MOCY I ENERGII CIEPLNEJ DLA PRZYGOTOWANIA CIEPŁEJ WODY UŻYTKOWEJ............................... 28 3.3 METODYKA WYZNACZANIA CIEPŁA DLA CELÓW TECHNOLOGICZNYCH ............................................................................ 29

4 OPRACOWANIE OPROGRAMOWANIA UŻYTKOWEGO DLA ZARZĄDZANIA ENERGIĄ W OBIEKTACH

ADMINISTROWANYCH PRZEZ JST .........................................................................................................................30

4.1 ZAŁOŻENIA FUNKCJONALNE PROGRAMU ................................................................................................................. 30 4.2 APLIKACJA ........................................................................................................................................................ 32

5 KORZYŚCI Z ZASTOSOWANIA KALKULATORA ENERGETYCZNEGO ....................................................................48

5.1 PODSTAWOWE DANE O OBIEKCIE .......................................................................................................................... 48 5.2 POPRAWA EFEKTYWNOŚCI ENERGETYCZNEJ ............................................................................................................. 49 5.3 EFEKT EKOLOGICZNY ........................................................................................................................................... 49

5.3.1 W wyniku przeprowadzenia działań termomodernizacyjnych ................................................................ 49 5.3.2 W wyniku zainstalowania kolektorów słonecznych na potrzeby c.w.u. .................................................. 50

5.4 EFEKT EKONOMICZNY ......................................................................................................................................... 51 5.4.1 W wyniku przeprowadzenia działań termomodernizacyjnych ................................................................ 51 5.4.2 W wyniku zainstalowania kolektorów słonecznych na potrzeby c.w.u. .................................................. 53

Page 3: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

3

SPIS TABEL

Tabela 2.1 Obliczeniowa temperatura zewnętrzna i średnioroczna w zależności od strefy klimatycznej ............... 7 Tabela 2.2 Średnie temperatury miesięczne oraz ilość dni sezonu grzewczego dla wybranych stacji

zlokalizowanych na obszarze województwa pomorskiego..................................................................... 8 Tabela 2.3 Normatywne temperatury wewnętrzne w zależności od rodzaju pomieszczenia ................................. 8 Tabela 2.4 Normatywne temperatury wewnętrzne dla typowych pomieszczeń ..................................................... 9 Tabela 2.5 Średnia moc jednostkowa wewnętrznych zysków ciepła w odniesieniu do powierzchni dla wybranych

rodzajów budynku [11] ......................................................................................................................... 12 Tabela 2.6 Jednostkowe dobowe zapotrzebowanie na ciepłą wodę oraz współczynnik korekcyjny [11] ............. 15 Tabela 2.7 Zapotrzebowania cieplne budynków w zależności od roku oddania do użytkowania ......................... 16 Tabela 2.8 Maksymalna wartość współczynnika przenikania w zależności od rodzaju przegrody po zmianach wg

[10] dla wszystkich rodzajów budynków .............................................................................................. 17 Tabela 2.9 Maksymalna wartość EP na potrzeby ogrzewania, wentylacji oraz przygotowania ciepłej wody

współczynnika po zmianach wg [10] w zależności od rodzaju budynku .............................................. 17 Tabela 2.10 Zamiany struktury zużycia energii w gospodarstwach domowych wg kierunków użytkowania [15] .. 19 Tabela 2.11 Procentowy rozkład strat ciepła w zależności dla budynku mieszkalnego ........................................... 19 Tabela 2.12 Średnioprocentowe obniżenie zużycia ciepła w zależności od rodzaju prac modernizacyjnych .......... 20 Tabela 3.1 Parametry budynków wykorzystane w badaniach ............................................................................... 23 Tabela 3.2 Dane wejściowe wykorzystywane do obliczenia zużycia ciepła ........................................................... 26 Tabela 3.3 Porównanie zużycia ciepła budynku rzeczywistego z referencyjnym - założenia ................................ 27 Tabela 3.4 Współczynniki równoczesności użycia wody ........................................................................................ 28 Tabela 4.1 Podstawowe cechy obiektu .................................................................................................................. 30 Tabela 4.2 Zdefiniowane rodzaje odbiorcy ............................................................................................................ 35 Tabela 4.3 Definicja kategorii odbiorców ............................................................................................................... 36 Tabela 4.4 Zdefiniowane rodzaje energii ............................................................................................................... 37 Tabela 5.1 Podstawowe dane wymagane o obiekcie w kalkulatorze energetycznym ........................................... 48 Tabela 5.2 Porównanie energii użytkowej oraz zużycia paliwa na ogrzewanie - stan istniejący i poszczególne

warianty modernizacji .......................................................................................................................... 49 Tabela 5.3 Wielkość poszczególnych emisji dla stanu aktualnego i rozważanych wariantów termomodernizacji 49 Tabela 5.4 Porównanie energii użytkowej oraz zużycia paliwa na potrzeby c.w.u. - stan istniejący oraz

w wariancie z wykorzystaniem kolektorów słonecznych ..................................................................... 50 Tabela 5.5 Wielkość emisji CO2 dla stanu aktualnego oraz przy wykorzystaniu kolektora słonecznego na potrzeby

c.w.u. .................................................................................................................................................... 50 Tabela 5.6 Podstawowe parametry wykorzystane do obliczenia efektu ekonomicznego ..................................... 51 Tabela 5.7 Wskaźniki efektywności ekonomicznej przedsięwzięcia termomodernizacyjnego .............................. 52 Tabela 5.8 Wyniki analizy wrażliwości efektu ekonomicznego przedsięwzięcia termomodernizacyjnego ze

względu na poziom dofinansowania projektu ze środków publicznych. .............................................. 53 Tabela 5.9 Podstawowe parametry wykorzystane do obliczenia efektu ekonomicznego przy zastosowaniu

kolektora słonecznego .......................................................................................................................... 53 Tabela 5.10 Wskaźniki efektywności ekonomicznej przedsięwzięcia - zainstalowanie kolektorów słonecznych na

potrzeby c.w.u. ..................................................................................................................................... 54 Tabela 5.12 Wyniki analizy wrażliwości efektu ekonomicznego przedsięwzięcia obejmującego zainstalowanie

kolektorów słonecznych na potrzeby c.w.u., ze względu na poziom dofinansowania projektu ze środków publicznych ............................................................................................................................ 54

SPIS RYSUNKÓW

Rysunek 2.1 Schemat postępowania w celu określenia zapotrzebowania na ciepło ................................................. 6 Rysunek 2.2 Podział terytorium Polski na strefy klimatyczne ..................................................................................... 7 Rysunek 2.3 Projektowe obciążenie cieplne na podstawie normy [1]...................................................................... 14 Rysunek 2.4 Zmiana jednostkowego zapotrzebowania cieplnego budynku w podziale na rok budowy ................. 18 Rysunek 2.5 Struktura zużycia energii w gospodarstwach domowych według kierunków użytkowania [15] ......... 18 Rysunek 3.1 Szczytowe zapotrzebowanie mocy cieplnej dla budynku o przeznaczonym wykorzystaniu w zależności

od całkowitej powierzchni budynku z uwzględnieniem roku budowy ................................................. 25 Rysunek 3.2 Jednostkowe zużycie energii cieplnej w funkcji powierzchni budynku dla obiektów wybudowanych

przez 1970 rokiem ................................................................................................................................ 27 Rysunek 4.1 Schemat zarządzania energią przy wykorzystania kalkulatora energetycznego .................................. 32

Page 4: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

4

Rysunek 4.2 Koncepcja programu............................................................................................................................. 34 Rysunek 4.3 Schemat relacyjny częściowy związany z odbiorcami .......................................................................... 38 Rysunek 4.4 Jednostki podziału terytorialnego na podstawie danych z GUS ........................................................... 39 Rysunek 4.5 Relacje rodzaju odbiorcy a dane krzywych nagrzewania CO ................................................................ 40 Rysunek 4.6 Definicja lokalizacji ............................................................................................................................... 41 Rysunek 4.7 Schemat powiązań palenisk i danych źródeł ........................................................................................ 42 Rysunek 4.8 Schemat definicji źródła energii ........................................................................................................... 43 Rysunek 4.9 Relacje zapotrzebowanie ...................................................................................................................... 44 Rysunek 4.10 Relacje ZuzyciaPaliwEmisje ................................................................................................................... 45 Rysunek 4.11 Pełen schemat relacyjny bazy danych .................................................................................................. 46 Rysunek 5.1 Zmiana wielkości emisji w zależności od zrealizowanych działań termomodernizacyjnych ................ 50 Rysunek 5.2 Zmiany wartości bieżącej netto (NPV) przedsięwzięcia termomodernizacyjnego w zależności od

wielkości uzyskanego dofinansowania ................................................................................................. 53 Rysunek 5.3 Zmiany wartości bieżącej netto (NPV) przedsięwzięcia zainstalowanie kolektorów słonecznych w

zależności od wielkości uzyskanego dofinansowania ........................................................................... 55 Rysunek 5.3 Zmiany wartości bieżącej netto (NPV) przedsięwzięcia zainstalowanie kolektorów słonecznych w

zależności od wielkości uzyskanego dofinansowania ......................... Błąd! Nie zdefiniowano zakładki.

Page 5: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

5

1 Założenia i wprowadzenie Celem projektu jest wsparcie Jednostek Samorządu Terytorialnego w zakresie efektywnego zarządzania

obszarem energetyki i środowiska na terenie gminy, poprzez opracowanie i pilotażowe wdrożenie na terenie Gminy

Miastko narzędzi informatycznych, pozwalających na zarządzanie gminnymi zasobami pod kątem zużycia energii,

paliw i mediów, emisji zanieczyszczeń oraz efektywności ekonomicznej energomodernizacji.

Niniejsze opracowanie zostało wykonane w ramach umowy nr WFOŚ/D/803/52/2015 dotyczącej pracy pt.

„Kalkulator energetyczny dla Jednostek Samorządu Terytorialnego". Praca składa się z trzech etapów:

Etap I: Opracowanie wytycznych dla szacowania zapotrzebowania na moc i energię w oparciu o ograniczone

dane techniczne budynków i instalacji

Etap składa się z dwóch części. W pierwszej części przedstawiono najważniejsze pojęcia dotyczące

obliczeń zapotrzebowania na moc i zużycie energii cieplnej. Przedstawiono w rozdziale 2 definicje oraz

schemat obliczeń w uproszczony sposób, tak aby był zrozumiały dla osób niezwiązanych z branżą

ciepłowniczą, energetyczną. W rozdziale 3 przedstawiono metodykę zastosowaną do obliczenia zużycia

na energię, która została zaimplementowana w programie.

W drugiej części etapu opracowano koncepcję dla uproszczonego szacowania zapotrzebowania na moc

i energię przy wykorzystaniu ograniczonych danych technicznych budynku i instalacji cieplnych.

Założenia zostały przedstawione w rozdziale 4.1.

Etap II: Opracowanie oprogramowania użytkowego dla zarządzania energią w obiektach administrowanych przez

JST

W ramach etapu II opracowano aplikację dla zarządzania energią. Opis programu został przedstawiony

w rozdziale 4.2.

Etap III: Wdrożenie oprogramowania w Gminie Miastko

W trzecim etapie pracy na podstawie danych pozyskanych przede wszystkim z Gminy Miastko

dotyczących technicznych parametrów budynków oraz danych eksploatacyjnych dotyczących

rzeczywistego zużycia energii/paliw iteracyjnie zaadoptowano silnik obliczeniowy. Podczas

opracowywania programu podlegał on ewolucji pod kątem użytkowania, m. in. wprowadzania danych

przez użytkownika oraz efektywności działania programu i prezentacji danych obliczeniowych. Do

programu została napisana instrukcja obsługi.

Wykorzystanie kalkulatora energetycznego prowadzi do poprawy efektywności energetycznej i redukcja

emisji zanieczyszczeń poprzez aktywne zarządzanie energią i inwestycjami w obszarze budownictwa. Kalkulator

energetyczny nie przyczynia się bezpośrednio do uzyskania zamierzonych efektów potencjalnych działań. Jest

narzędziem informatycznym wspierających JST w zakresie inwestycyjnego i bezinwestycyjnego ograniczania

zużycia energii i emisji zanieczyszczeń, poprzez identyfikację potencjalnych przyczyn ponadnormatywnego

zużycia. Wykorzystanie kalkulatora pozwoli potencjalnemu użytkownikowi wybrać optymalne rozwiązania

z punktu widzenia poprawy efektywności energetycznej, efektu ekologicznego oraz ekonomicznego. W rozdziale 5

przedstawiono wykorzystanie kalkulatora energetycznego, w celu oszacowania potencjalnych korzyści dla

typowego domku jednorodzinnego zlokalizowanego w Gminie Miastko.

Page 6: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

6

2 Wyznaczanie zapotrzebowanie na moc i energię W rozdziale przedstawiono podstawowe informacje z podaniem odpowiednich norm w celu obliczenia

zapotrzebowania na ciepło wykorzystywane w celach grzewczych oraz przygotowania ciepłej wody.

2.1 Obliczenie zapotrzebowania na ciepła do ogrzewania

Zapotrzebowanie na ciepło jest podstawowym parametrem charakteryzującym jakość energetyczną budynku.

Uzależnione jest przede wszystkim izolacyjnością cieplną zastosowaną w budynku oraz intensywnością wymiany

powietrza. Czynniki zewnętrzne wpływające na potrzeby energetyczne to głównie temperatura powietrza

zewnętrznego oraz nasłonecznienie. Metodykę obliczeń zapotrzebowania na moc i energię oraz warunki brzegowe

określają odpowiednie normy.

Dane wykorzystywane do obliczenia zapotrzebowania na ciepło określa sie na podstawie dokumentacji

budowlanej lub obmiaru budynku oraz przyjmuje się standartowe warunki brzegowe, m.in. standartowe warunki

klimatyczne, zdefiniowany sposób eksploatacji, temperaturę wewnętrzną i wewnętrzne zyski ciepła itp. Obliczenia

zapotrzebowania na ciepło wykonuje się za pomocą bilansu, gdzie uwzględniane są straty ciepła i zyski ciepła

w obszarze budynku. Ogólny proces obliczeń sezonowego zapotrzebowania na ciepła przedstawiono na rysunku 2.1.

Rysunek 2.1 Schemat postępowania w celu określenia zapotrzebowania na ciepło

2.1.1 Dane wej ściowe - brzegowe warto ści temperaturowe

Strefy klimatyczne i wyznaczenie obliczeniowej temperatury zewnętrznej

Według normy [1] Polska jest podzielona na pięć stref klimatycznych (rysunek 2.2). Wszystkie instalacje oraz

urządzenia wykorzystywane do ogrzewania budynku powinny mieć szczytową moc cieplną obliczoną zgodnie z

Polskimi Normami dotyczącymi obliczenia zapotrzebowania na ciepło. Przy obliczeniu szczytowej mocy cieplnej

przyjmuje się temperatury obliczeniowe zewnętrzne uwzględnieniem podziału Polski na strefy klimatyczne

Page 7: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

7

(patrz 2.2). Dla każdej strefy przyjmuje się projektowe temperatury obliczeniowe powietrzna na zewnątrz budynku,

tabela 2.1.

Rysunek 2.2 Podział terytorium Polski na strefy klimatyczne

Tabela 2.1 Obliczeniowa temperatura zewnętrzna i średnioroczna w zależności od strefy klimatycznej

Strefa klimatyczna I II III IV V

Temperatura zewnętrzna °C -16 -18 -20 -22 -24

Temperatura średnioroczna °C 7,7 7,9 7,6 6,9 5,5

Stopniodni

Liczba stopniodni jest to iloczyn liczby dni ogrzewania i różnicy pomiędzy średnią temperaturą zewnętrzną,

temperatur wewnętrzną ogrzewanego pomieszczenia i można wyliczyć z zależności:

�� � ���� ��ś��� ∗ ����

gdzie:

�� liczba stopniodni, suma wartości dla miesięcy grzewczych

�� projektowa temperatura wewnętrzna pomieszczenia ogrzewanego (tabela 2.3)

�ś��� średnia wieloletnia temperatura powietrza zewnętrznego w m-tym miesiącu

���� liczba dni ogrzewania w m-tym miesiącu

Do obliczeń należy przyjąć dane podane dla najbliższej położonej stacji meteorologicznej (wykaz stacji [17]) lub

lokalne dane pogodowe z wielolecia, np.: z ciepłowni.

Page 8: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

8

Stacje meteorologiczne rejestrują wybrane dane pogodowe co godzinę, m.in.: temperatura, prędkość i kierunek

wiatru, opady, nasłonecznienie. Aktualnie dostępne są dane z około 60 stacji, które dysponują danymi z 30 ostatnich

lat. Wykorzystanie danych z wielolecia, pozwala na uzyskanie wyników bardziej miarodajnych, ze względu na

zastosowanie danych niezależne od warunków pogodowych danego konkretnego rok. Wadę wykorzystania tych

danych jest brak uwzględnienia lokalnych warunków, które mogą się znacznie różnić w stosunku do położenia stacji

meteo.

W tabeli 2.2 przestawiono przykładowe średnie temperatury miesięczne oraz ilość dni sezonu grzewczego dla

wybranych stacji meteo zlokalizowanych na obszarze województwa pomorskiego.

Tabela 2.2 Średnie temperatury miesięczne oraz ilość dni sezonu grzewczego dla wybranych stacji zlokalizowanych na obszarze województwa pomorskiego

Stacje meteo Miesi ące 1 2 3 4 5 6 7 8 9 10 11 12

Łeba temp. -0,4 -0,3 3,3 5,9 10,8 14,7 17,0 17,3 13,2 10,0 2,6 0,1

Ilość dni 31 28 31 30 20 0 0 0 10 31 30 31

Lębork temp. -1,6 -1,5 1,4 6,0 11,0 15,4 16,7 16,3 12,8 8,6 4,1 0,5

Ilość dni 31 28 31 30 20 0 0 0 10 31 30 31

Chojnice temp. -3,2 -2,7 0,6 5,9 11,4 15,5 16,5 16,0 12,3 7,6 2,7 -1,0

Ilość dni 31 28 31 30 10 0 0 0 5 31 30 31

Istnieją też metody pozwalające na rzeczywiste obliczenie sezonu grzewczego. W tym przypadku rzeczywisty sezon

grzewczy obejmuje tylko te dni, w których ogrzewanie jest wykorzystywane. Sposób obliczenia został

przedstawiony w PN-EN ISO 13790 [2].

Projektowa temperatura wewnętrzna

Projektowa temperatura wewnętrzna to temperatura operacyjna, czyli średnia arytmetyczna z wartości

temperatury powietrza wewnętrznego i średniej temperatury promieniowania, w centralnym miejscu pomieszczenia

ogrzewanego stosowana do obliczeń strat ciepła. W tabeli 2.3 przedstawiono na podstawie [8] normatywne

temperatury w zależności od rodzaju pomieszczenia.

Tabela 2.3 Normatywne temperatury wewnętrzne w zależności od rodzaju pomieszczenia

Typ pomieszczenia Temperatura wewn ętrzna °C

przeznaczone do rozbierania np.: łazienki, rozbieralnie-szatnie, umywalnie, natryskownie, hale pływalni, sale niemowląt i sale dziecięce w żłobkach, +24°C

przeznaczone na stały pobyt ludzi bez okryć zewnętrznych, niewykonujących w sposób ciągły pracy fizycznej, np: pokoje mieszkalne, przedpokoje, kuchnie indywidualne wyposażone w paleniska gazowe lub elektryczne, pokoje biurowe

+20°C

w których nie występują zyski ciepła, przeznaczone na pobyt ludzi: sale widowiskowe bez szatni, hale produkcyjne, sale gimnastyczne, +16°C

w których nie występują zyski ciepła, przeznaczone do stałego pobytu ludzi, znajdujących się w okryciach zewnętrznych lub wykonujących pracę fizyczną o wydatku energetycznym powyżej 300 W, np.: magazyny i składy wymagające stałej obsługi, hole wejściowe, poczekalnie przy salach widowiskowych bez szatni, w których występują zyski ciepła od urządzeń technologicznych, oświetlenia itp., wynoszące od 10 do 25 W na 1 m3 kubatury pomieszczenia, np.: hale pracy fizycznej o wydatku energetycznym powyżej 300 W, hale formierni, maszynownie chłodni, ładownie akumulatorów, hale targowe, sklepy rybne i mięsne

+12°C

w których nie występują zyski ciepła, a jednorazowy pobyt osób znajdujących się w ruchu i w okryciach zewnętrznych nie przekracza 1 h, np.: klatki schodowe w budynkach mieszkalnych w których występują zyski ciepła od urządzeń technologicznych, oświetlenia itp., przekraczające 25 W na 1 m3 kubatury pomieszczenia, np.: pomieszczenie gdzie wykorzystuje się obróbkę cieplną, hale sprężarek, pompownie, itp.

+8°C

nieprzeznaczone na pobyt ludzi, mp.: garaże, hale postojowe przemysłowe – podczas działania ogrzewania dyżurnego (jeżeli pozwalają na to względy technologiczne)

+5°C

W tabeli 2.4 przedstawiono orientacyjne projektowe temperatury wewnętrzne dla typowych pomieszczeń [1].

Page 9: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

9

Tabela 2.4 Normatywne temperatury wewnętrzne dla typowych pomieszczeń

Typ pomieszczenia Temperatura wewn ętrzna °C

Łazienka +24°C

Biura, sale konferencyjne, audytorium, kawiarnia/restauracja, sala lekcyjna, złobek, budynek mieszkalny +20°C

Muzeum/galeria, sklep +16°C

Kościół +15°C

2.1.2 Określenie strat ciepła

Całkowite straty ciepła stanowią sumę strat na pokrycie zapotrzebowania na ciepło wszystkich pomieszczeń

w budynku. Straty ciepła można podzielić na: straty ciepła na przenikanie oraz związane z wentylacja:

��� � ��� + ���

gdzie:

��� straty ciepła przez przenikanie

��� straty ciepła przez wentylację

Straty ciepła przez przenikanie

Obliczenie strat ciepła przez przenikanie należy wyliczyć na podstawie normy PN-EN 12831:2006. Zgodnie

z zapisami normy straty ciepła przez przenikanie pomieszczenia ogrzewanego polega na przemnożeniu

sumowanych współczynników projektowych strat ciepła przez projektową różnicę temperatur zewnętrznej

i wewnętrznej. Można to wyliczyć z zależności:

��� � � ∗ (�� −��) gdzie:

� współczynnik strat ciepła budynku

�� temperatura wewnętrzna pomieszczenia ogrzewanego (tabela 2.3)

�� średnia temperatura zewnętrzna, np.: dla określonego miesiąca w sezonie grzewczym (tabela 2.2) w

zależności od lokalizacji budynku

Współczynnik strat ciepła przez przenikanie zależy od wszystkich elementów budynku, z którymi ma styczność.

Jest on sumą współczynników strat ciepła wszystkich elementów obudowy budynku, np.: ścian zewnętrznych,

okien, dachów, stropodachów, podłogi na gruncie. Wartość współczynnika strat ciepła dla budynku wynika m.in. z:

• powierzchni przegrody [m2], która jest wyliczana na podstawie wymiarów zewnętrznych, czyli wymiarów

mierzonych po zewnętrznej stronie budynku;

• współczynnika przenikania ciepła [W/m2*K] przez przegrody pomiędzy przestrzenią ogrzewaną

i otoczeniem;

Do obliczeń w przypadku przegród nieprzezroczystych wykorzystuje się normę PN-EN ISO 6946 [3]; do

przezroczystych (okna, drzwi) przyjmuje się dane wg Aprobaty technicznej lub zgodnie z normą wyrobu

PN-EN 14351-1 [4]. Dla podłogi można wykonać obliczenia wg wersji uproszonej przedstawionej

w normie PN-EN 12831 [1] lub wg metody dokładnej - norma PN-EN ISO 13370 [5].

• uwzględnienia mostków cieplnych, np.: połączenia balkonu ze stropem. Obliczenia należy wykonać wg

normy PN-EN ISO 14683 [6].

Page 10: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

10

W zależności od lokalizacji pomieszczenia w budynku lub gdy analizujemy cały budynek straty ciepła przez

przenikanie można podzielić na:

• współczynnik strat ciepła przez przenikanie z pomieszczenia ogrzewanego do otoczenia przez

przegrodę, np.: ściany, drzwi, okna, stropy;

• współczynnik strat ciepła od pomieszczeń nieogrzewanych, tj. straty przez przenikanie jeżeli

pomieszczenie ogrzewane od otoczenia jest oddzielone przestrzenią nieogrzewaną;

• współczynnik strat ciepła do gruntu;

• współczynnik strat pomieszczeń ogrzewanych sąsiadujących z pomieszczeniem ogrzewanym do

znacząco różnej temperatury.

Dokładne obliczenie w/w współczynników strat ciepła zostało przedstawione w normie [1].

Straty ciepła przez wentylację

Straty ciepła przez wentylacją na podstawie normy PN-EN 12831:2006 można wyliczyć z zależności:

��� = �� ∗ (�� −��) = �� ∗ � ∗ �� ∗ (�� −��) gdzie:

Η� współczynnik wentylacyjnej straty ciepła;

V� strumień objętości powietrza wentylacyjnego pomieszczenia ogrzewanego;

� gęstość powietrza w temperaturze �� �� ciepło właściwe w temperaturze �� �� temperatura wewnętrzna pomieszczenia ogrzewanego (tabela 2.3)

�� średnia temperatura zewnętrzna, np.: dla określonego miesiąca w sezonie grzewczym (tabela 2.2) w

zależności od lokalizacji budynku

Przyjmując dla uproszczenia, że �, �� są wielkościami stałymi, wyrażenie przyjmuje postać:

��� = 0,34�� ∗ (�� −��) Ogólnie wielkość strat ciepła przez wentylację zależy od różnicy temperatur zewnętrznej i wewnętrznej oraz

wielkości strumienia objętości powietrza wentylacyjnego. Sposób obliczeń uwarunkowany jest również od tego czy

w danym pomieszczeniu/budynku jest instalacja wentylacyjna.

Jeżeli instalacja nie jest określona, do obliczenia wentylacyjnych strat ciepła przyjmuje się budynek z wentylacją

naturalną. Obecnie w przypadku wentylacji naturalnej, jako wartość strumienia powietrza wentylacyjnego

przyjmuje się wartość większą z następujących dwóch wielkości: strumienia powietrza na drodze infiltracji ���#$

oraz minimalnej wartości strumienia powietrza wentylacyjnego, wymaganej ze względów higienicznych ��%�#.

�� = �&'(���#$ , ��%�#) W budynkach z instalacją wentylacyjną strumień powietrza infiltrujący do powietrzni grzewczej określa sie na

podstawie projektu instalacji. Szczegółową metodykę obliczeniową w zależności sposobu wentylacji przedstawia

norma [1].

2.1.3 Określenie zysków ciepła

Zyski ciepła dzielą się na wewnętrzne i zewnętrzne. Do typowych zysków ciepła zaliczamy:

• zyski zewnętrzne: zyski od nasłonecznienia;

• zyski wewnętrzne: od ludzi, oświetlenia oraz innych urządzeń znajdujących się w budynku.

Page 11: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

11

Całkowite zyski ciepła można określić równaniem:

�*# = �+,- + ��#�

gdzie:

�+,- zyski ciepła od nasłonecznienia

��#� wewnętrzne zyski ciepła

Zyski ciepła od nasłonecznienia

Zewnętrzne zyski ciepła generowane są przez promienienie słoneczne oraz różnicę temperatur po obu stronach

przegrody. Można je rozpatrywać w dwóch kategoriach:

• od nasłonecznienia przez przegrody nieprzezroczyste;

• od nasłonecznienia przez przegrody przezroczyste.

W wyniku promieniowania słonecznego padające na zewnętrzne powierzchnie przegród budowlanych (ściany

zewnętrzne, stropodachy) następuje wzrost ich temperatury. Ciepło jest przekazywane do pomieszczenia w drodze

przewodzenia. Jednak zyski te w obliczeniach są często pomijane.

W przypadku zysków od nasłonecznienia przez przegrody przezroczyste całkowity strumień ciepła padający

na powierzchnię okna (w świetle muru) w przegrodzie o danej orientacji będzie zależy m.in. od:

• udziału powierzchni przeszklonej w całkowitej powierzchni okna;

• na nachylenie płaszczyzny połaci dachowej do poziomu (w przypadku okien dachowych);

• zdolności przepuszczania promieniowania przez szybę (tzw. przepustowość szyby);

• zastosowanie osłon przeciwsłonecznych;

• zacienienie budynku ze względu na jego usytuowania oraz przesłony na elewacji budynku.

Zyski ciepła od nasłonecznienia można wyliczyć z zależności:

�+,- = �(./ ∗ 0+,- ∗ 12)

gdzie:

A4 powierzchnia okna;

I678 wartość natężenie promieniowania słonecznego na podstawie danych z najbliższej stacji

meteorologicznej;

w: współczynnik zacienienia, redukujący zysków od nasłonecznienia ze względu na zacienienie

budynku na jego usytuowanie oraz przesłony na elewacji budynku;

Zyski ciepła wewnętrzne

Zyski wewnętrzne od ludzi, urządzeń znajdujących się w bilansie cieplnym pomieszczeń są najczęściej

przyjmowane wskaźnikowo. Przyjmuje się je w odniesieniu do kubatury lub do powierzchni budynku. Na podstawie

[11] wartość wewnętrznych zysków ciepła w budynku lub lokalu mieszkalnym można wyliczyć ze wzoru:

��#� = ;�#$ ∗ .$ ∗ <= ∗ 10?@[BCℎ �EFG]⁄

gdzie:

AJ powierzchnia pomieszczeń o regulowanej temperaturze w budynku

qLMJ obciążenie cieplne pomieszczenia zyskami cieplnymi

tO liczba godzin w miesiącu

Page 12: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

12

Przy obliczeniu zysków wewnętrznych należy wykorzystać dokumentację techniczną budynki i instalacji.

W przypadku braku danych dla istniejących budynków można przyjąć wartości średnie, np.: wg tabela 2.5.

Tabela 2.5 Średnia moc jednostkowa wewnętrznych zysków ciepła w odniesieniu do powierzchni dla wybranych rodzajów budynku [11]

Rodzaj budynku q inf [W/m]

Dom jednorodzinny 6,8

Dom wielorodzinny 7,1* 1.0**

Przeznaczony na potrzeby opieki zdrowotnej 8,0

Biurowy 5,7***

Szkoły 12*β+1*(1-β)****

* lokalne mieszkalne ** klatki schodowe *** przy standartowym sposobie użytkowania pomieszczeń biurowych **** β udział czasu działania wentylatorów wentylacji mechanicznej w miesiącu równy wykorzystaniu budynku w miesięcu

W przypadku budynków przemysłowych bilans zysków ciepła należy wyznaczyć w zależności od rodzaju

produkcji i sposobu użytkowania, np.: na podstawie danych technicznych zainstalowanych urządzeń. W tym

przypadku zyski ciepła od urządzeń można wyliczyć z zależności:

� = P ∗ Q ∗ R[C] gdzie:

N moc urządzenia [W]

φ współczynnik jednoczesności pracy urządzeń

z stosunek średniej mocy do mocy z tabliczki znamionowej urządzenia

2.1.4 Zapotrzebowania na energi ę do ogrzewania

Z definicji [1] zapotrzebowanie na energię do ogrzewania jest to ciepło, które należy dostarczyć do

przestrzeni ogrzewanej, aby utrzymać zamierzone warunki temperaturowe podczas określonego przedziału czasu.

Wielkość tą wyznacza się dla sezonu grzewczego, obejmującego miesiące dla których straty ciepła są większe od

zysków. Sezon grzewczy powinien obejmować tylko te dni, w których ogrzewanie jest potrzebne. Dlatego długość

sezonu grzewczego może być inna dla każdego budynku i jej uzależniona od jakości energetycznej budynku.

Sposób oraz metody obliczeń zapotrzebowania na ciepła są przedstawione w normie [2]. Norma dopuszcza

różne metody obliczenia zapotrzebowania ciepła: sezonową, miesięczną oraz prostą metodę godzinową.

Obliczenie rocznego zapotrzebowanie energii użytkowej na potrzeby ogrzewania i wentylacji przedstawiono

przy wykorzystaniu metody miesięcznej. Obliczenia polegają na sumowania zapotrzebowania w każdym miesiącu

sezonu grzewczego, tzn. wykonujemy bilans zysków i strat ciepła dla każdego miesiąca w sezonie grzewczym i

wynik sumujemy. Dla każdego miesiąca w sezonie grzewczym przy wyliczaniu zapotrzebowania należy

uwzględniając, m.in. średnią temperaturę w danym miesiącu, liczbę godzin w miesiącu, zyski słoneczne w danym

miesiącu, etc. W całkowitym wyliczeniu zapotrzebowania na ciepło należy uwzględnić współczynnik efektywności

wykorzystania zysków w trybie ogrzewania (przyjmuje się, że zyski nie w całości bilansują straty ciepła). Roczne

zapotrzebowanie na ciepło związane z ogrzewaniem można przedstawić równaniem:

�V =��V,# =�(���,# − W*# ∗ �*#,#)##

gdzie:

X miesiąc w sezonie grzewczym

Page 13: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

13

�V,# zapotrzebowanie na energię dla miesiąca n w sezonie grzewczym

���,# straty ciepła przez przenikanie i wentylację dla miesiąca n w sezonie grzewczym

�*#,# zyski ciepła dla miesiąca n w sezonie grzewczym

W*# bezwymiarowy czynnik wykorzystania zysków ciepła

W celu obliczenia zapotrzebowania na energię końcową, którą odzwierciedla zapotrzebowanie budynku

należy uwzględnić jeszcze straty systemu grzewczego, np.: systemu przesyłowego, urządzeń pomocniczych oraz

źródła ciepła. Energię końcową wylicza się na podstawie energii użytkowej z uwzględnieniem sprawności

grzewczego systemu instalacyjnego, wartość tą można przedstawić równaniem:

�Y =�V/WV,�,� gdzie:

�V zapotrzebowanie na energię użytkowa przez budynek w całym okresie grzewczym

WV,�,� całkowita sprawność całego systemu grzewczego, z uwzględnieniem sprawności źródła, systemu

przesyłu ciepła, etc.

2.2 Obliczenie projektowego obci ążenia cieplnego budynku - moc szczytowa

Projektowane obciążenie cieplne budynku - moc szczytowa - jest określana przy skrajnych warunkach

temperaturowych, które mogą wystąpić w ciągu roku. Obciążenie jest minimalną mocą źródła ciepła niezbędną dla

zapewnienia komfortu cieplnego użytkowników budynku.

Przy wyliczeniu mocy przyjmuje się temperatury zewnętrzne najniekorzystniejsze jakie mogą wystąpić w

danej strefie klimatycznej (rozdział 2.1.1) oraz nie uwzględnia się zysków ciepła związanych z nasłonecznieniem

oraz zysków wewnętrznych. Dodatkowo w obliczeniu mocy szczytowej dopuszcza się, inaczej niż przy obliczeniach

zapotrzebowania na ciepło, mniejszą intensywność wentylacji pomieszczeń. Metoda obliczania obciążenia

cieplnego jest bardzo precyzyjnie opisana w normie PN-EN 12831 [1]. Matematycznie projektowane obciążenie

cieplne dla całego budynku (lub jego części) można wyliczyć w następujący sposób:

ΦV\ = �Φ]^ +�Φ_^ +�Φ`V^

gdzie:

∑Φ]^ suma strat ciepła przez przenikanie wszystkich przestrzeni ogrzewanych budynku z wyłączeniem

ciepła wymienianego wewnątrz budynku [W]

∑Φ_^ suma wentylacyjnych strat ciepła wszystkich przestrzeni ogrzewanych budynku z wyłączeniem

ciepła wymienianego wewnątrz budynku [W]

∑Φ`V^ suma nadwyżek mocy cieplnej wszystkich przestrzeni wymaganych do skompensowania skutków

osłabienia ogrzewania [W]

Powyższą zależność przedstawiono na rysunku 2.3 [14]. Uwzględnienie nadwyżki mocy w projektowaniu

obciążenia cieplnego umożliwia osiągniecie wymaganej temperatury wewnętrznej przy określonym czasie po

okresie osłabienia np.: ogrzewaniu z przerwami lub niższym niż standardowym. Przy projektowaniu nowego

budynku lub modernizacji nadwyżka mocy powinna być uzgodniona z klientem (zleceniodawcą).

Page 14: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

14

Rysunek 2.3 Projektowe obciążenie cieplne na podstawie normy [1]

2.3 Zapotrzebowanie na energi ę i moc na potrzeby ciepłej wody użytkowej

2.3.1 Obliczenie zapotrzebowania na ciepło do przygotowania ciepłej wody użytkowej (c.w.u.)

Roczne zapotrzebowanie na ciepło dla celów przygotowania ciepłej wody można wyznaczyć jako funkcję

jednostkowego dziennego zużycia wody na osobę (w zależności od kategorii odbiorców: budownictwo

mieszkaniowe, placówki handlowo-usługowe, placówki służby zdrowia, etc.), ilości osób, ilości dni w roku

przebywania w budynku, różnicy temperatur o jaką należy podgrzać wodę.

Dostępne są dane literaturowe określające średnie statystyczne zużycie c.w.u. [l/osobę/dzień] przez różnego

typu odbiorców (mieszkania, szpitale, zakłady przemysłowe, budynki użyteczności publicznej, szpitale, etc.). Tam

gdzie dostępne są dane historyczne należy z nich skorzystać, gdyż rzeczywiste zapotrzebowanie może być znacznie

niższe niż dane normatywne. W szczególności u odbiorców indywidualnych wielkość dziennego zużycia ciepłej

wody jest znacznie niższa od wielkości normatywnych. W budynkach innych niż mieszkalne zaleca się, aby

zapotrzebowanie na ciepłą wodę użytkową obliczyć na podstawie sposobu korzystania ciepłej wody. W tym

przypadku, należy wziąć pod uwagę technologię procesu, dla którego będzie wykorzystywana woda, łącznie z

harmonogramem poboru.

Zapotrzebowania na ciepło do przygotowania ciepłej wody użytkowej należy wykonywać w oparciu o

przepisy normy [10] lub w oparciu o przepisy zawarte w rozporządzeniu o świadectwach [11]. Podstawą wyjściową

do obliczenia zapotrzebowania na ciepło do przygotowania ciepłej wody jest jednostkowe dobowe zapotrzebowania

na ciepła wodę na dzień w zależności od typu zabudowy oraz wielkości powierzchni użytkowej. Poniżej

przedstawiono równanie na podstawie rozporządzania o świadectwach:

�b,#� � �b� ∗ .$ ∗ �/ ∗ �/ ∗ ��/ ��, ∗ B� ∗ <�/3600 [kWh/rok]

gdzie:

�b� jednostkowe zapotrzebowanie na ciepłą wodę (dm3/m2 dzień), dobiera się na podstawie norm tabela

2.6 lub rzeczywistego zapotrzebowania

.$ powierzchnia pomieszczeń o regulowanej temperaturze powietrza [m2]

�/ ciepło właściwe wody 4,19 [kJ/kg K]

�/ gęstość wody 1 [kg/dm3]

�/ obliczeniowa temperatura ciepłej wody użytkowej w zaworze czerpalnym, równa 55 [°C]

�, obliczeniowa temperatura ciepłej wody przed podgrzaniem, równa 10 [°C]

Page 15: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

15

B� współczynnik korekcyjny ze względu na przerwy w użytkowaniu ciepłej wody użytkowej, na

podstawie norm tabela 2.6 [-]

<� liczba dni w roku, czas użytkowania należy zmniejszyć o przerwy urlopowe, wyjazdy i inne

sytuacje, średnio w ciągu roku o 10%

Tabela 2.6 Jednostkowe dobowe zapotrzebowanie na ciepłą wodę oraz współczynnik korekcyjny [11]

Rodzaj budynku V Wi [dm3/m2 dzie ń] k R

Dom jednorodzinny 1,40 0,90

Dom wielorodzinny 2,00*

1,60** 0,90

Budynek biurowy 0,35 0,70

Oświata, nauka 0,80 0,55

Opieka zdrowotna 6,50 1,00

Budnek o charakterze wykorzystania sportowym 0,25 0,33÷0,50

Gastronomia 2,50 0,80

Handel, usługi 0,60 0,78

Zbiorowego zamieszkania, np. hotel 3,75 0,60

Magazynowy 0,10 0,70

Produkcyjny Indywidualnie w zalezności od rodzaju produkcji i sposobu użytkowania

* ryczałtowe rozliczenie ** rozliczenie na podstawie liczników wody

Energię końcową związaną z zapotrzebowaniem na ciepłą wodę użytkową wylicza się na podstawie energii

użytkowej z uwzględnieniem sprawności przesyłu ciepłej wody użytkowej, wartość tą można przedstawić

równaniem:

�d,b =�b,#�/Wb,�,�

gdzie:

�b,#� roczne zapotrzebowanie na energię użytkowa do przygotowanej ciepłej wody [kWh/rok]

Wb,�,� całkowita sprawność przesyłu ciepłej wody użytkowej, z uwzględnieniem sprawności źródła,

systemu przesyłu, średniej sprawności akumulacji ciepła w elementach pojemnościowych, etc..

Sprawność można przyjąć na podstawie dokumentacji technicznej urządzeń, wiedzy technicznej,

dostępnych danych katalogowych lub zasad opisanych w rozporządzeniu o świadectwach [11]

2.3.2 Moc szczytowana do przygotowania ciepłej wody u żytkowej (c.w.u.)

Moc szczytowa dla przygotowania ciepłej wody jest zależna od liczby mieszkańców, różnicy temperatur

wody zimnej i wymaganej wody ciepłej, czasu dyspozycji (ile godzin ciepła woda ma być dostępna dla

Page 16: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

16

użytkownika) oraz współczynnika nierównomierności rozbioru ciepłej wody. Sposób obliczenia mocy szczytowej

do przygotowania ciepłej wody użytkowej będzie uzależniono od liczby punktów czerpalnych.

W instalacjach lokalnych, gdzie stosowane jest indywidualne przygotowanie ciepłej wody dla jednego lub

kilku punktów czerpalnych, np.: w domu jednorodzinnym lub pojedynczym mieszkaniu w budynku

wielorodzinnym, maksymalne zapotrzebowanie na moc cieplną do przygotowania ciepłej wody można wyznaczyć

na podstawie faktycznej liczby punktów czerpalnych ciepłej wody i założonego sposobu ich użytkowania

(jednoczesności poboru ciepłej wody).

W przypadku wielu odbiorców zasilanych z jednego punktu przygotowania ciepłej wody należy uwzględnić

współczynniki nierównomierności występowania zapotrzebowania, uwzględniające statystyczny profil aktywności

odbiorców oraz standardowo określane pojemności zasobników ciepłej wody pełniących rolę buforów

pozwalających na obniżenie mocy nominalnej urządzeń grzewczych dla przygotowania c.w.u. W tym przypadku

szczytowe zapotrzebowanie można wyliczyć z zależności:

Φe/f = [�b,#�/(g ∗ ��ś�)] ∗ P� [kW]

gdzie:

�b,#� roczne zapotrzebowanie na energię użytkowa do przygotowanej ciepłej wody [kWh/rok]

g liczba dni w roku

��ś� czas dyspozycji systemu c.w.u. dla użytkownika, jako średnią liczbę godzin korzystania z ciepłej

wody w ciągu doby przyjmuje się 18. Przy małej liczbie odbiorców ciepłej wody zaleca się

oszacować i urealnić wartość normatywnego użytkowania instalacji ciepłej wody

P� współczynnik nierównomierności rozbioru ciepłej wody, wyliczany na podstawie zależności:

P� = 9,32 ∗ j?k,lmm, gdzie: l- liczba użytkowników

2.4 Normatywne zapotrzebowania cieplne w zale żności do roku budowy

Zapotrzebowanie cieplne budynku można również w dużym przybliżeniu obliczyć wykorzystując

obowiązujące przepisy w zależności w jakim roku budynek został wykonany. Zakładając, że budynek został

wykonany zgodnie z przepisami, na podstawie powierzchni budynku [m2] możemy obliczyć przeciętne sezonowe

zapotrzebowanie ciepła na ogrzewania. Uzyskane w ten sposób wyniki mogą być niemiarodajne, w szczególności

dla budynków starszych, gdzie istnieje duże prawdopodobieństwo, że zostały one częściowo lub kompleksowo

podane termomodernizacji.

W tabeli 2.7 zamieszczono zapotrzebowanie cieplne dla budynków wynikające z obowiązujących przepisów

budowlanych (normy, rozporządzenia), w zależności od okresu, w którym zostały zbudowane [8][9][10][13].

Tabela 2.7 Zapotrzebowania cieplne budynków w zależności od roku oddania do użytkowania

Rok oddania budynku do użytkowania

Wymagana maksymalna wartość współczynnika przenikania U dla ścian zewnętrznych

Przeciętne sezonowe zapotrzebowanie ciepła (energii końcowej) na ogrzewanie

W/(m2*K) kWh/m2 rok

1966 1,16÷1,40 240÷350

1967-1985 1,16 240÷280

1986-1992 0,75 160÷200

1993-1997 0,55 120÷160

1998-2008 0,30÷0,50 90÷120

2009-2013 0,30 65÷125

od 1.01.2014 0,25 -

Page 17: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

17

Na podstawie przedstawionych danych można zaobserwować stopniowe obniżanie współczynnika

przenikania ciepła w kolejnym okresach czasu. Budynki starego typu bez przeprowadzonych prac

modernizacyjnych charakteryzują sie znacznie większym zapotrzebowaniem cieplnych, tj. powyżej 200 kWh/m2 na

rok.

Od stycznia 2014 roku zaczęły obowiązywać nowe warunki techniczne dotyczące budynków oraz ich

usytuowania [10]. Głównym celem wprowadzania zmian jest rozwój budownictwa energooszczędnego. Zmiany

wynikają z unijnej Dyrektywy 2010/3/UE, która nakłada na państwa członkowskie obowiązek obniżenia zużycia

energii. W tabeli 2.8 przedstawiono docelowe wymagane parametry współczynnika przenikania U dla wszystkich

rodzajów budynku. Z przedstawionych danych wynika, że od stycznia 2014 i latach późniejszych wszystkie rodzaje

przegród będą charakteryzowały się lepszą izolacyjnością termiczną.

Tabela 2.8 Maksymalna wartość współczynnika przenikania w zależności od rodzaju przegrody po zmianach wg [10] dla wszystkich rodzajów budynków

Rodzaj przegrody

Wymagana maksymalna warto ść współczynnika przenikania U dla ścian zewn ętrznych W/(m 2*K)

od 1.01.2014 od 1.01.2017 od 1.01.2021

Ściany zewnętrzne 0,25 0,23 0,2

Dachy, stropodachy 0,20 0,18 0,15

Podłogi na gruncie 0,30 0,30 0,30

Okna, drzwi balkonowe 1,30 1,10 0,90

Drzwi 1,70 1,50 1,30

W tabeli 2.9 przedstawiono wartości parametru EP, który określa zapotrzebowania budynku na

nieodnawialną energię pierwotną.1 Na wartość tego parametru mają wpływ m.in. materiały izolacyjne, sposób

ogrzewania (rodzaj urządzenia oraz paliwa). Parametr ten określa wartość wskaźnika EP [kWh/m2 rok]

odpowiadającemu rocznego zapotrzebowaniu na nieodnawialna energię pierwotną do ogrzewania, wentylacji i

przygotowania ciepłej wody oraz chłodzenia.

Tabela 2.9 Maksymalna wartość EP na potrzeby ogrzewania, wentylacji oraz przygotowania ciepłej wody współczynnika po zmianach wg [10] w zależności od rodzaju budynku

Rodzaj budynku

Maksymalne warto ści wska źnika EP na potrzeby ogrzewania, wentylacji oraz przygotowania ciepłej wody u żytkowej [kWh/m 2 rok]

od 1.01.2014 od 1.01.2017 od 1.01.2021

Budynek mieszkalny jednorodzinny 120 95 70

Budynek mieszkalny wielorodzinny 105 85 65

Budynek zamieszkania zbiorowego 95 85 75

Budynek użyteczności publicznej: opieki zdrowotnej 390 290 190

Budynek użyteczności publicznej: pozostałe 65 60 45

Budynek gospodarczy, produkcyjny 110 90 70

Z przedstawionych danych wynika, że od stycznia 2014 obowiązują oraz w kolejnych latach będą

obowiązywały znacznie bardziej zaostrzone wartości w porównaniu do lat ubiegłych.

1 w tabeli przedstawiono wartości EP bez chłodzenia i oświetlenia

Page 18: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

18

Ogrzewanie budynków o niskiej zapotrzebowaniu ciepła różni się znacznie od ogrzewania starego budownictwa.

Sumaryczne straty ciepła związane z przenikaniem przez ściany, okna dla obecnie lub w przyszłości budowanych

obiektów mogą być mniejsze od wentylacji budynku i podgrzewania ciepłej wody użytkowej. Jest to spowodowane

wykorzystaniem nowych technologii budowlanych m.in. poprzez wykorzystanie lepszych izolacji cieplnych, a także

okien i drzwi. Obrazuje to rysunek 2.4, na którym przedstawiono zapotrzebowanie jednostkowe ciepła w zależności

od okresu budowy. W porównaniu do budynków z lat 70-tych największy procentowy spadek dotyczy strat ciepła

przez przenikanie.

Rysunek 2.4 Zmiana jednostkowego zapotrzebowania cieplnego budynku w podziale na rok budowy

2.4.1 Możliwo ści termomodernizacyjne

Zużycie energii w budynkach wynika z różnych potrzeb. Na rysunku 2.5 przedstawiono strukturę zużycia

energii w budynkach mieszkalnych. Z przedstawionego rysunku wynika, że ogrzewanie stanowi dominujący

wielkość w strukturze zużycia energii w gospodarstwach domowych. Udział energii na ogrzewaniu

w przedstawionym okresie systematycznie maleje. Wynika to przede wszystkich z zastosowania na potrzeby

grzewcze bardziej efektywnych energetycznie instalacji, realizowanych przedsięwzięć termomodernizacyjnych oraz

warunków pogodowych (stosunkowo łagodniejsze zimy). Również wpływ na zmianę udział ogrzewania

w strukturze użycia energii ma wprowadzenie bardziej restrykcyjnych norm.

Rysunek 2.5 Struktura zużycia energii w gospodarstwach domowych według kierunków użytkowania [15]

Page 19: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

19

Tabela 2.10 Zamiany struktury zużycia energii w gospodarstwach domowych wg kierunków użytkowania [15]

Rok Wyszczególnienie

1993 2002 2009 2012

Ogółem 100% 100% 100% 100%

Ogrzewanie 73,1% 71,2% 70,2 68,8

Podgrzewanie wody 14,9% 15,1% 14,4 14,8

Gotowanie posiłków 7,1% 6,6% 8,2 8,3

Oświetlenie 1,6% 2,3% 1,8 1,5

Wyposażenie elektryczne 3,3% 4,5% 5,4 6,6

Wielkość zapotrzebowania na ciepło wynika z pokrycia strat ciepła. Straty te mogą być różne w zależności

od rodzaju przegrody. Większość budynków w Polsce jest niewystarczająco zabezpieczona przez utratą ciepłą.

Przepisy/normy w ubiegłych latach były znacznie mniej restrykcyjne niż obecnie (patrz tab. xxx). Udział

poszczególnych elementów budynku w stratach ciepła może być podstawą do podjęcia decyzji co należy w przede

wszystkim poddać modernizacji. W tabeli 2.11 przedstawiono średnie procentowe straty ciepła w budynkach

mieszkalnych. Udział procentowy poszczególnych elementów przedstawionych w tabeli można być różny

w zależności od roku budynku, sposobu wykorzystania, etc.

Tabela 2.11 Procentowy rozkład strat ciepła w zależności dla budynku mieszkalnego

Rodzaj strat cieplnych Zabudowa mieszkaniowa jednorodzinny

Zabudowa mieszkaniowa wielorodzinna

Ściany zewnętrzne 20-30% 20-40%

Wentylacja 30-40% 25-30%

Dach 10-25% 5-15%

Podłoga 5-10% 3-10%

Okna, drzwi 10-25% 15-25%

Działania termomodernizacyjne możemy podzielić na inwestycyjne, które najczęściej polegają na ulepszeniu cech

technicznych budynku, oraz bezinwestycyjne, polegające przede wszystkich na sposobie korzystania z energii, np.:

poprzez zmianę zachowań.

Działania inwestycyjne

Wykonanie prac termomodernizacyjnych polega na wykonaniu działań ulepszających cechy technicznie budynku tj.

usprawnienia w strukturze przegród budowlanych, jak i instalacji, czego efektem będzie zmniejszenie

zapotrzebowania na ciepło. W ramach prac można wykonać:

• ocieplenie zewnętrznych przegród budowlanych:

- zastosowanie materiałów budowlanych o wysokich właściwościach izolacyjnych w celu spełnienie

aktualnych norm (docieplenie ścian, stropodachów, etc),

- modernizacja lub wymiana okien, drzwi, poprzez np.: zmniejszenie wielkości okien, uszczelnienie,

wstawienie dodatkowych szyb, montaż zasłon, żaluzji i okiennic.

• zmodernizowanie lub wymiana instalacji centralnego ogrzewania - wykonanie działań obejmujących m.in.:

zaizolowanie przewodów, zamontowanie zaworów termostatycznych, montaż podzielników ciepła;

• modernizacja węzła cieplnego oraz zainstalowanie automatyki sterującej;

• usprawnienie systemu wentylacji - przeprowadzenie działań termomodernizacyjnych prowadzi do

pogorszenie systemu wentylacji, który w większości jest oparty o wentylację naturalną grawitacyjną.

Związane to jest z uszczelnieniem okien/drzwi, które stanowiły naturalnym dopływem świeżego powietrza.

Page 20: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

20

Dlatego w celu polepszenia systemu wentylacji należy montować urządzenia zapewniający sterowalny

przepływ powietrza, np.: nawiewniki powietrza lub zastosowanie wentylacji mechanicznej nawiewno-

wywiewnej z rekuperacją (odzyskiem) ciepła.

• modernizacja systemu zaopatrzenia w ciepłą wodę użytkową -działania to przede wszystkim wprowadzenie

indywidualnego systemu rozliczania opłat za ciepłą wodę w oparciu o wskazania wodomierzy. Inne

działania zwiększające efektywność to: wymiana niesprawnej aparatury, poprawa działania układu

przygotowującego ciepłą wodę oraz modernizacja układu cyrkulacyjnego, wprowadzenie automatycznej

regulacji temperatury wody, wykorzystanie aparatury umożliwiającej oszczędzanie ciepłej wody, np.:

perlatorów.

W tabeli 2.12 przedstawiono średnie procentowe obniżenie zużycia ciepła w stosunku do stanu przed modernizacją.

W większości wykonywanych działań termomodernizacyjnych przyczyną największych strat ciepła są ściany

zewnętrzne, stropodachy, podłoga oraz działania związane z modernizacją okien. Prawidłowe modernizacja tych

elementów pozwoli na znaczne zmniejszenie zużycia energii przy zachowaniu dotychczasowego komfortu

cieplnego pomieszczenia.

Tabela 2.12 Średnioprocentowe obniżenie zużycia ciepła w zależności od rodzaju prac modernizacyjnych

Sposób uzyskania oszcz ędno ści Średnie % obni żenie zu życia ciepła w stosunku do stanu

bazowego

Automatyka pogodowa, inne urządzenia regulacyjne zamontowane w węźle cieplnym

5-15%

Modernizacja instalacji cieplnej poprzez np.: izolowanie przewodów, zamontowanie zaworów termostatycznych

10-20%

Montaż podzielników ciepła 10%

Montaż ekranów zagrzejnikowych 2-5%

Uszczelnienie stolarki okiennej i drzwi 3-5%

Wymiana okien na okna charakteryzyjące się niższą wartością współczynnika przenikania i zwiekszenie szczelności

10-15%

Docieplenie zewnętrznych przegród budowlanych 10-25%

Działania bezinwestycyjne

Oprócz powyżej wymienionych działań inwestycyjnych (kosztowych), skuteczną formą zmniejszające zużycie

energii cieplnej są działania zmieniające nawyki dotyczące użytkowania ogrzewania lub korzystania z ciepłej wody.

Do podstawowych działań nie kosztowych można zaliczyć: zakręcanie zaworów na grzejnikach podczas wietrzenia

pomieszczeń bądź nieobecności w domu, obniżenie temperatury w pomieszczeniach rzadziej eksploatowanych lub

w nocy oraz niezasłanianie grzejników.

Audyt energetyczny

Efekt przeprowadzonych prac modernizacyjnych obniżających zużycia ciepła będzie różny w zależności od

budynku. Dlatego celowym jest wykonanie analizy, która określi opłacalność różnych wariantów modernizacji, tzw.

audytu energetycznego.

Audyt energetyczny jest opracowaniem stanowiącym ocenę techniczno-ekonomiczną budynku z punktu wiedzenia

zapotrzebowania na energię. W opracowaniu określa się, jakie zmiany i ulepszenia - rozwiązania optymalne - trzeba

wykonać, aby zmniejszyć zużycie energii i związane z tym koszty eksploatacyjne. Audyt energetyczny składa się z:

• inwentaryzacji techniczno-budowlanej budynku,

Page 21: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

21

• ocenę stanu technicznego budynku w zakresie istotnym dla wskazania usprawnień i przedsięwzięć

termomodernizacyjnych,

• wskazanie działań i ocenę efektywności zaproponowanych przedsięwzięć termomodernizacyjnych,

• wybór optymalnego wariantu przedsięwzięcia termomodernizacyjnego z określeniem kosztów.

Wykonanie audytu energetycznego jest wymogiem obligatoryjnym o ubieganie się tzw. premii

termomodernizacyjnej. Zasady ubiegania się o kredyt z premią termomodernizacyjną są uregulowane ustawą o

wspieraniu termomodernizacji i remontów [12].

Premia termomodernizacyjna stanowi pomoc w spłacie części kredytu. Premia ta stanowi 20% wykorzystanej kwoty

kredytu, nie więcej niż 16 % kosztów inwestycji Przysługuje w przypadku realizacji przedsięwzięć

termomodernizacyjnych, których celem jest:

• zmniejszenie zużycia energii na ogrzewanie budynku i podgrzewanie wody użytkowej o 25% rocznie, gdy

dokonuje się kompleksowej termomodernizacji, albo o 10% rocznie, gdy modernizuje się tylko system

grzewczy. Jeśli ten został już w przeszłości ulepszony (ale po 1984 r.), nowe przedsięwzięcie musi przynieść

co najmniej 15% zmniejszenia zużycia energii;

• zmniejszenie kosztów pozyskania ciepła dostarczanego do budynków, poprzez wykonanie przyłącza

technicznego do scentralizowanego źródła ciepła w związku z likwidacją lokalnego źródła ciepła,

• zmniejszenie strat energii pierwotnej w lokalnych sieciach ciepłowniczych oraz zasilających je lokalnych

źródłach ciepła,

• całkowita lub częściowa zamianie źródła energii na źródło odnawialne lub zastosowanie wysokosprawnej

kogeneracji.

O premię termomodernizacyjną mogą się ubiegać właściciele lub zarządcy:

• budynków mieszkalnych,

• budynków zbiorowego zamieszkania,

• budynków użyteczności publicznej stanowiących własność jednostek samorządu terytorialnego i

wykorzystywanych przez nie do wykonywania zadań publicznych,

• lokalnej sieci ciepłowniczej,

• lokalnego źródła ciepła.

Ponadto wg ustawy [12] istnieje możliwość uzyskania premii remontowej. O premię remontową mogą się ubiegać

właściciele lub zarządcy budynków wielorodzinnych, których użytkowanie rozpoczęto przed dniem 14 sierpnia

1961 r. Premia remontowa stanowi 20% kwoty kredytu wykorzystanego na realizację przedsięwzięcia

remontowego, jednak nie więcej niż 15% poniesionych kosztów przedsięwzięcia.

Warunkiem uzyskania premii remontowej jest wykonanie audytu remontowego, w którym podobnie jak w audycie

energetycznym wymagane jest wykazanie oszczędności energetycznych. Premia remontowa przysługuje w

przypadku realizacji przedsięwzięć remontowych związanych z termomodernizacją budynków wielorodzinnych,

których przedmiotem jest:

• remont tych budynków,

• wymiana okien lub remont balkonów,

• przebudowa budynków, w wyniku której następuje ich ulepszenie,

• wyposażenie budynków w instalacje i urządzenia wymagane dla oddawanych do użytkowania budynków

mieszkalnych, zgodnie z przepisami techniczno-budowlanymi.

Premia remontowa przysługuje wyłącznie osobom fizycznym, wspólnotom mieszkaniowym z większościowym

udziałem osób fizycznych, spółdzielniom mieszkaniowym lub towarzystwom budownictwa społecznego.

Page 22: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

22

3 Obliczania zapotrzebowania cieplnego w kalkulatorze energetycznym

Celem projektu jest przeprowadzenie badań i opracowanie narzędzi informatycznych wspierających

Jednostki Samorządu Terytorialnego w zakresie inwestycyjnego i bezinwestycyjnego ograniczania zużycia energii

i emisji zanieczyszczeń, poprzez identyfikację potencjalnych przyczyn ponadnormatywnego zużycia energii, przede

wszystkim w budynkach administrowanych przez samorządy lokalne, ale również w innych, w szczególności

w budownictwie indywidualnym, jednorodzinnym. Przez działania inwestycyjne należy rozumieć różnego typu

termomodernizacje, natomiast bezinwestycyjne m.in. regulację instalacji grzewczych, zapewniająca optymalną

z punktu widzenia zużycia energii i komfortu cieplnego temperaturę w pomieszczeniach, racjonalizację zużycia

energii przez osoby korzystające z budynków, etc.

Podstawowym założeniem projektu jest, by zarządzanie energią w budynkach administrowanych przez JST

było prowadzone przez nie same. Dostępne komercyjnie oprogramowanie pozwalające na wyznaczanie

energochłonności budynków i modelowania wpływu termomodernizacji na jej poprawę, jest dedykowane dla

audytorów energetycznych, posiadających specjalistyczną wiedzę z tego obszaru oraz wymaga wprowadzania

szeregu danych o konstrukcji budynku i instalacjach wewnętrznych (częściowo zostało to opisane w rozdziale 2).

Należy założyć, że osoby zatrudnione w JST nie posiadają takiej wiedzy, a ilość budynków jest na tyle duża, że

wprowadzenie szczegółowych danych byłoby dużym utrudnieniem, uniemożliwiającym samodzielne wdrożenie

i eksploatację systemu.

Oznacza to konieczność ograniczenia ilości i szczegółowości wprowadzanych danych o stanie budynków, by mogły

to robić osoby bez specjalistycznej wiedzy z zakresu konstrukcji budynków, ciepłownictwa, energochłonności, etc.,

oraz by realnym było wprowadzenie takich danych dla stosunkowo dużej liczby obiektów administrowanych przez

samorządy lokalne.

3.1 Metodyka wyznaczania zapotrzebowania na moc i energi ę ciepln ą do ogrzewania budynków

Głównym celem badań była identyfikacja wybranych parametrów budynku, reprezentatywnych pod kątem

zużycia energii, pozwalających na dokładne szacowanie zapotrzebowania na energię w podziale na funkcje

(ogrzewanie, przygotowanie ciepłej wody, przygotowanie posiłków) oraz analityczne wyznaczenie zależności

pomiędzy zapotrzebowaniem na moc i energię a parametrami opisującymi budynek.

Potrzeby cieplne ogrzewanych budynków wynikają z charakteru ich wykorzystania i powierzchni oraz kubatury

budynków. Istotnym z punktu widzenia potrzeb cieplnych jest rok budowy. Prawo budowlane, modyfikowane

w kolejnych latach, ściśle określało minimalne parametry między innymi izolacyjności cieplnej budynków. Stąd

można przyjąć, że z chwilą zmiany norm budowlanych, nowo powstające budynki musiały spełniać wymagania,

a co za tym idzie można określić standardowe zapotrzebowanie dla pewnych grup budynków. Do celów

przybliżonego określenia potrzeb energetycznych standardowych budynków wykorzystano wzory empiryczne

oparte na ogólnie dostępnych parametrach budynków.

Do przeprowadzenia badań wykorzystano dane zarówno własne oraz informacje o obiektach pozyskane

w trakcie projektu. W tabeli 3.1 przedstawiono budynki wykorzystane w analizach oraz podstawowe parametry

niezbędne do obliczania zapotrzebowania cieplnego. Zależności pomiędzy parametrami modeli energetycznych

budynków i instalacji a zapotrzebowaniem na energię i paliwa zostały określone z uwzględnieniem zarówno

wytycznych wynikających z odpowiednich norm, jak i danych o zużyciu energii pozyskanych z wybranych,

reprezentatywnych budynków.

Page 23: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

23

Tabela 3.1 Parametry budynków wykorzystane w badaniach

L.p. Typ Budynku Powierzchnia

/kubatura [m 2/m3]

Rok budowy

Zapotrzebowanie cieplne na ogrzewanie

Ilość osób Zakres termomodernizacji

1 Przedszkole powiat bytowski 1430/8330 - 674 183

Wymiana instalacji c.o., ocieplenie ścian, stropodachu, wymiana okien, drzwi

2 Przedszkole powiat bytowski 750/3800 - 451 107

Wymiana instalacji c.o., ocieplenie ścian, stropodachu, wymiana okien, drzwi

3 Szkoła powiat bytowski 4040/13440 1945 1436 600 -

4 Szkoła powiat bytowski 3400/16380 1962 1605 366

Budynek po całkowitej termomodernizacji|: ocieplenie ścian, wymiana okien, ocieplenie dachów, wymiana instalacji c.o.

5 Szkoła powiat bytowski 600/3900 1990 490 61 Docieplenie jednej ściany

6 Szkoła powiat bytowski 1080/3200 1992 702 300 Wymiana okien

7 Szkoła powiat bytowski 570/2700 1945 303 100 Docieplenie 1/4 budynku

8 Szkoła powiat bytowski 570/3800 1947 205 72 Docieplenie jednego budynku

9 Szkoła powiat bytowski 1100/8200 1970 924 156 Pełna termomodernizacja w 2009 roku

10 Szkoła powiat bytowski 10000/48400 2004 1742 590 -

11 Budynek publiczny powiat bytowski 1890/8440 1906 902 - -

12 Szkoła powiat bytowski 4460/14400 - 2900 500

Pełna termomodernizacja w 2012 roku: docieplenie, wymiana okien, drzwi; modernizacja systemu grzewczego

13 Szkoła powiat bytowski 3660/15590 1990 1403 365

Pełna termomodernizacja w 2012 roku: docieplenie, wymiana okien, drzwi; modernizacja systemu grzewczego

14 Szkoła powiat bytowski 1100/- 1910 792 100 Częściowo wykonane prace termomodernizacyjne

15 Budynek publiczny powiat bytowski 3360/17730 1905 1895 150 Częściowa wymiana stolarki

okiennej

16 Budynek publiczny powiat bytowski 850/2550 1915 264 30

Pełna termomodernizacja w 2012 roku: docieplenie, wymiana okien, drzwi

17 Budynek publiczny powiat bytowski 800/3500 - 374 - -

18 Budynek publiczny powiat bytowski 880/2700 - 315 - -

19 Budynek publiczny powiat bytowski

2000/11600 1984 1128 - -

20 Budynek publiczny powiat bytowski

1600/8000 - 855 - -

21 Budynek publiczny powiat bytowski

13200/6200 - 705 - -

22 Placówka Zdrowia powiat bytowski 13500/63600 1930 12257 700 -

23 Budynek publiczny powiat sztumski 2530/7834 1920 635 80 Tak, częściowo, brak docieplenia

dachu

Page 24: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

24

L.p. Typ Budynku Powierzchnia

/kubatura [m 2/m3]

Rok budowy

Zapotrzebowanie cieplne na ogrzewanie

Ilość osób Zakres termomodernizacji

24 Placówka Zdrowia powiat słupski

1050/6040 1900 1024 60 -

25 Placówka Zdrowia powiat słupski 4230/18500 2000 1721 120

-

26 Szkoła powiat słupski 1550/12530 1965 885 150 Wymiana okien, ocieplone ściany

27 Szkoła powiat słupski 1030/4560 1973 800 200 Wymiana okien, ocieplone ściany

28 Szkoła powiat słupski 2210/17610 1966 1766 200 Budynek częściowo rozbudowany po 1990 roku

29 Szkoła powiat słupski 2090/- 1977 1324 350 Budynek częściowo rozbudowany w 1999 roku

30 Szkoła powiat słupski 1845/3440 - 1766 162 -

31 Szkoła powiat słupski 3000/- - 1800 477 Kompleksowa modernizacja

32 Przedszkole powiat słupski

475/2320 1980 547 92 Kompleksowa modernizacja

33 Budynek publiczny powiat słupski 600/2700 1988 335 50 -

34 Szkoła powiecie lidzbarskim 1910/9430 1907 800 500 Kompleksowa modernizacja

35 Przedszkole powiecie lidzbarskim

665/2570 1945 472 170 -

36 Przedszkole powiecie lidzbarskim

840/3090 1977 401 120 Wymiana okien/drzwi, remont dachu

37 Szkoła powiecie lidzbarskim 946/11000 1971 1176 550 -

38 Szkoła powiecie lidzbarskim 1102/4400 - 580 250 Kompleksowa modernizacja

39 Szkoła powiecie lidzbarskim

1525/6670 1993 750 100 -

40 Szkoła powiecie lidzbarskim

1990/8300 1962 2160 310 -

41 Szkoła powiecie chojnicki 2940/14940 1979 2210 440 Wymiana okien/drzwi

42 Szkoła powiecie lęborski 350/1300 1900 291 212 Wymiana okien

43 Szkoła powiecie lęborski 1185/5810 1966 812 180 Wymiana okien

44 Szkoła powiecie lęborski 1200/6000 1961 700 278 -

45 Budynek publiczny powiat lęborski 630/2590 1974 477 50 Wymiana okien

46 Budynek publiczny powiat lęborski 440/2200 1994 177 10 -

47 Budynek publiczny powiat lęborski

610/1650 1950 468 105 Modernizacja stropodachu

48 Szkoła powiecie starogardzkim

1060/6250 1995 857 164 -

49 Szkoła powiecie starogardzkim 2830/14230 2000 1029 240 -

50 Szkoła powiecie starogardzkim 1150/5380 1911 875 180 Kompleksowa modernizacja

51 Placówka Zdrowia powiat starogardzkim 290/1530 1968 210 15 Wymiana okien/drzwi

52 Szkoła powiat starogardzkim

800/4180 1918 501 544 Wymiana okien/drzwi

Page 25: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

25

Zależności pomiędzy podstawowymi parametrami budynku a jego zapotrzebowaniem na moc (Φ) i energię cieplną

(� można przedstawić jako funkcję:

�,Φ� n�op1EFqR�DXE&; Bst&<sq&; qpB_tsgp1v; <vo_tsgvXBs; <F�o_RF1. _pq&R_1F1. ; Ejpść_pGót; R&BqFG_<Fq�p�pg. Szczytowe zapotrzebowanie cieplne budynku pozostaje w relacji do technologii budynku (roku budowy),

zastosowanych dociepleń, stosunku kubatury do powierzchni ścian zewnętrznych, przeznaczenia budynku oraz

temperatur w zależności od strefy klimatycznej w której znajduje się budynek. W związku z tym, że realne do

pozyskania są wyłącznie powierzchnie użytkowe budynków, w obliczeniach zastosowano uproszczenie i przyjęto

budynek o standardowej bryle. Na tej podstawie wyznaczono krzywe szczytowego zapotrzebowania budynków dla

określonej kategorii odbiorcy przy uwzględnieniu roku budowy.

Na rysunku 3.1 przedstawiono przykładowe krzywe szczytowego zapotrzebowania w zależności od całkowitej

powierzchni budynku z uwzględnieniem roku budowy.

Rysunek 3.1 Szczytowe zapotrzebowanie mocy cieplnej dla budynku o przeznaczonym wykorzystaniu w zależności od całkowitej powierzchni budynku z uwzględnieniem roku budowy

Roczne zużycie energii cieplnej na ogrzanie budynku wynika z warunków pogodowych w ciągu sezonu grzewczego

i może być wyznaczone w oparciu o szczytowe zapotrzebowanie budynku na moc oraz różnicę pomiędzy

rzeczywistymi temperaturami. Do obliczeń wykorzystuje się m.in.:

• ilość dni grzewczych w danym miesiącu,

• średnie temperatury dla każdego miesiąca w okresie grzewczym,

• projektową temperaturę wewnętrzną w zależności od przeznaczenia budynku;

• minimalna temperaturę na zewnątrz w zależności do położenia obiektu w strefie klimatycznej.

Na podstawie w/w danych możemy obliczyć procentowe wykorzystanie szczytowej mocy na ogrzewanie budynku

w ciągu sezonu grzewczego określonego jako:

B � ��ś���%z{

A%H

gdzie:

B współczynnik wykorzystania mocy szczytowej w ciągu sezonu grzewczego

��ś� ilość stopniodni przy uwzględnieniu średnich temperatur z wielolecia lub innych jeżeli są dostępne)

��%z{ ilość stopniodni przy warunkach brzegowych (maksymalnych)

Page 26: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

26

Przykładowe wartości i obliczenia zostały przedstawione w tabeli 3.2.

Następnie na podstawie procentowego wykorzystania szczytowej mocy na ogrzanie budynku i przy wykorzystaniu

standartowych krzywych szczytowego zapotrzebowania możliwe jest określenie średniego zużycia energii cieplnej

na ogrzewanie pomieszczeń w ciągu sezonu grzewczego.

Tabela 3.2 Dane wejściowe wykorzystywane do obliczenia zużycia ciepła

Miesi ąc Ilość dni

grzewczych w danym miesi ącu

Średnie temperatury miesi ęczne

Stopniodni

W sezonie na podstawie temp. średniej

Na podsawie warunkow brzegowych, t w=+20°C, tz =-18°C

1 31 -1.6 669.6 1064

2 28 -0.55 575.4 1178

3 31 2.7 537.7 1140

4 30 8.7 340.5 0

5 0 11.0 0.0 0

6 0 15.7 0.0 0

7 0 16.8 0.0 0

8 0 16.2 0.0 0

9 0 11.5 0.0 1178

10 31 8.9 342.8 1140

11 30 4.6 460.9 1178

12 31 -0.2 626.5 1064

Średnia 227 - 3553,4 8056

Procentowe wykorzystanie szczytowej mocy 0,441

Na tej podstawie zostały także opracowane referencyjne modele energetyczne budynku o typowym charakterze

wykorzystania, które umożliwiają szacowanie zużycia energii dowolnego obiektu w funkcji wielu zmiennych. Do

wyznaczenia zapotrzebowania na ciepło dla referencyjnego budynku wykorzystano standartowe warunki brzegowe

m.in. temperatura wewnętrzna, zewnętrzna na podstawie określony norm (patrz rozdział 2.1.1). W rzeczywistości

warunki brzegowe mogą być inne. Komfort cieplny użytkownika/użytkowników jest subiektywny. Oznacza to, że

dla budynku o tych samych parametrach technicznych i wybudowanego w tym samym roku roczne zużycie ciepła

może być inne. Dlatego porównanie zużycia ciepła rzeczywistego budynku z referencyjnym będzie polegało na

zasadzie benchmarkingu. Obrazowo zostało to przedstawiono w tabeli 3.3.

Zużycie ciepła budynku rzeczywistego zostało przedstawiono w jednostkach względnych (p.u.) w stosunku do

zużycia referencyjnego dla każdego roku grzewczego. W ten sposób uzyskamy możliwość monitorowania (z roku

na rok) zapotrzebowania cieplnego budynku i ewentualne zidentyfikowanie odchyleń w porównaniu do

normatywnego, co pozwoli na doraźne wprowadzenie działań zaradczych, np. kontrolę warunków eksploatacji

obiektu. Ponadto analiza umożliwia porównanie zużycia ciepła bez oddziaływania różnych czynników mających

wpływ na wielkość zapotrzebowania, tj. zmienności temperatur, innego komfortu cieplnego użytkownika, etc.

Page 27: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

27

Tabela 3.3 Porównanie zużycia ciepła budynku rzeczywistego z referencyjnym - założenia

Rok Zużycie ciepła - Budynek rzeczywisty

Zużycie ciepła - Budynek referencyjny Czynno ść

Rok_1 0,90 p.u. 1,0 -

Rok_2 0,92 p.u. 1,0 -

... ... ... ...

Rok_n 1.05 p.u. 1,0 Analiza przyczyn

Analiza porównawcza pozwoli także na hierarchizację pod kątem największym odchyleń w porównaniu do

normatywnego zapotrzebowania na ciepło zasobów gminnych. Na rysunku 3.2 przedstawiono jednostkowe zużycie

energii cieplnej w funkcji powierzchni ogrzewanego budynku [GJ/m2] w zależności od roku budowy (na

przedstawionym wykresie wybrano budynki wybudowane przez 1970).

Na rysunku 3.2 budynki charakteryzują się różnymi parametrami technicznymi, w szczególności powierzchnią,

kubaturą czy zakresem wykonanych dotychczas prac modernizacyjnych. Cechą wspólną analizowanych budynków

jest położenie (ta sama strefa klimatyczna), przeznaczenie (kategoria, w tym przypadku placówki oświatowe) oraz

przyjęty zakres roku budowy (budynki wybudowane przed 1970 rokiem).

Czerwonym kolorem zaznaczono analizowany obiekt o wskaźniku zapotrzebowania na ciepło 0,69 GJ/m2. W grupie

budynków o zbliżonej powierzchni istnieją budynki o niższym wskaźniku (mniej energochłonne). Oznacza to, że

istnieje możliwość wdrożenia działań inwestycyjnych lub bezinwestycyjnych, które mogą przyczynić się do

obniżenia zapotrzebowania na ciepło.

Na tej podstawie będzie można określić wstępnie przyczyny odchyleń zużycia analizowanego budynku

w porównaniu do innych o zbliżonej powierzchni oraz wytypować warianty modernizacji lub przeprowadzić

działania zaradcze (np. kontrola warunków eksploatacji obiektu), które pozwoliłby uzyskać wskaźnik GJ/m2

porównywalny do najlepszych obiektów.

Analiza porównawcza pozwala także na wstępne wytypowanie zasobów gminnych najbardziej energochłonnych,

które powinny zostać w pierwszej kolejności objęte działaniami zaradczymi.

Rysunek 3.2 Jednostkowe zużycie energii cieplnej w funkcji powierzchni budynku dla obiektów wybudowanych przez 1970 rokiem

Powyżej przedstawiono jeden z możliwych wskaźników, które można zastosować do analizy porównawczej.

Obliczenia w kalkulatorze energetycznych bazują na parametrach budynku ogólnie dostępnych. Większa ilość

Page 28: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

28

wskaźników pozwala na rozbudowanie systemu porównawczego i wybór obiektów do analizy, charakteryzujących

się parametrami podobnymi do analizowanego budynku.

3.2 Metodyka wyznaczania mocy i energii cieplnej dla przygotowania ciepłej wody u żytkowej

Moc szczytowa dla przygotowania ciepłej wody jest zależna od ilości punktów czerpalnych ciepłej wody

(kranów), ich przepustowości, różnicy temperatur o jaką należy podgrzać wodę oraz ilości zakumulowanej energii

w systemie przygotowania ciepłej wody i statystyczne jednorazowe zużycie przez jednego użytkownika.

Ze statystycznych danych wynika, że chwilowa wielkość zużycia wody przez jeden punkt czerpalny wynosi

od 10 l/min (pojedyncze punkty czerpalne) do 25 l/min (wanny). Powyższe przepływy dotyczą standardowej

armatury i ciśnień w instalacji hydraulicznej. Natomiast standardowa różnica temperatur przyjmowana w

obliczeniach wynosi 50 °C (woda zasilająca instalację - 5 °C, ciepła woda użytkowa wg polskich norm - 55 °C).

Przy wykonywaniu obliczeń przyjmuje się, że statystycznie w mieszkaniu znajdują się dwa punkty czerpalne o typu

"umywalka" i jeden typu "wanna". W przypadku zakładów przemysłowych lub budynków użyteczności publicznej

przyjmowana jest norma jeden punkt czerpalny na 10 zatrudnionych.

W przypadku wielu odbiorców zasilanych z jednego punktu przygotowania ciepłej wody przyjęto

zaczerpnięte z literatury współczynniki nierównomierności występowania zapotrzebowania, uwzględniające

statystyczny profil aktywności odbiorców oraz standardowo określane pojemności zasobników ciepłej wody

pełniących rolę buforów pozwalających na obniżenie mocy nominalnej urządzeń grzewczych dla przygotowania

CWU. W obliczeniach moc cieplną urządzeń grzewczych niezbędną dla grupy odbiorców obniża się zgodnie

z wartością współczynnika nierównomierności rozbioru ciepłej wody. Wielkości współczynników zamieszczono

w 3.4.

Tabela 3.4 Współczynniki równoczesności użycia wody

Ilość mieszka ń

Współczynnik jednoczesno ści Pojemno ść zasobnika

1 1,15 90

2 0,86 130

4 0,65 190

6 0,56 230

8 0,50 300

10 0,47 330

12 0,47 395

15 0,44 455

18 0,42 520

20 0,40 555

25 0,38 665

30 0,36 750

40 0,33 910

50 0,32 1110

60 0,31 1280

80 0,29 1600

100 0,28 1930

120 0,27 2280

150 0,26 2700

200 0,25 3450

Page 29: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

29

Roczną wielkość zużycia energii dla celów przygotowania ciepłej wody wyznaczono jako funkcję

jednostkowego dziennego zużycia wody na osobę (w zależności od kategorii odbiorców: budownictwo

mieszkaniowe, placówki handlowo-usługowe, placówki służby zdrowia, etc.), ilości osób, ilości dni w roku

przebywania w budynku, różnicy temperatur o jaką należy podgrzać wodę.

Dostępne są dane literaturowe określające średnie statystyczne zużycie CWU [l/osobę/dzień] przez rożnego typu

odbiorców (mieszkania, szpitale, zakłady przemysłowe, budynki użyteczności publicznej, szpitale, etc.). Pomimo

danych normatywnych na temat zużycia ciepłej wody przez poszczególne typy odbiorców, z doświadczeń

zebranych w trakcie wykonywania projektów wynika, że każdorazowo należy określić wielkość zużycia.

W szczególności u odbiorców indywidualnych wielkość dziennego zużycia ciepłej wody jest znacznie niższa od

wielkości normatywnych.

3.3 Metodyka wyznaczania ciepła dla celów technologicznych

Wielkość szczytowego zapotrzebowania mocy cieplnej dla celów technologicznych wśród odbiorców

indywidualnych – komunalnych (przygotowanie posiłków) wyznaczono na podstawie danych technicznych

producentów urządzeń elektrycznych i gazowych. Dane na temat poszczególnych urządzeń różnych producentów

pozyskano z internetu i uśredniono. Przyjmowane jest jedno urządzenie grzewcze (kuchnia gazowa lub elektryczna)

na lokal mieszkalny.

Roczną wielkość zużycia energii można określić jako iloraz ilości osób i normatywnego rocznego wskaźnika

zużycia energii. Wielkość wskaźnika [GJ/osobę/rok] wyznaczono na podstawie danych publikowanych przez

przedsiębiorstwa gazownicze dotyczących wielkości zużycia gazu dla przygotowania posiłków.

Page 30: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

30

4 Opracowanie oprogramowania u żytkowego dla zarządzania energią w obiektach administrowanych przez JST

4.1 Założenia funkcjonalne programu

Zadaniem aplikacji jest określenie referencyjnego zużycia energii, odpowiadającego typowemu budynkowi

opisanemu za pomocą uproszczonych parametrów. Poniżej przedstawiono ogólną funkcjonalność aplikacji

z podziałem na główne bloki, natomiast na rysunku 4.1 przedstawiono schemat zarządzania energią w obiektach

gminnych przy wykorzystania kalkulatora energetycznego.

Podstawowe dane o obiekcie

Blok będzie stanowił podstawową bazę informacyjną dotyczącą budynku. Wymagane będzie wprowadzenie

podstawowych parametrów wykorzystywanych przy obliczeniu zapotrzebowania i zużycia cieplnego, m. in.:

• dane identyfikacyjne: charakter wykorzystania (np.: budynek mieszkalny, publiczny), lokalizacja;

• dane o obiekcie: powierzchnia/kubatura budynku, ilość osób korzystających z budynku, data budowy,

zrealizowane działania termomodernizacyjne;

• dane o źródle energii: zdefiniowanie informacji o wykorzystywanych instalacjach grzewczych (typ źródła,

określenie instalacji na ogrzewanie, przygotowanie ciepłej wody, potrzeby technologiczne). Większość

wymaganych danych będzie oparta na systemie słownikowym, w którym będzie zawierał typoszeregi

urządzeń, instalacji z uwzględnieniem rodzaju spalanego paliwa, mocy, sprawności, etc.

W programie obliczenia będą przeprowadzone dla standaryzowanych odbiorców i na podstawie uproszonych

standaryzowanych danych. W tabeli 4.1 opisano wymagane podstawowe cechy odbiorcy.

Tabela 4.1 Podstawowe cechy obiektu

Kategori ę odbiorcy Budownictwo: jednorodzinne, wielorodzinne, użyteczności publicznej, szkoły, etc..

Lokalizacj ę Gmina, Miejscowość, adres (opcjonalnie). Na tej podstawie następuje automatycznie przypisanie danych wejściowych, np.: strefa klimatyczna, średnie temperatury, etc

Wielko ść budynku Powierzchnia budynku, z uwzględnieniem kategorii odbiorcy i zakresu termomodernizacji tworzy podstawę dla określenia wymaganej mocy szczytowej oraz zapotrzebowanie roczne energii na ogrzewanie pomieszczeń

Ilość lokali mieszkalnych Jest podstawą dla określenia szczytowego zapotrzebowania mocy na ciepłą wodę i ciepło dla przygotowania posiłków

Liczb ę mieszka ńców Na podstawie, której określane jest roczne zużycie energii na ciepłą wodę, energii na przygotowanie posiłków

Źródła energii

Użytkownik powinien mieć możliwość dodania nowego źródła,jeżeli będzie znał podstawowe parametry: moc, paliwo, sprawność, emisje zanieczyszczeń. W przypadku braku danych istnieje możliwość wyboru źródła wzrocowego na podstawie tablicy źródeł zaimplementowanych w progamie. W przypadku odbiorców indywidualnych często występuje substytucja źródeł przygotowania CWU w obrębie roku. Latem ciepła woda przygotowywana jest w oparciu o jedno źródło (np. energia elektryczna), natomiast zimą w oparciu o źródło centralnego ogrzewania. W celu prawidłowej oceny wielkości zużycia poszczególnych mediów, należy określić zakres tej substytucji

Dane Eksploatacja/Zapotrzebowanie

Obliczenie zapotrzebowania na moc i zużycie energii dla wybranego budynku będzie odbywało się w oparciu

o rzeczywiste zużycie paliwa lub energii, tj. na podstawie faktur zakupu paliwa oraz odczytów z liczników.

Wymagane będzie zebranie i sumowanie poszczególnych paliw w danym roku w zależności od przeznaczenia

(ogrzewanie, ciepła woda, potrzeby technologiczne).

Page 31: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

31

Wyliczenie zużycia ciepła będzie odbywało się na podstawie średnich wartości opałowych paliwa. Wyniki będą

przedstawione w podziale na: energię użytkową, wynikającej z zapotrzebowania budynku oraz energię końcową

uwzględniającą straty związane z wytwarzaniem i przesyłem.

Zapotrzebowanie cieplne budynku referencyjnego

Budynek referencyjny jest to typowy budynek o danym przeznaczeniu, wielkości oraz roku budowy. Moduł będzie

wyznaczał referencyjne zapotrzebowanie na moc i energię cieplną oraz ilość zużywanego paliwa w podziale na

funkcje cieplne (ogrzewania, ciepła woda). Obliczenie referencyjnego zapotrzebowania będzie odbywało się przy

zdefiniowanym źródle ciepła dla rzeczywistego budynku oraz danych wejściowych np. średnie temperatury w ciągu

roku.

Analiza porównawcza

Zadaniem analizy będzie porównanie rzeczywistego zużycia energii i kosztów paliw/mediów z odpowiednimi

wielkościami wynikającymi z zużycia przez budynek referencyjny lub obiektu o zbliżonym wykorzystaniu. Na tej

podstawie użytkownik będzie mógł skonfrontować rzeczywiste zapotrzebowanie na ciepło swojego budynku

i ewentualnie określić wstępnie przyczyny odchyleń zużycia rzeczywistego od normatywnego. Analiza

porównawcza pozwoli także na hierarchizację pod kątem największym odchyleń w porównaniu do normatywnego

zapotrzebowania na ciepło zasobów gminnych. Pozwoli to na wytypowanie budynków najbardziej

energochłonnych, które powinny zostać w pierwszej kolejności objęte procesem termomodernizacji.

Analiza porównawcza umożliwi również na bieżące monitorowanie (z roku na rok) zapotrzebowania cieplnego

budynku i ewentualne zidentyfikowanie odchyleń w porównaniu do normatywnego, co pozwoli na doraźne

wprowadzenie działań zaradczych, np. kontrolę warunków eksploatacji obiektu.

Działania termomodernizacyjne

Program będzie zawierał symulację działań termomodernizacyjnych i wpływ proponowanych działań na całkowite

zapotrzebowanie cieplne budynku. Wybór poszczególnych typów modernizacji (ocieplenie ścian, wymianę okien,

modernizację systemu cieplnego, instalacji cieplnej, etc.) pozwoli na ocenę opłacalności wybranych działań oraz na

wytypowanie inwestycji, które należy wykonać w pierwszej kolejności. Piorytetyzacja modernizacji obiektów

pozwoli użytkownikowi na zwiększenie efektywności wydawanych środków na działania poprawiające efektywność

energetyczną.

System raportów i zestawień

Rozbudowany system raportów i zestawień technicznych (ilość energii, paliw, mediów), finansowych (koszty

energii, paliw) oraz środowiskowych (emisji) pozwoli na kontrolę określonych wielkości w skali pojedynczego

budynku, wybranych kategorii lub w skali gminy.

Page 32: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

32

Rysunek 4.1 Schemat zarządzania energią przy wykorzystania kalkulatora energetycznego

4.2 Aplikacja

Na rysunku 4.2 przedstawiono koncepcję systemu informatycznego. Baza danych będzie składała się z kilku części.

Najważniejszymi danymi wejściowymi są dane wewnętrzne aplikacji oraz dane użytkownika. Dane wewnętrzne

aplikacji są specjalistycznymi danymi z zakresu energetyki i budownictwa oraz ekologii niezbędnymi do realizacji

obliczeń. Do tych danych należą dane klimatyczne np. średnie temperatury w danych miesiącach, zdefiniowane typy

palenisk, które można przyporządkować do konkretnych urządzeń grzewczych lub innych energetycznych cechujące

się daną konstrukcją (np. kocioł z rusztem mechanicznym i wymuszonym obiegiem powietrza) oraz wykorzystujący

dany typ paliwa. W danych tych będą zawarte również wartości opałowe paliw, które będą spalane. Ten parametr

wraz ze sprawnością paleniska jest niezbędny do wyznaczenia zapotrzebowania paliwa zależnie od potrzeb energii

cieplnej dla obiektu. W zależności od sposobu wykorzystania budynku oraz zakresu dostawy ciepła będziemy mieli

inne roczne zapotrzebowanie energii przypadające na powierzchnię jednostkową lub 1 m3 kubatury.

W pomieszczeniach służących do celów przemysłowych w których na stałe nie przebywają ludzie nie ma wymogów

utrzymywania temperatur takich jak w szpitalach czy żłobkach. Zatem przeznaczenie budynku wpływa na

jednostkowe zużycie energii. Z powyższego wprowadzono kategorię odbiorców aby uwzględnić różne sposoby

Page 33: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

33

wykorzystania obiektu budowlanego. Te dane są uzupełnione i użytkownik końcowy nie musi ich analizować.

Natomiast drugą kategorią danych wejściowych są dane użytkownika. Tu należy wprowadzić dane o odbiorcach,

danych technicznych ich budynku. Na podstawie danych technicznych budynku oraz sposobie jego użytkowania

(kategoria budynku) silnik obliczeniowy wykorzystując dane wewnętrzne wyznacza moc i roczne zapotrzebowanie

na energię na cele ogrzewania, ciepłej wody i inne (jakie obiekt zużywa). Jeśli będziemy znali parametry

wykorzystywanych źródeł energii oraz które źródło zasila odbiorcę możemy wyznaczyć jakie będzie roczne zużycie

poszczególnych paliw. W jednym kotle możemy wykorzystywać różne typy paliw. Z tego względu źródła muszą

uwzględniać kombinacje kilku palenisk. Ponadto w niektórych obiektach mogą być wykorzystywane kilka różnych

źródeł energii. Z tego względu pojedyncze źródło może zawierać kilka palenisk a wytworzona całkowita energia

dzieli się na każde palenisko. Ponadto jedno źródło może zasilać kilku odbiorców np. kotłownia osiedlowa,

elektrociepłownia. Te dane są zależne od struktury połączeń odbiorca – źródło. Stanowią one dane użytkownika,

które muszą być wprowadzone dla danego obszaru aby wyznaczyć dla niego zużycie poszczególnych paliw. Na

podstawie zużycia paliw można wyznaczyć emisję gazów i pyłów. Z tego względu wymagane będzie system baz

danych stanowiący relacyjny serwer baz i samą bazę danych. Zawierać ona będzie dane wejściowe tj. dane

wewnętrzne oraz użytkownika oraz wyjściowe – wartości emisji gazów i pyłu wytworzonych w danym źródle

przypadające na danego odbiorcę. Wartości te będziemy prezentować w postaci zależnej od wymaganych zestawień.

Do ich generowania wykorzystywany moduł raportów. Postać ich i zakres analizowanych odbiorców czy źródeł

wybierany jest przez użytkownika. Wyniki samego raportu, jak i dane dotyczące jego rodzaju nie będą zapisywane

ponieważ powiększałyby liczbę przechowywanych rekordów w poszczególnych tabelach, co mogłoby wpływać na

zbyt duży wzrost rozmiaru plików bazy danych. Najważniejszym elementem całego systemu informatycznego jest

silnik obliczeniowy. Na podstawie danych wejściowych będzie oszacowywał zarówno moc jak i roczną energię

spożytkowany w dany sposób. Moc i roczna energią będą wyznaczane w zależności od kategorii odbiorcy, rodzaju

energii na podstawie modelu utworzonego na podstawie danych z audytów energetycznych lub od użytkowników

tych obiektów. Model powstanie na podstawie badań. Do budowy modelu zostaną wykorzystane sieci neuronowe.

Na podstawie zabranych danych zostaną utworzone zestaw danych uczących i zestaw danych testowych. Gdy

zostaną wyznaczone potrzeby energetyczne analizowanego obiektu za pomocą modelu neuronowego numeryczna

część silnika obliczeniowego na podstawie danych wejściowych wyznacza zapotrzebowanie na paliwa. Z kolei

drugą główną funkcjonalnością silnika obliczeniowego jest na podstawie faktycznego zużycia paliw lub zmierzonej

energii (np. na podstawie faktur, odczytów liczników) oraz danych wejściowych wyznaczane są energia

zapotrzebowana oraz wartości emisji.

Pomiędzy poszczególnymi elementami występują następujące zależności. Użytkownik bezpośrednio współpracuje

z graficznym interfejsem GUI (ang. graphical user interface). Na podstawie wybranego menu może on wywołać

okna do wprowadzania lub modyfikacji danych wejściowych, których efekt zapisywany jest w bazie. Ten fakt

zaznaczono strzałkami. Moduł obliczeniowy oraz interfejs użytkownika GUI współpracuje z systemem bazy danych

dwukierunkowo. GUI najpierw odczytuje dane z bazy oraz przesyła instrukcje ich aktualizacji. Silnik obliczeniowy

najpierw wczytuje dane wejściowe dot. danych odbiorców a następnie wyniki zapisuje w odpowiednich tabelach.

Z wyników tych korzystają pozostałe moduły np. dot. raportów.

Page 34: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

34

Rysunek 4.2 Koncepcja programu

W ramach etapu drugiego dotychczas została wykonana struktura bazy danych oraz powiązania pomiędzy

odpowiednimi obiektami. Poniżej przedstawiono tablice opisujące odbiorcę energii, jego parametry techniczne oraz

sposób użytkowania obiektów budowlanych oraz powiązania do źródeł.

Na rysunku 4.2 przedstawiono schemat częściowy dotyczący odbiorcy(obiektu). Pełen schemat relacyjny

przedstawiono na rysunku 4.11. Na schemacie dotyczącym odbiorcy tabela DaneOdbiorcy zawiera podstawowe

nietechniczne dane odbiorcy poza rodzajem odbiorcy. Tabela DaneOdbiorcy powiązana jest z tabelą Lokalizacje.

Lokalizacja służy do zdefiniowania np. części miejscowości lub ulicy jeśli w danej miejscowości zdefiniowano

ulice. Jest ona określona na podstawie Krajowego Rejestru Urzędowego Podziału Terytorialnego Kraju (TERYT)

udostępniany przez Główny Urząd Statystyczny. Pliki XML zostały odpowiednio przetworzone i zaimportowane do

bazy danych. Część bazy odpowiedzialna za identyfikację miejsc geograficznych na podstawie podziału

terytorialnego została przedstawiona na rysunku 4.4. Lokalizacja określa jednoznacznie miejsce w kraju

(województwo, powiat, gminę, miejscowość a nawet ulicę). Jednak ponadto lokalizacja określa stację

meteorologiczną z której będą pobierane dane pogodowe. Dane pogodowe mają wpływ na obliczenia

zapotrzebowania na energię cieplną danego budynku. Dodatkowo określany jest rejon bilansujący. Nie ma

ograniczenia aby dla tego samego miejsca geograficznego zdefiniować dwie lokalizacje np. dla starszych budynków

np. z lat 70-tych oraz osobną dla nowszych. Oczywiście opis zdefiniowanej lokalizacji powinien jednoznacznie

określać użytkownikowi, o jakie miejsce chodzi oraz jakiego typu budownictwa dotyczy. Relacje związane

Page 35: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

35

z definicją lokalizacji zostały przedstawione na rysunku 4.6. Zatem adres obiektu określony jest poprzez lokalizację

oraz pole nr domu tabeli bazy DaneOdbiorcy.

Zużycie energii cieplnej zależne jest również od sposobu eksploatacji obiektu, co jest uwarunkowane jego

przeznaczeniem. W celu umożliwienia wyszukiwania obiektów o podobnej funkcji wprowadzono rodzaj odbiorcy

zdefiniowany w tabeli bazy danych RodzajOdbiorcy. Podobne rodzaje odbiorcy pogrupowane zostały w kategorie

odbiorcy. W tabeli 4.2 przedstawiono zdefiniowane rodzaje odbiorcy. Natomiast nazwy kategorii, których

identyfikatory są widoczne w tabeli 4.2 zostały zaprezentowane w tabeli 4.3. Tabela KategoriaOdbiorcy została

utworzona na podstawie przeprowadzonych badań statystycznych i każdej kategorii odbiorcy przyporządkowano

odmienną charakterystykę. Odbiorców skategoryzowano jak placówki oświatowe, urzędy itp. Charakteryzują się oni

inną liczbą dni w których przebywają ludzie w ciągu roku, faktem czy w obiekcie przygotowywane są posiłki,

zużyciem ciepłej wody użytkowej na osobę. Następnie każdą kategorię odbiorców podzielono na rodzaje np. w

kategorii odbiorców placówki służby zdrowia mamy następujące rodzaje: ośrodek zdrowia, szpital oraz zakład

opieki długoterminowej. Rodzaj odbiorcy służy do porównywania obiektów należących do tej samej grupy na

danym obszarze i ewentualnie tworzyć zestawienia.

Tabela 4.2 Zdefiniowane rodzaje odbiorcy

Identyfikator Identyfikator kategorii Nazwa

1 10 Ośrodek Zdrowia

2 10 Szpital

3 10 Zakład opieki długoterminowej

4 9 Szkoła podstawowa

5 9 Gimnazjum

6 9 Szkoła średnia

7 9 Przedszkole

8 9 Żłobek

9 8 Urząd miasta/gminy

10 8 Basen

11 8 Biblioteka

12 8 Miejski ośrodek kultury

13 1 budownictwo wielorodzinne

14 2 budownictwo jednorodzinne

15 3 zabudowa wiejska

16 4 duże gospodarstwa rolne

17 6 budynki handlowo-mieszkalne

18 7 placówki handlowo-usługowe

19 8 urzędy, instytucje, użyt. publicznej - inne

20 9 Inne placówki oświatowe

21 10 Inne placówki służby zdrowia

22 11 Zakłady przemysłowe

23 12 Oświetlenie ulic

Page 36: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

36

Tabela 4.3 Definicja kategorii odbiorców

Identyfikator Nazwa

1 budownictwo wielorodzinne

2 budownictwo jednorodzinne

3 zabudowa wiejska

4 duże gospodarstwa rolne

6 budynki handlowo-mieszkalne

7 placówki handlowo-usługowe

8 urzędy, instytucje, użyt. publicznej

9 placówki oświatowe

10 placówki służby zdrowia

11 zakłady przemysłowe

12 oświetlenie ulic

Dane techniczne mające wpływ na zapotrzebowanie obiektu budowlanego na zapotrzebowanie energii

cieplnej jest tabela DaneOdbiorcyTech. Danymi podstawowymi mającymi wpływ na wynik obliczeń

zapotrzebowania budynku (obiektu) na energię cieplną są:

• Rok budowy / modernizacji budynku [-],

• ILM – ilo ść użytkowników / mieszkańców [-],

• ILL – ilość lokali w budynku [-],

• powierzchnia użytkowa budynku [m2],

• kubatura budynku [m3],

• czy budynek ma piwnicę [tak/nie],

• liczba kondygnacji [-],

• ewentualne zrealizowane termodernizacje np. wymiana okien, ocieplenie ścian.

Jeżeli w obiekcie wystąpiły modernizacje, zmiana liczby użytkowników lub liczby lokali np. modernizacje

zmieniające pole powierzchni ogrzewanych lub termomodernizacje zmieniające zapotrzebowanie na energię to w

tabeli tej pojawi się rekord dotyczący tego odbiorcy i rok tej zmiany.

Kolejną tabelą bazy danych widoczną na rysunku 4.3 jest konfiguracja. Określa ona związek pomiędzy

danymi technicznymi danego obiektu a źródłem energii oraz sposobem wykorzystania tej energii. Tabela

konfiguracja umożliwia określenie dla danego odbiorcy w danym roku (budowy lub modernizacji) jakie rodzaje

energii będą w obiekcie zużywane (patrz tabela 4.4) np. C.O. Pole rodzaj tabeli konfiguracja ma wartość równą

odpowiednio identyfikatorowi rodzaju energii przedstawiony w/w tabeli. Tabela dla każdego zadeklarowanego

rodzaju energii umożliwia przechowywanie mocy oraz rocznej energii zapotrzebowanej. Dane te zostaną wyliczone

na podstawie parametrów technicznych oraz danych pogodowych po wprowadzeniu jego danych. Na podstawie

mocy i pozostałych parametrów technicznych budynku wyliczana jest roczna energia. Są to moce i energia

przypadające dla konkretnego odbiorcę przez określone źródło. Dodatkowo dla tego samego odbiorcy posiadającego

ten sam stan techniczny obiektu oraz eksploatującego go w ten sam sposób mogą zmienić się źródła, z których

pobierana jest energia. Odbiorca wcześniej posiadał kocioł indywidualny centralnego ogrzewania a w pewnym roku

Page 37: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

37

przyłączył się do miejskiej sieci ciepłowniczej. Innym przykładem jest wymiana starego kotła indywidualnego na

kocioł retortowy wyposażony w układ automatyki. W takiej sytuacji będziemy mieli z innymi sprawnościami

źródeł, innymi rodzajami paliw. Paliwa charakteryzują się różną wartością opałową. W zależności od źródła i paliwa

mamy odpowiednie współczynniki emisji. Zatem zmiana konfiguracji źródeł ma duży wpływ na ilości zużytego

paliwa oraz wartości emisji zanieczyszczeń powietrza.

Definicja typów energii, używane w tabeli konfiguracja została przedstawiona w tabeli 4.4.

Tabela 4.4 Zdefiniowane rodzaje energii

Identyfikator Nazwa opis

1 CO Energia zużyta na ogrzewanie pomieszczeń

2 CWU Energia zużyta do ogrzewania wody użytkowej

3 TE Ciepło do przygotowania posiłków lub ciepło technologiczne

Page 38: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

38

Rysunek 4.3 Schemat relacyjny częściowy związany z odbiorcami

Page 39: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

39

Na rysunku 4.4 zamodelowano podział terytorialny kraju na podstawie danych z GUS. GUS prowadzi rejestr

TERYT. Został on wykorzystany do zbudowania bazy miejscowości dotyczący całej Polski łącznie z ulicami. W

tabeli miejscowości występują też nazwy części miejscowości np. dzielnic. Wówczas są one połączone do innego

wiersza w tej tabeli za pomocą pola wskazującego miejscowość główną. Stąd relacja wewnętrzna w tabeli

miejscowości. Podczas wyświetlania danych została ograniczona lista miejscowości tylko do miejscowości

podstawowych. Powoduje to ułatwienie pracy a ponadto ulice są przyporządkowane miejscowościom

podstawowym. Reszta relacji jest znana. Województwa zawierają powiaty. Powiaty zawierają gminy. W gminie

znajdują się miejscowości a w niektórych miejscowościach znajdują się ulice. Import danych geograficznych

zrealizowano w oparciu o następujące pliki:

1. TERC.XML - wykaz jednostek podziału terytorialnego,

2. SIMC.XML - wykaz miejscowości ,

3. ULIC.XML - wykaz ulic.

Podczas importu danych XML zadbano o utworzenie unikalnych kluczy prostych dla każdego obiektu aby

jednoznacznie identyfikować każdy obiekt np. każdą miejscowość oraz stworzyć jednoznaczne relacje. Dodatkowo

podczas importu pliku Terc.xml należało zadbać o następującą kolejność czynności tzn. wyszukanie i import

najpierw województw, następnie powiatów a ostatniej kolejności gminy. Czynność ta wymagała wstępnej konwersji

niemałej ilości danych. Należy nadmienić, iż pliki te nie są typowymi plikami XML-owymi ze zdefiniowaną

strukturą. Ponadto pliki mogłyby być już podzielone na województwa, powiaty itp.

Rysunek 4.4 Jednostki podziału terytorialnego na podstawie danych z GUS

Page 40: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

40

Na rysunku 4.5 przedstawiono relację pomiędzy następującymi tabelami: RodzajOdbiorcy, KategoriaOdbiorcy,

krzywe_CO, dane_krzywe_CO. Ze schematu tego wynika, że znając rodzaj odbiorcy (określony w polu

id_rodzaj_odbiorcy tabeli DaneOdbiorcy) jednoznacznie wyznaczymy kategorię odbiorcy. Tabela

KategoriaOdbiorcy zawiera szczegółowe dane statystyczne wynikające ze sposobu użytkowania obiektów

budowlanych, co wpływa na zużycie ciepłej wody, zużycie energii na ogrzewanie. Do wyznaczenia tych

współczynników wykorzystano sieci neuronowe oraz pozyskane dane z audytów energetycznych. Dla danej

kategorii odbiorcy odpowiada jedna krzywa CO a dla tej krzywej odpowiednio rekordy z tabeli dane_krzywe_CO,

które rozróżniają współczynniki ze względu na rok budowy/modernizacji obiektu. Tabele te są wykorzystywane

podczas realizacji obliczeń.

Rysunek 4.5 Relacje rodzaju odbiorcy a dane krzywych nagrzewania CO

Na rysunku 4.6 zdefiniowano schemat dotyczący lokalizacji czy to odbiorców czy też źródeł zewnętrznych

np. osiedlowe kotłownie. W przypadku źródeł zlokalizowanych bezpośrednio u odbiorcy ich lokalizacja jest

identyczna jak samego odbiorcy. Zatem nie musi być uzupełniana. Lokalizację określa sama miejscowość jeśli w

niej nie ma ulic albo ulica należąca do konkretnej miejscowości. Zatem powinno być określone pole

id_miejscowosci i jeśli ona dotyczy konkretnej ulicy to dodatkowo musimy wypełnić pole id_ulicy. Lokalizacja też

określa dodatkowo najbliższą stację meteorologiczną, którą uzupełnić należy przed obliczeniami. Dla tej stacji będą

wybierane dane z tabel sezon_CO oraz strefy_klimatyczne. w celu wyznaczenia zapotrzebowania na energię cieplną

dla celów ogrzewania. Dane tabeli tej powinny być regularnie aktualizowane. Tabela lokalizacje zawiera

standardowy rok budowy. Jest to wartość domyślna jeśli odbiorca nie będzie miał uzupełnionego tego pola. Obszar

można podzielić na rejony. Zatem do stworzenia pojęcia lokalizacji wykorzystano Krajowy Rejestr Urzędowego

Podziału Terytorialnego Kraju (TERYT ) tj. tabele miejscowosci i ulice i rozszerzono o dane meteorologiczne

związane z ciepłownictwem.

dane_krzywe_CO

id_krzywej_CO

rok

a

b

KategoriaOdbiorcy

id

nazwa

krzywa_CO

red_automatyka_CO

zuzycie_CWU

ilosc_dni_przebywania

czy_przygotowane_posilki

moc_posilki

energia_posilki

czy_mieszkalny

wsk_wzrostu_EE

opis

krzywe_CO

id

nazwa

RodzajOdbiorcy

id

id_kategoriaOdbiorcy

nazwa

opis

Page 41: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

41

Rysunek 4.6 Definicja lokalizacji

Na rysunku 4.7 zdefiniowano schemat przedstawiający wytwarzanie energii na podstawie różnych paliw i w

różnych paleniskach. W tabeli paliwa zdefiniowano parametry samych paliw, a w szczególności wartość opałową,

jednostki dot. ilości np. tony, jednostki dot. ceny np. PLN/tony, jednostki dot. wartości opałowej GJ/tonę i

opcjonalnie cenę. Tabele pomocnicze JM_cena oraz JM_wartosc_opalowa umożliwiają zastosowania różnych

jednostek wartości opałowej oraz ceny. Następnie zdefiniowano tabelę paleniska. Palenisko stanowi miejsce w

którym przebiega proces spalania. Jej głównym celem jest zdefiniowanie przy jakim rodzaju kotła i jego przedziału

mocy jaka jest jego sprawność. W zależności od wybranego paleniska oraz spalanego w nim paliwa otrzymujemy

różne współczynniki emisji zanieczyszczeń powietrza SO2, NOx, CO2, CO oraz pyłu. W tym celu zdefiniowano

tabelę paleniska_emisje. Dlatego w tabeli paliwa nie zdefiniowano pól dotyczących samej emisji. Tabela

paleniska_emisje umożliwia definicję używania kilku paliw w tym samym palenisku. Jak również te samo paliwo

może być wykorzystane w różnych paleniskach. Palenisko stanowi zatem szablon źródła energii. Zobrazowaniem

konkretnego źródła energii posiadającego konkretną lokalizacje jest źródło, które przechowywane jest w tabeli

DaneZrodel. Jeżeli informacja o lokalizacji źródeł nie będzie wykorzystywana np. w zestawieniach wówczas w

bazie wystarczy zdefiniować po jednym źródle dla każdego wykorzystywanego paleniska a wynik obliczeń nie

zmieni się. Zatem zaprojektowany schemat częściowy umożliwia elastyczne definiowanie wykorzystywania wielu

paliw w jednym kotle lub wielu paliw w kilku kotłach. Dodatkową tabelą pomocniczą jest JM_emisji umożliwiająca

używanie różnych jednostek emisji. Ponadto w tabeli DaneZrodel zdefiniowano opcjonalne pole P - moc źródła.

Jeśli ta dana jest znana to należy ją wpisać np. z tabliczki znamionowej. W celu identyfikacji źródła należy użyć

odpowiedniej nazwy, aby była rozpoznawana przez użytkownika.

lokalizacje

id

id_miejscowosci

id_ulicy

id_stacji_meteo

opis

standard_rok_budowy

rejon_bil

zasilanie_elektryczne

zasilanie_gazowe

ulice

id

id_miejscowosci

cecha

nazwa1

nazwa2

pelna_nazwa

miejscowosci

id_gminy

id

nazwa

id_podst

rodzaj

dlugosc

szerokosc

stacja_meteo

id

jednostka

adres

tel

id_miejscowosci

nr_stacji

nazwa_stacji

szerokosc

dlugosc

nr_strefy_klimatycznej

Rejony

id

nazwa

strefy_klimatyczne

nr

proj_temp_zew

sr_roczna_temp_zew

sezon_CO

id_stacji_meteo

miesiac

ilosc_dni_w_mies

srednia_temp

temperatura_w_mieszkaniu

min_temp_na_zewnatrz

ilosc_stopnio_dni_w_sezonie

ilosc_stopnio_dni_max

Page 42: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

42

Rysunek 4.7 Schemat powiązań palenisk i danych źródeł

Na rysunku 4.8 przedstawiono podstawowe relacje definiujące konkretne źródło energii w określonej

lokalizacji, mające swojego właściciela i posiadające profil paliwowo-paleniskowy. Definicje listy paliw używanych

w źródle został zaprezentowany na rysunku 4.7 a w szczególności tabele: paleniska, paleniska_emisje i paliwa. Z

kolei na rysunku Błąd! Nie można odnaleźć źródła odwołania. pokazano również powiązanie tabeli DaneZrodel z

tabelą konfiguracje dotyczącą mocy i rocznego zapotrzebowania energii dla danego odbiorcy i jego konfiguracji

technicznej, sposobu użytkowania tej energii. Szczegóły dotyczące tych zależności zaprezentowano na rysunku 4.3

oraz 4.7. Tabela typ_zrodla ma tylko charakter informacyjny. Ze względu na to, że zarówno źródło może mieć

swoją lokalizację jak i odbiorca zatem do obu tych tabel występują relacje z tabelą lokalizacje. Tabela konfiguracje

jest elementem wiążącym konkretne źródło wykorzystywane u danego odbiorcy z określoną konfiguracją i w

określonym celu np. C.O.

Page 43: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

43

Rysunek 4.8 Schemat definicji źródła energii

Page 44: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

44

Rysunek 4.9 Relacje zapotrzebowanie

Na rysunku 4.9 przedstawiono tabelę zapotrzebowanie. Zawiera ona identyfikator paliwa, jego ilość, energię w

paliwie wyliczoną na podstawie wartości opałowej tego paliwa oraz energię udział jest to energia w paliwie

pomnożona przez sprawność paleniska. Dane te dotyczą teoretycznych wyników obliczeń na podstawie danych

technicznych przechowywanych w DaneOdbiorcyTech, paliwa oraz paleniska i paleniska_emisje. W tabeli

Zapotrzebowanie znajdują się pola dotyczące wielkości emisji wyrażonej w kg powstałej ze spalenia teoretycznej

ilości tego paliwa w tym palenisku. Jeśli w danym palenisku wykorzystuje się kilka paliw to w tabeli

Zapotrzebowanie będzie dla każdego paliwa danego paleniska odpowiadał osobny wiersz. Zapotrzebowania dotyczą

konkretnej konfiguracji technicznej i energii zużywanej na konkretny cel (wiersz tabeli konfiguracja) w danym roku

kalendarzowym. Stąd tabela pośrednia pomiędzy tabelami Zapotrzebowania i konfiguracja –

wynikiZapotrzebowania.

Page 45: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

45

Rysunek 4.10 Relacje ZuzyciaPaliwEmisje

Na rysunku 4.10 przedstawiono relacje dotyczące tabeli ZuzyciaPaliwEmisje. Dane te dotyczą faktycznie zużytych

paliw w danym roku kalendarzowym określonego odbiorcę o zdefiniowanej konfiguracji technicznej (tabela

konfiguracje). Schemat relacyjny jest podobny do schematu dotyczącego zapotrzebowania.

Na rysunku 4.11Błąd! Nie można odnaleźć źródła odwołania. znajduje się pełen schemat relacyjny bazy danych. Ze względu na jego złożoność wyżej omawiano poszczególne części tego schematu co ułatwiło jego analizę.

Page 46: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

46

Rysunek 4.11 Pełen schemat relacyjny bazy danych

System baz danych został utworzony w środowisku Microsoft SQL Server 2012. Aplikacja do komunikacji z bazą

danych wykorzystuje bezobsługową wersję lokalną serwera baz danych – Microsoft SQL Server 2012 Express

Page 47: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

47

LocalDB. Informacje podstawowe znajdują się na stronie producenta. Ze względu na użyty aparat bazodanowy

wymaganiem aplikacji będzie system operacyjny Windows Vista lub nowszy. System operacyjny Windows XP nie

będzie obsługiwany. Aplikacja będzie pracowała lokalnie na komputerze a wykorzystywane dane nie muszą być

udostępniane wielu użytkownikom w sieci komputerowej/Internecie. Każdy użytkownik będzie pracował na swoich

danych i nie ma potrzeby tworzenia komercyjnego centralnego serwera baz danych. Z tego względu zastosowano

lokalną bazę danych. Dzięki temu nie wymaga się instalacji, konfiguracji oraz zaawansowanej administracji

serwerem baz danych. Ewentualne pobranie programu instalacyjnego z bibliotekami połączeniowymi jest możliwe

z tej strony, gdzie również podano wymagana programowe i sprzętowe.

Page 48: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

48

5 Korzy ści z zastosowania kalkulatora energetycznego Celem projektu jest poprawa efektywności energetycznej i redukcja emisji zanieczyszczeń poprzez aktywne

zarządzanie energią i inwestycjami w obszarze budownictwa. Przez działania inwestycyjne należy rozumieć

różnego typu termomodernizacje (zmiana właściwości technicznych budynku, źródła energii, etc.), natomiast

bezinwestycyjne m.in. regulację instalacji grzewczych, zapewniająca optymalną z punktu widzenia zużycia energii

i komfortu cieplnego temperaturę w pomieszczeniach, racjonalizację zużycia energii przez osoby korzystające

z budynków, etc.

Kalkulator energetyczny nie przyczynia się bezpośrednio do uzyskania zamierzonych efektów potencjalnych

działań. Jest narzędziem informatycznym wspierających JST w zakresie inwestycyjnego i bezinwestycyjnego

ograniczania zużycia energii i emisji zanieczyszczeń, poprzez identyfikację potencjalnych przyczyn

ponadnormatywnego zużycia. Wykorzystanie kalkulatora pozwoli potencjalnemu użytkownikowi wybrać

optymalne rozwiązania z punktu widzenia poprawy efektywności energetycznej, efektu ekologicznego oraz

ekonomicznego.

W kolejnych podrozdziałach przedstawiono wykorzystanie kalkulatora dla typowego budynku

jednorodzinnego w Gminie Miastko. Obliczenia wykonano pod kątem poprawy efektywności energetycznej,

wpływu proponowanych działań na wielkość emisji zanieczyszczeń oraz efektu ekonomicznego zaproponowanych

działań modernizacyjnych.

5.1 Podstawowe dane o obiekcie

Podstawowe informacje o analizowanym budynku jednorodzinnym zostały przedstawione w tabeli 5.1.

Tabela 5.1 Podstawowe dane wymagane o obiekcie w kalkulatorze energetycznym

DANE OBIEKTU – STAN ISTNIEJ ĄCY

Charakterystyka budynku

Adres budynku Gmina Miastko

x wolnostojący

□ bliźniak

□ szeregowiec

□ budynek wielorodzinny

Ogrzewana powierzchnia, m2: 120

Liczba osób zamieszkujących: 6

Rok budowy 1968

Dotychczasowe działania termomodernizacyjne Okna w budynku

Brak □

Ocieplenie ścian: □ TAK x NIE

Ocieplenie dachu/stropodachu □ TAK x NIE

Typ Stan techniczny

x PCV

□ drewniane nowego typu

□ drewniane starego typu

x dobry

□ dostateczny

□ zły CO - ogrzewanie budynku

□ miejski system ciepłowniczy

□ kotłownia lokalna (osiedlowa)

x źródło indywidualne:

□ piec kaflowy

□ etażowe

□ ogrzewanie centralne

inne źródło: □ kominek

Źródło indywidulane Rodzaj spalanego paliwa

Moc źródła, kW 25

Rok produkcji 2006

Szacunkowe zużycie paliwa w ciągu roku [tony / m3 / GJ] 5 ton w ęgla/5m3 drewna

Stan techniczny kotła

x dobry □ dostateczny □ zły

x węgiel -ekogroszek

□ węgiel - miał

□ węgiel - inne

□ gaz ziemny

□ gaz płynny (propan, butan)

□ energia elektryczna

□ olej opałowy

x drewno

□ pelety

□ słoma

□ pompa ciepła

□ inne (jakie)............

CWU – przygotowanie ciepłej wody

Jedno źródło ciepła do ogrzewania pomieszczeń i przygotowania ciepłej wody □ TAK x NIE (wskaż które)

□ gazowe (tzw. „junkers”) □ kolektory słoneczne x elektryczne przepływowe □ elektryczne pojemnościowe (tzw. bojler) □ inne (jakie)............................

Page 49: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

49

W ramach planowanych zmian właściciel domku jednorodzinnego planował przeprowadzenie działań

termomodernizacyjnych, m.in.: ocieplenie ścian zewnętrznych oraz zmiany w sposobie przygotowania ciepłej wody

poprzez instalacje kolektorów słonecznych.

5.2 Poprawa efektywno ści energetycznej

Dla budynku jednorodzinnego o parametrach technicznych przedstawionych w tabeli 5.1 analizowano następujące

warianty modernizacji:

• modernizacja_1: docieplenie zewnętrznych przegród budowlanych;

• modernizacja_2: docieplenie zewnętrznych przegród budowlanych oraz ocieplenie stropodachu.

W tabeli 5.2 przedstawiono porównanie podstawowych wskaźników zapotrzebowania (energia użytkowa, zużycia

paliwa) dla stanu istniejącego oraz analizowanych wariantów.

Tabela 5.2 Porównanie energii użytkowej oraz zużycia paliwa na ogrzewanie - stan istniejący i poszczególne warianty modernizacji

Wyszczególnienie Stan aktualny Modernizacja_1 Modernizacja_2

Energia u żytkowa (ogrzewanie) MWh 38 27.5 24.4

Zużycie paliwa na ogrzewanie budynku

Ekogroszek ton 5.5 4.0 3.5

Drewno m3 5.5 4.0 3.5

Z powyższych danych wynika, że w zależności od wariantu modernizacji uzyskano poprawę efektywności

energetycznej budynku o:

• modernizacja_1: 30%;

• modernizacja_2: 37%.

5.3 Efekt ekologiczny

5.3.1 W wyniku przeprowadzenia działa ń termomodernizacyjnych

Efekt ekologiczny sensie praktycznym oznacza zmniejszenie ilości zanieczyszczeń wprowadzanych do

środowiska w relacji przed i po rozpoczęciu eksploatacji nowych urządzeń, będących przedmiotem inwestycji.

Poniżej w tabeli 5.3 przedstawiono efekt ekologicznych analizowanych wariantów modernizacji.

Tabela 5.3 Wielkość poszczególnych emisji dla stanu aktualnego i rozważanych wariantów termomodernizacji

Wyszczególnienie Stan aktualny Modernizacja_1 Modernizacja_2

Tlenki siarki SO 2 kg 34,.5 25.1 22.3

Tlenki azotu NO x kg 42.1 30.6 27.2

Tlenki w ęgla CO kg 115.4 83.9 74.5

Pyły kg 20.4 14.8 13.1

Dwutlenek w ęgla CO 2 kg 10 475 7 616 6 760

Na rysunku 5.1 uzyskane wyniki przedstawiono graficznie. Na rysunku wielkość emisji dla poszczególnych

zanieczyszczeń podano w kg/rok, jedynie dla CO2 wyniki przedstawiono w t/rok.

Page 50: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

50

Rysunek 5.1 Zmiana wielkości emisji w zależności od zrealizowanych działań termomodernizacyjnych

5.3.2 W wyniku zainstalowania kolektorów słonecznych na potrzeby c.w.u.

W obliczeniach przyjęto udział kolektora słonecznego na potrzeby przygotowania ciepłej wody na poziomie

0,45. Współczynnik ten stanowi średni roczny udział wykorzystania kolektorów słonecznych na potrzeby c.w.u.

w Gminie Miastko w wyniku zrealizowanych dotychczas prac.2

Zużycie paliw przed i po zainstalowaniu kolektora słonecznego przedstawiono w tabeli 5.4.

Tabela 5.4 Porównanie energii użytkowej oraz zużycia paliwa na potrzeby c.w.u. - stan istniejący oraz w wariancie z wykorzystaniem kolektorów słonecznych

Wyszczególnienie Stan aktualny Przy wykorzystanie kolektora słonecznego

Energia u żytkowa (c.w.u.) MWh 4.46 4.46

Zużycie paliwa na potrzeby c.w.u.

Energia elektryczna MWh 4.95 2.95

Kolektor słoneczny MWh 0 2.0

Przy obliczeniu wielkości emisyjności dwutlenku węgla dla produkcji energii elektrycznej przyjęto referencyjny

wskaźnik na poziomie 0,812 Mg CO2/MWh [18]. Korzyści ekologiczne zastosowanie kolektora słonecznego na

potrzeby c.w.u. w postaci redukcji CO2 zostały przedstawione w tabeli 5.5.

Tabela 5.5 Wielkość emisji CO2 dla stanu aktualnego oraz przy wykorzystaniu kolektora słonecznego na potrzeby c.w.u.

Wyszczególnienie Stan aktualny Przy wykorzystanie kolektora słonecznego

Dwutlenek w ęgla CO 2 Mg CO2 4.036 2.412

Przy założonym udziale kolektorów słonecznych w zaspokajaniu potrzeb związanych z c.w.u. dla domku

jednorodzinnego o parametrach przedstawionych w rozdziale 5.1, obliczona ilość energii wynosi ok. 2 MWh

rocznie. Na tej podstawie możemy dokonać wstępnego doboru kolektorów słonecznych przy wykorzystaniu

kalkulatora energetycznego. Przy założeniach:

• obliczone zapotrzebowania na potrzeby c.w.u. z kolektora słonecznego: 2 MWh

2 Gmina Miastko aktywnie w ostatnich latach wdrażała programy wykorzystania kolektorów słonecznych na swoim terenie. Obecnie wykorzystuje się ponad 400 kolektorów zainstalowanych u odbiorców indywidualnych oraz budynkach publicznych.

Page 51: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

51

• standardowa, przyjęta w kalkulatorze energetycznym, średnia powierzchnia brutto jednego kolektora

słonecznego 2 m2,

należy zainstalować 2 lub 3 kolektory słoneczne.

5.4 Efekt ekonomiczny

Projekcję finansową termomodernizacji przeprowadzono na podstawie kalkulacji wolnych przepływów

finansowych dla właścicieli kapitału własnego oraz wierzycieli (Free Cash Flow to Firm). Przepływy FCFF

dyskontowane są średnim ważonym kosztem kapitału (WACC). Na podstawie wolnych przepływów finansowych

obliczone zostały (o ile było to możliwe) następujące wskaźniki opłacalności inwestycji:

• wartość zaktualizowana netto (Net Present Value - NPV) – określająca jako nadwyżkę

zaktualizowanych przychodów netto nad poniesionymi nakładami początkowymi lub równoważnie

nadwyżka zaktualizowanego zysku netto nad alternatywnym zyskiem z inwestycji o wewnętrznej stopie

zwrotu równej przyjętej stopie dyskonta, projekt jest rentowny gdy NPV≥0;

• wewnętrzna stopa zwrotu (Internal Rate of Return - IRR) – określająca stopę zwrotu netto wyrażaną,

jako roczna stopa rentowności, projekt jest rentowny gdy IRR≥ stopy dyskonta;

• prosty okres zwrotu (Simple Pay Back Time - SPBT) - czas potrzebny do odzyskania nakładów

inwestycyjnych poniesionych na realizację danego przedsięwzięcia, jest liczony od momentu

uruchomienia inwestycji do chwili, gdy suma korzyści uzyskanych w wyniku realizacji inwestycji

zrównoważy poniesione nakłady;

• zaktualizowany okres zwrotu (Discounted Pay Back Time - DPBT) - czas potrzebny do odzyskania

nakładów inwestycyjnych poniesionych na realizację danego przedsięwzięcia, wyznaczany na podstawie

zdyskontowanych przepływów pieniężnych netto;

• nakład na jednostkową redukcję zużycia nośnika energii – wskaźnik stanowiący iloraz poniesionego

nakładu inwestycyjnego oraz łącznego wolumenu oszczędności nośnika energii w okresie realizacji

projektu.

5.4.1 W wyniku przeprowadzenia działa ń termomodernizacyjnych

W tabeli 5.6 przedstawiono podstawowe dane wykorzystane do obliczenia efektu ekonomicznego dla pierwszego

wariantu modernizacji obejmującego wykonanie docieplenia zewnętrznych przegród budowlanych.

Tabela 5.6 Podstawowe parametry wykorzystane do obliczenia efektu ekonomicznego

Wyszczególnienie Dane

Bazowe zużycie paliw:

ekogroszek 5.5 t/rok

drewno 5.5 m

3/rok

Nakłady inwestycyjne na modernizację (wariant 1: docieplenie ścian zewnętrznych budynku):

powierzchnia ścian zewnętrznych 250 m

2

jednostkowy koszt docieplenia 1m

2 powierzchni 100 zł/m

2

Łączny koszt modernizacji 25 000 zł

Zużycie paliw po modernizacji w wariancie 1:

ekogroszek 4 t/rok

drewno 4 m

3/rok

Roczna oszczędność paliwa po modernizacji:

Page 52: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

52

Wyszczególnienie Dane

ekogroszek 1.5 t/rok

drewno 1.5 m

3/rok

Jednostkowe koszty zakupu paliw:

ekogroszek 700 zł/t

drewno 110 zł/m

3

Roczna oszczędność na kosztach zakupu paliwa 1 200 zł/rok

W tabeli poniżej zestawiono wskaźniki efektywności przedsięwzięcia termomodernizacyjnego przy założeniu 10-

letniego okresu uzyskiwania oszczędności w zużyciu nośników energii oraz braku wsparcia inwestycji ze środków

publicznych.

Tabela 5.7 Wskaźniki efektywności ekonomicznej przedsięwzięcia termomodernizacyjnego

Wskaźnik Jednostka Wartość

Wartość zaktualizowana netto (NPV) [tys. PLN] -15 452

Wewnętrzna stopa zwrotu (IRR) [%] -11,3%

Prosty okres zwrotu (SPBT) [lat] -

Zdyskontowany okres zwrotu (DPBT) [lat] -

Nakład na jedn. redukcji zużycia [zł/MWh] 833

Przy przyjętych założeniach obliczone wskaźniki efektywności wskazują, że bez uzyskania dofinansowania

inwestycji przedsięwzięcie termomodernizacyjne jest ekonomicznie nieopłacalne, zarówno wskaźnik NPV jak i IRR

osiągają wartości ujemne zaś okres zwrotu wykracza poza założony horyzont analizy.

Arkusz do analizy wrażliwości, który został opracowany w ramach kalkulatora energetycznego, pozwala

ocenić wpływ wybranych parametrów początkowych projekcji na wskaźniki efektywności przedsięwzięcia

wyznaczane przy kalkulacji wolnych przepływów finansowych FCFF oraz wyznaczyć próg rentowności danego

parametru przy którym wartość zaktualizowana netto (NPV) osiąga wartość zero, czyli przedsięwzięcie

termomodernizacyjne jest neutralne z punktu widzenia opłacalności.

Arkusz umożliwia badanie wrażliwości w dwóch trybach: ręcznym i zautomatyzowanym. W trybie ręcznym

możliwa jest zmiana dowolnego parametru z listy, w dowolnym zakresie procentowym względem wielkości

przyjętej jako bazowa, i ocena skutków zmian na wskaźniki efektywności inwestycji.

W drugim trybie należy określić zakres zmienności parametru i aktywować obliczenia. Zostaną wówczas

wygenerowane zestawienia wskaźników opłacalności dla pięciu równo oddalonych od siebie wartości badanego

parametru w zadanym zakresie zmienności oraz jeśli będzie to możliwe, zostanie obliczona wartość parametru

stanowiąca próg rentowności. W tabeli 5.8 oraz na zestawiono wyniki analizy wrażliwości przedsięwzięcia

termomodernizacyjnego na poziom dofinansowania inwestycji ze środków publicznych. Wyniki wskazują, że próg

rentowności, przy którym korzyści w postaci oszczędności w zużyciu nośników energii równoważą poniesione

nakłady na termomodernizację, stanowi dofinansowanie na poziomie ok. 65%.

Page 53: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

53

Tabela 5.8 Wyniki analizy wrażliwości efektu ekonomicznego przedsięwzięcia termomodernizacyjnego ze względu na poziom dofinansowania projektu ze środków publicznych.

Wskaźniki efektywno ści inwestycji Dofinansowanie (% nakładów inwestycji) Próg

rentowno ści

0% 20% 40% 60% 80% [%]

Wartość zaktualizowana netto (NPV)

[tys. PLN] -15 452 -10 674 -5 896 -1 117 3 661

65%

Wewnętrzna stopa zwrotu (IRR)

[%] -11,3% -7,8% -3,3% 2,9% 11,4%

Prosty okres zwrotu (SPBT) [lat] - - - 8 4

Zdyskontowany okres zwrotu (DPBT)

[lat] - - - - 6

Nakład na jedn. redukcji zużycia

[zł/MWh] 833 833 833 833 833

Rysunek 5.2 Zmiany wartości bieżącej netto (NPV) przedsięwzięcia termomodernizacyjnego w zależności od wielkości uzyskanego dofinansowania

5.4.2 W wyniku zainstalowania kolektorów słonecznych na potrzeby c.w.u.

W tabeli 5.9 przedstawiono podstawowe dane wykorzystane do obliczenia efektu ekonomicznego przy

zastosowaniu kolektorów słonecznych na potrzeby c.w.u.

Tabela 5.9 Podstawowe parametry wykorzystane do obliczenia efektu ekonomicznego przy zastosowaniu kolektora słonecznego

Wyszczególnienie Dane

Bazowe zużycie paliw:

Energia elektryczna 4.95 MWh/rok

Nakłady inwestycyjne na modernizację 12 000 PLN

Zużycie paliw po zainstalowaniu kolektorów słonecznych:

Page 54: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

54

Wyszczególnienie Dane

Energia elektryczna 3 MWh/rok

Kolektor słoneczny 2 MWh

Roczna oszczędność paliwa po modernizacji:

Energia elektryczna 2 MWh/rok

Jednostkowe koszty zakupu paliw:

Energia elektryczna 650 zł/MWh

Roczna oszczędność na kosztach zakupu paliwa 1 300 zł/rok

W tabeli poniżej zestawiono wskaźniki efektywności przedsięwzięcia polegającego na zmianie źródła na potrzeby

c.w.u. przy założeniu 10-letniego okresu uzyskiwania oszczędności w zużyciu nośników energii oraz braku

wsparcia inwestycji ze środków publicznych.

Obliczone wskaźniki efektywności wskazują, że bez uzyskania dofinansowania inwestycji przedsięwzięcie

polegające na zainstalowaniu kolektorów słonecznych na potrzeby c.w.u. charakteryzuje się niską opłacalnością

ekonomiczną, prosty okres zwrotu wynosi 9 lat.

Tabela 5.10 Wskaźniki efektywności ekonomicznej przedsięwzięcia - zainstalowanie kolektorów słonecznych na potrzeby c.w.u.

Wskaźnik Jednostka Wartość

Wartość zaktualizowana netto (NPV) [tys. PLN] -1 784

Wewnętrzna stopa zwrotu (IRR) [%] 1,5%

Prosty okres zwrotu (SPBT) [lat] 9

Zdyskontowany okres zwrotu (DPBT) [lat] -

W tabeli 5.11 oraz na rysunku 5.3 zestawiono wyniki analizy wrażliwości efektu ekonomicznego przedsięwzięcia

przy zmianie poziomu dofinansowania. Wyniki wskazują, że próg rentowności, przy którym korzyści w postaci

oszczędności na kosztach pozyskania nośników energii równoważą poniesione nakłady na instalację kolektorów,

stanowi dofinansowanie na poziomie ok. 16%.

Tabela 5.11 Wyniki analizy wrażliwości efektu ekonomicznego przedsięwzięcia obejmującego zainstalowanie kolektorów słonecznych na potrzeby c.w.u., ze względu na poziom dofinansowania projektu ze środków publicznych

Wskaźniki efektywno ści inwestycji Dofinansowanie (% nakładów inwestycji) Próg

rentowno ści

0% 10% 20% 30% 40% [%]

Wartość zaktualizowana netto (NPV)

[tys. PLN]

-1 784 -637 509 1 656 2 803

16%

Wewnętrzna stopa zwrotu (IRR)

[%] 1.5% 3.4% 5.7% 8.1% 10.9%

Prosty okres zwrotu (SPBT) [lat] 9 8 7 6 6

Zdyskontowany okres zwrotu (DPBT)

[lat] - - 9 8 7

Page 55: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

55

Rysunek 5.3 Zmiany wartości bieżącej netto (NPV) przedsięwzięcia zainstalowanie kolektorów słonecznych w

zależności od wielkości uzyskanego dofinansowania

Page 56: 3 Obliczania zapotrzebowania cieplnego w kalkulatorze ...

Kalkulator energetyczny dla jednostek samorządu terytorialnego

56

LITERATURA

Normy

[1] PN-EN 12831:2006 - Instalacje ogrzewcze w budynkach. Metoda obliczania projektowego obciążenia cieplnego

[2] PN-EN ISO 13790:2009 - Energetyczne właściwości użytkowe budynków. Obliczenia zużycia energii na potrzeby ogrzewania i chłodzenia.

[3] PN-EN ISO 6946:2008 - Komponenty budowlane i elementy budynku. Opór cieplny i współczynnik przenikania ciepła. Metoda obliczania

[4] PN-EN 14351-1: 2007 - Okna i drzwi - norma wyrobu, właściwości eksploatacyjne cz.1: okn i drzwi zewnętrzne bez właściwości dotyczących odporności ogniowej i/lub dymoszczelności

[5] PN-EN ISO 13370: 2001 Właściwości cieplne budynków. Wymiana ciepła przez grunt. Metody obliczania

[6] PN-EN ISO 14683:2008 Mostki cieplne w budynkach. Liniowy współczynnik przenikania ciepła. Metody uproszczone i wartości orientacyjne

[7] PN-EN 15316:2007 Instalacje grzewcze w budynkach - Metoda obliczenia zapotrzebowania na energię instalacji i sprawności instalacji

Rozporządzenia

[8] Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (Dz. U. Nr 75, poz. 690, z późn. zm.)

[9] Rozporządzenie Ministra Infrastruktury z dnia 6 listopada 2008 r. zmieniające rozporządzenie sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (Dz. U. nr 201 poz. 1238)

[10] Rozporządzenie Ministra Transportu, Budownictwa i gospodarki morskiej z dnia 5 lipca 2013 r. zmieniające rozporządzenie sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (Dz. U. poz. 926 z dnia 13.08.2013)

[11] Rozporządzenie Ministra Infrastruktury z dnia 3.06.2014 w sprawie metodologii obliczania charakterystyki energetycznej budynku i lokalu mieszkalnego lub części budynku stanowiącej samodzielną całość techniczno-użytkową oraz sposobu sporządzania i wzorów świadectw ich charakterystyki energetycznej. (Dz. U. nr 2014, poz. 888)

[12] Ustawa z 21 listopada 2008 r. o wspieraniu termomodernizacji i remontów (Dz.U. nr 223, poz. 1459, z późn. zm.).

Inne

[13] Robakiewicz M.: Ocena cech energetycznych budynków. Wymagania - Dane - Obliczenia. Wydanie II, Warszawa 2010

[14] Strzeszewski M., Wereszyński P.: Norma PN-EN 12831 - Nowa metoda obliczenia projektowego obciążenia cieplnego. Poradnik PURMO, Warszawa 2009

[15] GUS: Efektywność wykorzystania energii w latach 2002-2012; Warszawa 2014, www.stat.gov.pl

[16] Chudzicki J.: Instalacje ciepłej wody w budynkach; Biblioteka FPE 2006

Strony internetowe:

[17] www.mir.gov.pl

[18] http://www.kobize.pl/